JP6802983B2 - Wavelength conversion member and wavelength conversion element, and light emitting device using them - Google Patents
Wavelength conversion member and wavelength conversion element, and light emitting device using them Download PDFInfo
- Publication number
- JP6802983B2 JP6802983B2 JP2017079488A JP2017079488A JP6802983B2 JP 6802983 B2 JP6802983 B2 JP 6802983B2 JP 2017079488 A JP2017079488 A JP 2017079488A JP 2017079488 A JP2017079488 A JP 2017079488A JP 6802983 B2 JP6802983 B2 JP 6802983B2
- Authority
- JP
- Japan
- Prior art keywords
- wavelength conversion
- conversion member
- magnesium oxide
- particles
- inorganic phosphor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 105
- 239000002245 particle Substances 0.000 claims description 112
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 51
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 50
- 239000000395 magnesium oxide Substances 0.000 claims description 49
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 49
- 239000000919 ceramic Substances 0.000 claims description 34
- 230000005284 excitation Effects 0.000 claims description 13
- 238000010304 firing Methods 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 4
- 239000002223 garnet Substances 0.000 claims description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 4
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 4
- 229910052582 BN Inorganic materials 0.000 claims description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 229910000484 niobium oxide Inorganic materials 0.000 claims description 3
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- 239000011787 zinc oxide Substances 0.000 claims description 2
- 239000011224 oxide ceramic Substances 0.000 claims 4
- 229910052574 oxide ceramic Inorganic materials 0.000 claims 2
- 239000000463 material Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 238000005245 sintering Methods 0.000 description 6
- 230000017525 heat dissipation Effects 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 229940117955 isoamyl acetate Drugs 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 description 1
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- -1 polypropylene carbonate Polymers 0.000 description 1
- 229920000379 polypropylene carbonate Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical compound [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0239—Combinations of electrical or optical elements
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/64—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
- Optical Filters (AREA)
- Semiconductor Lasers (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
本発明は、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)等の発する光の波長を別の波長に変換する波長変換部材及び波長変換素子、並びにそれらを用いた発光装置に関する。 The present invention provides a wavelength conversion member and a wavelength conversion element that convert the wavelength of light emitted by a light emitting diode (LED: Light Emitting Diode), a laser diode (LD: Laser Diode), or the like into another wavelength, and a light emitting device using them. Regarding.
近年、蛍光ランプや白熱灯に変わる次世代の発光装置として、低消費電力、小型軽量、容易な光量調節という観点から、LEDやLDを用いた発光装置に対する注目が高まってきている。そのような次世代発光装置の一例として、例えば特許文献1には、青色光を出射するLED上に、LEDからの光の一部を吸収して黄色光に変換する波長変換部材が配置された発光装置が開示されている。この発光装置は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。 In recent years, as a next-generation light emitting device that replaces fluorescent lamps and incandescent lamps, attention has been increasing to light emitting devices using LEDs and LDs from the viewpoints of low power consumption, small size and light weight, and easy light intensity adjustment. As an example of such a next-generation light emitting device, for example, in Patent Document 1, a wavelength conversion member that absorbs a part of the light from the LED and converts it into yellow light is arranged on the LED that emits blue light. The light emitting device is disclosed. This light emitting device emits white light, which is a composite light of blue light emitted from an LED and yellow light emitted from a wavelength conversion member.
波長変換部材としては、従来、樹脂マトリクス中に無機蛍光体粒子を分散させたものが用いられている。しかしながら、当該波長変換部材を用いた場合、LEDからの光により樹脂マトリクスが変色したり、変形するという問題がある。そこで、樹脂に代えてガラスマトリクス中に蛍光体を分散固定した完全無機固体からなる波長変換部材が提案されている(例えば、特許文献2及び3参照)。当該波長変換部材は、母材となるガラスマトリクスがLEDからの熱や照射光により劣化しにくく、変色や変形といった問題が生じにくいという特徴を有している。 Conventionally, as the wavelength conversion member, a member in which inorganic phosphor particles are dispersed in a resin matrix has been used. However, when the wavelength conversion member is used, there is a problem that the resin matrix is discolored or deformed by the light from the LED. Therefore, a wavelength conversion member made of a completely inorganic solid in which a phosphor is dispersed and fixed in a glass matrix instead of a resin has been proposed (see, for example, Patent Documents 2 and 3). The wavelength conversion member has a feature that the glass matrix as a base material is less likely to be deteriorated by heat from an LED or irradiation light, and problems such as discoloration and deformation are less likely to occur.
近年、発光装置のハイパワー化を目的として、光源として用いるLEDやLDの出力が上昇している。それに伴い、光源の熱や、励起光を照射された蛍光体から発せられる熱により波長変換部材の温度が上昇し、その結果、発光強度が経時的に低下する(温度消光)という問題がある。また、場合によっては、波長変換部材の温度上昇が顕著となり、構成材料(ガラスマトリクス等)が溶解するおそれがある。 In recent years, the output of LEDs and LDs used as light sources has been increasing for the purpose of increasing the power of light emitting devices. Along with this, there is a problem that the temperature of the wavelength conversion member rises due to the heat of the light source and the heat generated from the phosphor irradiated with the excitation light, and as a result, the emission intensity decreases with time (temperature quenching). Further, in some cases, the temperature of the wavelength conversion member rises remarkably, and the constituent material (glass matrix or the like) may be melted.
