JP6804727B2 - How to design a column joint structure - Google Patents

How to design a column joint structure Download PDF

Info

Publication number
JP6804727B2
JP6804727B2 JP2016079421A JP2016079421A JP6804727B2 JP 6804727 B2 JP6804727 B2 JP 6804727B2 JP 2016079421 A JP2016079421 A JP 2016079421A JP 2016079421 A JP2016079421 A JP 2016079421A JP 6804727 B2 JP6804727 B2 JP 6804727B2
Authority
JP
Japan
Prior art keywords
column
steel pipe
base plate
concrete
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016079421A
Other languages
Japanese (ja)
Other versions
JP2017190581A (en
Inventor
清臣 金本
清臣 金本
山野辺 宏治
宏治 山野辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2016079421A priority Critical patent/JP6804727B2/en
Publication of JP2017190581A publication Critical patent/JP2017190581A/en
Application granted granted Critical
Publication of JP6804727B2 publication Critical patent/JP6804727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Description

本発明は、鉄筋コンクリート造の第一柱と鉄骨造又はコンクリート充填鋼管造の第二柱とを接合する柱接合構造の設計方法に関するものである。 The present invention relates to a method for designing a column joint structure for joining a first column of a reinforced concrete structure and a second column of a steel frame structure or a concrete-filled steel pipe structure.

従来から、鉄筋コンクリート造(以下、「RC造」と称することがある。)の柱と鉄骨造(以下、「S造」と称することがある。)又はコンクリート充填鋼管造(以下、「CFT造」と称することがある。)の柱とを接合する場合には、接合部分において、十分な応力伝達を行うために、地下階を例えば2〜3層等の複数層にわたって鉄骨鉄筋コンクリート造(以下、「SRC造」と称することがある。)の柱として応力を切り替えて構築することが多く実施されている。このように、複数層の地下階で応力を切り替える場合には、建物の規模によっては途中でSRC造の柱が基礎に達したり、地下階がSRC造のために工数と仮設が増えたり、あるいは施工箇所が地下階の狭隘空間であるので作業性が悪い等の不具合があった。 Conventionally, columns of reinforced concrete construction (hereinafter, may be referred to as "RC construction") and steel frame construction (hereinafter, may be referred to as "S construction") or concrete-filled steel pipe construction (hereinafter, "CFT construction"". In the case of joining with columns of (may be referred to as), in order to perform sufficient stress transmission at the joint portion, the basement floor is made of steel-framed reinforced concrete (hereinafter, "" It is often constructed by switching stress as a pillar of "SRC structure"). In this way, when switching stress between multiple basement floors, depending on the scale of the building, the columns of SRC structure may reach the foundation on the way, or the number of steps and temporary construction may increase because the basement floor is SRC structure. Since the construction site is a narrow space on the basement floor, there were problems such as poor workability.

そこで、応力を効率よく切り替える構造として特許文献1の接合構造が提案されている。特許文献1の接合構造では、RC造の第一柱と、その第一柱の上方に位置するS造又はCFT造の第二柱と、柱の軸方向に沿って延在する接合鋼管とが備えられている。 第二柱の下部が、接合鋼管の内側に位置して、接合鋼管内に充填された充填コンクリート内に定着されている。第一柱の複数の柱主筋の上部が、接合鋼管の内側に位置して充填コンクリート内に定着されているとともに、接合鋼管内において第二柱の周囲に配置されている。
支圧強度に及ぼす第二柱の下端(ベースプレート)から接合鋼管の下端までの高さ寸法などを評価することで、支圧応力度式等を用いて軸力伝達性能を確保しつつ接合部分の使用鋼材量の削減などを可能にしている。
Therefore, the bonding structure of Patent Document 1 has been proposed as a structure for efficiently switching stress. In the joint structure of Patent Document 1, a first column of RC structure, a second column of S structure or CFT structure located above the first column, and a bonded steel pipe extending along the axial direction of the column are formed. It is equipped. The lower part of the second column is located inside the joined steel pipe and is fixed in the filled concrete filled in the joined steel pipe. The upper portions of the plurality of column main bars of the first column are located inside the joint steel pipe and are fixed in the filled concrete, and are arranged around the second column in the joint steel pipe.
By evaluating the height dimension from the lower end (base plate) of the second column to the lower end of the joined steel pipe, which affects the bearing strength, the bearing stress equation is used to ensure the axial force transmission performance of the joint. It makes it possible to reduce the amount of steel used.

特開2015−63889号公報JP-A-2015-63889

しかしながら、従来の柱接合構造におけるコンクリートの支圧応力度式は、無筋コンクリートを対象に構築されているものがほとんどであった。特許文献1では、接合鋼管内に第一柱の主筋が充填コンクリート部で定着されていて、既往の支圧応力度式を準用することは適していない。このため、適切な支圧応力度式を適用することが望まれている。 However, most of the bearing stress equations for concrete in the conventional column joint structure are constructed for unreinforced concrete. In Patent Document 1, the main bar of the first column is fixed in the joined steel pipe at the filled concrete portion, and it is not suitable to apply the existing bearing stress equation mutatis mutandis. Therefore, it is desired to apply an appropriate bearing stress equation.

そこで本発明では、適切な支圧強度を確保できる柱接合構造の設計方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a method for designing a column joint structure that can secure an appropriate bearing strength.

