JP6802845B2 - 加速度計センス経路自己試験 - Google Patents

加速度計センス経路自己試験 Download PDF

Info

Publication number
JP6802845B2
JP6802845B2 JP2018529952A JP2018529952A JP6802845B2 JP 6802845 B2 JP6802845 B2 JP 6802845B2 JP 2018529952 A JP2018529952 A JP 2018529952A JP 2018529952 A JP2018529952 A JP 2018529952A JP 6802845 B2 JP6802845 B2 JP 6802845B2
Authority
JP
Japan
Prior art keywords
sense
auxiliary
signal
proof mass
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018529952A
Other languages
English (en)
Other versions
JP2019502910A (ja
Inventor
ジャコモ ガフォレッリ
ジャコモ ガフォレッリ
ルカ コロナート
ルカ コロナート
アドルフォ ジャンバスティアニ
アドルフォ ジャンバスティアニ
フェデリコ マツァレッラ
フェデリコ マツァレッラ
マッシミリアーノ ムサッジ
マッシミリアーノ ムサッジ
ミシェル フォルツ
ミシェル フォルツ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JP2019502910A publication Critical patent/JP2019502910A/ja
Application granted granted Critical
Publication of JP6802845B2 publication Critical patent/JP6802845B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Description

関連出願の相互参照
本出願は、2015年12月15日に出願された「Accel Series Resistance to PM Detector」と題する米国仮特許出願第62/267,858号に対する優先権を請求し、この出願は、あらゆる目的のために参照により本明細書に組み込まれる。
スマートフォン、スマートウォッチ、タブレット、自動車、ドローン、機器、航空機、運動支援装置、ゲームコントローラなどの多くの物品は、その操作中に運動センサを利用できる。多くの用途では、加速度計やジャイロスコープなどの様々なタイプの運動センサが、特定用途の様々な情報を決定するために個別又は一緒に分析されうる。例えば、ジャイロスコープと加速度計は、ゲーム用途(例えば、スマートフォン又はゲームコントローラ)でユーザによる複雑な運動を取得するために使用されることがあり、ドローンや他の航空機は、ジャイロスコープ測定値(例えば、ロール、ピッチ及びヨー)に基づいて向きを決定でき、車両は、方向(例えば、推測航法のため)と安全性(例えば、スキッド又はロールオーバ状態の認識)の決定のために測定値を利用できる。
加速度計やジャイロスコープなどの運動センサは、半導体製造技術を使用して作製される微小電気機械(MEMS)センサとして製造されうる。MEMSセンサは、直線加速度(例えば、MEMS加速度計の場合)や角速度(例えば、MEMSジャイロスコープの場合)などの力に応答できる可動プルーフマスを含みうる。可動プルーフマスに対するそのような力の作用は、力に応じたプループマスの運動に基づいて測定されうる。幾つかの実施態様では、この運動は、運動を検出するためのキャパシタを構成する可動プルーフマスとセンス電極の距離に基づいて測定される。MEMS加速度計のセンス電極は、駆動周波数の信号を受け取り、その結果、直線加速度によってプルーフマスがセンス電極に対して動く。幾つかの実施態様では、プルーフマスの電圧は、直線加速度に応じた動きを検出するために測定されうる。プルーフマス電圧に対するセンス経路内の抵抗は、加速度計の1つ以上の構成要素の破損を示すことがあり、その結果、直線加速度の測定にエラーが生じることがある。
本開示による典型的実施形態では、システムは、第1軸に沿った直線加速度に応じて動くように構成されたプルーフマスと、センス駆動周波数を有するセンス駆動信号が印加されるセンス電極と、補助駆動周波数を有する補助駆動信号が印加されるとともに、前記第1軸に沿った直線加速度に応じて静電容量が変化しないキャパシタを前記プルーフマスとで構成する補助電極と、を含む。システムは、更に、プルーフマスからの受信信号を提供するためにプルーフマスに結合されて、センス駆動周波数と関連付けられた受信信号の部分に基づいて直線加速度を決定し、補助駆動周波数と関連付けられた受信信号の部分に基づいて故障を識別する処理回路を含む。
本開示による典型的な方法は、センス電極に、センス駆動周波数を有するセンス駆動信号を提供することと、補助電極に、補助駆動周波数を有する補助駆動信号を提供することとを含む。典型的方法は、更に、第1軸に沿った直線加速度に応じて動くように構成されるとともに、前記第1軸に沿った直線加速度に応じて静電容量が変化しないキャパシタを前記補助電極とで構成するプルーフマスから、プルーフマス信号を受け取ることと、プルーフマス信号に基づいて受信信号を生成することとを含む。典型的な方法は、更に、センス駆動周波数と関連付けられた受信信号の部分に基づいて直線加速度を決定することと、補助駆動周波数と関連付けられた受信信号の部分に基づいて故障を識別することとを含む。
本開示による典型的実施形態では、懸架型ばねマスシステムが、第1の軸に沿った直線加速度に応じて動くように1つ以上のばねによって懸架されたプルーフマスと、センス電極と、補助電極とを含む。センス電極は、プルーフマスとセンス電極によって構成されたキャパシタが、第1の軸に沿った直線加速度に応じて変化するように、プルーフマスの隣に配置される。補助電極は、プルーフマスと補助電極によって構成されたキャパシタが、第1の軸に沿った直線加速度に応じて変化しないように、プルーフマスの隣に配置される。典型的な懸架型ばねマスシステムは、更に、プルーフマス、センス電極及び駆動電極のそれぞれに結合された処理回路を含み、処理回路は、センス駆動周波数を有するセンス駆動信号をセンス電極に提供し、補助駆動周波数を有する補助駆動信号を補助電極に提供し、処理回路は、プルーフマスから受信信号を受け取り、センス駆動周波数と関連付けられた受信信号の部分に基づいて直線加速度を決定し、補助駆動周波数と関連付けられた受信信号の部分に基づいて故障を識別する。
本開示の以上その他の特徴、その本質及び様々な利点は、添付図面と関連して行われる以下の詳細な記述を検討することにより明らかになる。
本開示の実施形態による説明的な運動検出システムを示す図である。 本開示の幾つかの実施形態による、補助駆動周波数の補助駆動信号を提供する補助電極を含む説明的な加速度計を示す図である。 本開示の幾つかの実施形態による図2の加速度計の説明的な回路図である。 本開示の幾つかの実施形態による2対の補助電極を有する典型的な加速度計の説明的な回路図である。 本開示の幾つかの実施形態による補助信号測定回路の説明的な回路図である。 本開示の幾つかの実施形態による補助信号測定回路の説明的な回路図である。 本開示の幾つかの実施形態による、加速度計のセンス経路にエラーが存在するかどうかを決定するための典型的なステップを示す図である。 本開示の幾つかの実施形態による、加速度計のセンス経路に存在するエラーを補償するための典型的なステップを示す図である。
加速度計は、微小電気機械(MEMS)加速度計として設計され製造される。MEMS層は、半導体処理技術を使用して、センサの機械構成要素と、センサダイ(例えば、基板又はキャップの層としても機能するCMOS層)内にあるかセンサダイの外にあるCMOS回路などの、MEMS加速度計の他の構成要素への電気接続とを含むように構成される。MEMS層は、基礎となる基板層やキャップ層などの他の半導体層内に密封される。
MEMS層は、1つ以上のプルーフマスがばねによってMEMS層内に懸架された懸架型ばねマスシステムを含み、プルーフマスの運動は、ばねと、幾つかの実施形態ではマスやレバーなどの付加構成要素によって制限される。これらのばね及び付加構成要素は、集合的に、特定の軸(例えば、直線加速度の測定のための1つ以上の軸)に沿ったプルーフマスの動きを可能にし、同時に他の軸に沿った動きを制限して、外力に対してそれらの他の軸に沿ったプルーフマスの動きが実質的にほとんどなくなるようにする(即ち、プルーフマスはそれらの他の軸に沿って静止している)。
固定センス電極は、検出された直線加速度の方向の各プルーフマスの隣に配置される。各プルーフマスとその隣接したセンス電極はキャパシタを構成し、その静電容量は、プルーフマスとセンス電極の距離によって変化する。この距離は、直線加速度に応じて懸架プルーフマスが固定センス電極に対して動くときに変化する。センス駆動信号が、センス駆動周波数でセンス電極に印加され、その結果、センス駆動周波数の信号の大きさが、直線加速度に対して、静電容量的に結合されたプルーフマスの動きに基づいて変化する。静電容量の変化は、プルーフマスやセンス電極などのキャパシタの構成要素に結合されうるセンス回路によって検出され、直線加速度は、センス回路の出力に基づいて決定される。