以上に鑑み、本発明は、ハイパワーのLEDやLDの光を照射した場合に、経時的な発光強度の低下や構成材料の溶解を抑制することが可能な波長変換部材及び波長変換素子、並びにそれらを用いた発光装置を提供することを目的とする。 In view of the above, the present invention comprises a wavelength conversion member and a wavelength conversion element capable of suppressing a decrease in emission intensity and dissolution of constituent materials over time when irradiated with high-power LED or LD light. It is an object of the present invention to provide a light emitting device using them.
本発明の波長変換部材は、無機蛍光体粒子、及び、酸化マグネシウム粒子を含有する波長変換部材であって、無機蛍光体粒子間に酸化マグネシウム粒子が介在しており、かつ、無機蛍光体粒子が酸化マグネシウム粒子により結着されていることを特徴とする。 The wavelength conversion member of the present invention is a wavelength conversion member containing inorganic phosphor particles and magnesium oxide particles, in which magnesium oxide particles are interposed between the inorganic phosphor particles, and the inorganic phosphor particles are present. It is characterized in that it is bound by magnesium oxide particles.
本発明の波長変換部材においては、無機蛍光体粒子間に酸化マグネシウム粒子が介在している。ここで、酸化マグネシウム粒子はガラス等と比較して熱伝導性に優れているため、無機蛍光体粒子で発生した熱を効率良く外部に放出することができる。その結果、波長変換部材の温度上昇が抑制され、温度消光が生じにくくなる。また、酸化マグネシウム粒子は耐熱性にも優れるため、ハイパワーのLEDやLDの光を照射した場合であっても溶解しにくい、あるいは、急激な温度上昇によるサーマルクラックといった不具合の発生を抑制することができるという利点もある。さらに、酸化マグネシウム粒子は、酸化アルミニウムや酸化ジルコニウム等のセラミック粒子と比較して低温で焼結可能であるという利点もある。そのため、波長変換部材作製時の焼成温度も低くすることができ、焼成時における無機蛍光体粉末の劣化を抑制することができる。 In the wavelength conversion member of the present invention, magnesium oxide particles are interposed between the inorganic phosphor particles. Here, since the magnesium oxide particles are superior in thermal conductivity as compared with glass or the like, the heat generated by the inorganic phosphor particles can be efficiently released to the outside. As a result, the temperature rise of the wavelength conversion member is suppressed, and temperature quenching is less likely to occur. In addition, since magnesium oxide particles have excellent heat resistance, they are difficult to dissolve even when irradiated with high-power LED or LD light, or they suppress the occurrence of problems such as thermal cracks due to a sudden temperature rise. There is also an advantage that it can be done. Further, the magnesium oxide particles have an advantage that they can be sintered at a lower temperature than ceramic particles such as aluminum oxide and zirconium oxide. Therefore, the firing temperature at the time of manufacturing the wavelength conversion member can be lowered, and the deterioration of the inorganic phosphor powder at the time of firing can be suppressed.
本発明の波長変換部材は、質量%で、無機蛍光体粒子 3〜80%、及び、酸化マグネシウム粒子 20〜97%を含有することが好ましい。 The wavelength conversion member of the present invention preferably contains 3 to 80% of inorganic phosphor particles and 20 to 97% of magnesium oxide particles in mass%.
本発明の波長変換部材において、酸化マグネシウム粒子の平均粒子径が0.01〜10μmであることが好ましい。このようにすれば、波長変換部材の緻密性が向上して、熱伝導パスが形成されやすくなるため、無機蛍光体粒子で発生した熱をより一層効率良く外部に放出することができる。 In the wavelength conversion member of the present invention, the average particle size of the magnesium oxide particles is preferably 0.01 to 10 μm. By doing so, the denseness of the wavelength conversion member is improved and the heat conduction path is easily formed, so that the heat generated by the inorganic phosphor particles can be released to the outside more efficiently.
本発明の波長変換部材において、酸化マグネシウム粒子の純度が99%以上であることが好ましい。このようにすれば、酸化マグネシウム粒子を比較的低温で焼結することが可能となる。 In the wavelength conversion member of the present invention, the purity of the magnesium oxide particles is preferably 99% or more. In this way, the magnesium oxide particles can be sintered at a relatively low temperature.
本発明の波長変換部材において、無機蛍光体粒子の平均粒子径が1〜50μmであることが好ましい。 In the wavelength conversion member of the present invention, the average particle size of the inorganic phosphor particles is preferably 1 to 50 μm.
本発明の波長変換部材において、無機蛍光体粒子がガーネット構造を有する酸化物蛍光体からなることが好ましい。ガーネット構造を有する酸化物蛍光体は耐熱性に優れるため、ハイパワーのLEDやLDの光を照射した場合に、無機蛍光体粒子自体の劣化を抑制することができる。 In the wavelength conversion member of the present invention, it is preferable that the inorganic phosphor particles are made of an oxide phosphor having a garnet structure. Since the oxide phosphor having a garnet structure has excellent heat resistance, deterioration of the inorganic phosphor particles themselves can be suppressed when irradiated with high-power LED or LD light.