本発明に係る柱接合構造の設計方法は、鉛直方向に延びる柱主筋を有する鉄筋コンクリート造の第一柱と、該第一柱の上方に配置された鉄骨造又はコンクリート充填鋼管造の第二柱とを、応力切替部を介して接合する接合構造の設計方法であって、該応力切替部は、前記第二柱の下部のベースプレートと、該第二柱の下部の外周側に配置され、前記柱主筋と連続して前記コンクリート部から前記鉛直方向に突出して延びる主筋部と、該主筋部を全て囲繞するとともに、前記鉛直方向全長にわたって配置された接合鋼管と、該接合鋼管内に充填された充填コンクリート部と、を備え、前記応力切替部内における前記充填コンクリート部であって、前記ベースプレート直下部分の支圧応力度が、下記の条件式(1)を満たすように設定されていることを特徴とする柱接合構造の設計方法

Figure 0006804727
ただし、
σ:応力切替部内における前記充填コンクリート部であって、前記ベースプレート直下部分の支圧応力度(N/mm
BS:ベースプレートの幅寸法(mm)
:ベースプレートから接合鋼管の下端までの区間の高さ寸法(mm)
:接合鋼管せん断断面積の等価せん断補強筋比較換算値(2t/D)またはせん断補強筋比
:接合鋼管の板厚寸法(mm)
:接合鋼管のせい寸法(mm)
σ:接合鋼管の降伏強度(N/mm
:コンクリートの設計基準強度(N/mm
:充填コンクリート部の面積(=B×D)(mm
:接合鋼管の幅内内寸法(mm)
:接合鋼管のせい内内寸法(mm)
BS:ベースプレートの面積(=BBS×DBS)(mm
BS:ベースプレートのせい寸法(mm)
である。 The method for designing a column joint structure according to the present invention includes a first column of a reinforced concrete structure having a column main bar extending in the vertical direction and a second column of a steel frame structure or a concrete-filled steel pipe structure arranged above the first column. Is a method for designing a joint structure in which the two columns are joined via a stress switching section, the stress switching section is arranged on a base plate at the lower part of the second pillar and an outer peripheral side of the lower part of the second pillar. A main bar portion that is continuous with the main bar and extends from the concrete portion in the vertical direction, and a joint steel pipe that surrounds all of the main reinforcement portion and is arranged over the entire length in the vertical direction, and a filling filled in the joint steel pipe. A concrete portion is provided, and the filled concrete portion in the stress switching portion is characterized in that the bearing stress degree of the portion directly under the base plate is set so as to satisfy the following conditional expression (1). How to design a column joint structure.
Figure 0006804727
However,
σ p : The bearing stress degree (N / mm 2 ) of the filled concrete portion in the stress switching portion and directly below the base plate.
B BS : Base plate width dimension (mm)
h p: height of the section from the base plate to the lower end of the joining steel (mm)
P w: bonding steel equivalent shear reinforcement comparison the corresponding value of the shear cross sectional area (2t p / D p) or shear reinforcement ratio t p: bonding steel plate thickness dimension (mm)
D p : Due to the joint steel pipe (mm)
p σ y : Yield strength of bonded steel pipe (N / mm 2 )
F c : Concrete design standard strength (N / mm 2 )
Ac : Area of filled concrete part (= B c x D c ) (mm 2 )
B c : Inner width within the width of the joined steel pipe (mm)
D c : Inner dimension (mm) due to the bonded steel pipe
A BS : Base plate area (= B BS x D BS ) (mm 2 )
DBS : Base plate blame size (mm)
Is.

このような構成において、上記の条件式(1)は、充填コンクリート部の第二柱のベースプレート直下部分の支圧強度確認実験を行い、算出したものである。よって、接合鋼管による充填コンクリート部の拘束効果の影響を考慮した上記の支圧応力度式を用いて、適切な支圧強度を確保しつつ、第一柱と第二柱とを接合することができる。 In such a configuration, the above conditional expression (1) is calculated by conducting an experiment for confirming the bearing pressure strength of the portion directly below the base plate of the second column of the filled concrete portion. Therefore, it is possible to join the first column and the second column while ensuring an appropriate bearing strength by using the above bearing stress equation considering the influence of the restraining effect of the filled concrete part by the joined steel pipe. it can.

本発明では、前記接合鋼管の外周面は、前記第一柱の外周面と面一に形成されていてもよい。 In the present invention, the outer peripheral surface of the joined steel pipe may be formed flush with the outer peripheral surface of the first column.

このような構成によれば、接合鋼管の外周面は第一柱の外周面と面一に形成されているため、接合鋼管を平面計画上、効果的に配置できる。 According to such a configuration, since the outer peripheral surface of the joined steel pipe is formed flush with the outer peripheral surface of the first column, the joined steel pipe can be effectively arranged in the plan.

本発明によれば、適切な支圧強度を確保しつつ、第一柱と第二柱とを接合することができる。 According to the present invention, the first pillar and the second pillar can be joined while ensuring an appropriate bearing strength.

(a)は本発明の実施形態に係る柱接合構造を備えた構造物の躯体の一部を示す縦断面図であり、(b)は(a)のX−X断面図である。(A) is a vertical sectional view showing a part of a skeleton of a structure provided with a column-joined structure according to an embodiment of the present invention, and (b) is an XX sectional view of (a). (a)は実験例における試験体No1’の構造を示す側面部であり、(b)は(a)のA1−A1断面図である。(A) is a side surface portion showing the structure of the test body No. 1'in the experimental example, and (b) is a cross-sectional view taken along the line A1-A1 of (a). (a)は実験例における試験体No1b’の構造を示す側面部であり、(b)は(a)のA2−A2断面図である。(A) is a side surface portion showing the structure of the test body No. 1b'in the experimental example, and (b) is a cross-sectional view taken along the line A2-A2 of (a). (a)は実験例における試験体No1c’の構造を示す側面部であり、(b)は(a)のA3−A3断面図である。(A) is a side surface portion showing the structure of the test body No. 1c'in the experimental example, and (b) is a cross-sectional view taken along the line A3-A3 of (a). (a)は実験例における試験体No2’の構造を示す側面部であり、(b)は(a)のA4−A4断面図である。(A) is a side surface portion showing the structure of the test body No. 2'in the experimental example, and (b) is a cross-sectional view taken along the line A4-A4 of (a). (a)は実験例における試験体No2a’の構造を示す側面部であり、(b)は(a)のA5−A5断面図である。(A) is a side surface portion showing the structure of the test body No. 2a'in the experimental example, and (b) is a cross-sectional view taken along the line A5-A5 of (a). (a)は実験例における試験体No3a’の構造を示す側面部であり、(b)は(a)のA6−A6断面図である。(A) is a side surface portion showing the structure of the test body No. 3a'in the experimental example, and (b) is a cross-sectional view taken along the line A6-A6 of (a). (a)は実験例における試験体No3b’の構造を示す側面部であり、(b)は(a)のA7−A7断面図である。(A) is a side surface portion showing the structure of the test body No. 3b'in the experimental example, and (b) is a cross-sectional view taken along the line A7-A7 of (a). 支圧強度評価式による計算結果と実験結果との比較を表すグラフである。It is a graph which shows the comparison between the calculation result by the bearing pressure strength evaluation formula, and the experiment result.