補助電極は、また、プルーフマスとキャパシタを構成するために、プルーフマスの隣に配置されうる。幾つかの実施形態では、補助電極は、プルーフマスに対して他の位置に配置されうるが、一実施形態では、補助電極は、プルーフマスが外力に対して静止している方向のプルーフマスの隣に配置されうる(例えば、懸架型ばねマスシステムの構成に基づいて)。一実施形態では、補助電極は、平面内静電容量を構成するプルーフマスの同一平面内にあってもよく、他の実施形態では、補助電極は、平面外静電容量を構成するプルーフマス平面に平行な平面にあってもよい。
補助駆動信号は、補助電極に提供され、それにより構成されたキャパシタを介して、隣のプルーフマスに提供されうる。補助駆動信号は、センス駆動信号と異なる周波数でよく、幾つかの実施形態では、周波数は、2つの信号の初期の幾つかの高調波が重ならないように選択されうる。例えば、補助駆動信号は、センス駆動信号に32を掛け21で割った周波数と等しい周波数を有しうる。補助電極とプルーフマスが、互いに対して静止しているので、センス回路によって受け取られた検出信号の補助駆動信号の部分は、正常動作条件下で、実質的に一定でよい。しかしながら、破損が、センス経路(例えば、プルーフマス、懸架型マスシステムの構成要素、及びセンス回路への他の電気接続)に起きた場合、補助駆動周波数の信号の大きさは、破損によって生じた抵抗に比例して減少する。この信号の大きさがしきい値より低下した(例えば、しきい値を超える抵抗を示す)後で、エラーが決定されることがあり、幾つかの実施形態では、エラーにもかかわらず加速度計が動作し続けうるように補償が実行されうる。
図1は、本開示の幾つかの実施形態による典型的な運動検出システム10を示す。図1に特定の構成要素が示されているが、センサ、処理構成要素、メモリ、及び他の回路の任意の適切な組み合わせが、必要に応じて、様々な用途及びシステムに利用されうることを理解されよう。本明細書に記載されたような一実施形態では、運動検出システムは、少なくともMEMS加速度計12と、処理回路14やメモリ16などの支援回路を含みうる。幾つかの実施形態では、統合運動処理ユニット(「MPU」)(例えば、3軸のMEMSジャイロスコープ検出、3軸のMEMS加速度計検出、マイクロフォン、圧力センサ、及びコンパスを含む)を提供するために、運動処理システム10内に、1つ以上の追加センサ18(例えば、追加MEMSジャイロスコープ、MEMS加速度計、MEMSマイクロフォン、MEMS圧力センサ及びコンパス)が含まれうる。
処理回路14は、運動処理システム10の要件に基づいて必要な処理を提供する1つ以上の構成要素を含みうる。幾つかの実施形態では、処理回路14は、加速度計12又は他のセンサ18の動作を制御し加速度計12又は他のセンサ18の処理の一部を実行するために、センサのチップ内(例えば、加速度計12又は他のセンサ18の基板又はキャップ上、又は加速度計12又は他のセンサ18に対するチップの隣接部分上)に一体化されうるハードウェア制御ロジックを含みうる。幾つかの実施形態では、加速度計12及び他のセンサ18は、ハードウェア制御ロジックの動作の一部の修正を可能にする(例えば、レジスタの値の修正によって)1つ以上のレジスタを含みうる。幾つかの実施形態では、処理回路14は、また、例えばメモリ16に記憶されたソフトウェア命令を実行するマイクロプロセッサなどのプロセッサを含みうる。マイクロプロセッサは、ハードウェア制御ロジックと相互作用することによって加速度計12の動作を制御し、加速度計12から受け取った測定信号を処理できる。マイクロプロセッサは、他のセンサ18と同じように相互作用できる。
幾つかの実施形態(図1に示されていない)では、加速度計12又は他のセンサ18は、外部回路と(例えば、シリアルバスによって、又はセンサ出力及び制御入力への直接接続によって)直接通信してもよく、一実施形態では、処理回路14は、加速度計12及び他のセンサ18から受け取ったデータを処理し、通信インタフェース20(例えば、SPI又はI2Cバス、又は、自動車アプリケーション、コントローラエリアネットワーク(CAN)又はローカルインターコネクトネットワーク(LIN)バス)を介して外部構成要素と通信できる。処理回路14は、加速度計12及び他のセンサ18から受け取った信号を適切な測定ユニットに変換し(例えば、通信バス20を介して通信する他の計算処理ユニットによって提供される設定に基づいて)、より複雑な処理を実行して、向きやオイラー角度などの測定値を決定し、幾つかの実施形態では、特定の活動(例えば、徒歩、走行、制動、滑り、ローリングなど)が行われているかどうかをセンサデータから決定できる。
幾つかの実施形態では、複数の加速度計12とセンサ18からのデータに基づき、センサフュージョンと呼ばれうるプロセスで、特定タイプの情報が決定されうる。様々なセンサからの情報を組み合わせることによって、画像安定化、ナビゲーションシステム、自動車制御及び安全性、推測航法、リモート制御及びゲーム装置、活動センサ、三次元カメラ、産業オートメーション、及び多数の他の用途など、様々な用途に役立つ情報を正確に決定できる。
典型的なMEMS加速度計(例えば、加速度計12)は、MEMS加速度計が軸に沿った直線加速度の測定を可能にするように構成された1つ以上の可動プルーフマスを含みうる。幾つかの実施形態では、1つ以上の可動プルーフマスは、装置のMEMS層に平行な層(例えば、CMOS層)から延在するアンカー、装置のMEMS層のフレーム、又は可動プルーフマスに対して固定されたMEMS装置の他の適切な部分など、MEMSセンサの固定された任意の部分を指しうるアンカー点から懸架されうる。プルーフマスは、直線加速度に応じて動くように配置されうる。直線加速度に応じた固定面(例えば、固定電極)に対するプルーフマスの動きが、直線加速度又は他の運動パラメータを決定するために測定され評価される。
典型的なMEMS加速度計は、例えば、特定の軸(例えば、直線加速度が測定された軸に垂直な)に沿った比較的剛性のあるばねや他の継手によって、特定の軸に沿って動く可能性が比較的小さくなるように懸架されたプルーフマスを有することができ、その結果、プルーフマスは、そのような特定の軸に沿って静止する。本明細書に記載された実施形態では、1つ以上の補助電極が、この静止軸の方向のプルーフマスの隣に配置されてもよく、それらの間に構成されたキャパシタによって、補助駆動周波数を有する補助駆動信号が、補助電極を介してプルーフマスに提供されうる。本明細書に記載されたように、この信号は、加速度計の1つ以上の構成要素と加速度計のセンス経路に起こりうる破損などのエラーを識別するために使用されうる。この補助駆動信号は、センス電極に印加されたセンス駆動信号と異なる周波数を有してもよく、その結果、2つの信号の初期の幾つかの高調波は重ならない。このようにして、補助駆動周波数とセンス駆動周波数の両方の情報が、処理回路14のセンス回路によって独立に評価されうる。補助駆動周波数(例えば、その高調波を含む)の信号の測定に基づいて、エラーが識別され、補償が実行され、故障が識別され、かつ/又は他の構成要素、装置及び回路(例えば、通信インタフェース20を介して)に通知が提供されうる。
図2は、本開示の幾つかの実施形態による補助電極を含む説明的な加速度計を表す。図2に表されたように、典型的な加速度計は、懸架型ばねマスシステム、複数のセンス電極、及び複数の補助電極を含む。典型的な加速度計200が、図2に、特定の構成要素を含むように表されているが、本開示が、任意の適切な数と構成のプルーフマス、ばね、結合マス、レバー、結合アーム、電極、及び1つ以上の方向の直線加速度の検出を可能にする他の適切な構成要素を含む複数の加速度計設計によって実現されうることを理解されよう。
一実施形態では、加速度計は、加速度計のMEMS層内のプルーフマス202とプルーフマス204を含み、プルーフマス202とプルーフマス204は、それぞれのばね214a/214b及び216a/216bによって複数のアンカー210a/210b及び212a/212bから懸架される。典型的なアンカー210a/210b及び212a/212bは、基板(例えば、負のz方向のMEMS層の下にある)からMEMS層内に延在し、その結果、MEMS層内のばね214a/214b及び216a/216bが、プルーフマス202及び204の懸架を容易にする。一実施形態では、ばね214a/214b及び216a/216bは、加速度計200のMEMS平面内の第1の軸に沿って従順でかつMEMS平面内の第2の軸に沿って剛性があるように構成され配置された、折りたたみばねである。図2の典型的実施形態で、加速度計200は、X軸に沿った直線加速度を検出でき、ばね214a/214b及び216a/216bは、X軸に沿って従順でY軸に沿って剛性がある。
加速度計は、直線加速度に応じてプルーフマス202及び204の動きを検出するように構成要素を含んでもよく、この構成要素は、光学検出、圧電性検出、容量性検出、又は他の適切な検出技術などの任意の適切な検出機構を含みうる。一実施形態では、固定センス電極に対するプルーフマス202及び204の動きに基づいて検出が行われうる。図2に静電容量電極を構成するように表されたが、実施形態では、プルーフマスとセンス電極は、それぞれのプルーフマスと固定センス電極の間の距離によって変化する静電容量を有するキャパシタを構成するように、駆動櫛歯などの他の適切な検出構成要素を含みうる。