本発明の波長変換部材において、(酸化マグネシウム粒子の平均粒子径)/(無機蛍光体粒子の平均粒子径)が0.5以下であることが好ましい。このようにすれば、波長変換部材の緻密性が向上して、熱伝導パスが形成されやすくなるため、無機蛍光体粒子で発生した熱をより一層効率良く外部に放出することができる。 In the wavelength conversion member of the present invention, (average particle size of magnesium oxide particles) / (average particle size of inorganic phosphor particles) is preferably 0.5 or less. By doing so, the denseness of the wavelength conversion member is improved and the heat conduction path is easily formed, so that the heat generated by the inorganic phosphor particles can be released to the outside more efficiently.
本発明の波長変換素子は、上記の波長変換部材と、波長変換部材より高い熱伝導率を有する放熱層とが積層されてなる積層体からなることを特徴とする。このようにすれば、波長変換部材で発生した熱を放熱層に伝達することができるため、波長変換部材の温度上昇を抑制しやすくなる。 The wavelength conversion element of the present invention is characterized by being composed of a laminated body in which the above-mentioned wavelength conversion member and a heat radiating layer having a higher thermal conductivity than the wavelength conversion member are laminated. By doing so, the heat generated by the wavelength conversion member can be transferred to the heat radiating layer, so that it becomes easy to suppress the temperature rise of the wavelength conversion member.
本発明の波長変換素子において、放熱層として透光性セラミックスからなるものを使用することができる。 In the wavelength conversion element of the present invention, a heat-dissipating layer made of translucent ceramics can be used.
本発明の波長変換素子において、透光性セラミックスとして、酸化アルミニウム系セラミックス、窒化アルミニウム系セラミックス、炭化ケイ素系セラミックス、窒化ホウ素系セラミックス、酸化マグネシウム系セラミックス、酸化チタン系セラミックス、酸化ニオビウム系セラミックス、酸化亜鉛系セラミックス及び酸化イットリウム系セラミックスから選択される少なくとも1種を使用することができる。 In the wavelength conversion element of the present invention, as translucent ceramics, aluminum oxide-based ceramics, aluminum nitride-based ceramics, silicon carbide-based ceramics, boron nitride-based ceramics, magnesium oxide-based ceramics, titanium oxide-based ceramics, niobium oxide-based ceramics, and oxidation At least one selected from zinc-based ceramics and yttrium oxide-based ceramics can be used.
本発明の発光装置は、上記の波長変換部材と、波長変換部材に励起光を照射する光源とを備えてなることを特徴とする。 The light emitting device of the present invention is characterized by comprising the above-mentioned wavelength conversion member and a light source for irradiating the wavelength conversion member with excitation light.
本発明の発光装置は、上記の波長変換素子と、波長変換素子に励起光を照射する光源とを備えてなることを特徴とする。 The light emitting device of the present invention is characterized by comprising the above-mentioned wavelength conversion element and a light source for irradiating the wavelength conversion element with excitation light.
本発明の発光装置において、光源がレーザーダイオードであることが好ましい。本発明の波長変換部材及び波長変換素子は耐熱性及び放熱性に優れるため、光源として比較的ハイパワーであるレーザーダイオードを使用した場合に発明の効果を享受しやすい。 In the light emitting device of the present invention, it is preferable that the light source is a laser diode. Since the wavelength conversion member and the wavelength conversion element of the present invention are excellent in heat resistance and heat dissipation, it is easy to enjoy the effects of the invention when a laser diode having a relatively high power is used as a light source.
本発明によれば、ハイパワーのLEDやLDの光を照射した場合に、経時的な発光強度の低下や構成材料の溶解を抑制することが可能な波長変換部材及び波長変換素子、並びにそれらを用いた発光装置を提供することができる。 According to the present invention, a wavelength conversion member and a wavelength conversion element capable of suppressing a decrease in emission intensity and dissolution of constituent materials over time when irradiated with high-power LED or LD light, and a wavelength conversion element thereof. The light emitting device used can be provided.
以下、本発明の実施形態を図面を用いて説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments.
(波長変換部材)
図1は、本発明の波長変換部材の一実施形態を示す模式的断面図である。波長変換部材10は無機蛍光体粒子1と酸化マグネシウム粒子2を含有している。ここで、無機蛍光体粒子1間に酸化マグネシウム粒子2が介在しており、無機蛍光体粒子1が酸化マグネシウム粒子2により結着されている。
(Wavelength conversion member)
FIG. 1 is a schematic cross-sectional view showing an embodiment of the wavelength conversion member of the present invention. The wavelength conversion member 10 contains inorganic phosphor particles 1 and magnesium oxide particles 2. Here, the magnesium oxide particles 2 are interposed between the inorganic phosphor particles 1, and the inorganic phosphor particles 1 are bound by the magnesium oxide particles 2.