以下、本発明に係る柱接合構造の実施の形態について、図面に基いて説明する。 Hereinafter, embodiments of the column joint structure according to the present invention will be described with reference to the drawings.

図1(a),(b)に示すように、本実施形態の柱接合構造を備えた構造物100では、鉄筋コンクリート造のRC柱(第一柱)1の柱主筋11は、下部主筋11Aがスラブ43を貫通して設けられ、機械式継手15を介して上部主筋11Bと接合されている。また、鉄骨の梁42にコンクリート充填鋼管造のCFT柱(第二柱)2が固定されている。 As shown in FIGS. 1 (a) and 1 (b), in the structure 100 having the column joint structure of the present embodiment, the lower main bar 11A is the column main bar 11 of the RC column (first column) 1 made of reinforced concrete. It is provided so as to penetrate the slab 43 and is joined to the upper main bar 11B via a mechanical joint 15. Further, a CFT column (second column) 2 made of concrete-filled steel pipe is fixed to the steel beam 42.

RC柱1とCFT柱2との柱接合構造は、上下に離間して配置された地下躯体のスラブ43と地上躯体のスラブ44との間に、RC柱1の上部16と、CFT柱2の下部23と、RC柱1とCFT柱2とを軸方向に接合する応力切替部5と、を備えている。
上下のスラブ43,44間の1層の間隔よりも短い応力切替部5において、地下躯体の構造と地上躯体の構造とが切替えられている。
The column joint structure of the RC column 1 and the CFT column 2 is such that the upper portion 16 of the RC column 1 and the CFT column 2 are formed between the slab 43 of the underground skeleton and the slab 44 of the above-ground skeleton arranged vertically and vertically. A lower portion 23 and a stress switching portion 5 for axially joining the RC column 1 and the CFT column 2 are provided.
The structure of the underground skeleton and the structure of the above-ground skeleton are switched in the stress switching portion 5 which is shorter than the interval of one layer between the upper and lower slabs 43 and 44.

RC柱1は、コンクリート部10の内部に鉄筋からなる柱主筋11等が複数埋設された公知の鉄筋コンクリート柱であり、横断面視の外形が四角形の柱である。柱主筋11は、柱軸方向に延在している。なお、RC柱1は、横断面が円形であってもよい。 The RC column 1 is a known reinforced concrete column in which a plurality of column main bars 11 and the like made of reinforcing bars are embedded inside the concrete portion 10, and is a column having a quadrangular outer shape in cross-sectional view. The column main bar 11 extends in the column axis direction. The RC pillar 1 may have a circular cross section.

CFT柱2は、角筒状の鋼管20と、その内側に充填されたコンクリート部21と、鋼管20の下端に設けられた平面視四角形のベースプレート22と、を有している。鋼管20の横断面視の外形は、RC柱1の横断面視の外形よりも小さい。また、ベースプレート22の平面視の外形は、鋼管20の横断面視の外形よりも大きく、且つ、RC柱1の横断面視の外形よりも小さい。なお、CFT柱2の鋼管は、円筒状に形成されていてもよい。 The CFT pillar 2 has a square tubular steel pipe 20, a concrete portion 21 filled inside the steel pipe 20, and a rectangular base plate 22 in a plan view provided at the lower end of the steel pipe 20. The outer shape of the steel pipe 20 in the cross-sectional view is smaller than the outer shape of the RC column 1 in the cross-sectional view. Further, the outer shape of the base plate 22 in a plan view is larger than the outer shape of the steel pipe 20 in a cross-sectional view, and smaller than the outer shape of the RC column 1 in a cross-sectional view. The steel pipe of the CFT column 2 may be formed in a cylindrical shape.

さらに、ベースプレート22の中央部分には、開口(不図示。以下同じ。)が形成されている。この開口により、CFT柱2のコンクリート部21と後述する接合鋼管3内の充填コンクリート部31とが分離せずに一体に形成されている。 Further, an opening (not shown, the same applies hereinafter) is formed in the central portion of the base plate 22. Due to this opening, the concrete portion 21 of the CFT column 2 and the filled concrete portion 31 in the joined steel pipe 3 described later are integrally formed without being separated.

応力切替部5は、CFT柱2のベースプレート22と、柱主筋11の上部(主筋部)14と、軸方向に延在してRC柱1の上部16及びCFT柱2の下部23を内部に配置した接合鋼管3と、接合鋼管3内に充填された充填コンクリート部31と、を備えている。地下構造物であるRC柱1と地上構造物であるCFT柱2とが、応力切替部5を介して接合されている。 The stress switching portion 5 internally arranges the base plate 22 of the CFT column 2, the upper portion (main reinforcement portion) 14 of the column main bar 11, the upper 16 of the RC column 1 and the lower 23 of the CFT column 2 extending in the axial direction. The joined steel pipe 3 is provided with the joined steel pipe 3 and the filled concrete portion 31 filled in the joined steel pipe 3. The RC column 1 which is an underground structure and the CFT column 2 which is an above-ground structure are joined via a stress switching portion 5.