一実施形態では、第1のプルーフマスアーム206は、正y方向にプルーフマス202から延在でき、第2のプルーフマスアーム208は、負y方向にプルーフマス204から延在でき、その結果、プルーフマスアームはそれぞれ、直線加速度が検出されている軸の方向に向いている(例えば、正x方向及び負x方向のそれぞれに向いている)露出面(例えば、z方向にMEMS層の深さを有する)を構成する。図2に表されたように、典型的実施形態では、複数のセンス電極がそれぞれ、プルーフマス202/204のプルーフマスアーム206/208に隣接していてもよい。本開示の分脈では、プルーフマスに「隣接」した電極又は類似の検出構成要素の記述は、プルーフマス又はその任意の構成要素、あるいはプルーフマスと比例的かつ一致して動く他の構成要素を含むことを理解されよう。
図2の実施形態では、センス電極218a、218b、220a及び220bはそれぞれ、基板からMEMS層内に延在し、その結果、各プルーフマスは、加速度計の検出直線加速度の軸に沿ったプルーフマスアーム206/208のうちの1つの平面に面する面(例えば、プルーフマス206の正x方向の面に面するセンス電極220aの面、プルーフマス206の負x方向の面に面するセンス電極218aの面、プルーフマス208の正x方向の面に面するセンス電極218bの面、及びプルーフマス208の負x方向の面に面するセンス電極220bの面)を含む。このようにして、センス電極220a及び218aはそれぞれ、固定センス電極220a/218aに対するプルーフマスアーム206の動きに基づいて静電容量を変化させるプルーフマスアーム206を有するキャパシタを構成し、センス電極218b及び220bはそれぞれ、固定センス電極218b/220bに対するプルーフマスアーム208の動きに基づいて静電容量を変化させるプルーフマスアーム208を有するキャパシタを構成する。
幾つかの実施形態では、周期信号が、検出軸に沿った直線加速度を検出するために、センス電極及び/又はプルーフマスに印加されうる。周期信号は、プルーフマスが動いていないとき(即ち、直線加速度がないとき)に印加され、実質的に一定の大きさを有するように検出されるセンス駆動信号でよい。検出軸に沿った直線加速度に応じて、プルーフマスが動いてもよく、その結果、固定センス電極に対する振動の大きさが、直線加速度の大きさに比例して変化する。
図2の典型的な加速度計の一実施形態では、差分センス駆動信号が、特定のプルーフマスのそれぞれのセンス電極に印加されてもよいが、幾つかの実施形態では、同相モード駆動信号が利用されうることを理解されよう。図2に表されたように、ラベルSD1が、センス電極218a及び218bのそれぞれと関連付けられ、ラベルSD2が、センス電極220a及び220bのそれぞれと関連付けられる。一実施形態では、各ラベルは、共通駆動周波数を有する位相が180度ずれた差分センス駆動信号SD1とSD2に対応する。このようにして、第1のセンス駆動信号SD1が、センス電極218aとプルーフマスアーム206によって構成されたキャパシタによってプルーフマス202に印加され、第2のセンス駆動信号SD2が、センス電極220aとプルーフマスアーム206によって構成されたキャパシタによってプルーフマス202に印加され、第1のセンス駆動信号SD1が、センス電極218bとプルーフマスアーム208によって構成されたキャパシタによってプルーフマス204に印加され、第2のセンス駆動信号SD2が、センス電極220bとプルーフマスアーム208によって構成されたキャパシタによってプルーフマス204に印加される。図2の典型的実施形態では、センス駆動信号のこの構成及び印加は、プルーフマス202及び204が、センス軸に沿った直線加速度に応じた動きをもたらすことがあり、その結果、プルーフマス202とセンス電極218aの間の相対位置と静電容量が、プルーフマス204とセンス電極218b間の相対位置と静電容量に等しくなり、また、プルーフマス202とセンス電極220aの間の相対位置と静電容量が、プルーフマス204とセンス電極218bの間の相対位置と静電容量に等しくなる。
直線加速度に対するプルーフマスの応答が、様々なセンス機構からの様々な適切な技術(例えば、センス電極などからの信号の測定値)に基づきうることが理解されるが、一実施形態では、センス電極に対するプルーフマスの動きは、プルーフマス202(PM1)とプルーフマス204(PM2)からの電圧VPM1及びVPM2に基づいて測定されうる。電圧は、プルーフマス202のセンス経路222と、プルーフマス204のセンス経路224によって測定されうる。図2には、センス経路が、直接接続として表さているが、センス経路が、検出される構成要素(例えば、プルーフマス202及び204)と、センス電極に対してプルーフマスの動きに応じる信号を生成する検出回路との間の電気経路を構成する任意の適切な構成要素又はその組み合わせを含みうることを理解されよう。典型的な実施形態では、センス経路は、MEMS層の1つ以上の構成要素(例えば、プルーフマス、ばね、結合マス、レバーなど)、MEMSダイの他の層(例えば、アンカー、電気トレース、配線など)、及び加速度計ダイに結合された他の構成要素(例えば、外部検出回路に接続された配線又はリード線)を含みうる。
幾つかの実施形態では、1つ以上の補助電極が、プルーフマスと共に1つ以上の付加キャパシタを構成するように、プルーフマス(即ち、同調して動くプルーフマス、その構成要素、又は接続された構成要素)の隣に配置されうる。補助電極は、例えば、補助電極の方向のプルーフマスの動きを制限する1つ以上のばねや他の構成要素の構成により、検出軸に沿った直線加速度に対して静止したプルーフマスの部分の隣に配置されうる。補助電極は、補助電極とプルーフマスの間の静電容量が、検出軸に沿った直線加速度に応じて変化しないように固定されうる(例えば、CMOS層の基板に固定されうる)。
図2の加速度計200の典型的実施形態では、補助電極226は、プルーフマス202の隣の配置されてもよく、それにより、それぞれが、MEMS層のz方向深さに沿ったy方向に対向面を有する(例えば、補助電極226が、負y方向に向いたキャパシタ面を有し、プルーフマス202が、正y方向に向いたキャパシタ面を有する)。補助電極228は、プルーフマス204の隣に配置されてもよく、それにより、それぞれが、MEMS層のz方向深さに沿ったy方向に対向面を有する(例えば、補助電極228が、正y方向に向けられたキャパシタ面を有し、プルーフマス204が、負y方向に向けられたキャパシタ面を有する)。
補助電極は、プルーフマスに補助駆動信号を印加でき、この補助駆動信号は、センス経路内のエラー(例えば、物理的破損)を識別するために利用されうる。例えば、エラー/破損と関連した抵抗が、センス駆動信号に基づいて検出される信号を変化させるので、センス経路内のエラーは、センス軸に沿った動きを測定する際に加速度計の精度に影響を及ぼしうる。一実施形態では、補助駆動信号は、補助駆動周波数を有することができ、補助駆動周波数は、センス駆動周波数と異なる周波数になるように選択されうる。幾つかの実施形態では、補助駆動周波数は、各信号の初期セットの初期高調波が重ならないように(例えば、補助駆動周波数がセンス駆動周波数の32/21になるように)選択されうる。しかしながら、補助駆動信号が、センス駆動周波数より大きくなるか小さくなる(1桁以上を含む)ような、他の相対周波数値が利用されうる。
本明細書に記載されたように、センス経路内のエラーは、センス経路内の補助駆動信号の測定値だけに基づくか、その測定値とセンス駆動信号の測定値との組み合わせに基づいて、識別され定量化されうる。検出された補助駆動信号は、動作中に比較的不変のままでなければならないので、信号の大きさの変化(例えば、1つ以上のしきい値を超えた減少又は増大)はエラーを示し、幾つかの実施形態では、エラーの重大度を示しうる。エラーが識別される幾つかの実施形態では、補償は、重大度に基づいて、加速度計で、スケーリングファクタ、センス駆動信号の電圧、信号経路利得、又は他の適切な動作パラメータなどの動作パラメータを修正することによって実行されうる。幾つかの実施形態では、センス駆動信号の測定値は、また、エラー若しくは重大度の識別又は補償の制御のために補助駆動信号と共に考慮されうる。例えば、パターンが、ある期間にわたる加速度に応じたセンス駆動信号の変化に基づいて識別され、補助駆動信号の変化に相関付けられうる。
補助駆動信号は、様々な適切な方式(例えば、同相モード、1プルーフマス当たり複数の補助電極など)で印加されうるが、図2に表されたような一実施形態では、単一補助電極が、各プルーフマスの隣に配置され、駆動電極がそれぞれのプルーフマスに差分信号AD1及びAD2を印加できる(例えば、その結果、補助駆動信号AD1が、補助電極226を介してプルーフマス202に印加され、補助駆動信号AD2が、補助電極228を介してプルーフマス204に印加され、補助駆動信号AD1と補助駆動信号AD2は差分信号である)。
図3は、本開示の幾つかの実施形態による処理回路に結合された図2の加速度計の典型的回路図を提供する。図3の回路図では、プルーフマス、センス電極及び補助電極の番号付けは、図2の番号付けに対応し、これらの物理要素は、図3では円形ノードによって示される。プルーフマス202及び204は、ノード302及び304に対応し、センス電極218a及び218bは、ノード318a/bに対応し、センス電極220a及び220bは、ノード320a/bに対応し、補助電極226及び228は、ノード326及び328に対応する。図3に表されたように、各対318a/b及び320a/bがそれぞれのセンス駆動信号SD1又はSD2を提供するので、センス電極318a/b及び320a/bはそれぞれ単一ノードとして表される。