無機蛍光体粒子1は、励起光の入射により蛍光を出射するものであれば、特に限定されるものではない。無機蛍光体粒子1の具体例としては、例えば、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体等が挙げられる。これらは単独または2種以上を混合して使用することができる。なお後述するように、波長変換部材10は無機蛍光体粒子1と酸化マグネシウム粒子2の混合粒子を焼結することにより作製されるため、無機蛍光体粒子1としては焼結時に熱劣化しないように耐熱性に優れるものが好ましい。そのような観点からは、無機蛍光体粒子1は酸化物蛍光体、特にガーネット構造を有する酸化物蛍光体(Y3Al5O12:Ce3+、Lu3Al5O12:Ce3+等)であることが好ましい。 The inorganic phosphor particles 1 are not particularly limited as long as they emit fluorescence when the excitation light is incident. Specific examples of the inorganic phosphor particles 1 include oxide phosphors, nitride phosphors, oxynitride phosphors, chloride phosphors, acidified phosphors, sulfide phosphors, and acid sulfide phosphors. , Halogenated fluorescent material, chalcogenized fluorescent material, aluminate fluorescent material, halophosphated fluorescent material and the like. These can be used alone or in admixture of two or more. As will be described later, since the wavelength conversion member 10 is produced by sintering mixed particles of the inorganic phosphor particles 1 and magnesium oxide particles 2, the inorganic phosphor particles 1 are prevented from being thermally deteriorated during sintering. Those having excellent heat resistance are preferable. From such a viewpoint, the inorganic phosphor particles 1 are oxide phosphors, particularly oxide phosphors having a garnet structure (Y 3 Al 5 O 12 : Ce 3+ , Lu 3 Al 5 O 12 : Ce 3+, etc.). It is preferable to have.
無機蛍光体粒子1の平均粒子径(D50)は1〜50μm、特に5〜25μmであることが好ましい。無機蛍光体粒子1の平均粒子径が小さすぎると、発光強度が低下しやすくなる。一方、無機蛍光体粒子1の平均粒子径が大きすぎると、発光色が不均一になる傾向がある。 The average particle size (D 50 ) of the inorganic phosphor particles 1 is preferably 1 to 50 μm, particularly preferably 5 to 25 μm. If the average particle size of the inorganic phosphor particles 1 is too small, the emission intensity tends to decrease. On the other hand, if the average particle size of the inorganic phosphor particles 1 is too large, the emission color tends to be non-uniform.
酸化マグネシウム粒子2の平均粒子径(D50)は0.01〜10μm、特に0.05〜5μm、特に0.08〜1μmであることが好ましい。平均粒子径を上記範囲とすることにより、酸化マグネシウム粒子2を比較的低温で焼結することが可能となる。 The average particle size (D 50 ) of the magnesium oxide particles 2 is preferably 0.01 to 10 μm, particularly 0.05 to 5 μm, and particularly preferably 0.08 to 1 μm. By setting the average particle size in the above range, the magnesium oxide particles 2 can be sintered at a relatively low temperature.
酸化マグネシウム粒子2の純度は99%以上、99.9%以上、特に99.98%以上であることが好ましい。酸化マグネシウム粒子2の純度を上記範囲とすることにより、酸化マグネシウム粒子2を比較的低温で焼結することが可能となる。 The purity of the magnesium oxide particles 2 is preferably 99% or more, 99.9% or more, and particularly preferably 99.98% or more. By setting the purity of the magnesium oxide particles 2 in the above range, the magnesium oxide particles 2 can be sintered at a relatively low temperature.
上記の通り、酸化マグネシウム粒子2の平均粒子径や純度を適宜調整することにより、焼結温度を低くすることが可能となる。具体的には、1000〜1400℃、1020〜1250℃、さらには1050〜1100℃未満の比較的低温で焼成しても緻密に焼結することができる。 As described above, the sintering temperature can be lowered by appropriately adjusting the average particle size and purity of the magnesium oxide particles 2. Specifically, it can be densely sintered even if it is fired at a relatively low temperature of 1000 to 1400 ° C., 1020 to 1250 ° C., and further less than 1050 to 1100 ° C.
酸化マグネシウム粒子2の作製方法としては、気相酸化反応による合成法や、水中火花放電法等が挙げられる。なかでも、気相酸化反応による合成法は、高純度の酸化マグネシウム粒子が得られやすいため好ましい。なお、酸化マグネシウム粒子の市販品としては、宇部マテリアルズ製の50Aや2000A等を用いることができる。 Examples of the method for producing the magnesium oxide particles 2 include a synthesis method by a vapor phase oxidation reaction, an underwater spark discharge method, and the like. Of these, the synthetic method based on the vapor phase oxidation reaction is preferable because high-purity magnesium oxide particles can be easily obtained. As a commercially available product of magnesium oxide particles, 50A, 2000A, etc. manufactured by Ube Material Industries Ltd. can be used.
なお、(酸化マグネシウム粒子2の平均粒子径)/(無機蛍光体粒子1の平均粒子径)は0.5以下、0.2以下、0.1以下、特に0.05以下であることが好ましい。このようにすれば、波長変換部材10の緻密性が向上して、熱伝導パスが形成されやすくなるため、無機蛍光体粒子1で発生した熱をより一層効率良く外部に放出することができる。 The (average particle size of the magnesium oxide particles 2) / (average particle size of the inorganic phosphor particles 1) is preferably 0.5 or less, 0.2 or less, 0.1 or less, and particularly preferably 0.05 or less. .. By doing so, the denseness of the wavelength conversion member 10 is improved and the heat conduction path is easily formed, so that the heat generated by the inorganic phosphor particles 1 can be released to the outside more efficiently.