接合鋼管3は、本実施形態では軸方向に沿って延在する角筒状の鋼管からなり、RC柱1のコンクリート部10の上方に配置されている。この接合鋼管3の横断面視の外形はRC柱1の横断面視の外形と同一形状であり、接合鋼管3の外周面がRC柱1の外周面と面一に形成されている。なお、接合鋼管3は、円筒状に形成されていてもよい。 In the present embodiment, the joined steel pipe 3 is made of a square tubular steel pipe extending along the axial direction, and is arranged above the concrete portion 10 of the RC column 1. The outer shape of the joined steel pipe 3 in the cross-sectional view is the same as the outer shape of the RC column 1 in the cross-sectional view, and the outer peripheral surface of the joined steel pipe 3 is formed flush with the outer peripheral surface of the RC column 1. The joined steel pipe 3 may be formed in a cylindrical shape.

接合鋼管3の内側には、充填コンクリート部31が接合鋼管3の下端から上端までの範囲に亘って充填されている。なお、コンクリート部10及び充填コンクリート部31の下部を一体としてプレキャストコンクリートで構成して、充填コンクリート部31を上部から現場で打設して形成してもよい。 The inside of the joined steel pipe 3 is filled with a filled concrete portion 31 over a range from the lower end to the upper end of the joined steel pipe 3. The concrete portion 10 and the lower portion of the filled concrete portion 31 may be integrally formed of precast concrete, and the filled concrete portion 31 may be cast from the upper portion on site.

接合鋼管3の内側には、CFT柱2の下部(柱脚部)23が接合鋼管3の上端開口部から挿入されており、CFT柱2の下部23が接合鋼管3内の充填コンクリート部31内に定着されている。CFT柱2の柱脚部23は、接合鋼管3の軸方向の中間位置まで延在しており、充填コンクリート部31に対する十分な根入れ長さ、例えば充填コンクリート部31にはCFT柱2の幅またはせいの2倍以上の根入れ長さが確保されている。 Inside the joint steel pipe 3, the lower part (column base) 23 of the CFT column 2 is inserted from the upper end opening of the joint steel pipe 3, and the lower part 23 of the CFT column 2 is inside the filled concrete portion 31 in the joint steel pipe 3. Has been established in. The column base portion 23 of the CFT column 2 extends to an intermediate position in the axial direction of the joined steel pipe 3, and has a sufficient embedding length with respect to the filled concrete portion 31, for example, the width of the CFT column 2 in the filled concrete portion 31. Or, the rooting length is more than twice as long as the length.

接合鋼管3の内側には、RC柱1の上部16から延出した複数の柱主筋11の定着部分14が、接合鋼管3の下端開口部からそれぞれ挿入され、接合鋼管3内の充填コンクリート部31内にCFT柱2の柱脚部23とともに定着されている。柱主筋11の上端には、拡径された定着端13がそれぞれ設けられている。 Inside the joint steel pipe 3, fixing portions 14 of a plurality of column main bars 11 extending from the upper portion 16 of the RC column 1 are inserted from the lower end openings of the joint steel pipe 3, respectively, and the filled concrete portion 31 in the joint steel pipe 3 is inserted. It is fixed inside together with the column base 23 of the CFT column 2. An enlarged fixing end 13 is provided at the upper end of the column main bar 11.

複数の柱主筋11の定着部分14は、接合鋼管3の上端よりも下方の高さまで延在しており、柱主筋11の上端面と充填コンクリート部31の上端面との間には所定の被り厚さがある。 The fixing portions 14 of the plurality of column main bars 11 extend to a height below the upper end of the joined steel pipe 3, and a predetermined covering is provided between the upper end surface of the column main bars 11 and the upper end surface of the filled concrete portion 31. There is thickness.

複数の柱主筋11の上部は、接合鋼管3とCFT柱2の柱脚部23との間に配置され、柱脚部23の周囲を囲むように接合鋼管3の内周面に沿って平面視四角形状に並べて配置されている。 The upper portions of the plurality of column main bars 11 are arranged between the joint steel pipe 3 and the column base portion 23 of the CFT column 2, and are viewed in plan along the inner peripheral surface of the joint steel pipe 3 so as to surround the column base portion 23. They are arranged side by side in a square shape.

このような接合鋼管3は、上下に離間して配置されたスラブ43,44間の間隔より短く形成されていて、条件式(2)を満たすように配置されている。

Figure 0006804727
ただし、
σ:応力切替部内における前記充填コンクリート部であって、前記ベースプレート直下部分の支圧応力度(N/mm
BS:ベースプレートの幅寸法(mm)
:ベースプレートから接合鋼管の下端までの区間の高さ寸法(mm)
:接合鋼管せん断断面積の等価せん断補強筋比較換算値(2t/D)またはせん断補強筋比
:接合鋼管の板厚寸法(mm)
:接合鋼管のせい寸法(mm)
σ:接合鋼管の降伏強度(N/mm
:コンクリートの設計基準強度(N/mm
:充填コンクリート部の面積(=B×D)(mm
:接合鋼管の幅内内寸法(mm)
:接合鋼管のせい内内寸法(mm)
BS:ベースプレートの面積(=BBS×DBS)(mm
BS:ベースプレートのせい寸法(mm)
である。
なお、B(幅寸法)はせん断力の作用方向に対して垂直な寸法を示す、D(せい寸法)はせん断力の作用方向に対して平行な寸法を示す。 Such a joined steel pipe 3 is formed shorter than the distance between the slabs 43 and 44 arranged vertically and vertically, and is arranged so as to satisfy the conditional expression (2).
Figure 0006804727
However,
σ p : The bearing stress degree (N / mm 2 ) of the filled concrete portion in the stress switching portion and directly below the base plate.
B BS : Base plate width dimension (mm)
h p: height of the section from the base plate to the lower end of the joining steel (mm)
P w: bonding steel equivalent shear reinforcement comparison the corresponding value of the shear cross sectional area (2t p / D p) or shear reinforcement ratio t p: bonding steel plate thickness dimension (mm)
D p : Due to the joint steel pipe (mm)
p σ y : Yield strength of bonded steel pipe (N / mm 2 )
F c : Concrete design standard strength (N / mm 2 )
Ac : Area of filled concrete part (= B c x D c ) (mm 2 )
B c : Inner width within the width of the joined steel pipe (mm)
D c : Inner dimension (mm) due to the bonded steel pipe
A BS : Base plate area (= B BS x D BS ) (mm 2 )
DBS : Base plate blame size (mm)
Is.
B (width dimension) indicates a dimension perpendicular to the direction of action of the shearing force, and D (cause dimension) indicates a dimension parallel to the direction of action of the shearing force.