プルーフマスとセンス電極によって構成されたキャパシタは、キャパシタ340(例えば、プルーフマス302とセンス電極318aの間)、キャパシタ342(例えば、プルーフマス302とセンス電極320aの間)、キャパシタ344(例えば、プルーフマス304とセンス電極320bの間)、及びキャパシタ346(例えば、プルーフマス304とセンス電極318bの間)として表される。プルーフマスと補助電極によって構成されたキャパシタは、キャパシタ350(例えば、プルーフマス302と補助電極326の間)とキャパシタ352(例えば、プルーフマス304と補助電極328の間)として表される。図2と図3の実施形態では、キャパシタ340、342、344及び346の静電容量は、センス軸に沿った直線加速度に応じて変化するが、キャパシタ350及び352の静電容量は、センス軸に沿った直線加速度に応じて変化しないはずである。
キャパシタはそれぞれ、キャパシタの静電容量と、キャパシタのそれぞれに印加される信号(例えば、信号SD1、SD2、AD1及びAD2)とに基づいて、充放電できる。そのような電荷の変化は、印加された信号の周波数に基づく周期的成分を含む。この変化は、プルーフマス302及び304で検出され、センス経路322及びセンス経路324(例えば、図2のセンス経路222とセンス経路224に対応する)を介して、センス回路370(例えば、処理回路14の)に提供される。
場合によって、1つ以上の構成要素の破損などのエラーが、センス経路322及び324の一方又は両方に起こりうる。エラーは、抵抗、静電容量、インダクタンス又はこれらの組み合わせなどのセンス経路の電気的特性の変化として電気的に示されることがあり、エラー364及び366として表される。加速度計から受け取った信号は、センス経路内の変化した電気的特性に基づいて変化しうるので、そのようなエラーは、加速度の測定値のエラーの原因になりうる。センス駆動周波数の受信信号の変化が、エラーによるものか、センス電極に対するプルーフマスの動きによるもの(例えば、キャパシタ340、342、344及び346の静電容量を修正する)か分からないことがあるので、エラーによるセンス駆動信号だけを識別又は定量化できないことがある。本明細書に記載された典型的実施形態では、エラーは、検出信号を減少させる抵抗の変化(例えば、増大)として述べられているが、そのような参照が、本明細書に記載されたような他の電気特性の変化として示されるエラーも指しうることを理解されよう。
加速度計300からの受信信号は、センス経路322及び324を介してセンス回路370に提供されうる。センス回路が、様々な適切な構成要素を含みうるが、一実施形態では、センス回路は、2つのセンス経路322及び324に結合されて、検出加速度を測定し(例えば、静電容量−電圧変換回路)、補助駆動信号に起因する受信信号の部分に基づいてセンス経路内のエラーを識別する処理及び試験回路372を含みうる。他の実施形態では(図3に表されていない)、別個の回路が、例えば動作ごとに別個の差動増幅器を有することによって、加速度を決定する処理と、エラーを識別する処理を実行できる。
処理及び試験回路372は、プルーフマスから検出された静電容量差を、電圧を有する検出信号に変換する変換回路(例えば、静電容量−電圧変換回路)を含み、幾つかの実施形態では、フィルタリングを提供できる(例えば、センス駆動周波数の信号を強調する)。検出信号は、(例えば、検出信号のセンス駆動周波数の部分に基づく)加速度並びに(例えば、補助駆動周波数の検出信号の部分に基づく)エラーの試験を表す信号を出力するために使用されうる追加の処理及びフィルタリング回路に提供されうる。一実施形態では、付加的なスケーリング及び測定回路(図3に表されていない)が、スケーリングファクタ及びフィルタリングを信号に適用し、加速値や加速度を表す信号などの測定信号又は測定値を提供できる。それにより、加速度出力374が得られ、加速度出力374は、加速度(例えば、センス駆動周波数の検出信号の部分、プルーフマスの物理的運動に正比例する信号など)又は加速度測定値(例えば、加速値)を決定するために使用されうる任意の適切な信号でよい。
検出信号の補助駆動周波数部分を分析するため、信号処理回路は、補助駆動信号と関連付けられた受信信号の部分を強調できる。本明細書に記載されたように、補助駆動信号を提供する補助電極は、それぞれのプルーフマスがセンス軸に沿った直線加速度に対して静止するように配置されうる。検出信号の補助駆動周波数部分の処理回路は、受信信号の補助駆動信号と関連付けられた部分と、エラーによって引き起こされうる変化(例えば、大きさ、周波数、位相など)に基づいて、それぞれのセンス経路322又は324内のエラー364又は366(例えば、抵抗として)を識別できる。しきい値との比較に基づいて、エラーが識別され、そのエラーに関する情報が処理回路370から提供されることがあり(例えば、通知として)、幾つかの実施形態では、エラー(例えば、エラーのタイプ、エラーの重大度など)に基づいて補償が実行されてもよく、補償に関する通知が、エラー出力376として処理回路370から提供されてもよい。
図4は、本開示の幾つかの実施形態による、補助電極を含みセンス経路内のエラーを試験する加速度計の別の実施形態の典型的回路図を示す。図4の加速度計が、任意の適切な構成要素を含みうるが、一実施形態では、図4の構成要素の多くが、図3の同一に番号付けされた構成要素に同じように対応し機能できる。
幾つかの実施形態では、複数の補助電極は、各補助電極が1つのプルーフマス(又は、図3〜図4に表されていない幾つかの実施形態では、複数のプルーフマス)と共にキャパシタを構成するように、各プルーフマスに対して配置されうる。補助電極の数は、特定用途向けに修正されてもよく、適切な倍数及び偶数又は奇数で提供されうる。補助電極は、プルーフマスに対して様々な位置に配置されうるが、一実施形態では、補助電極のうちの幾つか又は全ては、プルーフマスがセンス軸に沿った直線加速度に対して静止する方向の、関連付けられたプルーフマスの隣に配置されてもよく、それにより、それらの間に構成されたキャパシタの静電容量は、直線加速度に対して変化しない。
図4の典型的実施形態では、補助電極426が、キャパシタ450を構成するようにプルーフマス302に対して配置されてもよく、補助電極427が、キャパシタ451を構成するようにプルーフマス302に対して配置されてもよく、補助電極428が、キャパシタ452を構成するようにプルーフマス304に対して配置されてもよく、補助電極429が、キャパシタ453を構成するようにプルーフマス304に対して配置されてもよい。補助駆動周波数を有する補助駆動信号が、補助駆動電極のそれぞれに印加されうる(例えば、補助駆動信号AD11が補助電極426に印加されてもよく、補助駆動信号AD21が補助電極427に印加されてもよく、補助駆動信号AD12が補助電極428に印加されてもよく、補助駆動信号AD22が補助電極429に印加されてもよい)。実施形態では、補助駆動信号は、差分信号として(例えば、同じ位相を有するAD11とAD21、同じ位相を有するAD11とAD12、及び同じ位相を有するAD11とAD22)、又は同相モード信号として印加されうる。
幾つかの実施形態では、補助電極の1つ以上は、補償や較正などの他の機能を提供するように構成されてもよい。図4の実施形態では、例えば、補助電極がそれぞれ、センス電極のうちの1つと関連付けられてもよい(例えば、補助電極426がセンス電極318aと関連付けられてもよく、補助電極427がセンス電極320aと関連付けられてもよく、補助電極428がセンス電極318bと関連付けられてもよく、補助電極429がセンス電極320bと関連付けられてもよい)。補償又は較正信号が、補助電極を介して、例えば、製造中、試験中、動作中に提供されてもよく、又は幾つかの実施形態では、センス経路内のエラーの識別に応じた補償として提供されてもよい。
図5は、本開示の幾つかの実施形態による処理回路14の処理及び試験回路372の説明的なブロック図を示す。処理及び試験回路372に様々な回路を使用でき、その回路の機能を修正でき、特定の回路を除去又は再構成できることが理解されるが、一実施形態では、処理及び試験回路372が、変換回路502、信号フィルタ回路504、比較フィルタ回路506及びしきい値及び補償回路508を含みうる。
補助測定回路の変換回路502は、センス経路の1つ以上から(例えば、単一センス経路から)信号を受け取ってもよく、複数のセンス経路から提供された信号を比較してもよい。図2〜図4の実施形態では、変換回路は、センス経路322及び324両方から受信信号を受け取りうる。一実施形態では、受信信号は、キャパシタから受け取られてもよく、変換回路は、検出構成要素(例えば、プルーフマス)の静電容量電極での信号(例えば、大きさ、波形、周波数、位相など)を表す電圧又は電流への変換を実行できる。変換回路からの出力は、変換信号でよい。