波長変換部材10における無機蛍光体粒子1及び酸化マグネシウム粒子2の割合は、質量%で、無機蛍光体粒子1 3〜80%、酸化マグネシウム粒子2 20〜97%であることが好ましく、無機蛍光体粒子1 15〜75%、酸化マグネシウム粒子2 25〜95%であることがより好ましく、無機蛍光体粒子1 8〜70%、酸化マグネシウム粒子2 30〜92%であることがさらに好ましい。無機蛍光体粒子1の含有量が少なすぎる(酸化マグネシウム粒子2の含有量が多すぎる)と、波長変換部材10の発光強度が低下しやすくなる。一方、無機蛍光体粒子1の含有量が多すぎる(酸化マグネシウム粒子2の含有量が少なすぎる)と、波長変換部材10において酸化マグネシウム粒子2からなる熱伝導パスが形成されにくくなるため、無機蛍光体粒子1で発生した熱が外部に放出されにくくなる。また、無機蛍光体粒子1の結着性が低下して、波長変換部材10の機械的強度が低下しやすくなる。 The ratio of the inorganic phosphor particles 1 and the magnesium oxide particles 2 in the wavelength conversion member 10 is preferably 3 to 80% of the inorganic phosphor particles and 20 to 97% of the magnesium oxide particles, and is preferably an inorganic phosphor. The particles 1 are 15 to 75%, the magnesium oxide particles are 25 to 95%, and the inorganic phosphor particles are 18 to 70%, and the magnesium oxide particles are 2 30 to 92%. If the content of the inorganic phosphor particles 1 is too small (the content of the magnesium oxide particles 2 is too large), the emission intensity of the wavelength conversion member 10 tends to decrease. On the other hand, if the content of the inorganic phosphor particles 1 is too large (the content of the magnesium oxide particles 2 is too small), it becomes difficult for the wavelength conversion member 10 to form a heat conduction path composed of the magnesium oxide particles 2, so that the inorganic fluorescence The heat generated by the body particles 1 is less likely to be released to the outside. In addition, the binding property of the inorganic phosphor particles 1 is lowered, and the mechanical strength of the wavelength conversion member 10 is likely to be lowered.
波長変換部材10の形状は特に限定されないが、通常は板状(矩形板状、円盤状等)である。波長変換部材10の厚みは、目的とする色合いの光が得られるよう適宜選択することが好ましい。具体的には、波長変換部材10の厚みは2mm以下、1mm以下、特に0.8mm以下であることが好ましい。但し、波長変換部材10の厚みが小さすぎると機械的強度が低下しやすくなるため、0.03mm以上であることが好ましい。 The shape of the wavelength conversion member 10 is not particularly limited, but is usually plate-shaped (rectangular plate-shaped, disk-shaped, etc.). It is preferable that the thickness of the wavelength conversion member 10 is appropriately selected so as to obtain light having a desired hue. Specifically, the thickness of the wavelength conversion member 10 is preferably 2 mm or less, 1 mm or less, and particularly preferably 0.8 mm or less. However, if the thickness of the wavelength conversion member 10 is too small, the mechanical strength tends to decrease, so the thickness is preferably 0.03 mm or more.
波長変換部材10は、無機蛍光体粒子1と酸化マグネシウム粒子2を所定の割合で混合した原料粉末を予備成型した後、焼成することにより製造することができる。ここで、原料粉末に結合剤や溶剤等の有機成分を添加してペースト状にした後、焼成してもよい。このようにすれば、グリーンシート成形等の方法を利用して、所望の形状の予備成型体が形成しやすくなる。この際、まず脱脂工程(600℃程度)で有機成分を除去した後、酸化マグネシウム粒子2の焼結温度で焼成することにより、緻密な焼結体が得られやすくなる。また、1次焼成後に焼成温度±150℃でHIP(熱間静水圧プレス)処理を施しても良い。そうすることによって、波長変換部材10内の空孔を収縮させて消滅させることができ、過剰な光の散乱を抑制することができる。 The wavelength conversion member 10 can be manufactured by premolding a raw material powder obtained by mixing inorganic phosphor particles 1 and magnesium oxide particles 2 in a predetermined ratio, and then firing the raw material powder. Here, an organic component such as a binder or a solvent may be added to the raw material powder to form a paste, which may be then fired. By doing so, it becomes easy to form a preformed body having a desired shape by using a method such as green sheet molding. At this time, by first removing the organic component in the degreasing step (about 600 ° C.) and then firing at the sintering temperature of the magnesium oxide particles 2, a dense sintered body can be easily obtained. Further, after the primary firing, HIP (hot hydrostatic pressure press) treatment may be performed at a firing temperature of ± 150 ° C. By doing so, the pores in the wavelength conversion member 10 can be contracted and extinguished, and excessive light scattering can be suppressed.
結合剤としては、ポリプロピレンカーボネート、ポリブチルメタクリレート、ポリビニルブチラール、ポリメチルメタクリレート、ポリエチルメタクリレート、エチルセルロース、ニトロセルロース、ポリエステルカーボネート等が使用可能であり、これらを単独あるいは混合して使用することができる。 As the binder, polypropylene carbonate, polybutyl methacrylate, polyvinyl butyral, polymethyl methacrylate, polyethyl methacrylate, ethyl cellulose, nitrocellulose, polyester carbonate and the like can be used, and these can be used alone or in combination.
溶剤としては、テルピネオール、酢酸イソアミル、トルエン、メチルエチルケトン、ジエチレングリコールモノブチルエーテルアセテート、2,2,4−トリメチル−1,3−ペンタジオールモノイソブチレート等を単独または混合して使用することができる。 As the solvent, terpineol, isoamyl acetate, toluene, methyl ethyl ketone, diethylene glycol monobutyl ether acetate, 2,2,4-trimethyl-1,3-pentadiol monoisobutyrate and the like can be used alone or in combination.
ペースト中には、焼結助剤が含有されていてもよい。焼結助剤としては、例えば、リン酸マグネシウム、リン酸ジルコニウム、酸化マンガン、酸化バリウム、酸化イットリウム、酸化ケイ素等の晶質粉末や、ケイ酸系やリン酸系等の酸化物非晶質粉末を用いることができる。 A sintering aid may be contained in the paste. Examples of the sintering aid include crystalline powders such as magnesium phosphate, zirconium phosphate, manganese oxide, barium oxide, yttrium oxide and silicon oxide, and amorphous oxide powders such as silicic acid and phosphoric acid. Can be used.
(波長変換素子)
図2は、本発明の波長変換素子の一実施形態を示す模式的断面図である。波長変換素子20は波長変換部材10と、波長変換部材10より高い熱伝導率を有する放熱層3とを積層させた積層体から構成されている。本実施形態では、波長変換部材10に励起光が照射されることにより発生した熱は、放熱層3を通じて外部に効率良く放出される。よって、波長変換部材10の温度が過度に上昇することを抑制することができる。
(Wavelength conversion element)
FIG. 2 is a schematic cross-sectional view showing an embodiment of the wavelength conversion element of the present invention. The wavelength conversion element 20 is composed of a laminate in which a wavelength conversion member 10 and a heat radiating layer 3 having a higher thermal conductivity than the wavelength conversion member 10 are laminated. In the present embodiment, the heat generated by irradiating the wavelength conversion member 10 with the excitation light is efficiently released to the outside through the heat radiating layer 3. Therefore, it is possible to prevent the temperature of the wavelength conversion member 10 from rising excessively.
放熱層3は、波長変換部材10より高い熱伝導率を有している。具体的には、放熱層3の熱伝導率は5W/m・K以上、10W/m・K以上、特に20W/m・K以上であることが好ましい。 The heat radiating layer 3 has a higher thermal conductivity than the wavelength conversion member 10. Specifically, the thermal conductivity of the heat radiating layer 3 is preferably 5 W / m · K or more, 10 W / m · K or more, and particularly preferably 20 W / m · K or more.
放熱層3の厚みは0.05〜1mm、0.07〜0.8mm、特に0.1〜0.5mmであることが好ましい。放熱層3の厚みが小さすぎると、機械的強度が低下する傾向がある。一方、放熱層3の厚みが大きすぎると、波長変換素子が大型化する傾向がある。 The thickness of the heat radiating layer 3 is preferably 0.05 to 1 mm, 0.07 to 0.8 mm, and particularly preferably 0.1 to 0.5 mm. If the thickness of the heat radiating layer 3 is too small, the mechanical strength tends to decrease. On the other hand, if the heat dissipation layer 3 is too thick, the wavelength conversion element tends to be large.
放熱層3としては透光性セラミックスからなるものを使用することができる。このようにすれば、励起光または蛍光を透過させることができるため、透過型の波長変換素子として使用することができる。透光性セラミックスからなる放熱層の波長400〜800nmにおける全光線透過率は10%以上、20%以上、30%以上、40%、特に50%以上であることが好ましい。 As the heat radiating layer 3, one made of translucent ceramics can be used. In this way, excitation light or fluorescence can be transmitted, so that it can be used as a transmission type wavelength conversion element. The total light transmittance of the heat radiating layer made of translucent ceramics at a wavelength of 400 to 800 nm is preferably 10% or more, 20% or more, 30% or more, 40%, particularly 50% or more.
透光性セラミックスとしては、酸化アルミニウム系セラミックス、窒化アルミニウム系セラミックス、炭化ケイ素系セラミックス、窒化ホウ素系セラミックス、酸化マグネシウム系セラミックス、酸化チタン系セラミックス、酸化ニオビウム系セラミックス、酸化亜鉛系セラミックス及び酸化イットリウム系セラミックスから選択される少なくとも1種を使用することができる。 Translucent ceramics include aluminum oxide-based ceramics, aluminum nitride-based ceramics, silicon carbide-based ceramics, boron nitride-based ceramics, magnesium oxide-based ceramics, titanium oxide-based ceramics, niobium oxide-based ceramics, zinc oxide-based ceramics, and yttrium oxide-based ceramics. At least one selected from ceramics can be used.
本実施形態の波長変換素子20は、波長変換部材10の一方の主面のみに放熱層3が形成されているが、波長変換部材10の両主面に放熱層3を形成してもよい。このようにすれば、波長変換部材10で発生した熱をより一層効率よく外部に放出することができる。さらに、波長変換部材10と放熱層3とを交互に積層させた4層以上の積層体であってもよい。 In the wavelength conversion element 20 of the present embodiment, the heat dissipation layer 3 is formed only on one main surface of the wavelength conversion member 10, but the heat dissipation layer 3 may be formed on both main surfaces of the wavelength conversion member 10. In this way, the heat generated by the wavelength conversion member 10 can be released to the outside more efficiently. Further, it may be a laminated body having four or more layers in which the wavelength conversion member 10 and the heat radiating layer 3 are alternately laminated.