条件式(2)は、応力切替部5における支圧強度を、接合鋼管3の寸法・形状や接合鋼管3のせん断補強筋量換算値などをパラメータとして、繰り返し実験を行うことで得られた実験式であり、実際の支圧強度との十分な相関が得られている。 Conditional formula (2) is an experiment obtained by repeatedly conducting an experiment with the bearing strength at the stress switching unit 5 as parameters such as the dimensions and shape of the joined steel pipe 3 and the shear reinforcing bar mass conversion value of the joined steel pipe 3. It is an equation, and a sufficient correlation with the actual bearing strength is obtained.

この条件式(2)では、例えばt、Dσ等を用いることにより、接合鋼管3による充填コンクリートの拘束効果による影響を支圧強度に反映させており、接合鋼管3を用いた応力切替部5の支圧強度を適切に推定することが可能となっている。 In this conditional expression (2), for example, by using t p , D p , p σ y, etc., the influence of the restraining effect of the filled concrete by the bonded steel pipe 3 is reflected in the bearing strength, and the bonded steel pipe 3 is used. It is possible to appropriately estimate the bearing strength of the stress switching unit 5 that has been used.

なお、接合するRC柱1及びCFT柱2などは、構造物の構成上の各種の条件を満たすように寸法・形状・材質等が定まっている。このため、本実施形態の柱接合構造では、このような条件式(2)を用いることで、RC柱1とCFT柱2とを接合する応力切替部5において、構造物の構成上要求される支圧強度が得られるように接合鋼管3の寸法、形状、位置等を定めている。 The dimensions, shape, material, etc. of the RC columns 1 and CFT columns 2 to be joined are determined so as to satisfy various conditions in the structure. Therefore, in the column joining structure of the present embodiment, by using such a conditional expression (2), the stress switching portion 5 for joining the RC column 1 and the CFT column 2 is required in terms of the structure of the structure. The dimensions, shape, position, etc. of the joined steel pipe 3 are determined so that the bearing pressure strength can be obtained.

以上のような柱接合構造によれば、RC柱1の上部16とCFT柱2の下部23とを接合鋼管3に収容した応力切替部5において、接合鋼管3による充填コンクリート部31の拘束効果の影響を考慮して接合鋼管3を所望の支圧強度が得られるように配置している。 According to the column joining structure as described above, in the stress switching portion 5 in which the upper portion 16 of the RC column 1 and the lower portion 23 of the CFT column 2 are housed in the joined steel pipe 3, the effect of restraining the filled concrete portion 31 by the joined steel pipe 3 is exerted. The joined steel pipe 3 is arranged so as to obtain a desired bearing strength in consideration of the influence.

このため、1層のみで構造を切替える応力切替部5であっても、適切な接合強度を容易に確保でき、コンパクトで適切な支圧強度を確保できる柱接合構造が実現できる。 Therefore, even with the stress switching unit 5 that switches the structure with only one layer, an appropriate joint strength can be easily secured, and a compact column joint structure that can secure an appropriate bearing strength can be realized.

なお、上記実施形態は、本発明の範囲内において適宜変更可能である。
例えば上記実施形態では、地上構造物としてCFT造の柱を設けたが、特に制限されるものではなく、RC造の柱の上にS造の柱を接合する場合であっても、全く同様に適用可能である。
The above embodiment can be appropriately changed within the scope of the present invention.
For example, in the above embodiment, a CFT column is provided as a ground structure, but the structure is not particularly limited, and even when an S column is joined on an RC column, the same is true. Applicable.

また、上記に示す実施形態では、RC柱1のコンクリート部10や接合鋼管3の充填コンクリート部31として鋼繊維補強コンクリート等の繊維補強コンクリートを用いてもよい。 Further, in the embodiment shown above, fiber reinforced concrete such as steel fiber reinforced concrete may be used as the concrete portion 10 of the RC column 1 and the filled concrete portion 31 of the joined steel pipe 3.

また、上記に示す実施形態では、応力切替部5は、地下階の最上層に設けられている場合も例に挙げて説明したが、本発明はこれに限られず、地下階の他の階、または地上階のいずれかの階等に設けられている場合にも適用可能である。 Further, in the embodiment shown above, the stress switching unit 5 has been described as an example when it is provided on the uppermost layer of the basement floor, but the present invention is not limited to this, and other floors of the basement floor, Alternatively, it can be applied when it is installed on any floor above ground.

次に、本発明の柱接合構造を部分的に構成した種々の試験体を準備し、実測された支圧強度と条件式(2)を用いた計算値との比較試験を行った。
この試験では、CFT柱やS柱等の第2柱のベースプレートより上方の条件をアムスラー型万能試験機を代用して疑似的に構成し、ベースプレートより下側の柱接合構造を異ならせて複数種類の試験体を準備した。
Next, various test bodies partially composed of the column joint structure of the present invention were prepared, and a comparative test was conducted between the measured bearing pressure strength and the calculated value using the conditional expression (2).
In this test, the conditions above the base plate of the second column such as CFT column and S column are simulated by substituting the Amsler type universal testing machine, and the column joining structure below the base plate is made different. Specimen was prepared.

[試験体No1’]
図2(a),(b)に示すように、試験体No1’は、接合鋼管3と、柱主筋11と充填コンクリート部31とを、有している。
接合鋼管3は、幅300mm、奥行き300mm、高さ150mm、厚み6mmでSS400製である。接合鋼管3の下端部には、高さ150mm、厚み6mmでSS400製のリブ32が設けられている。
柱主筋11は、直径10mmの異形棒鋼で、接合鋼管3の内側25mmの位置に等間隔で合計16本配置されており、SD295A製で、最小鉄筋量pgが1.27%となっている。充填コンクリート部31は接合鋼管3の内側に充填されて固化されている。充填コンクリート部31の設計基準強度Fは60N/mmであった。
[Test specimen No1']
As shown in FIGS. 2 (a) and 2 (b), the test piece No. 1'has a bonded steel pipe 3, a column main bar 11, and a filled concrete portion 31.
The joined steel pipe 3 has a width of 300 mm, a depth of 300 mm, a height of 150 mm, and a thickness of 6 mm, and is made of SS400. A rib 32 made of SS400 having a height of 150 mm and a thickness of 6 mm is provided at the lower end of the joined steel pipe 3.
The column main bars 11 are deformed steel bars having a diameter of 10 mm, and a total of 16 columns are arranged at equal intervals at positions 25 mm inside the joint steel pipe 3 and are made of SD295A, and the minimum reinforcing bar amount pg is 1.27%. The filled concrete portion 31 is filled and solidified inside the joined steel pipe 3. The design standard strength F c of the filled concrete portion 31 was 60 N / mm 2 .

鋼材35のベース部36をベースプレート22に想定して、軸方向の圧縮軸力を負荷して、ベースプレートの直下のコンクリートの支圧強度を測定した。
また条件式(2)を用いて、この接合構造における支圧強度を算出した。
結果を図9のグラフに符号1’として記載した。
Assuming that the base portion 36 of the steel material 35 is the base plate 22, a compressive axial force in the axial direction is applied, and the bearing strength of the concrete directly under the base plate is measured.
In addition, the bearing strength in this joint structure was calculated using the conditional expression (2).
The results are shown in the graph of FIG. 9 as reference numeral 1'.

[試験体No1b’]
図3(a),(b)に示すように、試験体No1b’では、柱主筋11を直径13mmの異形棒鋼で、接合鋼管3の内側25mmの位置に4隅に3本ずつ、合計12本配置し、最小鉄筋量pgを1.69%とした。
その他は試験体No1’と同じにして、支圧強度を測定するとともに算出し、結果を図9のグラフに符号1b’として記載した。
[Test body No1b']
As shown in FIGS. 3 (a) and 3 (b), in the test piece No. 1b', the column main bars 11 are made of deformed steel bars having a diameter of 13 mm, and three in each of the four corners at a position 25 mm inside the joint steel pipe 3, for a total of 12 bars. The arrangement was made so that the minimum reinforcing bar amount pg was 1.69%.
Others were the same as the test piece No. 1', and the bearing pressure strength was measured and calculated, and the result is described as reference numeral 1b'in the graph of FIG.

[試験体No1c’]
図4(a),(b)に示すように、試験体No1c’では、接合鋼管3の高さを100mmとした。
その他は試験体No1b’と同じにして、支圧強度を測定するとともに算出し、結果を図9のグラフに符号1c’として記載した。
[Test specimen No1c']
As shown in FIGS. 4A and 4B, the height of the bonded steel pipe 3 was set to 100 mm in the test piece No. 1c'.
Others were the same as those of the test piece No. 1b', and the bearing pressure strength was measured and calculated, and the result is described as reference numeral 1c'in the graph of FIG.

[試験体No2’]
図5(a),(b)に示すように、接合鋼管3は、幅400mm、奥行き400mm、高さ200mm、厚み6mmでSS400製とした。接合鋼管3の下端部には、高さ150mm、厚み6mmでSS400製のリブ32が設けられている。
柱主筋11は、直径13mmの異形棒鋼で、接合鋼管3の内側40mmの位置に等間隔で合計16本配置されており、SD295A製で、最小鉄筋量pgが1.27%とした。
その他は試験体No1’と同じにして、支圧強度を測定するとともに算出し、結果を図9のグラフに符号2’として記載した。
[Test specimen No2']
As shown in FIGS. 5A and 5B, the bonded steel pipe 3 has a width of 400 mm, a depth of 400 mm, a height of 200 mm, and a thickness of 6 mm, and is made of SS400. A rib 32 made of SS400 having a height of 150 mm and a thickness of 6 mm is provided at the lower end of the joined steel pipe 3.
The column main bars 11 are deformed steel bars having a diameter of 13 mm, and a total of 16 columns are arranged at equal intervals at positions 40 mm inside the joint steel pipe 3 and are made of SD295A, and the minimum reinforcing bar amount pg is 1.27%.
Others were the same as the test piece No. 1', and the bearing pressure strength was measured and calculated, and the result is described as reference numeral 2'in the graph of FIG.

[試験体No2a’]
図6(a),(b)に示すように、試験体No2a’では、柱主筋11を直径16mmの異形棒鋼で、接合鋼管3の内側40mmの位置に4隅に3本ずつ、合計12本配置し、最小鉄筋量pgを1.49%とした。
その他は試験体No2’と同じにして、支圧強度を測定するとともに算出し、結果を図9のグラフに符号2a’として記載した。
[Test body No2a']
As shown in FIGS. 6 (a) and 6 (b), in the test piece No. 2a', the column main bars 11 are made of deformed steel bars having a diameter of 16 mm, and three in each of the four corners at a position 40 mm inside the joint steel pipe 3, for a total of 12 bars. It was arranged and the minimum reinforcing bar amount pg was 1.49%.
Others were the same as the test piece No. 2', and the bearing pressure strength was measured and calculated, and the result is described as reference numeral 2a'in the graph of FIG.

[試験体No3a’]
図7(a),(b)に示すように、試験体No3a’では、接合鋼管3の代わりに複数のせん断補強筋6を配置した。柱主筋11は62.5mm間隔で配置され、せん断補強筋6はこれら16本の柱主筋11を囲繞している。せん断補強筋6は、直径8mmの線材の異形棒鋼であり、降伏強度785N/mm級である。せん断補強筋6は、30mmピッチで等間隔で5本配置されており、せん断補強筋量(P・σ)は8.6N/mmであった。これら柱主筋11及びせん断補強筋6は、幅300mm、奥行300mm、高さ150mmのコンクリート7内に配置されている。
その他は試験体No1’と同じにして、接合鋼管3を用いたものと同様に支圧強度を測定するとともに算出し、結果を図9のグラフに符号3a’として記載した。
なお、試験体No3a’では、せん断補強筋比P=・a/B・s
:一組のせん断補強筋の断面積(mm
s:せん断補強筋間隔(mm)
で算定している。
[Test specimen No3a']
As shown in FIGS. 7A and 7B, in the test piece No. 3a', a plurality of shear reinforcing bars 6 were arranged instead of the joined steel pipe 3. The column main bars 11 are arranged at intervals of 62.5 mm, and the shear reinforcing bars 6 surround these 16 column main bars 11. The shear reinforcing bar 6 is a deformed steel bar of a wire rod having a diameter of 8 mm, and has a yield strength of 785 N / mm second grade. Five shear reinforcing bars 6 were arranged at equal intervals at a pitch of 30 mm, and the amount of shear reinforcing bars (P w · σ y ) was 8.6 N / mm 2 . These column main bars 11 and shear reinforcing bars 6 are arranged in concrete 7 having a width of 300 mm, a depth of 300 mm, and a height of 150 mm.
Others were the same as the test piece No. 1', and the bearing pressure strength was measured and calculated in the same manner as that using the bonded steel pipe 3, and the result is described as reference numeral 3a'in the graph of FIG.
In the test piece No. 3a', the shear reinforcing bar ratio P w = · a W / B c · s
a W : Cross-sectional area of a set of shear reinforcements (mm 2 )
s: Shear reinforcement spacing (mm)
It is calculated by.

[試験体No3b’]
図8(a),(b)に示すように、試験体No3b’では、せん断補強筋6は、直径6mmの線材の異形棒鋼であり、SD295A製である。せん断補強筋6は、高さ150mmの間に50mmピッチで等間隔に3本配置し、せん断補強筋量(P・σ)を1.4N/mmとした。
その他は試験体No3a’と同じにして、支圧強度を測定するとともに算出し、結果を図9のグラフに符号3b’として記載した。
[Test specimen No3b']
As shown in FIGS. 8A and 8B, in the test piece No. 3b', the shear reinforcing bar 6 is a deformed steel bar of a wire rod having a diameter of 6 mm and is made of SD295A. Three shear reinforcing bars 6 were arranged at a pitch of 50 mm at a height of 150 mm at equal intervals, and the amount of shear reinforcing bars (P w · σ y ) was 1.4 N / mm 2 .
Others were the same as the test piece No. 3a', and the bearing pressure strength was measured and calculated, and the result is described as reference numeral 3b'in the graph of FIG.

図9から明らかな通り、前述の条件式(2)に示す支圧応力度の計算式により求めた支圧強度は、実際に測定した支圧強度と高い相関が認められた。
従って、条件式(2)を用いて接合鋼管3の各部の寸法を設定することで、適切な支圧耐力を確保できる構造を実現できる。
As is clear from FIG. 9, the bearing strength obtained by the calculation formula of the bearing stress degree shown in the above conditional equation (2) was found to have a high correlation with the actually measured bearing strength.
Therefore, by setting the dimensions of each part of the joined steel pipe 3 using the conditional expression (2), it is possible to realize a structure capable of ensuring an appropriate bearing capacity.

1 RC柱(第一柱)
2 CFT柱(第二柱)
3 接合鋼管
5 応力切替部
6 せん断補強筋
10 コンクリート部
11 柱主筋
13 定着端
14 定着部分(主筋部)
15 機械式継手
20 鋼管
21 コンクリート部
22 ベースプレート
23 柱脚部
31 充填コンクリート部
42 梁
43,44 スラブ
1 RC pillar (first pillar)
2 CFT pillar (second pillar)
3 Joined steel pipe 5 Stress switching part 6 Shear reinforcing bar 10 Concrete part 11 Column main bar 13 Fixing end 14 Fixing part (main bar part)
15 Mechanical fitting 20 Steel pipe 21 Concrete part 22 Base plate 23 Column base 31 Filled concrete part 42 Beam 43,44 Slab

Claims (2)

鉛直方向に延びる柱主筋を有する鉄筋コンクリート造の第一柱と、該第一柱の上方に配置された鉄骨造又はコンクリート充填鋼管造の第二柱とを、応力切替部を介して接合する接合構造の設計方法であって、
該応力切替部は、
前記第二柱の下部のベースプレートと、
該第二柱の下部の外周側に配置され、前記柱主筋と連続してコンクリート部から前記鉛直方向に突出して延びる主筋部と、
該主筋部を全て囲繞するとともに、前記鉛直方向全長にわたって配置された接合鋼管と、
該接合鋼管内に充填された充填コンクリート部と、を備え、
前記応力切替部内における前記充填コンクリート部であって、前記ベースプレート直下部分の支圧応力度が、下記の条件式(1)を満たすように設定されていることを特徴とする柱接合構造の設計方法
Figure 0006804727
ただし、
σ:応力切替部内における前記充填コンクリート部であって、前記ベースプレート直下部分の支圧応力度(N/mm
BS:ベースプレートの幅寸法(mm)
:ベースプレートから接合鋼管の下端までの区間の高さ寸法(mm)
:接合鋼管せん断断面積の等価せん断補強筋比較換算値(2t/D)またはせん断補強筋比
:接合鋼管の板厚寸法(mm)
:接合鋼管のせい寸法(mm)
σ:接合鋼管の降伏強度(N/mm
:コンクリートの設計基準強度(N/mm
:充填コンクリート部の面積(=B×D)(mm
:接合鋼管の幅内内寸法(mm)
:接合鋼管のせい内内寸法(mm)
BS:ベースプレートの面積(=BBS×DBS)(mm
BS:ベースプレートのせい寸法(mm)
である。
A joint structure in which the first column of reinforced concrete structure having a column main bar extending in the vertical direction and the second column of steel frame structure or concrete-filled steel pipe structure arranged above the first column are joined via a stress switching portion. It is a design method of
The stress switching part is
With the base plate at the bottom of the second pillar,
A main bar portion that is arranged on the outer peripheral side of the lower part of the second column and extends from the concrete portion in the vertical direction continuously with the column main bar,
A joint steel pipe that surrounds the main bar and is arranged over the entire length in the vertical direction.
A filled concrete portion filled in the joined steel pipe is provided.
A method for designing a column joint structure , characterized in that the bearing stress degree of the filled concrete portion in the stress switching portion and directly below the base plate is set so as to satisfy the following conditional expression (1). ..
Figure 0006804727
However,
σ p : The bearing stress degree (N / mm 2 ) of the filled concrete portion in the stress switching portion and directly below the base plate.
B BS : Base plate width dimension (mm)
h p: height of the section from the base plate to the lower end of the joining steel (mm)
P w: bonding steel equivalent shear reinforcement comparison the corresponding value of the shear cross sectional area (2t p / D p) or shear reinforcement ratio t p: bonding steel plate thickness dimension (mm)
D p : Due to the joint steel pipe (mm)
p σ y : Yield strength of bonded steel pipe (N / mm 2 )
F c : Concrete design standard strength (N / mm 2 )
Ac : Area of filled concrete part (= B c x D c ) (mm 2 )
B c : Inner width within the width of the joined steel pipe (mm)
D c : Inner dimension (mm) due to the bonded steel pipe
A BS : Base plate area (= B BS x D BS ) (mm 2 )
DBS : Base plate blame size (mm)
Is.
前記接合鋼管の外周面は、前記第一柱の外周面と面一に形成されていることを特徴とする請求項1に記載の柱接合構造の設計方法The method for designing a column joint structure according to claim 1, wherein the outer peripheral surface of the joined steel pipe is formed flush with the outer peripheral surface of the first column.
JP2016079421A 2016-04-12 2016-04-12 How to design a column joint structure Active JP6804727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016079421A JP6804727B2 (en) 2016-04-12 2016-04-12 How to design a column joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016079421A JP6804727B2 (en) 2016-04-12 2016-04-12 How to design a column joint structure

Publications (2)

Publication Number Publication Date
JP2017190581A JP2017190581A (en) 2017-10-19
JP6804727B2 true JP6804727B2 (en) 2020-12-23

Family

ID=60084619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016079421A Active JP6804727B2 (en) 2016-04-12 2016-04-12 How to design a column joint structure

Country Status (1)

Country Link
JP (1) JP6804727B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112160414B (en) * 2020-09-29 2022-07-26 中建八局科技建设有限公司 Connecting joint of structural column and structural beam of inverted round steel pipe and construction method thereof

Also Published As

Publication number Publication date
JP2017190581A (en) 2017-10-19

Similar Documents

Publication Publication Date Title
KR102056406B1 (en) Half pc slab and producing method thereof
KR101809687B1 (en) Joining Members of Steel Concrete Column and Steel Beam and Construction Method Thereof
KR20170097731A (en) Reinforced load bearing structure
KR101531626B1 (en) Shear reinforcement member for precast concrete composite slab
JP6804727B2 (en) How to design a column joint structure
KR101697767B1 (en) Concrete Girder With Coupler And Method For Constructing Rhamen Bridge Using The Same
JP5757175B2 (en) Support pillar for high-rise building and its construction method
JP5750246B2 (en) Composite beam, building, and composite beam construction method
KR101458435B1 (en) Half precast concrete column manufacturing method using saddle-type ties and dual hoops and constructing method using the same
JP6660719B2 (en) Method of constructing beam-column joint-column joint structure, ramen viaduct and beam-column joint-column joint structure
JP6646206B2 (en) Joint structure of RC members
Han et al. Experimental seismic behavior of squat shear walls with precast concrete hollow moulds
JP6434767B2 (en) Design method of reinforced concrete structure and reinforced concrete structure
KR101753461B1 (en) Wall structure and construction method thereof
JP6204027B2 (en) Reinforced structure
JP4649283B2 (en) Columnar structure, pier or foundation pile using shape steel, and manufacturing method thereof
JP6432764B2 (en) Column connection structure
KR101797960B1 (en) Formed steel beam having neutral axis lifting elements and composite beam using the same
JP6224420B2 (en) Connection structure between CFT column and concrete bottom slab
JP2022154690A (en) Connection structure
JP2017082548A (en) Concrete foundation joint member and pile structure
JP2017218855A (en) Rebuilt-building including existing underground exterior wall
JP2017053101A (en) Design method for structure for joining columns together, and structure for joining columns together
JP6775320B2 (en) Foundation beam joint structure
JP2007154565A (en) Joint structure and construction method of column and beam-less slab

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201119

R150 Certificate of patent or registration of utility model

Ref document number: 6804727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150