一実施形態では、変換信号は、変換回路502から信号フィルタ回路504に提供されうる。信号フィルタ回路504が、ノイズ低減、アナログデジタル変換、所望情報の強調(例えば、高域通過、低域通過又は帯域通過フィルタリングによる)、増倍、デシメーション、又は他の所望フィルタリング及び信号処理操作などの様々なフィルタリング機能を実行できる。典型的実施形態では、信号フィルタ回路は、加速度を表す信号を出力しまた補助駆動信号の周波数範囲内の信号を提供するフィルタリングを実行できる。ノイズフィルタリングが実行されてもよく、幾つかの実施形態では、結果信号がデジタル化されうる。一実施形態では、直線加速度を表す信号が、プルーフマスの動きに基づいて変化する電気特性を有する出力信号として出力されうる。補助駆動周波数における情報を含む信号は、また、比較フィルタ回路506などの付加回路に提供されてもよく、信号フィルタ回路の処理中の決定された出力信号又は中間信号でもよい。
比較フィルタ回路506は、プルーフマス又はセンス経路内にエラーがあるかどうかに関する決定に使用されうる出力信号を提供するフィルタリング及び信号処理を含みうる。比較フィルタ回路506は、様々なフィルタ機能(例えば、ノイズ低減、アナログデジタル変換、所望情報の強調(例えば、高域通過、低域通過又は帯域通過フィルタリングによる)、倍増、デシメーション、又は他の所望のフィルタリング及び信号処理操作)を実行でき、一実施形態では、比較フィルタ回路が、プルーフマス及びセンス経路内のエラーを表す値を出力できる。一実施形態では、比較フィルタ回路は、補助駆動周波数の周波数成分を除去できる。その結果得られた、エラーを表す出力信号(例えば、エラー信号)が、しきい値及び補償回路の508に提供されうる。
しきい値及び補償回路の508は、エラーを表す信号(例えば、エラー信号)を受け取ることができ、受信信号に基づいて様々な機能を実行することができる。例示的な動作には、エラーが1つ以上のしきい値を超えるかどうかの決定と、それらのしきい値や他の情報に基づいて加速度計の動作を停止すべきかどうかの決定と、故障を表示すべきかどうかの決定と、加速度計で補償を実行すべきかどうかの決定と、補償を他の情報(例えば、他のセンサからの)に基づいて実行すべきかどうかの決定と、実行される補償の程度とタイプとが含まれうる。一実施形態では、エラー情報が、直線加速度測定値と比較されて、例えば、エラーと直線加速度測定値から識別されうる一般的傾向に基づいて、通知及び補償要件が決定されうる。幾つかの実施形態では、この決定は、加速度計の動作及びエラー測定値に関する履歴情報、及び/又は直線加速度及び/又はエラー測定値の変化率に基づいて実行されうる。幾つかの実施形態では、比較情報は、分析のための外部処理回路、装置プロセッサ、又はリモートシステムに送信されうる(例えば、複数の加速度計における複数のエラーに関する既知情報に基づいてある期間に収集され更新されたデータに基づく)。
図6は、本開示の幾つかの実施形態による処理及び試験回路の説明的回路図である。一実施形態では、回路図は、変換回路502、信号フィルタ回路504、比較フィルタ回路506、及びしきい値及び補償回路508の構成要素を表しうるが、他の実施形態では、他の回路が使用されてもよく、表された構成要素が再構成されてもよく、1つ以上の構成要素が追加又は除去されてもよく、構成要素の1つ以上が類似機能を実行する他の構成要素と置き換えられてもよいことを理解されよう。
変換回路502の典型的実施形態では、センス経路322及び324のそれぞれからの信号が、静電容量−電圧変換器(C2V)620などの構成要素のそれぞれの入力ノードで受け取られてもよく、一実施形態では。C2V620の出力と第1の入力ノードに帰還コンデンサ622が結合され、C2V620の出力と第2のノードに帰還コンデンサ621が結合されてもよい。C2V620の出力は、センス経路と関連付けられたプルーフマスにおける差分静電容量に対応する電圧を有する変換信号でよい。
信号フィルタ回路504の典型的実施形態では、C2V620から出力された変換信号は、センス駆動周波数ΩDRVの信号成分を減らすために処理されうる。一実施形態では、受け取った変換信号は、混合器624によって、センス駆動周波数の周期的信号と混合され、したがって変換信号がセンス駆動周波数だけシフトされ、その結果、補助駆動信号と関連付けられた元の変換信号の部分の周波数が、この量だけシフトされる。例えば、補助駆動周波数ΩAUX=32*ΩDRV/21の実施形態では、補助周波数から得られた信号成分は、周波数ΩAUX_MIX=11ΩΑUΧ/21を有する。混合器からの出力は、アナログデジタル変換器626に提供され、得られたデジタル出力信号が、信号フィルタ回路504のデシメータ628と比較フィルタ回路506に提供されうる。デシメータ628は、アナログデジタル変換器628からのデジタル信号のサンプリングレートを低減させ、そのベースバンド内でセンス電極に対するプルーフマスの動きを表す信号を出力する。図6に表されていないが、この加速度出力は、直線加速度を決定する更なる処理のための付加回路(例えば、利得段)に提供されうる。
比較フィルタ回路506の典型的実施形態では、アナログデジタル変換器から出力されたデジタル信号が、高域フィルタ630によって受け取られてもよく、高域フィルタ630は、処理された補助駆動信号(例えば、混合器624によって修正されたような)と関連した周波数を通過させ同時により低い周波数成分を除去するカットオフ周波数を有しうる。図6に高域フィルタ630が表されているが、幾つかの実施形態では(例えば、予想高調波又は他の成分に基づく)帯域フィルタが提供されてもよく、補助駆動周波数がセンス駆動周波数より低い実施形態では、低域フィルタが使用されてもよい。得られた信号は、混合器632でそれ自体と混合され、したがって周波数がシフトされ、その結果、補助駆動信号に対する応答の大きさを有する信号が、混合器632からデシメータ634に出力される。デシメータ634は、混合器632からの出力信号のサンプリングレートを低減し、ダウンサンプリングされた比較信号をしきい値及び補償回路508に提供できる。
しきい値及び補償回路の508の典型的実施形態では、比較信号は、1つ以上のしきい値と比較されうる。本明細書に記載されたように、比較フィルタ回路506の処理によって補助駆動信号から得られた信号(例えば、比較信号)は、エラーに基づいて変化しうる。エラーは、比較信号と関連した値(例えば、大きさ、位相、周波数)がしきい値とどのように比較されるかに基づいて検出されうる。適切な値及びしきい値が、様々な方式で比較されうるが、典型的実施形態では、エラーは抵抗に対応することができ、その結果、抵抗の増大によって比較信号の大きさが減少する。
一実施形態では、複数のしきい値に複数の比較が実行され、それにより、比較回路の様々な信号レベルによって異なる応答又は通知が得られる。典型的実施形態では、3つのしきい値(VTH1、VTH2及びVTH3)が比較のために利用されてもよく、各しきい値は、起こりうる異なるエラーレベルに対応する。比較は、様々な方式で実行されうるが、一実施形態では、しきい値がそれぞれ、比較器636、638又は640に入力されるアナログ電圧に対応し、比較信号は、しきい値のそれぞれと比較される。比較信号の大きさの減少が、より大きい程度の検出エラー(例えば、抵抗)に対応する実施形態では、しきい値VTH1が、しきい値VTH2より大きいことがあり、しきい値VTH2が、しきい値VTH3より大きいことがある。VTH1よりも大きい比較電圧は、正常動作状態に対応でき、その状態では、比較器636、638及び640のそれぞれからHigh信号が出力される。VTH1より低くかつVTH2より高い比較電圧は、第1のエラー状態を示すことがあり、その状態では、VTH1からLow信号が出力され、VTH2とVTH3からHigh信号が出力される。VTH2より小さくVTH3より高い比較電圧は、第1のエラー状態より重大な第2のエラー状態を示すことがあり、その状態では、VTH1とVTH2からLow信号が出力され、VTH3からHigh信号が出力される。最後に、VTH3より低い比較電圧は、最高重大度レベルの第3のエラー状態を示すことがあり、その状態では、VTH1、VTH2及びVTH3の全てからLow信号が出力される。
一実施形態では、比較器からの出力が、警告及び補償回路642に提供されうる。警告及び補償回路は、プログラム可能でよく、それにより、様々なエラー状態に基づく異なる処置が取られうる。典型的な処置には、通知の提供、警告の生成、加速度計の動作の停止、加速度計の動作パラメータの修正、加速出力信号に適用される利得値の修正、加速度計からの出力データの修正(例えば、他のセンサからのスケーリングファクタ又はデータに基づく)、他の適切な動作、及びこれらの任意の適切な組み合わせがある。
典型的実施形態では、正常動作条件下(例えば、3つの比較器出力が全てHigh)で、加速度計が、正常に動作し続けることができ、通知は提供されえない(例えば、正常動作の通知以外)。第1のエラー状態の場合(例えば、比較器636からLow出力で、比較器638及び640からHigh出力)、エラーの存在の警告通知が提供されることがあり、加速度計からの出力データが、エラーを調整するために修正されうる(例えば、第1のタイプの補償)。第2のエラー状態の場合(例えば、比較器636及び638からLow出力で、比較器640からHigh出力)、エラーの存在の警告通知が提供されることがあり、エラーを補償するための試みで動作パラメータ(例えば、センス駆動信号の修正、補償電極への信号の印加など)が実行されることがある(例えば、第2のタイプの補償)。一実施形態では、第2のエラー状態に応じて、出力値の修正も実行されうる。第3のエラー状態の場合、加速度計が動作を停止すべきであることが決定されてもよく、加速度計を遮断させる通知が提供されてもよい。
幾つかの実施形態では、警告と補償回路が、前のエラー状態と応答のメモリを保持でき、その結果、様々な補償技術が、技術の有効性に基づいて実行されることがあり、現在実行されている特定の補償に基づいて組み合わされうる。例えば、動作パラメータの修正によって、加速度計が第2のエラー状態から正常状態又は第1のエラー状態に首尾よく移行した場合、動作パラメータの修正が維持されうる。別の例では、出力データの様々な修正が、動作パラメータの様々な変化に対応でき、またエラーを改善するために使用される動作パラメータの変化に基づいて使用されうる。
図7〜図8は、本開示の幾つかの実施形態によるセンス経路内のエラーを識別するための典型的ステップを表す。図7〜図8は、本開示の文脈で述べられているが、図7〜図8に示された方法及びステップが、様々なセンサ及び加速度計の設計、信号経路、エラー、及び補償技術に適用されうることを理解されよう。図7〜図8に特定の順序及び流れのステップが示されているが、幾つかの実施形態では、ステップの1つ以上が、修正、移動、除去又は追加されてもよく、図7〜図8に表された流れが修正されてもよいことを理解されよう。
図7は、本開示の幾つかの実施形態による、加速度計のセンス経路にエラーが存在するかどうかを決定するための典型的なステップを示す。本明細書に記載されているように、典型的な加速度計は、1つ以上のプルーフマスに対して位置決めされたセンス電極と補助電極の両方を含むことができ、それにより、プルーフマスがセンス電極及び補助電極と共にキャパシタを構成する。
ステップ702で、センス駆動信号が、センス電極に印加されうる。センス駆動信号は、センス駆動周波数を有してもよいが、幾つかの実施形態では、センス電極のうちの様々なものに差分信号として提供されうる。センス駆動信号がセンス電極に印加された後で、処理は、ステップ704に進みうる。
ステップ704で、補助駆動信号が、補助電極に印加されうる。補助駆動信号は、補助駆動周波数を有することができるが、幾つかの実施形態では、補助電極のうちの様々な補助電極に差分信号として提供されうる。補助駆動信号が補助電極に印加された後、処理は、ステップ706に進みうる。
ステップ706で、センス駆動信号と補助駆動信号に応じる合成信号が、センス経路、例えば、センス駆動電極と補助電極とを有するキャパシタを構成する1つ以上のプルーフマスを介して受け取られうる。合成信号は、センス経路を介して処理回路で受け取られうる。処理回路は、受け取った合成信号を処理して、加速度に関する情報を決定し、センス経路内の抵抗などのエラーを識別し、通知を提供し、補償を実行し、本明細書に記載されたような他の操作を実行できる。合成信号を受け取った後、処理は、ステップ708に進みうる。
ステップ708で、補助駆動信号に対するセンス経路の応答に対応する受信信号の部分が、合成受信信号から抽出されうる。幾つかの実施形態では、信号の成分が、補助駆動周波数と、2つの信号の初期サブセットの高調波が重ならない様々な周波数を有するセンス駆動周波数とに基づいて、センス駆動周波数に対応する信号成分を減少させることによって抽出されうる。一実施形態では、抽出の出力は、センス経路内で生じる損失によって減少された補助駆動信号の大きさを表すアナログ電圧を有する比較信号でよい。ステップ708で受信信号の一部が抽出された後、処理は、ステップ710に進みうる。
ステップ710で、比較信号が、1つ以上のしきい値と比較されうる。本明細書に記載された典型的実施形態では、比較信号の電圧は、エラーの重大度(例えば、センス経路内の抵抗の増大)に基づいて低減され、それにより、より低い電圧ほどより重大なエラーに対応する。複数のしきい値の典型的実施形態では、処理は、全てのしきい値を超えた場合、又は幾つかの実施形態では、警告しきい値だけを超えた場合に、ステップ712に進みうる。ステップ712で、センス駆動信号への応答に基づいて加速度が決定されてもよく、処理は、ステップ702に戻りうる。補助信号が、しきい値より小さい場合、又は幾つかの実施形態では、動作を停止するか動作を補償する要件と関連付けられたしきい値より小さい場合、処理は、ステップ714に進みうる。
ステップ714で、処理回路は、エラーに応じて補償が行われうるかどうか、又はエラーに応じて加速度計が動作を停止すべきかどうかを決定できる。補償が行われうる場合、処理は、図8に示された処理に進みうる。補償が行われない場合、処理はステップ716に進むことができ、通知が提供され、加速度計が動作を停止できる(例えば、加速度計の幾つか又は全ての構成要素から電圧が除去されてもよく、センス駆動信号が提供されなくなってもよい)。次に、図7の処理が終了できる。
図8は、本開示の幾つかの実施形態による、加速度計のセンス経路にあるエラーを補償するための典型的なステップを示す。図7のステップでエラーが識別された場合(例えば、補償信号の電圧が1つ以上のしきい値電圧より低下したことによる)と、特定の加速度計内でエラーの補償が許可される場合に、図8の処理が実行されうる。
ステップ802で、エラーの重大度が、例えば、補償信号の電圧の値に基づいて決定されうる。一実施形態では、重大度は、複数のエラー状態のうちの1つを識別するために、比較信号と複数のしきい値との比較(例えば、複数の比較器での)に基づいてもよい。一実施形態では、エラー状態の1つ以上が、重大度と、単独で関連付けられるか、他の入手可能な情報(例えば、補償又は加速度データ履歴、同時加速度データなど)に合わせて検討されうる。重大度が決定された後、処理は、ステップ804に進みうる。
ステップ804で、エラーの重大度に基づいて補償が可能かどうかが決定されうる。一実施形態では、1つ以上のエラー状態又は重大度レベルが、様々なエラー応答と関連付けられうる。エラー状態又は重大度レベルが補償を可能にしない場合、処理は、ステップ806に進むことができ、そこで、通知が提供され、加速度計が動作を停止できる(例えば、加速度計の幾つか又は全ての構成要素から電圧が除去され、センス駆動信号が提供されなくなる、など)。次に、図8の処理が終了できる。補償が可能な場合、処理は、ステップ808に進みうる。
ステップ808で、エラーの重大度に基づいて可能な補償のタイプが決定されうる。様々な適切なタイプの補償が可能でありうるが、一実施形態では、補償のタイプは、加速度計からの出力データの修正(例えば、スケーリングファクタの修正による)、又は加速度計の動作パラメータの修正(例えば、センス駆動信号を修正するか、補償電極に補償信号を提供することにより)を含みうる。様々な重大度レベルが、様々な補償タイプと、及び幾つかの実施形態では様々なタイプ内の様々な補償技術と関連付けられうる。幾つかの実施形態では、補償タイプを決定するときに、履歴補償情報や加速度計データなどの追加情報、又は電流加速度計データが考慮されうる。補償タイプが、スケーリングファクタの修正だけを必要とする場合、処理は、ステップ810に進みうる。補償が、加速度計の動作パラメータの修正を必要とする場合、処理は、ステップ812に進みうる。
ステップ810で、エラーの重大度と、幾つかの実施形態では、履歴補償情報又は加速度計データや、現在の加速度計データなどの他の情報に基づいて、補償スケーリング技術が、選択され、補償の程度が決定されうる。スケーリングは、ハードウェアと関連付けられた増幅値の調整や、ソフトウェア内のスケーリングファクタの調整など、様々な方式で更新されうる。スケーリング修正が完了した後、処理は、ステップ814に進みうる。
ステップ812で、エラーの重大度と、幾つかの実施形態では、履歴補償情報又は加速度計データや、現在の加速度計データなどの他の情報に基づいて、加速度計の動作パラメータを修正する技術が選択され、補償の程度が決定されうる。動作パラメータは、センス駆動信号の特性の修正や補償電極への補償信号の印加など、幾つかの方法で修正されうる。動作パラメータ修正が完了した後、処理は、ステップ814に進みうる。
ステップ814で、補償に対する応答が測定されうる。スケーリングファクタが修正される実施形態では、スケーリングによる影響を受ける加速出力値又は他の信号値の変化などの変化が測定されうる。動作パラメータの修正の実施形態では、センス駆動信号及び/又は補助駆動信号の変化が決定されうる。応答がステップ814で測定された後、処理は、ステップ816に進みうる。
ステップ816で、補償が成功したかどうかが決定されうる。典型的実施形態では、測定された応答値が、ステップ814で、補償に基づく予想測定応答値と比較されうる。測定応答値が期待値(例えば、しきい値窓内)に対応する場合、処理は、図7のステップ702に戻りうる。測定応答値が期待値(例えば、しきい値窓内)に対応しない場合、処理は、ステップ818に進むことができ、そこで、通知が提供され(例えば、補償が失敗したこと)、加速度計が動作を停止されてもよい(例えば、加速度計の幾つか又は全ての構成要素から電圧が除去される、センス駆動信号が提供されなくなる、など)。次に、図8の処理が終了できる。
以上の説明は、本開示による典型的実施形態を含む。これらの例は、説明のためのものであり、限定するためのものではない。本開示が、本明細書に明示的に記述され描かれた形態と異なる形態で実施されてもよく、以下の特許請求の範囲と一致する様々な修正、最適化及び変形が、当業者によって実現されうることを理解されよう。
200 加速度計
202、204 プルーフマス
226、228 補助電極

Claims (20)

  1. 第1軸に沿った直線加速度に応じて動くように構成されたプルーフマスと、
    センス駆動周波数を有するセンス駆動信号が印加されるセンス電極と、
    補助駆動周波数を有する補助駆動信号が印加されるとともに、前記第1軸に沿った直線加速度に応じて静電容量が変化しないキャパシタを前記プルーフマスとで構成する補助電極と
    前記プルーフマスからの受信信号を提供するために前記プルーフマスに結合されて、前記センス駆動周波数と関連付けられた前記受信信号の部分に基づいて直線加速度を決定し、前記補助駆動周波数と関連付けられた前記受信信号の部分に基づいて故障を識別する処理回路と、
    を備える、
    システム。
  2. 前記補助電極は、前記補助駆動信号のうちの第1の補助駆動信号が印加される第1の補助電極と、前記補助駆動信号のうちの第2の補助駆動信号が印加される第2の補助電極とから構成され、
    前記プルーフマスは、前記第1の補助電極の隣に配置された第1のプルーフマスと、前記第2の補助電極の隣に配置された第2のプルーフマスとから構成された、
    請求項1に記載のシステム。
  3. 前記第1の補助電極が、前記決定された直線加速度に対して静止している前記第1のプルーフマスの部分の隣に配置され、前記第2の補助電極が、前記決定された直線加速度に対して静止している前記第2のプルーフマスの部分の隣に配置された、
    請求項に記載のシステム。
  4. 前記第1の補助駆動信号と前記第2の補助駆動信号が、差分信号である、
    請求項に記載のシステム。
  5. 前記第1の補助駆動信号と前記第2の補助駆動信号が、同相モード信号である、
    請求項に記載のシステム。
  6. 前記補助駆動周波数、前記センス駆動周波数と重ならない
    請求項1に記載のシステム。
  7. 前記補助駆動周波数の最初の4つの高調波がいずれも、前記センス駆動周波数の最初の4つの高調波のどの5%以内にもない、
    請求項1に記載のシステム。
  8. 前記処理回路が、前記受信信号に基づいて測定信号を生成するように構成され、前記処理回路が、更に、前記測定信号を受け取るために結合された補助信号測定回路を含み、前記故障が、前記測定信号に基づいて識別される、
    請求項1に記載のシステム。
  9. 前記補助信号測定回路が、フィルタを含み、前記フィルタが、前記補助駆動周波数と関連付けられた前記測定信号の部分を分離し、前記故障が、前記測定信号の前記部分に基づいて識別される、
    請求項8に記載のシステム。
  10. 前記補助信号測定回路が、更に、マルチプライヤとデシメータを含み、
    前記マルチプライヤが、複数の入力に前記測定信号の前記部分を受け取るように構成さ
    れ、
    前記デシメータが、前記マルチプライヤの出力に結合されて、前記マルチプライヤから受け取った信号の周波数を低減し、
    前記故障が、前記デシメータの出力の電圧レベルに基づいて識別される、
    請求項9に記載のシステム。
  11. 前記故障が、前記デシメータの前記出力の前記電圧レベルとしきい値電圧との比較に基づいて識別される、
    請求項10に記載のシステム。
  12. 前記故障が、前記デシメータの前記出力の前記電圧レベルが前記しきい値電圧より低いときに識別される、
    請求項11に記載のシステム。
  13. 前記直線加速度が、前記測定信号に基づいて決定される、
    請求項8に記載のシステム。
  14. 前記故障は、前記第1のプルーフマスと前記処理回路との間と、前記第2のプルーフマスと前記処理回路との間との一方にある抵抗と関連付けられた、
    請求項に記載のシステム。
  15. 前記故障が、しきい値より低い前記補助駆動周波数と関連付けられた前記受信信号の部分の大きさに基づいて識別される、
    請求項1に記載のシステム。
  16. 前記故障の前記識別に基づいて通知を提供することを更に含む、
    請求項1に記載のシステム。
  17. 記センス電極が、少なくとも2つの第1のセンス電極と、少なくとも2つの第2のセンス電極とを含み、
    前記少なくとも2つの第1のセンス電極のうちの1つと前記少なくとも2つの第2のセンス電極の1つとがそれぞれ、直線加速度に応じた前記第1のプルーフマスの動きを検出するために前記第1のプルーフマスの隣に配置され、
    前記少なくとも2つの第1のセンス電極の別のものと前記少なくとも2つの第2のセンス電極の別のものとがそれぞれ、直線加速度に応じた前記第2のプルーフマスの動きを検出するために前記第2のプルーフマスの隣に配置された、
    請求項に記載のシステム。
  18. 前記センス駆動周波数を有する第1のセンス駆動信号が、前記第1のセンス電極に印加され、
    前記センス駆動周波数を有する第2のセンス駆動信号が、前記第2のセンス電極に印加され、
    前記第1のセンス駆動信号と第2のセンス駆動信号が、異なる位相を有する、
    請求項17に記載のシステム。
  19. ンス電極に、センス駆動周波数を有するセンス駆動信号を提供するステップと、
    助電極に、補助駆動周波数を有する補助駆動信号を提供するステップと
    第1軸に沿った直線加速度に応じて動くように構成されるとともに、前記第1軸に沿った直線加速度に応じて静電容量が変化しないキャパシタを前記補助電極とで構成するプルーフマスから、プルーフマス信号を受け取るステップと
    前記プルーフマス信号に基づいて受信信号を生成するステップと、
    前記センス駆動周波数と関連付けられた前記受信信号の部分に基づいて直線加速度を決定するステップと、
    前記補助駆動周波数と関連付けられた前記受信信号の部分に基づいて故障を識別するステップと、
    を含む、
    方法。
  20. 第1軸に沿った直線加速度に応じて動くように1つ以上のばねによって懸架されたプルーフマスと、
    センス電極と、
    補助電極と、
    前記プルーフマス、前記センス電極及び前記駆動電極のそれぞれに結合された処理回路とを含み、
    前記センス電極は、前記プルーフマスと前記センス電極によって構成されたキャパシタが、前記第1の軸に沿った直線加速度に応じて変化するように、前記プルーフマスの隣に配置され、
    前記補助電極は、前記プルーフマスと前記補助電極によって構成されたキャパシタが、前記第1の軸に沿った直線加速度に応じて変化しないように、前記プルーフマスの隣に配置され、
    前記処理回路が、センス駆動周波数を有するセンス駆動信号を前記センス電極に提供し、補助駆動信号を有する補助駆動信号を前記補助電極に提供し、
    前記処理回路が、前記プルーフマスから受信信号を受け取り、前記センス駆動周波数と関連付けられた前記受信信号の部分に基づいて直線加速度を決定し、前記補助駆動周波数と関連付けられた受信信号の部分に基づいて故障を識別する、
    懸架型ばねマスシステム。
JP2018529952A 2015-12-15 2016-12-09 加速度計センス経路自己試験 Active JP6802845B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562267858P 2015-12-15 2015-12-15
PCT/IB2016/057473 WO2017103749A1 (en) 2015-12-15 2016-12-09 Accelerometer sense path self-test

Publications (2)

Publication Number Publication Date
JP2019502910A JP2019502910A (ja) 2019-01-31
JP6802845B2 true JP6802845B2 (ja) 2020-12-23

Family

ID=59018507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018529952A Active JP6802845B2 (ja) 2015-12-15 2016-12-09 加速度計センス経路自己試験

Country Status (5)

Country Link
US (2) US10725068B2 (ja)
EP (2) EP3391061B1 (ja)
JP (1) JP6802845B2 (ja)
CN (1) CN108369246B (ja)
WO (2) WO2017103749A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102305093B1 (ko) * 2015-02-26 2021-09-28 삼성전자주식회사 전자 장치 및 전자 장치의 자이로 센서 칼리브레이션 방법
GB2541220A (en) * 2015-08-12 2017-02-15 Atlantic Inertial Systems Ltd Inertial sensor
US10725068B2 (en) 2015-12-15 2020-07-28 Invensense, Inc. Identification and compensation of MEMS accelerometer errors
US11009350B2 (en) * 2018-01-11 2021-05-18 Invensense, Inc. Proof mass offset compensation
CN109269399B (zh) * 2018-10-25 2020-05-19 清华大学 一种在线误差参数辨识及自补偿系统和方法
CN110159812B (zh) * 2019-05-29 2020-09-25 河南航天液压气动技术有限公司 一种靠加速度密封的通油活门
CN111157760B (zh) * 2020-01-02 2021-01-19 西安交通大学 一种基于mems超谐同步加速度计的频率自动跟踪方法及系统
US11550001B2 (en) * 2020-02-12 2023-01-10 Infineon Technologies Ag Safety mechanism monitoring of autocalibrated compensation parameters
US11307218B2 (en) * 2020-05-22 2022-04-19 Invensense, Inc. Real-time isolation of self-test and linear acceleration signals
CN111678538B (zh) * 2020-07-29 2023-06-09 中国电子科技集团公司第二十六研究所 一种基于速度匹配的动态水平仪误差补偿方法
US11703521B2 (en) * 2020-12-04 2023-07-18 Honeywell International Inc. MEMS vibrating beam accelerometer with built-in test actuators
WO2022239692A1 (ja) * 2021-05-13 2022-11-17 ローム株式会社 加速度センサ
EP4092424A1 (en) * 2021-05-19 2022-11-23 Murata Manufacturing Co., Ltd. Safety mechanism for sensors
US11714102B2 (en) 2021-06-08 2023-08-01 Analog Devices, Inc. Fully differential accelerometer
CN115420907B (zh) * 2022-11-02 2023-03-21 杭州麦新敏微科技有限责任公司 一种mems加速度计及其形成方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473945A (en) * 1990-02-14 1995-12-12 The Charles Stark Draper Laboratory, Inc. Micromechanical angular accelerometer with auxiliary linear accelerometer
US5506454A (en) * 1991-03-20 1996-04-09 Hitachi, Ltd. System and method for diagnosing characteristics of acceleration sensor
JP2999088B2 (ja) 1993-04-28 2000-01-17 株式会社日立製作所 エアバッグシステム
US5992233A (en) 1996-05-31 1999-11-30 The Regents Of The University Of California Micromachined Z-axis vibratory rate gyroscope
US6776042B2 (en) * 2002-01-25 2004-08-17 Kinemetrics, Inc. Micro-machined accelerometer
US7287429B2 (en) * 2004-03-25 2007-10-30 Denso Corporation Capacitive acceleration sensor system
US7036373B2 (en) * 2004-06-29 2006-05-02 Honeywell International, Inc. MEMS gyroscope with horizontally oriented drive electrodes
US20070034007A1 (en) * 2005-08-12 2007-02-15 Cenk Acar Multi-axis micromachined accelerometer
US8061201B2 (en) * 2007-07-13 2011-11-22 Georgia Tech Research Corporation Readout method and electronic bandwidth control for a silicon in-plane tuning fork gyroscope
DE09708876T1 (de) * 2008-02-04 2011-03-17 Bell Helicopter Textron Inc., Fort Worth System und verfahren zum testen von wandlern
US20090241634A1 (en) 2008-03-28 2009-10-01 Cenk Acar Micromachined accelerometer and method with continuous self-testing
KR101467017B1 (ko) 2008-03-31 2014-12-01 아사히 가라스 가부시키가이샤 가속도 센서 장치 및 센서 네트워크 시스템
DE102008040529B4 (de) * 2008-07-18 2021-05-06 Robert Bosch Gmbh Fehlerkorrekturverfahren und Fehlerkorrekturvorrichtung für einen Beschleunigungssensor
US20100122565A1 (en) 2008-11-15 2010-05-20 Freescale Semiconductor, Inc. Continuous selftest for inertial sensors at 0 hz
US20100145660A1 (en) 2008-12-08 2010-06-10 Robert Bosch Gmbh Mems sensor with built-in self-test
US8646308B2 (en) 2009-04-03 2014-02-11 Analog Devices, Inc. Robust self testing of a motion sensor system
US8875578B2 (en) 2011-10-26 2014-11-04 Silicon Laboratories Inc. Electronic damper circuit for MEMS sensors and resonators
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
JP5963567B2 (ja) 2012-06-26 2016-08-03 日立オートモティブシステムズ株式会社 慣性センサ
WO2014061099A1 (ja) * 2012-10-16 2014-04-24 日立オートモティブシステムズ株式会社 慣性センサ
JP5978140B2 (ja) 2013-01-24 2016-08-24 日立オートモティブシステムズ株式会社 慣性センサ
JP6084473B2 (ja) * 2013-02-01 2017-02-22 日立オートモティブシステムズ株式会社 複合センサ
US9297826B2 (en) 2013-03-08 2016-03-29 Freescale Semiconductor Inc. System and method for monitoring an accelerometer
US9238580B2 (en) 2013-03-11 2016-01-19 Analog Devices Global Spread-spectrum MEMS self-test system and method
US10725068B2 (en) 2015-12-15 2020-07-28 Invensense, Inc. Identification and compensation of MEMS accelerometer errors

Also Published As

Publication number Publication date
EP3391062B1 (en) 2022-12-14
US10379137B2 (en) 2019-08-13
EP3391061B1 (en) 2023-11-15
EP3391061A1 (en) 2018-10-24
JP2019502910A (ja) 2019-01-31
US20170168086A1 (en) 2017-06-15
US10725068B2 (en) 2020-07-28
US20170168087A1 (en) 2017-06-15
WO2017103750A1 (en) 2017-06-22
EP3391062A1 (en) 2018-10-24
WO2017103749A1 (en) 2017-06-22
CN108369246B (zh) 2021-02-05
CN108369246A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
JP6802845B2 (ja) 加速度計センス経路自己試験
JP6722288B2 (ja) 加速度計同相モード自己試験
EP3387450B1 (en) Mems sensor with compensation of residual voltage
US20190025056A1 (en) Electrostatic offset correction
US11789036B2 (en) Real-time isolation of self-test and linear acceleration signals
EP3737911A1 (en) Proof mass offset compensation
EP3387451B1 (en) Residual voltage self test for accelerometers
JP6955831B2 (ja) 運動センサ同相モード自己試験
EP3710839B1 (en) Mems sensor compensation for off-axis movement

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201127

R151 Written notification of patent or utility model registration

Ref document number: 6802845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151