なお、放熱層3としては透光性セラミックスからなるもの以外にも、Cu、Al、Ag等の金属からなる層であってもよい。このようにすれば、反射型の波長変換素子として使用することができる。 The heat radiating layer 3 may be a layer made of a metal such as Cu, Al, or Ag, in addition to the one made of translucent ceramics. In this way, it can be used as a reflection type wavelength conversion element.
(発光装置)
図3は、本発明の発光装置の一実施形態を示す模式的側面図である。本実施形態に係る発光装置は、透過型の波長変換部材を用いた発光装置である。図3に示すように、発光装置30は、波長変換部材10と光源4を備えている。光源4から出射された励起光L0は、波長変換部材10により、励起光L0よりも波長の長い蛍光L1に波長変換される。また、励起光L0の一部は波長変換部材10を透過する。このため、波長変換部材10からは、励起光L0と蛍光L1との合成光L2が出射する。例えば、励起光L0が青色光であり、蛍光L1が黄色光である場合、白色の合成光L2を得ることができる。なお、波長変換部材10の代わりに、上記で説明した波長変換素子20を使用してもよい。
(Light emitting device)
FIG. 3 is a schematic side view showing an embodiment of the light emitting device of the present invention. The light emitting device according to the present embodiment is a light emitting device using a transmission type wavelength conversion member. As shown in FIG. 3, the light emitting device 30 includes a wavelength conversion member 10 and a light source 4. The excitation light L0 emitted from the light source 4 is wavelength-converted by the wavelength conversion member 10 into fluorescence L1 having a wavelength longer than that of the excitation light L0. Further, a part of the excitation light L0 passes through the wavelength conversion member 10. Therefore, the combined light L2 of the excitation light L0 and the fluorescence L1 is emitted from the wavelength conversion member 10. For example, when the excitation light L0 is blue light and the fluorescence L1 is yellow light, white synthetic light L2 can be obtained. In addition, instead of the wavelength conversion member 10, the wavelength conversion element 20 described above may be used.
光源4としては、LEDやLDが挙げられる。発光装置30の発光強度を高める観点からは、光源4は高強度の光を出射できるLDを用いることが好ましい。 Examples of the light source 4 include LEDs and LDs. From the viewpoint of increasing the light emission intensity of the light emitting device 30, it is preferable to use an LD capable of emitting high intensity light as the light source 4.
1 無機蛍光体粒子
2 酸化マグネシウム粒子
3 放熱層
4 光源
10 波長変換部材
20 波長変換素子
30 発光装置
1 Inorganic phosphor particles 2 Magnesium oxide particles 3 Heat dissipation layer 4 Light source 10 Wavelength conversion member 20 Wavelength conversion element 30 Light emitting device
Claims (12)
無機蛍光体粒子間に酸化マグネシウム粒子が介在しており、かつ、無機蛍光体粒子が酸化マグネシウム粒子により結着されている焼結体であることを特徴とする波長変換部材。 A wavelength conversion member containing inorganic phosphor particles having an average particle diameter of 1 to 50 μm and magnesium oxide particles having a purity of 99% or more .
A wavelength conversion member characterized in that magnesium oxide particles are interposed between the inorganic phosphor particles, and the inorganic phosphor particles are a sintered body bound by magnesium oxide particles.
無機蛍光体粒子、及び、酸化マグネシウム粒子を混合した原料粉末を1400℃以下で焼成することにより、無機蛍光体粒子間に酸化マグネシウム粒子が介在しており、かつ、無機蛍光体粒子が酸化マグネシウム粒子により結着されている焼結体である波長変換部材を製造することを特徴とする波長変換部材の製造方法。 By firing the raw material powder obtained by mixing the inorganic phosphor particles and the magnesium oxide particles at 1400 ° C. or lower, the magnesium oxide particles are interposed between the inorganic phosphor particles, and the inorganic phosphor particles are the magnesium oxide particles. A method for manufacturing a wavelength conversion member, which comprises manufacturing a wavelength conversion member which is a sintered body bonded to the particles.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017079488A JP6802983B2 (en) | 2017-04-13 | 2017-04-13 | Wavelength conversion member and wavelength conversion element, and light emitting device using them |
PCT/JP2018/005780 WO2018189997A1 (en) | 2017-04-13 | 2018-02-19 | Wavelength conversion member and wavelength conversion element, and light-emitting device using same |
TW107106282A TW201842154A (en) | 2017-04-13 | 2018-02-26 | Wavelength conversion member and wavelength conversion element, and light-emitting device using same |
CN201820515641.4U CN208507721U (en) | 2017-04-13 | 2018-04-12 | Wavelength convert component and Wavelength changing element and the light emitting device for using them |
CN201810325104.8A CN108735877A (en) | 2017-04-13 | 2018-04-12 | Wavelength convert component and Wavelength changing element and use their light-emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017079488A JP6802983B2 (en) | 2017-04-13 | 2017-04-13 | Wavelength conversion member and wavelength conversion element, and light emitting device using them |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018180271A JP2018180271A (en) | 2018-11-15 |
JP6802983B2 true JP6802983B2 (en) | 2020-12-23 |
Family
ID=63792459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017079488A Active JP6802983B2 (en) | 2017-04-13 | 2017-04-13 | Wavelength conversion member and wavelength conversion element, and light emitting device using them |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6802983B2 (en) |
CN (2) | CN208507721U (en) |
TW (1) | TW201842154A (en) |
WO (1) | WO2018189997A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113474439A (en) * | 2019-04-18 | 2021-10-01 | 日本电气硝子株式会社 | Wavelength conversion member, method for manufacturing same, and light-emitting device |
WO2020213455A1 (en) * | 2019-04-18 | 2020-10-22 | 日本電気硝子株式会社 | Wavelength conversion member, method for manufacturing same, and light emission device |
JP6927509B2 (en) * | 2019-07-22 | 2021-09-01 | 地方独立行政法人神奈川県立産業技術総合研究所 | Fluorescent member and its manufacturing method, and light emitting device |
WO2021132212A1 (en) * | 2019-12-23 | 2021-07-01 | 日本電気硝子株式会社 | Wavelength conversion member, light-emitting element, and light-emitting device |
CN112174646A (en) * | 2020-09-28 | 2021-01-05 | 东北大学 | High-thermal-conductivity fluorescent ceramic for laser illumination and preparation method thereof |
JP7535246B2 (en) | 2020-10-21 | 2024-08-16 | ウシオ電機株式会社 | Wavelength conversion material, projector |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10195428A (en) * | 1997-01-16 | 1998-07-28 | Toshiba Corp | Fluorescent particle, its production and plasma display panel |
JP2006059629A (en) * | 2004-08-19 | 2006-03-02 | Matsushita Electric Ind Co Ltd | Plasma display device |
KR20090004179A (en) * | 2007-07-06 | 2009-01-12 | 삼성에스디아이 주식회사 | Metallic compound hybridized nanophosphor layer, applications thereof and method for preparing metallic compound hybridized nanophosphor layer |
JP2015088636A (en) * | 2013-10-31 | 2015-05-07 | セイコーエプソン株式会社 | Fluorescent light-emitting element, light source device, and projector |
JP6497544B2 (en) * | 2015-01-28 | 2019-04-10 | 日本電気硝子株式会社 | Crystallized glass phosphor and wavelength conversion member using the same |
JP2016204563A (en) * | 2015-04-24 | 2016-12-08 | 太平洋セメント株式会社 | Fluorescent member, manufacturing method therefor and light emitting device |
-
2017
- 2017-04-13 JP JP2017079488A patent/JP6802983B2/en active Active
-
2018
- 2018-02-19 WO PCT/JP2018/005780 patent/WO2018189997A1/en active Application Filing
- 2018-02-26 TW TW107106282A patent/TW201842154A/en unknown
- 2018-04-12 CN CN201820515641.4U patent/CN208507721U/en active Active
- 2018-04-12 CN CN201810325104.8A patent/CN108735877A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
TW201842154A (en) | 2018-12-01 |
CN208507721U (en) | 2019-02-15 |
CN108735877A (en) | 2018-11-02 |
WO2018189997A1 (en) | 2018-10-18 |
JP2018180271A (en) | 2018-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108291987B (en) | Wavelength conversion member, wavelength conversion element, and light-emitting device using same | |
JP6802983B2 (en) | Wavelength conversion member and wavelength conversion element, and light emitting device using them | |
TWI726910B (en) | Wavelength conversion member, light emitting device, and manufacturing method of wavelength conversion member | |
WO2015178223A1 (en) | Wavelength conversion member and light emitting device using same | |
WO2016125611A1 (en) | Wavelength conversion member and light emitting device using same | |
JP7268315B2 (en) | WAVELENGTH CONVERSION MEMBER, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE | |
JP2016225581A (en) | Wavelength conversion member and light-emitting device including the same | |
JP6941821B2 (en) | Wavelength converter, its manufacturing method, and light emitting device using the wavelength converter | |
JP6512067B2 (en) | Method of manufacturing wavelength conversion element | |
JP2012185980A (en) | Wavelength conversion element, light source including the same and manufacturing method of the same | |
JP6597964B2 (en) | Wavelength conversion member, wavelength conversion element, and light emitting device using the same | |
JP2020095233A (en) | Wavelength conversion member, wavelength conversion element, methods of manufacturing the same, and light-emitting device | |
WO2017047412A1 (en) | Wavelength conversion member and light-emitting device | |
JP7469847B2 (en) | Wavelength conversion member and light emitting device using same | |
WO2020213456A1 (en) | Wavelength conversion member, production method therefor, and light-emitting device | |
WO2019239850A1 (en) | Wavelength conversion member and wavelength conversion element, method for manufacturing same, and light-emitting device | |
JP2023083288A (en) | Wavelength conversion member and light-emitting device having the same | |
WO2019116916A1 (en) | Wavelength conversion member and method for manufacturing same, and light-emitting device | |
JP6500744B2 (en) | Method of manufacturing wavelength conversion element | |
JP6656580B2 (en) | Manufacturing method of wavelength conversion member | |
JP6582907B2 (en) | Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device | |
WO2021132212A1 (en) | Wavelength conversion member, light-emitting element, and light-emitting device | |
JP6561777B2 (en) | Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device | |
KR101860852B1 (en) | Metal-Phosphor Functionally Graded Composites having High Heat Radiation and Energy Circulation Laser Lighting System with High Efficiency using the same | |
JP2019204104A (en) | Wavelength conversion element and light-emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200918 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201111 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6802983 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |