JP6660719B2 - Method of constructing beam-column joint-column joint structure, ramen viaduct and beam-column joint-column joint structure - Google Patents
Method of constructing beam-column joint-column joint structure, ramen viaduct and beam-column joint-column joint structure Download PDFInfo
- Publication number
- JP6660719B2 JP6660719B2 JP2015227328A JP2015227328A JP6660719B2 JP 6660719 B2 JP6660719 B2 JP 6660719B2 JP 2015227328 A JP2015227328 A JP 2015227328A JP 2015227328 A JP2015227328 A JP 2015227328A JP 6660719 B2 JP6660719 B2 JP 6660719B2
- Authority
- JP
- Japan
- Prior art keywords
- column
- joint
- concrete
- sheath tube
- precast concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Bridges Or Land Bridges (AREA)
- Joining Of Building Structures In Genera (AREA)
Description
本発明は、柱梁仕口部−柱の接合構造、ラーメン高架橋及び柱梁仕口部−柱の接合構造の構築方法に関する。 The present invention, Column Joint portions - joining structure of the column, rigid frame viaduct and Column Joint unit - about the building how the joint structure of the pillars.
特許文献1には、柱と梁の接合部をプレキャスト工法によって構築する技術が開示されている。具体的には、上下一対のプレキャストコンクリート柱部材の間にプレキャストコンクリート柱梁接合部材を挟み込むようにして、これらプレキャスト柱部材及びプレキャストコンクリート柱梁接合部材を接合する。ここで、上階のプレキャストコンクリート柱部材の下端から主筋が突出し、下階のプレキャストコンクリート柱部材の上端にスリーブ継手部材が埋設されている。一方、プレキャストコンクリート柱梁接合部材は柱梁仕口部と、その柱梁仕口部から水平方向に延出した梁半体部とを有するものであり、柱梁仕口部には挿通孔が上下に貫通するように形成されている。そして、下階のプレキャストコンクリート柱部材を立設した後、プレキャストコンクリート柱梁接合部材の柱梁仕口部を下階のプレキャストコンクリート柱部材の上に配置して、柱梁仕口部の挿通孔をプレキャストコンクリート柱部材のスリーブ継手部材の上に位置させる。更に、上階のプレキャストコンクリート柱部材を吊り上げた後、その上階のプレキャストコンクリート柱部材を下降させることによって上階のプレキャストコンクリート柱部材の主筋を柱梁仕口部の挿通孔に挿入するとともに、下階のプレキャストコンクリート柱部材のスリーブ継手部材に差し込む。その後、挿通孔やスリーブ継手部材にグラウトを充填するとともに、プレキャストコンクリート柱部材と柱梁仕口部との間の目地空間にもグラウトを充填する。 Patent Literature 1 discloses a technique for constructing a joint between a column and a beam by a precast method. Specifically, the precast concrete beam-column joint member and the precast concrete beam-column joint member are joined such that the precast concrete beam-column joint member is sandwiched between a pair of upper and lower precast concrete beam members. Here, the main reinforcement projects from the lower end of the precast concrete column member on the upper floor, and the sleeve joint member is embedded at the upper end of the precast concrete column member on the lower floor. On the other hand, the precast concrete beam-column joint member has a beam-to-column connection and a beam half that extends horizontally from the beam-to-column connection, and an insertion hole is formed in the beam-to-column connection. It is formed so as to penetrate vertically. Then, after erecting the precast concrete column member on the lower floor, the beam-to-column connection of the precast concrete beam-column joint member is arranged on the precast concrete column member on the lower floor, and the insertion hole of the beam-to-column connection is provided. On the sleeve joint member of the precast concrete column member. Furthermore, after lifting the precast concrete column member on the upper floor, while inserting the main reinforcement of the precast concrete column member on the upper floor into the insertion hole of the beam-to-column connection by lowering the precast concrete column member on the upper floor, Insert into the sleeve joint member of the precast concrete column member on the lower floor. Thereafter, grout is filled into the insertion hole and the sleeve joint member, and grout is also filled into the joint space between the precast concrete column member and the beam-to-column connection.
ところが、特許文献1に記載の技術では、プレキャストコンクリート柱梁接合部材の柱梁仕口部と上階又は下階のプレキャストコンクリート柱部材との間の目地や継手が柱梁仕口部の直上又は直下に形成されているので、柱と梁との間の塑性ヒンジに悪影響(例えば、塑性ヒンジの低強度化や塑性ヒンジ領域の狭域化)を及ぼしてしまう。 However, in the technology described in Patent Literature 1, the joints and joints between the beam-to-column connection of the precast concrete beam-column joint member and the precast concrete column member on the upper floor or the lower floor are directly above the beam-to-column connection or Since it is formed immediately below, the plastic hinge between the column and the beam is adversely affected (for example, the strength of the plastic hinge is reduced and the region of the plastic hinge is narrowed).
本発明は、上記事情に鑑みてなされたものである。本発明が解決しようとする課題は、プレキャスト工法によって柱梁仕口部−柱の接合構造を構築しても、柱と梁との間の塑性ヒンジに悪影響を及ばさないようにすることである。 The present invention has been made in view of the above circumstances. The problem to be solved by the present invention is to prevent a plastic hinge between a column and a beam from being adversely affected even when a joint structure of a column-to-column connection-column is constructed by a precast method. .
以上の課題を解決するために、柱梁仕口部−柱の接合構造は、柱梁仕口部並びに前記柱梁仕口部の側面の下部に設けられたハンチ部及び前記柱梁仕口部から下方に延出する柱部を構成するコンクリートと、前記柱梁仕口部の上端から前記柱部の下端にかけて前記コンクリートに埋設されるとともに枠状に配列される複数のシース管と、前記シース管を囲繞するようにして前記コンクリートに埋設されたせん断補強筋と、を有するプレキャストコンクリート部材と、前記柱部の下に配される第二コンクリートと、前記第二コンクリート内部において上下方向に延在するとともに枠状に配列される複数の主筋と、前記第二コンクリートの上部に埋設され、前記主筋のそれぞれの上端に設けられた複数の管状のスリーブ継手部材と、を有するプレキャストコンクリート柱部材と、前記シース管のそれぞれに挿入されているとともに、前記シース管のそれぞれの下端から突き出て前記スリーブ継手部材にそれぞれ差し込まれた複数の縦方向鉄筋と、前記スリーブ継手部材に充填された第一充填材と、前記シース管に充填された第二充填材と、前記プレキャストコンクリート柱部材と前記柱部との間に設けられた目地材と、を備え、前記ハンチ部の下端を通った水平な面から前記柱部の下端までの長さが、柱と梁の接合部における塑性ヒンジ長としての前記柱部の太さ以上である。 In order to solve the above problems, a beam-column joint-column joint structure includes a beam-joint portion , a haunch portion provided at a lower portion of a side surface of the beam-joint portion, and the beam-joint portion. a plurality of sheath tube which is arranged and concrete that constitutes the pillar portion, embedded in the concrete toward the lower end of the pillar portion from the upper end of the beam-column Joint portion Rutotomoni frame shape extending downwardly from, the sheath A precast concrete member having a shear reinforcement buried in the concrete so as to surround a pipe, a second concrete disposed below the column portion, and extending vertically inside the second concrete Pureki having a plurality of main reinforcement arranged in a frame shape as well as being embedded in the upper portion of the second concrete, and a plurality of tubular sleeve joint member provided on each of the upper end of the main reinforcement A strike Concrete Columns, together are inserted into each of said sheath tube, and a plurality of longitudinal reinforcing bars which are inserted respectively in said sleeve joint member protruding from each of the lower end of said sheath tube, filled to the sleeve joint member The first filler, the second filler filled in the sheath tube, and a joint material provided between the precast concrete pillar member and the pillar portion, the lower end of the haunch portion The length from the horizontal plane passing through to the lower end of the column is not less than the thickness of the column as a plastic hinge length at the joint between the column and the beam .
また、以上の課題を解決するために、柱梁仕口部−柱の接合構造の構築方法は、柱梁仕口部並びに前記柱梁仕口部の側面の下部に設けられたハンチ部及び前記柱梁仕口部から下方に延出する柱部を構成するコンクリートと、前記柱梁仕口部の上端から前記柱部の下端にかけて前記コンクリートに埋設されるとともに枠状に配列される複数のシース管と、前記シース管を囲繞するように前記コンクリートに埋設されたせん断補強筋と、を有するプレキャストコンクリート部材を準備するとともに、第二コンクリートと、前記第二コンクリート内部において上下方向に延在するとともに枠状に配列される複数の主筋と、前記第二コンクリートの上部に埋設され、前記主筋のそれぞれの上端に設けられた複数の管状のスリーブ継手部材とを有するプレキャストコンクリート柱部材を準備する工程と、前記スリーブ継手部材と前記シース管を上下に並べるように且つ前記柱部の下端と前記プレキャストコンクリート柱部材の上端との間に隙間を形成するように、前記プレキャストコンクリート部材を前記プレキャストコンクリート柱部材の上に配置する工程と、複数の縦方向鉄筋を前記シース管にそれぞれ挿入するとともに、前記縦方向鉄筋の下部を前記シース管のそれぞれの下端から突き出して前記スリーブ継手部材にそれぞれ差し込む工程と、第一充填材を前記スリーブ継手部材に充填し、第二充填材を前記シース管に充填し、目地材を前記プレキャストコンクリート柱部材と前記柱部との間に充填する工程と、を含み、前記ハンチ部の下端を通った水平な面から前記柱部の下端までの長さが、柱と梁の接合部における塑性ヒンジ長としての前記柱部の太さ以上である。 In addition, in order to solve the above problem, a method of constructing a beam-column joint-column joint structure includes a column- beam joint and a haunch portion provided at a lower portion of a side surface of the beam-joint. and concrete that constitutes the pillar portion extending downwardly from column Joint portion, a plurality of sheaths arranged in the beam-column Joint top end is embedded in said concrete toward the lower end of the pillar portion from Rutotomoni frame-shaped a tube, the shear reinforcement embedded in the concrete so as to surround the sheath tube, thereby preparing a precast concrete member having a second concrete, with and extends in the vertical direction in the second concrete internal flop having a plurality of main reinforcement arranged in a frame shape, it is embedded in the upper portion of the second concrete, and a plurality of tubular sleeve joint member provided on each of the upper end of the main reinforcement A step of preparing a cast concrete column member; and forming a gap between a lower end of the column portion and an upper end of the precast concrete column member so that the sleeve joint member and the sheath tube are vertically arranged. placing the precast concrete parts on the precast concrete pillar member, is inserted respectively plurality of longitudinal reinforcing bars to the sheath tube, said projecting at the bottom of the longitudinal reinforcing bars from each of the lower end of said sheath tube A step of inserting each into the sleeve joint member, filling the first joint filler into the sleeve joint member, filling the sheath tube with the second filler, and joining the joint material between the precast concrete column member and the column portion. look including the the steps of filling, from a horizontal plane passing through the lower end of the haunch portion to the lower end of the column portion Saga, is not less than the thickness of the pillar portion of the plastic hinge length at the junction of the columns and beams.
本発明によれば、プレキャストコンクリート部材の柱部が柱梁仕口部から下方に延出しており、更にその柱部の下のプレキャストコンクリート柱部材の第二コンクリートの上部にスリーブ継手部材が埋設されているので、プレキャストコンクリート柱部材の主筋と縦方向鉄筋との継手構造たるスリーブ継手部材及び第一充填材を塑性ヒンジ領域の下方に配置することができる。また、プレキャストコンクリート柱部材と柱部との間に設けられた目地材も塑性ヒンジ領域の下方に配置することができる。よって、主筋と縦方向鉄筋との継手構造及び目地材が塑性ヒンジに悪影響を及ばさない。 According to the present invention, the column portion of the precast concrete member extends downward from the beam-to-column connection, and the sleeve joint member is embedded in the upper part of the second concrete of the precast concrete column member below the column portion. Therefore, the sleeve joint member and the first filler, which are joint structures between the main reinforcing bar of the precast concrete column member and the longitudinal reinforcing bar, can be arranged below the plastic hinge region. Also, a joint material provided between the precast concrete column member and the column portion can be arranged below the plastic hinge region. Therefore, the joint structure between the main reinforcing bar and the longitudinal reinforcing bar and the joint material do not adversely affect the plastic hinge.
以下、図面を参照して、本発明の実施形態について説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、本発明の範囲を以下の実施形態及び図示例に限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiments described below are provided with various technically preferable limits for carrying out the present invention, but the scope of the present invention is not limited to the following embodiments and illustrated examples.
1. 高架橋の構成
図1は、高架橋10の一部分を示した斜視図である。この高架橋10は、プレキャスト工法により構築された鉄道用ラーメン高架橋である。
1. Configuration of Viaduct FIG. 1 is a perspective view showing a part of the viaduct 10. The viaduct 10 is a railway ramen viaduct constructed by a precast method.
図1に示すように、地中には、一対の基礎梁11及び複数の基礎梁12が埋設されている。一対の基礎梁11は、高架橋10の幅方向に間隔を置いた状態で高架橋10の橋軸方向(延在方向)に延在するように、地中に埋設されている。基礎梁12は、高架橋10の橋軸方向に所定間隔を置いて地中に埋設されているとともに、高架橋10の幅方向に延在して一対の基礎梁11に接合されている。基礎梁11と基礎梁12との各仕口部上には柱13が立設されている。したがって、柱13は、高架橋10の橋軸方向に所定間隔を置いた状態で2列に配列されていることになる。高架橋10の幅方向に隣り合う柱13の上端間には、幅方向梁14が架設されている。高架橋10の橋軸方向に隣り合う柱13の上端間には、橋軸方向梁15が架設されている。そして、スラブ16が、これら幅方向梁14と橋軸方向梁15によって囲われた部分をその上から覆うようにして、幅方向梁14及び橋軸方向梁15上に敷設されている。 As shown in FIG. 1, a pair of foundation beams 11 and a plurality of foundation beams 12 are embedded in the ground. The pair of foundation beams 11 are buried in the ground so as to extend in the bridge axis direction (extending direction) of the viaduct 10 at intervals in the width direction of the viaduct 10. The foundation beams 12 are buried in the ground at predetermined intervals in the bridge axis direction of the viaduct 10, and extend in the width direction of the viaduct 10 and are joined to the pair of foundation beams 11. Pillars 13 are provided upright on each connection between the foundation beams 11 and 12. Therefore, the pillars 13 are arranged in two rows at predetermined intervals in the bridge axis direction of the viaduct 10. Between the upper ends of the pillars 13 adjacent to each other in the width direction of the viaduct 10, a width direction beam 14 is erected. A bridge-axis beam 15 is provided between the upper ends of the pillars 13 adjacent to each other in the bridge-axis direction of the viaduct 10. And the slab 16 is laid on the width direction beam 14 and the bridge axis direction beam 15 so as to cover a portion surrounded by the width direction beam 14 and the bridge axis direction beam 15 from above.
図2は、高架橋10の分解斜視図である。図3は、III部の断面図である。図2に示すように、高架橋10の幅方向及び橋軸方向に隣り合う4本の柱13と、それら4本の柱13の上端間に架設された2本の幅方向梁14及び2本の橋軸方向梁15とからなる構造物は、4本のプレキャストコンクリート柱部材30(以下、PC柱部材30という)と、高架橋10の幅方向の2本のプレキャストコンクリート梁部材40(以下、幅方向梁部材40という)と、高架橋10の橋軸方向の2本のプレキャストコンクリート梁部材50(以下、橋軸方向梁部材50という)と、4体のプレキャストコンクリート部材60(以下、PC仕口構成部材60という)と、現場打ちコンクリート層70とを有する。具体的には、各PC仕口構成部材60が各PC柱部材30の上端に組み付けられ、高架橋10の幅方向に隣り合うPC仕口構成部材60が幅方向梁部材40によって連結され、高架橋10の橋軸方向に隣り合うPC仕口構成部材60が橋軸方向梁部材50によって連結され、これらPC仕口構成部材60、幅方向梁部材40及び橋軸方向梁部材50上にコンクリート層70が打設される。これにより4本の柱13、2本の幅方向梁14及び2本の橋軸方向梁15からなる構造物が構築される。なお、スラブ16の構成要素であるハーフプレキャストスラブ16aがPC仕口構成部材60及び橋軸方向梁部材50の上面の内縁部上に掛かるようにPC仕口構成部材60、幅方向梁部材40及び橋軸方向梁部材50上に敷設され、コンクリート層70がハーフプレキャストスラブ16a、PC仕口構成部材60、幅方向梁部材40及び橋軸方向梁部材50の上に打設されている。 FIG. 2 is an exploded perspective view of the viaduct 10. FIG. 3 is a sectional view of a part III. As shown in FIG. 2, four pillars 13 that are adjacent in the width direction and the bridge axis direction of the viaduct 10, and two width-directional beams 14 and two bridges that are installed between the upper ends of the four pillars 13. The structure composed of the bridge axial beam 15 includes four precast concrete column members 30 (hereinafter, referred to as PC column members 30) and two precast concrete beam members 40 (hereinafter, width direction) of the viaduct 10 in the width direction. Beam member 40), two precast concrete beam members 50 in the bridge axis direction of the viaduct 10 (hereinafter referred to as bridge axis direction beam member 50), and four precast concrete members 60 (hereinafter, PC connection member). 60) and a cast-in-place concrete layer 70. Specifically, each PC connection component member 60 is assembled to the upper end of each PC column member 30, and the PC connection component members 60 adjacent in the width direction of the viaduct 10 are connected by the width direction beam member 40, and the viaduct 10 is connected. PC joint members 60 adjacent to each other in the bridge axis direction are connected by a bridge axis beam member 50, and a concrete layer 70 is formed on the PC joint member 60, the width direction beam member 40, and the bridge axis direction beam member 50. It is cast. As a result, a structure including the four pillars 13, the two width direction beams 14, and the two bridge axis direction beams 15 is constructed. The half-precast slab 16a, which is a component of the slab 16, is placed on the inner edge of the upper surface of the PC joint member 60 and the bridge beam member 50, and the PC joint member 60, the width beam member 40, and the like. The concrete layer 70 is laid on the bridge axial beam member 50, and is cast on the half precast slab 16 a, the PC connection member 60, the width beam member 40, and the bridge axial beam member 50.
1−1. PC仕口構成部材について
図2及び図3に示すように、PC仕口構成部材60は柱梁仕口部61、柱部63、幅方向梁部64、橋軸方向梁部65及びハンチ部62等を有する。幅方向梁部64は、柱梁仕口部61から高架橋10の幅方向に延出していて、幅方向梁14の端部を構成する。橋軸方向梁部65は、柱梁仕口部61から高架橋10の橋軸方向に延出していて、橋軸方向梁15の端部を構成する。柱部63は、柱梁仕口部61から下方に延出していて、柱13の上端部を構成する。ハンチ部62は、柱部63と幅方向梁部64との入隅部や、柱部63と橋軸方向梁部65との入隅部にそれぞれ設けられていて、柱部63に向けて斜めに下がる形状に形成されている。
1-1. 2 and FIG. 3, the PC connection member 60 includes a beam-to-column connection 61, a column 63, a width-direction beam 64, a bridge-axis beam 65, and a haunch 62. Etc. The width direction beam portion 64 extends in the width direction of the viaduct 10 from the pillar beam connection portion 61 and forms an end of the width direction beam 14. The bridge axial beam 65 extends in the bridge axis direction of the viaduct 10 from the beam-to-column connection 61 and forms an end of the bridge axial beam 15. The pillar 63 extends downward from the beam-to-column connection 61 and forms the upper end of the pillar 13. The haunch portions 62 are provided at the corners between the pillar portions 63 and the width direction beam portions 64 and at the corner portions between the pillar portions 63 and the bridge axis direction beam portions 65, respectively, and are inclined toward the pillar portions 63. It is formed in a shape that goes down.
柱梁仕口部61と柱部63の境界面69は、ハンチ部62の下端を通った水平な面である。その境界面69から柱部63の下端面までの長さL [mm] は、塑性ヒンジ長以上であり、より具体的には柱部63及びPC柱部材30の太さ(柱部63及びPC柱部材30の断面形状が円形である場合、その直径をいい、柱部63及びPC柱部材30の断面形状が正方形である場合、その辺長をいい、柱部63及びPC柱部材30の断面形状が長方形である場合、短辺長をいい、より好ましくは長辺長をいう。)以上である。ここで、塑性ヒンジは、部材(柱13)が正負交番の繰り返し変形を受けた場合に安定して耐力を保持し、塑性変形性能を発揮するヒンジ構造であり、塑性ヒンジが生じる部分を塑性ヒンジ領域といい、塑性ヒンジ領域の部材軸方向の長さを塑性ヒンジ長という。なお、柱部63及びPC柱部材30の断面形状が長方形である場合、その短辺方向の繰り返し変形を考慮した塑性ヒンジ長は短辺長であり、その長辺方向の繰り返し変形を考慮した塑性ヒンジ長は長辺長である。 A boundary surface 69 between the beam-column connection 61 and the column 63 is a horizontal surface passing through the lower end of the haunch 62. The length L [mm] from the boundary surface 69 to the lower end surface of the column 63 is equal to or longer than the plastic hinge length, and more specifically, the thickness of the column 63 and the PC column member 30 (the column 63 and the PC column 30). When the cross-sectional shape of the column member 30 is circular, the diameter is referred to. When the cross-sectional shape of the column 63 and the PC column member 30 is square, the side length is referred to. When the shape is a rectangle, it refers to the short side length, more preferably the long side length.) Here, the plastic hinge is a hinge structure that stably retains the strength when the member (column 13) undergoes repeated deformation of positive and negative alternation and exhibits plastic deformation performance. The length of the plastic hinge region in the member axial direction is called a plastic hinge length. When the cross-sectional shapes of the column portion 63 and the PC column member 30 are rectangular, the plastic hinge length in consideration of the repetitive deformation in the short side direction is the short side length, and the plastic hinge in consideration of the repetitive deformation in the long side direction. The hinge length is a long side length.
高架橋10の端部を構成するPC仕口構成部材60の場合、柱梁仕口部61には、1つの橋軸方向梁部65が設けられている。高架橋10の端部以外を構成するPC仕口構成部材60の場合、柱梁仕口部61には、互いに反対方向に延出する2つの橋軸方向梁部65が設けられている。 In the case of the PC connection member 60 that constitutes the end of the viaduct 10, one beam portion 65 in the bridge axis direction is provided in the column connection 61. In the case of the PC connection member 60 other than the end of the viaduct 10, the beam-to-column connection 61 is provided with two bridge-axis-direction beams 65 extending in opposite directions.
PC仕口構成部材60は、コンクリートとこれに埋設された鉄筋が一体化されることによって構成される。具体的には、柱梁仕口部61及び幅方向梁部64の内部には幅方向梁14用の主筋及びせん断補強筋が配筋され、柱梁仕口部61及び橋軸方向梁部65の内部には橋軸方向梁15用の主筋及びせん断補強筋が配筋され、柱梁仕口部61及び柱部63の内部には柱13用のせん断補強筋が配筋され、ハンチ部62の内部にはハンチ筋が配筋され、これらの鉄筋がコンクリート66に埋設されている。 The PC connection component member 60 is configured by integrating concrete and a reinforcing bar embedded therein. Specifically, the main reinforcement and the shear reinforcement for the width direction beam 14 are arranged inside the beam-to-column connection portion 61 and the width-direction beam portion 64, and the beam-to-column connection portion 61 and the bridge-direction beam portion 65 are arranged. The main reinforcement and the shear reinforcement for the bridge axial beam 15 are arranged inside the column, the shear reinforcement for the column 13 is arranged inside the beam-to-column connection 61 and the column 63, and the haunch 62 Are provided with haunch bars, and these reinforcing bars are buried in the concrete 66.
また、柱梁仕口部61及び柱部63の内部には複数の金属製(例えば、鋼製)のシース管67が設けられている。これらシース管67は柱梁仕口部61のコンクリート66の上端面から柱部63のコンクリート66の下端面にかけて上下に延在し、シース管67の上端は柱梁仕口部61のコンクリート66の上端面において開口し、シース管67の下端は柱部63のコンクリート66の下端面において開口する。これらシース管67は、上から見て枠状に配列されて、柱梁仕口部61及び柱部63の内部の柱13用せん断補強筋によって囲繞されている。 Further, a plurality of metal (for example, steel) sheath tubes 67 are provided inside the column beam connection portion 61 and the column portion 63. These sheath tubes 67 extend vertically from the upper end surface of the concrete 66 of the beam-to-column connection 61 to the lower end surface of concrete 66 of the column-to-column connection 63. It opens at the upper end surface, and the lower end of the sheath tube 67 opens at the lower end surface of the concrete 66 of the pillar portion 63. These sheath pipes 67 are arranged in a frame shape when viewed from above, and are surrounded by the shear reinforcing bars for the columns 13 inside the column-beam connections 61 and the columns 63.
1−2. 幅方向梁部材及び橋軸方向梁部材について
幅方向梁部材40は、コンクリートとこれに埋設された鉄筋(主筋及びせん断補強筋等)とが一体化されることによって構成される。橋軸方向梁部材50についても同様である。
1-2. Regarding the width direction beam member and the bridge axis direction beam member The width direction beam member 40 is formed by integrating concrete and reinforcing bars (main reinforcing bars, shear reinforcing bars, and the like) embedded therein. The same applies to the bridge axial beam member 50.
1−3. 幅方向梁部材又は橋軸方向梁部材とPC仕口構成部材との接合部について
高架橋10の幅方向に隣り合う2つのPC仕口構成部材60のうち一方のPC仕口構成部材60の幅方向梁部64が継手構造(例えば、スリーブ及びモルタル等を用いたスリーブ継手構造)によって幅方向梁部材40の一端に接合され、他方のPC仕口構成部材60の幅方向梁部64が継手構造によって幅方向梁部材40の他端に接合されている。これにより、幅方向梁14が構築され、幅方向梁部材40が幅方向梁14の中間部を構成する。
1-3. Regarding the joint between the width direction beam member or the bridge axis direction beam member and the PC connection component member The width direction of one of the two PC connection component members 60 adjacent to each other in the width direction of the viaduct 10. The beam portion 64 is joined to one end of the width direction beam member 40 by a joint structure (for example, a sleeve joint structure using a sleeve and a mortar), and the width direction beam portion 64 of the other PC connection component member 60 is formed by a joint structure. It is joined to the other end of the width direction beam member 40. Thereby, the width direction beam 14 is constructed, and the width direction beam member 40 forms an intermediate portion of the width direction beam 14.
同様に、高架橋10の橋軸方向に隣り合う2つのPC仕口構成部材60の橋軸方向梁部65も橋軸方向梁部材50の両端にそれぞれ接合されている。これにより、橋軸方向梁15が構築され、橋軸方向梁部材50が橋軸方向梁15の中間部を構成する。 Similarly, the bridge axis direction beam portions 65 of two PC connection members 60 adjacent to each other in the bridge axis direction of the viaduct 10 are also joined to both ends of the bridge axis direction beam member 50, respectively. Thus, the bridge axial beam 15 is constructed, and the bridge axial beam member 50 forms an intermediate portion of the bridge axial beam 15.
1−4. PC柱部材について
PC柱部材30は、コンクリートと鉄筋が一体化されることによって構成される。つまり、上下方向に延びた複数本の主筋31(図3参照)が上から見て枠状に配列され、複数のせん断補強筋(帯筋)がこれら主筋を囲むと共に上下方向に所定間隔で配列され、これら主筋31及びせん断補強筋が図3に示すようにコンクリート32に埋設されている。また、主筋31の上端部には管状のスリーブ継手部材33がそれぞれ設けられている。具体的には、主筋31の上端部がスリーブ継手部材33の下端からスリーブ継手部材33の中間部までスリーブ継手部材33に挿入されて、そのスリーブ継手部材33の下端がシール材等によって閉塞されることによって、スリーブ継手部材33が主筋31の上端部に設けられている。このスリーブ継手部材33の上端がPC柱部材30のコンクリート32の上端面に揃うようにしてスリーブ継手部材33がコンクリート32の上部に埋設されて、そのスリーブ継手部材33の上端がPC柱部材30のコンクリート32の上端面において開口している。
1-4. Regarding the PC column member The PC column member 30 is configured by integrating concrete and a reinforcing bar. That is, a plurality of main reinforcements 31 (see FIG. 3) extending in the vertical direction are arranged in a frame shape when viewed from above, and a plurality of shear reinforcements (bands) surround these main reinforcements and are arranged at predetermined intervals in the vertical direction. The main reinforcing bars 31 and the shear reinforcing bars are embedded in concrete 32 as shown in FIG. A tubular sleeve joint member 33 is provided at the upper end of the main bar 31. Specifically, the upper end of the main bar 31 is inserted into the sleeve joint member 33 from the lower end of the sleeve joint member 33 to the middle part of the sleeve joint member 33, and the lower end of the sleeve joint member 33 is closed by a sealing material or the like. Thereby, the sleeve joint member 33 is provided at the upper end of the main bar 31. The sleeve joint member 33 is embedded in the upper portion of the concrete 32 so that the upper end of the sleeve joint member 33 is aligned with the upper end surface of the concrete 32 of the PC column member 30. It is open at the upper end surface of the concrete 32.
1−5. PC柱部材とPC仕口構成部材との接合部について
図3に示すように、PC柱部材30の上端はPC仕口構成部材60の柱部63の下端に接合されている。PC仕口構成部材60の柱部63とPC柱部材30との接合部について詳細に説明する。
1-5. Regarding the joint between the PC column member and the PC connection member As shown in FIG. 3, the upper end of the PC column member 30 is connected to the lower end of the column portion 63 of the PC connection member 60. The joint between the column 63 of the PC connection member 60 and the PC column 30 will be described in detail.
PC仕口構成部材60の柱部63がPC柱部材30から上方へ僅かな隙間長を置いて配置され、シース管67とスリーブ継手部材33が上下に配置されている。そして、縦方向鉄筋81がシース管67にそれぞれ挿入されている。縦方向鉄筋81の上部がシース管67の上端から上方に突き出ており、その突き出た部位はコンクリート層70に埋め込まれている。縦方向鉄筋81の上端には機械式定着板81aが設けられ、その定着板81aによって縦方向鉄筋81が柱梁仕口部61に定着されている。 The column portion 63 of the PC connection component member 60 is arranged with a slight gap length upward from the PC column member 30, and the sheath tube 67 and the sleeve joint member 33 are arranged vertically. The vertical reinforcing bars 81 are inserted into the sheath tubes 67, respectively. The upper portion of the vertical reinforcing bar 81 protrudes upward from the upper end of the sheath tube 67, and the protruding portion is embedded in the concrete layer 70. A mechanical fixing plate 81a is provided at the upper end of the vertical reinforcing bar 81, and the vertical reinforcing bar 81 is fixed to the beam-column connection 61 by the fixing plate 81a.
また、縦方向鉄筋81の下部がシース管67の下端から下方へ突き出て、更にスリーブ継手部材33に差し込まれている。スリーブ継手部材33には充填材83が充填されており、縦方向鉄筋81及び主筋31が充填材83によってスリーブ継手部材33に接合されている。このような充填材83及びスリーブ継手部材33によって縦方向鉄筋81と主筋31が接合されている。また、シース管67には充填材82が充填されており、充填材82によってシース管67と縦方向鉄筋81が接合されている。充填材82,83は、モルタル等のグラウトが硬化したものである。なお、シース管67の肉厚はスリーブ継手部材33の肉厚よりも薄い。 Further, the lower part of the vertical reinforcing bar 81 protrudes downward from the lower end of the sheath tube 67 and is further inserted into the sleeve joint member 33. The sleeve joint member 33 is filled with a filler 83, and the longitudinal reinforcing bar 81 and the main bar 31 are joined to the sleeve joint member 33 by the filler 83. The longitudinal reinforcing bar 81 and the main bar 31 are joined by such a filler 83 and the sleeve joint member 33. The sheath tube 67 is filled with a filler 82, and the sheath tube 67 and the longitudinal reinforcing bar 81 are joined by the filler 82. The fillers 82 and 83 are hardened grouts such as mortar. The thickness of the sheath tube 67 is smaller than the thickness of the sleeve joint member 33.
柱部63の下端面とPC柱部材30の上端面とは、これらの間に挟まれた目地材84によって接合されている。目地材84はモルタル等のグラウトが硬化したものであり、目地材84の硬化によって目地材84が柱部63の下端面及びPC柱部材30の上端面に結合されている。充填材82,83及び目地材84は一体形成されている。 The lower end face of the pillar portion 63 and the upper end face of the PC pillar member 30 are joined by a joint material 84 sandwiched therebetween. The joint material 84 is formed by hardening grout such as mortar, and the joint material 84 is bonded to the lower end surface of the column 63 and the upper end surface of the PC column member 30 by the hardening of the joint material 84. The fillers 82 and 83 and the joint material 84 are integrally formed.
2. 高架橋の構築方法
続いて、高架橋10の構築方法について説明する。
まず、PC柱部材30、幅方向梁部材40、橋軸方向梁部材50、プレキャストコンクリート部材60、フレッシュコンクリート及びフレッシュモルタル等を施工現場に準備する。
2. Method for Constructing High Viaduct Subsequently, a method for constructing the high crosslink 10 will be described.
First, a PC column member 30, a width direction beam member 40, a bridge axis direction beam member 50, a precast concrete member 60, fresh concrete, fresh mortar, and the like are prepared at a construction site.
そして、基礎梁11と基礎梁12との仕口部にPC柱部材30の下端を接合し、PC柱部材30の上端にPC仕口構成部材60の柱部63を接合し、高架橋10の幅方向に隣り合うPC仕口構成部材60の幅方向梁部64に幅方向梁部材40の両端部をそれぞれ接合し、高架橋10の橋軸方向に隣り合うPC仕口構成部材60の橋軸方向梁部65に橋軸方向梁部材50の両端部をそれぞれ接合する。こうすることによって、4体のPC仕口構成部材60、2本の幅方向梁部材40及び2本の橋軸方向梁部材50を矩形枠状に組み立てる。なお、PC仕口構成部材60の柱部63とPC柱部材30の接合方法については、後に詳細に説明する。 Then, the lower end of the PC column member 30 is joined to the connection between the foundation beam 11 and the foundation beam 12, the column 63 of the PC connection member 60 is joined to the upper end of the PC column member 30, and the width of the viaduct 10 is increased. Both ends of the width direction beam member 40 are respectively joined to the width direction beam portions 64 of the PC connection component members 60 adjacent in the direction, and the bridge direction beam of the PC connection component member 60 adjacent in the bridge axis direction of the viaduct 10. Both ends of the bridge-direction beam member 50 are joined to the portion 65. By doing so, the four PC connection members 60, the two width direction beam members 40, and the two bridge axis direction beam members 50 are assembled into a rectangular frame shape. The method of joining the column 63 of the PC connection member 60 and the PC column member 30 will be described later in detail.
次に、PC仕口構成部材60、幅方向梁部材40及び橋軸方向梁部材50上にハーフプレキャストスラブ16aを敷設し、PC仕口構成部材60、幅方向梁部材40、橋軸方向梁部材50及びハーフプレキャストスラブ16a上にコンクリート層70を打設して、スラブ16を構成する。 Next, the half precast slab 16a is laid on the PC connection member 60, the width direction beam member 40, and the bridge axis direction beam member 50, and the PC connection member 60, the width direction beam member 40, and the bridge axis direction beam member. A concrete layer 70 is cast on the half precast slab 50 and the half precast slab 16a to form the slab 16.
2−1. PC仕口構成部材の柱部とPC柱部材の接合方法
まず、図4に示すように、クレーン等によってPC仕口構成部材60をPC柱部材30の上方に吊り上げて、PC仕口構成部材60の柱部63の下端面をPC柱部材30の上端面から所定間隔を空けて配置することによってこれら端面の間に隙間89を形成する。この際、PC仕口構成部材60の柱部63の外周面とPC柱部材30の外周面を面一にし、スリーブ継手部材33とシース管67を上下に並べる。なお、PC柱部材30の上端面とPC仕口構成部材60の柱部63の下端面との間にスペーサを設置して、そのスペーサによって隙間89の間隔を維持してもよい。
2-1. First, as shown in FIG. 4, the PC connection member 60 is lifted above the PC column member 30 by a crane or the like, and the PC connection member 60 is connected to the PC connection member 60 as shown in FIG. A gap 89 is formed between these end faces by arranging the lower end face of the column 63 at a predetermined distance from the upper end face of the PC post member 30. At this time, the outer peripheral surface of the column portion 63 of the PC connection component member 60 and the outer peripheral surface of the PC column member 30 are flush, and the sleeve joint member 33 and the sheath tube 67 are arranged vertically. Note that a spacer may be provided between the upper end surface of the PC column member 30 and the lower end surface of the column portion 63 of the PC connection component member 60, and the spacer may maintain the gap 89.
次に、図5に示すように、縦方向鉄筋81をシース管67の上からシース管67に挿入していく。そして、縦方向鉄筋81の下部をシース管67の下端から突き出して、更にスリーブ継手部材33に挿入する。縦方向鉄筋81の長さは、縦方向鉄筋81の下部がスリーブ継手部材33に挿入されても、縦方向鉄筋81の上部がシース管67の上端から突き出る程度である。 Next, as shown in FIG. 5, the vertical reinforcing bar 81 is inserted into the sheath tube 67 from above the sheath tube 67. Then, the lower part of the vertical reinforcing bar 81 protrudes from the lower end of the sheath tube 67 and is further inserted into the sleeve joint member 33. The length of the vertical reinforcing bar 81 is such that the upper portion of the vertical reinforcing bar 81 protrudes from the upper end of the sheath tube 67 even when the lower portion of the vertical reinforcing bar 81 is inserted into the sleeve joint member 33.
次に、図6に示すように、PC仕口構成部材60の柱部63及びPC柱部材30の外周面に型枠90を設置し、PC仕口構成部材60の柱部63の下端面とPC柱部材30の上端面の間の隙間89を型枠90によって囲繞する。なお、型枠90の設置工程を縦方向鉄筋81の挿入工程の前に行ってもよい。 Next, as shown in FIG. 6, a formwork 90 is installed on the outer peripheral surfaces of the column portion 63 of the PC connection member 60 and the PC column member 30, and A gap 89 between the upper end surfaces of the PC column members 30 is surrounded by a mold 90. In addition, the installation process of the formwork 90 may be performed before the insertion process of the vertical reinforcing bar 81.
次に、図7に示すように、PC柱部材30のコンクリート32に形成された注入孔からスリーブ継手部材33へモルタル等のグラウト91を注入して、スリーブ継手部材33内にグラウト91を充填する。スリーブ継手部材33内がグラウト91によって満たされた後も継続して、グラウト91をスリーブ継手部材33に注入する。そうすると、グラウト91がスリーブ継手部材33から隙間89及びシース管67に流動する。そして、隙間89及びシース管67もグラウト91によって充填されると、グラウト91がシース管67の上端から流出するので、その時にグラウト91の注入を終了する。 Next, as shown in FIG. 7, grout 91 such as mortar is injected into the sleeve joint member 33 from the injection hole formed in the concrete 32 of the PC column member 30, and the grout 91 is filled in the sleeve joint member 33. . Even after the inside of the sleeve joint member 33 is filled with the grout 91, the grout 91 is injected into the sleeve joint member 33. Then, the grout 91 flows from the sleeve joint member 33 to the gap 89 and the sheath tube 67. When the gap 89 and the sheath tube 67 are also filled with the grout 91, the grout 91 flows out from the upper end of the sheath tube 67, and the injection of the grout 91 ends at that time.
次に、グラウト91を養生して、グラウト91を硬化させる。シース管67に充填されたグラウト91が硬化することによって充填材82が形成され、スリーブ継手部材33に充填されたグラウト91が硬化することによって充填材83が形成され、隙間89に充填されたグラウト91が硬化することによって目地材84が形成される。 Next, the grout 91 is cured and the grout 91 is cured. Filling material 82 is formed by hardening grout 91 filled in sheath tube 67, and filling material 83 is formed by hardening grout 91 filled in sleeve joint member 33, and grout filled in gap 89 The joint material 84 is formed by curing the 91.
3. 効果
以上の実施の形態によれば、次のような効果が得られる。
(1) PC仕口構成部材60の柱部63が柱梁仕口部61から下方に突き出ており、柱部63の上下長が塑性ヒンジ長以上であり、更に柱部63の下方のPC柱部材30にスリーブ継手部材33が設けられているので、縦方向鉄筋81と主筋31との継手部(スリーブ継手部材33及びその内側の充填材83)を塑性ヒンジ領域よりも下方に配置することができる。縦方向鉄筋81と主筋31との継手部の施工が不適切であると、その継手部の強度が弱くなる可能性があるが、そのような継手部が塑性ヒンジ領域よりも下方に配置されているので、その継手部が塑性ヒンジに悪影響を及ばさない。
3. Effects According to the above embodiment, the following effects can be obtained.
(1) The column portion 63 of the PC connection component 60 protrudes downward from the column beam connection portion 61, the vertical length of the column portion 63 is equal to or longer than the plastic hinge length, and the PC column below the column portion 63. Since the member 30 is provided with the sleeve joint member 33, the joint portion between the longitudinal reinforcing bar 81 and the main bar 31 (the sleeve joint member 33 and the filling material 83 inside the joint) can be disposed below the plastic hinge region. it can. If the joint between the vertical reinforcing bar 81 and the main bar 31 is improperly constructed, the strength of the joint may be reduced. However, such a joint is disposed below the plastic hinge region. Therefore, the joint does not adversely affect the plastic hinge.
(2) PC仕口構成部材60の柱部63が柱梁仕口部61の下に設けられているので、ハンチ部62を橋軸方向梁部65(又は幅方向梁部64)及び柱部63の両方と一体形成することができる。PC仕口構成部材60の製造の際には、橋軸方向梁部65、幅方向梁部64及び柱部63の鉄筋の配筋の際にハンチ部62の鉄筋の配筋も行える。 (2) Since the column 63 of the PC connection component 60 is provided below the column beam connection 61, the haunch 62 is connected to the bridge axis direction beam 65 (or the width direction beam 64) and the column. 63 can be integrally formed. In the case of manufacturing the PC connection component member 60, the reinforcing bar of the haunch portion 62 can be rebared when the reinforcing bar of the bridge axis direction beam portion 65, the width direction beam portion 64, and the column portion 63 is disposed.
(3) 縦方向鉄筋81がシース管67及び充填材83によって補強されており、そのように補強された縦方向鉄筋81が塑性ヒンジ領域内にある。よって、塑性ヒンジの変形性能の向上を図ることができる。 (3) The longitudinal reinforcing bar 81 is reinforced by the sheath tube 67 and the filler 83, and the reinforced longitudinal reinforcing bar 81 is in the plastic hinge region. Therefore, the deformation performance of the plastic hinge can be improved.
(4) 上述のような柱部63とPC柱部材30との接合部は柱13の降伏点に悪影響を及ばさず、この柱13の降伏点は鉄道用高架橋の柱としての条件を満たす。つまり、上述のような柱部63とPC柱部材30との接合部を採用しても、大地震の発生時に幅方向梁14や橋軸方向梁15が柱13よりも先に降伏するようなことはない。 (4) The joint portion between the column portion 63 and the PC column member 30 as described above does not adversely affect the yield point of the column 13, and the yield point of the column 13 satisfies the condition as a column of a railway viaduct. In other words, even when the joint between the column portion 63 and the PC column member 30 as described above is employed, the width direction beam 14 and the bridge axis direction beam 15 yield before the column 13 when a large earthquake occurs. Never.
(5) 上述のような柱部63とPC柱部材30との接合部は、柱13の靱性・変形性能(大地震時に柱13が降伏してから柱13が破壊するまでの変形量)の向上に寄与する。 (5) The joint between the column portion 63 and the PC column member 30 as described above has the toughness and deformation performance of the column 13 (the amount of deformation from the yield of the column 13 to the breakage of the column 13 during a large earthquake). Contribute to improvement.
4. 実験による検証
実験によって上述の(4)及び(5)の効果について検証する。
4. Verification by Experiment The effects of the above (4) and (5) are verified by an experiment.
4−1. 実施例の試験体
図8Aは逆T字型の試験体100の柱部分の断面図であり、図8Bは試験体100の鉛直断面図である。この試験体100は、上述のPC柱部材30とPC仕口構成部材60の組立体に相当するものである。ここで、図8A及び図8Bに示す試験体100のPC柱部材130、PC仕口構成部材160、柱梁仕口部161、柱部163、梁部165、コンクリート層170、目地材184、主筋131、縦方向鉄筋181、スリーブ継手部材133及びシース管167は、それぞれ、上述のPC柱部材30とPC仕口構成部材60との組立体のPC柱部材30、PC仕口構成部材60、柱梁仕口部61、柱部63、橋軸方向梁部65、コンクリート層70、目地材84、主筋31、縦方向鉄筋81、スリーブ継手部材33及びシース管67にそれぞれ相当する。
4-1. Specimen of Example FIG. 8A is a sectional view of a column portion of an inverted T-shaped specimen 100, and FIG. 8B is a vertical sectional view of the specimen 100. The test body 100 corresponds to an assembly of the PC column member 30 and the PC connection member 60 described above. 8A and 8B, the PC column member 130, the PC connection member 160, the column beam connection portion 161, the column portion 163, the beam portion 165, the concrete layer 170, the joint material 184, and the main reinforcement of the test piece 100 shown in FIGS. 8A and 8B. 131, the longitudinal reinforcing bar 181, the sleeve joint member 133, and the sheath tube 167 are respectively the PC column member 30, the PC connection member 60, and the column of the assembly of the PC column member 30 and the PC connection member 60 described above. They correspond to the beam connection portion 61, the column portion 63, the bridge axial beam portion 65, the concrete layer 70, the joint material 84, the main reinforcement 31, the longitudinal reinforcement 81, the sleeve joint member 33, and the sheath pipe 67, respectively.
主筋131の呼び径がD25であり、材質がSD345であり、降伏点が391 [N/mm2] であり、引張強度が577 [N/mm2] であり、弾性係数が1.93×105 [N/mm2] である。縦方向鉄筋81についても同様である。
柱梁仕口部161及び柱部163のせん断補強筋の呼び径がD10であり、材質がSD345であり、降伏点が360 [N/mm2] であり、引張強度が581 [N/mm2] であり、弾性係数が1.91×105 [N/mm2] である。
The nominal diameter of the main bar 131 is D25, the material is SD345, the yield point is 391 [N / mm 2 ], the tensile strength is 577 [N / mm 2 ], and the elastic modulus is 1.93 × 10 5 [ N / mm 2 ]. The same applies to the vertical reinforcing bars 81.
The nominal diameter of the shear reinforcement of the beam-to-column connection 161 and the column 163 is D10, the material is SD345, the yield point is 360 [N / mm 2 ], and the tensile strength is 581 [N / mm 2]. ], And the elastic modulus is 1.91 × 10 5 [N / mm 2 ].
シース管167には、#1000A(外直径 50 mm、内直径 45 mm、株式会社栗本鐵工所製)を用いた。
スリーブ継手部材133には、トップスジョイントDSタイプ(東京鉄鋼株式会社製)を用いた。
For the sheath tube 167, # 1000A (outer diameter 50 mm, inner diameter 45 mm, manufactured by Kurimoto Iron Works Co., Ltd.) was used.
As the sleeve joint member 133, a tops joint DS type (manufactured by Tokyo Iron and Steel Corporation) was used.
PC柱部材130のコンクリートの設計基準強度が 27.0 [N/mm2] であり、材齢が 46 [日]であり、圧縮強度が 34.0 [N/mm2] であり、弾性係数が 2.42×104 [N/mm2] であり、引張強度が 2.40 [N/mm2] である。
PC仕口構成部材60のコンクリートの設計基準強度が 27.0 [N/mm2] であり、材齢が46 [日]であり、圧縮強度が 35.4 [N/mm2] であり、引張強度が 2.43 [N/mm2] であり、
シース管167内に充填したモルタルには、トーテツモルタル(東京鉄鋼株式会社製)を用いた。そのモルタルの材齢が 56 [日]であり、圧縮強度が 125.8 [N/mm2] であり、弾性係数が 3.61 × 104 [N/mm2] である。
スリーブ継手部材133内に充填したモルタルには、トーテツライト・H(東京鉄鋼株式会社製)を用いた。そのモルタルの材齢が 28 [日]であり、圧縮強度が 128.4 [N/mm2] であり、弾性係数が 3.89×104 [N/mm2] である。
The design standard strength of concrete of the PC column member 130 is 27.0 [N / mm 2 ], the material age is 46 [days], the compressive strength is 34.0 [N / mm 2 ], and the elastic modulus is 2.42 × 10 4 [N / mm 2 ] and the tensile strength is 2.40 [N / mm 2 ].
The design standard strength of the concrete of the PC connection component member 60 is 27.0 [N / mm 2 ], the material age is 46 [days], the compressive strength is 35.4 [N / mm 2 ], and the tensile strength is 2.43 [N / mm 2 ]. [N / mm 2 ]
As the mortar filled in the sheath tube 167, totetsu mortar (manufactured by Tokyo Iron & Steel Co., Ltd.) was used. The age of the mortar is 56 [days], the compressive strength is 125.8 [N / mm 2 ] and the elastic modulus is 3.61 × 10 4 [N / mm 2 ].
As the mortar filled in the sleeve joint member 133, Totelite H (manufactured by Tokyo Iron & Steel Co., Ltd.) was used. The age of the mortar is 28 [days], the compressive strength is 128.4 [N / mm 2 ], and the elastic modulus is 3.89 × 10 4 [N / mm 2 ].
4−2. 比較例の試験体
図9Aは逆T字型の試験体200の柱部分の断面図であり、図9Bは試験体200の鉛直断面図である。この試験体200は、現場打ち工法により製造されたものである。つまり、柱部230(上述のPC柱部材130と柱部163の組み合わせと同一サイズ)、梁部265(上述の梁部165と同一サイズ)及び柱梁仕口部261(上述の柱梁仕口部161と同一サイズ)の配筋をした上で、コンクリートを打設して、それらの鉄筋をそのコンクリートに埋設した。
4-2. Specimen of Comparative Example FIG. 9A is a sectional view of a column portion of an inverted T-shaped specimen 200, and FIG. 9B is a vertical sectional view of the specimen 200. The test body 200 is manufactured by a cast-in-place method. That is, the column 230 (the same size as the combination of the PC column member 130 and the column 163 described above), the beam 265 (the same size as the beam 165 described above), and the column beam connection 261 (the column beam connection described above) (Same size as the part 161), concrete was cast, and the reinforcing steel was buried in the concrete.
柱部230から柱梁仕口部261にかけて配筋された主筋231の呼び径はD25であり、材質はSD345であり、降伏点は 391 [N/mm2] であり、引張強度は 577 [N/mm2] であり、弾性係数は 1.93×105 [N/mm2] である。
柱部230及び柱梁仕口部261に配筋されたせん断補強筋の呼び径はD10であり、材質はSD345であり、降伏点は 360 [N/mm2] であり、引張強度は 581 [N/mm2] であり、弾性係数は 1.91×105 [N/mm2] である。
The nominal diameter of the main reinforcement 231 arranged from the column 230 to the beam-to-column connection 261 is D25, the material is SD345, the yield point is 391 [N / mm 2 ], and the tensile strength is 577 [N / mm 2 ] and the elastic modulus is 1.93 × 10 5 [N / mm 2 ].
The nominal diameter of the shear reinforcement arranged in the column 230 and the beam-to-column connection 261 is D10, the material is SD345, the yield point is 360 [N / mm 2 ], and the tensile strength is 581 [ N / mm 2 ] and the elastic modulus is 1.91 × 10 5 [N / mm 2 ].
柱部230の設計基準強度は 27.0 [N/mm2] であり、材齢は 20 [日]であり、圧縮強度は 32.4 [N/mm2] であり、弾性係数は 2.50×104 [N/mm2] であり、引張強度は 2.83 [N/mm2] である。
柱梁仕口部261及び梁部265のコンクリートの設計基準強度は 27.0 [N/mm2] であり、材齢は 28 [日]であり、圧縮強度は 32.0 [N/mm2] である。
The design standard strength of the column part 230 is 27.0 [N / mm 2 ], the material age is 20 [days], the compressive strength is 32.4 [N / mm 2 ], and the elastic modulus is 2.50 × 10 4 [N / mm 2 ], and the tensile strength is 2.83 [N / mm 2 ].
The design standard strength of the concrete of the beam-column connection part 261 and the beam part 265 is 27.0 [N / mm 2 ], the material age is 28 [days], and the compressive strength is 32.0 [N / mm 2 ].
4−3. 実験内容
試験体100,200に対する載荷は、どちらの試験体100,200でも軸力 720 [kN] (軸応力度 2.0 [N/mm2] )を保持し、初降伏変位を基準として変位制御により各変位レベルで3回ずつ繰り返した。どちらの試験体100,200でも、初期降伏変位は 14.6 [mm] (試験体200での軸方向最外縁鉄筋が降伏ひずみ 2139μ に達した載荷変位)とした。
4-3. Experiment contents The load on the test specimens 100 and 200 is maintained by the axial control of 720 [kN] (axial stress 2.0 [N / mm 2 ]) in both of the test specimens 100 and 200 by displacement control based on the initial yield displacement. Repeated three times at each displacement level. In both specimens 100 and 200, the initial yield displacement was 14.6 [mm] (the loading displacement at which the axially outermost rebar in the specimen 200 reached a yield strain of 2139 μ).
4−4. 実験結果
荷重−変位履歴曲線の包絡線と計算値を図10に示す。図10において、横軸は水平変位を表し、縦軸は水平荷重を表す。荷重は軸力による付加曲げモーメントの補正を行った値としている。計算値は、鉄道設計標準に従って算出したY点(降伏点)、M点(コンクリートの圧縮ひずみが終局ひずみに達する点)及びN点(降伏荷重を維持する最大変位の点)の包絡線である。水平変位の計算値は、柱梁仕口部からの軸方向鉄筋の抜出し、塑性ヒンジ部の回転、および塑性ヒンジ部以外の梁の曲げを考慮して算出している。
4-4. Experimental Results FIG. 10 shows the envelope and calculated values of the load-displacement history curve. In FIG. 10, the horizontal axis represents horizontal displacement, and the vertical axis represents horizontal load. The load is a value obtained by correcting the additional bending moment due to the axial force. The calculated values are the envelopes of point Y (yield point), point M (point at which the compressive strain of the concrete reaches the ultimate strain), and point N (point of maximum displacement that maintains the yield load) calculated according to the railway design standard. . The calculated value of the horizontal displacement is calculated in consideration of the extraction of the axial reinforcing bar from the beam-column connection, the rotation of the plastic hinge, and the bending of the beams other than the plastic hinge.
試験体200では、2δyで最大荷重 711 [kN] に達し、7δyまで降伏荷重を維持した。その後は繰り返しにより荷重が低下した。試験体100では、2δyで最大荷重 756 [kN] に達し、8δyまで降伏荷重を維持した。その後は繰り返しにより荷重が低下した。 In the test body 200, the maximum load reached 711 [kN] at 2δy, and the yield load was maintained until 7δy. Thereafter, the load decreased by repetition. In the test body 100, the maximum load reached 756 [kN] at 2δy, and the yield load was maintained until 8δy. Thereafter, the load decreased by repetition.
また、図10より、試験体100の縦方向鉄筋181が降伏する際の水平荷重と水平変位は、試験体200の主筋231が降伏する際の水平荷重と水平変位に近似していることが分かる。よって、降伏に関しては、本発明を採用した試験体100の柱は、従来の現場打ちコンクリート構造を採用した試験体200の柱とほぼ同等な強度である。 Further, from FIG. 10, it can be seen that the horizontal load and the horizontal displacement when the vertical reinforcing bar 181 of the test piece 100 yields are similar to the horizontal load and the horizontal displacement when the main bar 231 of the test piece 200 yields. . Therefore, regarding the yield, the column of the test body 100 adopting the present invention has almost the same strength as the column of the test body 200 adopting the conventional cast-in-place concrete structure.
また、図10より、試験体100の柱は、降伏してから破損するまでに、試験体200の柱よりも大きく変形し得ることが分かる。よって、本発明を採用した試験体100の柱は、従来の現場打ちコンクリート構造を採用した試験体200の柱よりも靱性・変形性能が高い。 Further, from FIG. 10, it can be seen that the column of the test specimen 100 can be deformed more than the column of the test specimen 200 from yielding to failure. Therefore, the column of the test body 100 adopting the present invention has higher toughness and deformation performance than the column of the test body 200 adopting the conventional cast-in-place concrete structure.
5. 変形例
以上、本発明を実施するための形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更、改良され得るとともに、本発明にはその等価物も含まれる。以上の実施形態からの変更点について以下に説明する。以下に説明する変更点は、可能な限り組み合わせて適用してもよい。
5. 2. Modifications Although the embodiments for carrying out the present invention have been described above, the embodiments are for the purpose of facilitating the understanding of the present invention, and are not intended to limit and interpret the present invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention also includes equivalents thereof. Changes from the above embodiment will be described below. The changes described below may be applied in combination as much as possible.
(1) 上記実施形態では、グラウト91をスリーブ継手部材33に注入することによってそのグラウト91をスリーブ継手部材33から隙間89及びシース管67に流し込んでいた。それに対して、グラウト91をシース管67に注入することによってそのグラウト91をシース管67から隙間89及びスリーブ継手部材33に流し込んでもよい。また、グラウト91を隙間89に注入することによってそのグラウト91を隙間89からスリーブ継手部材33及びシース管67に流し込んでもよい。また、スリーブ継手部材33、隙間89及びシース管67に対して個別にグラウト91を注入してもよい。 (1) In the above embodiment, the grout 91 is injected into the gap 89 and the sheath tube 67 from the sleeve joint member 33 by injecting the grout 91 into the sleeve joint member 33. On the other hand, grout 91 may be poured into sheath tube 67 into gap 89 and sleeve joint member 33 by injecting grout 91 into sheath tube 67. Further, the grout 91 may be poured into the gap 89 to flow into the sleeve joint member 33 and the sheath tube 67 from the gap 89. Further, grout 91 may be separately injected into the sleeve joint member 33, the gap 89, and the sheath tube 67.
(2) 上記実施形態の高架橋10が鉄道用であったが、道路用であってもよい。 (2) Although the viaduct 10 of the above embodiment is for railways, it may be for roads.
10…高架橋, 30…プレキャストコンクリート柱部材, 32…コンクリート(第二コンクリート), 33…スリーブ継手部材, 60…プレキャストコンクリート部材, 61…柱梁仕口部, 63…柱部, 66…コンクリート, 67…シース管, 81…縦方向鉄筋, 82…充填材(第二充填材), 83…充填材(第一充填材), 84…目地材 DESCRIPTION OF SYMBOLS 10 ... Viaduct, 30 ... Precast concrete column member, 32 ... Concrete (second concrete), 33 ... Sleeve joint member, 60 ... Precast concrete member, 61 ... Beam-column connection part, 63 ... Column part, 66 ... Concrete, 67 ... sheath tube, 81 ... longitudinal reinforcing bar, 82 ... filler (second filler), 83 ... filler (first filler), 84 ... joint material
Claims (5)
前記柱部の下に配される第二コンクリートと、前記第二コンクリート内部において上下方向に延在するとともに枠状に配列される複数の主筋と、前記第二コンクリートの上部に埋設され、前記主筋のそれぞれの上端に設けられた複数の管状のスリーブ継手部材と、を有するプレキャストコンクリート柱部材と、
前記シース管のそれぞれに挿入されているとともに、前記シース管のそれぞれの下端から突き出て前記スリーブ継手部材にそれぞれ差し込まれた複数の縦方向鉄筋と、
前記スリーブ継手部材に充填された第一充填材と、
前記シース管に充填された第二充填材と、
前記プレキャストコンクリート柱部材と前記柱部との間に設けられた目地材と、を備え、
前記ハンチ部の下端を通った水平な面から前記柱部の下端までの長さが、柱と梁の接合部における塑性ヒンジ長としての前記柱部の太さ以上であることを特徴とする柱梁仕口部−柱の接合構造。 A beam-joint portion , a haunch portion provided at a lower portion of a side surface of the beam-joint portion, and a concrete portion forming a column portion extending downward from the beam-joint portion; precast having a plurality of sheath tube arranged from the top to the embedded in the concrete over the lower end of the column portion Rutotomoni frame shape, and a shear reinforcement embedded in the concrete so as to surround the sheath tube Concrete members,
A second concrete disposed below the pillar portion, a plurality of main reinforcements extending vertically in the second concrete and arranged in a frame shape, and the main reinforcement embedded in an upper portion of the second concrete; A plurality of tubular sleeve joint members provided at the upper end of each, a precast concrete column member having:
Together are inserted into each of said sheath tube, and a plurality of longitudinal reinforcing bars which are inserted respectively in said sleeve joint member protruding from each of the lower end of the sheath tube,
A first filler filled in the sleeve joint member,
A second filler filled in the sheath tube,
And a joint material provided between the precast concrete column member and the column portion ,
A column, wherein a length from a horizontal surface passing through a lower end of the haunch portion to a lower end of the column portion is equal to or greater than a thickness of the column portion as a plastic hinge length at a joint portion between the column and the beam. Beam joint-pillar joint structure.
前記スリーブ継手部材と前記シース管を上下に並べるように且つ前記柱部の下端と前記プレキャストコンクリート柱部材の上端との間に隙間を形成するように、前記プレキャストコンクリート部材を前記プレキャストコンクリート柱部材の上に配置する工程と、
複数の縦方向鉄筋を前記シース管にそれぞれ挿入するとともに、前記縦方向鉄筋の下部を前記シース管のそれぞれの下端から突き出して前記スリーブ継手部材にそれぞれ差し込む工程と、
第一充填材を前記スリーブ継手部材に充填し、第二充填材を前記シース管に充填し、目地材を前記プレキャストコンクリート柱部材と前記柱部との間に充填する工程と、を含み、
前記ハンチ部の下端を通った水平な面から前記柱部の下端までの長さが、柱と梁の接合部における塑性ヒンジ長としての前記柱部の太さ以上であることを特徴とする柱梁仕口部−柱の接合構造の構築方法。 A beam-joint portion , a haunch portion provided at a lower portion of a side surface of the beam-joint portion, and a concrete portion forming a column portion extending downward from the beam-joint portion; precast concrete having a plurality of sheath tube arranged from the top to the embedded in the concrete over the lower end of the column portion Rutotomoni frame shape, and a shear reinforcement embedded in the concrete so as to surround the sheath tube Along with preparing the member, the second concrete, a plurality of main reinforcements extending in the vertical direction inside the second concrete and arranged in a frame shape, and buried in the upper part of the second concrete, each of the main reinforcements Providing a precast concrete column member having a plurality of tubular sleeve joint members provided at the upper end,
The precast concrete column member is placed on the precast concrete column member so that the sleeve joint member and the sheath tube are vertically arranged and a gap is formed between a lower end of the column portion and an upper end of the precast concrete column member. Placing on top,
A plurality of longitudinal reinforcing bars is inserted respectively into the sheath tube, a step of inserting each of a lower portion of the longitudinal reinforcing bars to the sleeve joint member protruding from each of the lower end of the sheath tube,
The first filler was filled into the sleeve joint member, the second filling material filled in said sheath tube, viewed including the steps of filling the joint material between the pillar portion and the precast concrete pillar member,
A column, wherein a length from a horizontal surface passing through a lower end of the haunch portion to a lower end of the column portion is equal to or greater than a thickness of the column portion as a plastic hinge length at a joint portion between the column and the beam. Construction method of beam joint-column joint structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015227328A JP6660719B2 (en) | 2015-11-20 | 2015-11-20 | Method of constructing beam-column joint-column joint structure, ramen viaduct and beam-column joint-column joint structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015227328A JP6660719B2 (en) | 2015-11-20 | 2015-11-20 | Method of constructing beam-column joint-column joint structure, ramen viaduct and beam-column joint-column joint structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017095915A JP2017095915A (en) | 2017-06-01 |
JP6660719B2 true JP6660719B2 (en) | 2020-03-11 |
Family
ID=58817014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015227328A Active JP6660719B2 (en) | 2015-11-20 | 2015-11-20 | Method of constructing beam-column joint-column joint structure, ramen viaduct and beam-column joint-column joint structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6660719B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6886664B2 (en) * | 2018-05-17 | 2021-06-16 | 国立大学法人宇都宮大学 | Plastic hinge structure of RC columnar structure and plastic hinge part repair method of RC columnar structure |
JP7486992B2 (en) * | 2020-03-27 | 2024-05-20 | 清水建設株式会社 | Pillar structure |
CN112982829B (en) * | 2021-03-04 | 2022-07-19 | 北京工业大学 | Assembled ECC-RC mixed column connected by grouting sleeve |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5771518A (en) * | 1989-06-16 | 1998-06-30 | Roberts; Michael Lee | Precast concrete bridge structure and associated rapid assembly methods |
JP4496023B2 (en) * | 2004-07-06 | 2010-07-07 | 株式会社大林組 | Precast concrete column beam connection structure, column beam frame structure including this connection structure, and precast concrete column beam connection method |
JP2010065459A (en) * | 2008-09-11 | 2010-03-25 | Shimizu Corp | Joining structure and joining method of column-beam joint member and column member of precast concrete construction |
JP2010138643A (en) * | 2008-12-12 | 2010-06-24 | Ohbayashi Corp | Construction method for column-beam joint part of viaduct, and viaduct |
JP5640584B2 (en) * | 2010-09-06 | 2014-12-17 | 株式会社大林組 | PC member joining method and joining structure |
JP5485187B2 (en) * | 2011-01-13 | 2014-05-07 | 公益財団法人鉄道総合技術研究所 | Railway viaduct pillar replacement method |
JP2015078575A (en) * | 2013-10-18 | 2015-04-23 | 清水建設株式会社 | Column-beam joint structure, frame structure, and method of joining column and beam |
-
2015
- 2015-11-20 JP JP2015227328A patent/JP6660719B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017095915A (en) | 2017-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100932468B1 (en) | Centrifugal precast concrete pile having hollow and construction method using the same, concrete and steel beam | |
KR101325245B1 (en) | Bridge Post which is assembled by precasted units | |
KR100969586B1 (en) | Rhamen bridge and construction method there of | |
JP6691880B2 (en) | Precast wall balustrade mounting structure and mounting method | |
KR101862278B1 (en) | Steel composite concrete member | |
JP6792329B2 (en) | Construction method of column beam frame using precast concrete columns | |
KR100862005B1 (en) | Manufacturing method of segmental internally confined hollow concrete filled tube | |
JP6660719B2 (en) | Method of constructing beam-column joint-column joint structure, ramen viaduct and beam-column joint-column joint structure | |
JP5061804B2 (en) | Joint structure of a pair of full PC members | |
JP5757175B2 (en) | Support pillar for high-rise building and its construction method | |
KR100891013B1 (en) | Precast concrete unit bonding method by making error | |
KR101458435B1 (en) | Half precast concrete column manufacturing method using saddle-type ties and dual hoops and constructing method using the same | |
JP2016205051A (en) | Construction method for structure | |
JP2015025314A (en) | Construction method for precast concrete skeleton | |
KR100710583B1 (en) | Hybrid system of pc column and steel beam | |
JP2017014713A (en) | Existing concrete structure reinforcement structure | |
JP4227557B2 (en) | Reinforced wall construction method and existing wall structure of existing concrete wall | |
JP6590571B2 (en) | Precast concrete beam end joint structure and precast concrete beam column frame | |
KR102158790B1 (en) | Girder structure and construction method for continuity of supporting portion of girder using the same | |
KR102200400B1 (en) | Precast segment, pillar structure including the same and construction method of pillar structure usinging the same | |
JP4696739B2 (en) | Precast concrete beam member joining structure and joining method | |
JP7532735B2 (en) | Connection structure | |
JP2017082548A (en) | Concrete foundation joint member and pile structure | |
JP2022154690A (en) | Connection structure | |
JPH0314483Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181019 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190725 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190806 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191003 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6660719 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |