JP6800448B2 - Rotational drive type tapping mechanism - Google Patents

Rotational drive type tapping mechanism Download PDF

Info

Publication number
JP6800448B2
JP6800448B2 JP2017071903A JP2017071903A JP6800448B2 JP 6800448 B2 JP6800448 B2 JP 6800448B2 JP 2017071903 A JP2017071903 A JP 2017071903A JP 2017071903 A JP2017071903 A JP 2017071903A JP 6800448 B2 JP6800448 B2 JP 6800448B2
Authority
JP
Japan
Prior art keywords
elastic
pipe
hammer
elastic bar
hub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017071903A
Other languages
Japanese (ja)
Other versions
JP2018173354A (en
Inventor
神村 明哉
明哉 神村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017071903A priority Critical patent/JP6800448B2/en
Publication of JP2018173354A publication Critical patent/JP2018173354A/en
Application granted granted Critical
Publication of JP6800448B2 publication Critical patent/JP6800448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、例えば、化学プラントにおける配管検査に用いる、回転駆動式打音機構に関する。 The present invention relates to, for example, a rotary drive type tapping mechanism used for piping inspection in a chemical plant.

化学プラント等においては、多くの配管が施設内に敷設されており、万一漏洩事故が発生すると火災、有害ガスの発生など、深刻な事態を招くおそれがある。
特に、配管内部の腐食や、保温材下の配管外面腐食(CUI)は、目視検査では腐食の進行を確認することができない。
このため、従来から、AE法(アコースティックエミッション)による検査や、CCDカメラユニット、渦電流探傷ユニット等の検査ユニットを配管内部に挿通して行う検査が採用されている。
In chemical plants, many pipes are laid in the facility, and if a leak accident should occur, it may cause a serious situation such as fire or generation of harmful gas.
In particular, corrosion inside the pipe and corrosion on the outer surface of the pipe under the heat insulating material (CUI) cannot be confirmed by visual inspection.
For this reason, conventionally, inspections by the AE method (acoustic emission) and inspections performed by inserting an inspection unit such as a CCD camera unit or an eddy current flaw detection unit into a pipe have been adopted.

特許文献1には、検査用の連結車両にCCDカメラユニットや渦電流探傷ユニットを搭載した配管検査装置が記載されている。
また、特許文献2には検査装置ヘッドに接続される回転駆動部に、剛性の異なるケーブルを多段に連結した配管検査機構が記載されている。
Patent Document 1 describes a piping inspection device in which a CCD camera unit and an eddy current flaw detection unit are mounted on a connected vehicle for inspection.
Further, Patent Document 2 describes a piping inspection mechanism in which cables having different rigidity are connected in multiple stages to a rotary drive unit connected to an inspection device head.

特開2005−241474号公報Japanese Unexamined Patent Publication No. 2005-241474 特開平11−125385号公報JP-A-11-125385

しかし、AE法による配管検査では、機器が高価であるばかりか、設置が煩雑で、電磁ノイズの影響で検査精度の悪化を招くおそれがある。
また、特許文献1、2に開示される配管検査装置も機構が煩雑で、特に屈曲した細管等では、配管内部をスムースに移動できず、屈曲角度が大きいところでは検査装置がロックしてしまい、検査が不能になる、さらには、取り出すこと自体不可能になるといった問題があった。
However, in the piping inspection by the AE method, not only the equipment is expensive, but also the installation is complicated, and the inspection accuracy may be deteriorated due to the influence of electromagnetic noise.
Further, the piping inspection device disclosed in Patent Documents 1 and 2 also has a complicated mechanism, and particularly in a bent thin pipe or the like, the inside of the pipe cannot be moved smoothly, and the inspection device locks in a place where the bending angle is large. There was a problem that the inspection became impossible and that the removal itself became impossible.

そこで本発明の目的は、配管内部の形状に合わせて柔軟に屈曲することで、スムースな通過を可能にするとともに、モータにより回転駆動される弾性ハンマーにより、全管路長にわたって、腐食の進行度などの正確な検査、診断を可能にすることにある。 Therefore, an object of the present invention is to enable smooth passage by flexibly bending according to the shape of the inside of the pipe, and to use an elastic hammer rotationally driven by a motor to promote the degree of corrosion over the entire length of the pipe. It is to enable accurate inspection and diagnosis.

この課題を解決するため、本発明の回転駆動式打音機構では、牽引ケーブルにより牽引される前方ハブと、後方ハブと、両端が両ハブのそれぞれに連結され、円周方向にわたり一定間隔に配置され、かつ、円弧状に湾曲するよう連結された複数の弾性バーとからなるケージ部と、前方ハブと後方ボスの一方に固定されるモータと、このモータにより駆動され、ケージ部に対し回転されるハンマー回転部と、ハンマー回転部に取り付けられ、先端に打音部を備えた弾性ハンマーとからなり、ケージ部が配管内部に挿入されたとき、弾性バーの頂点を配管内壁に対し弾圧させることにより、弾性バーがハンマー回転部の中心軸を配管の中心軸と一致するようセンタリングを行うとともに、ハンマー回転部の回転により、弾性ハンマーの打音部が弾性バーを乗り越える際に蓄えられた弾発力により、その次の弾性バーとの間で配管内壁を叩き、打音するようにした。 In order to solve this problem, in the rotary drive type tapping mechanism of the present invention, the front hub and the rear hub towed by the tow cable are connected to both hubs at both ends and arranged at regular intervals in the circumferential direction. A cage portion consisting of a plurality of elastic bars connected so as to be curved in an arc shape, a motor fixed to one of a front hub and a rear boss, and driven by this motor and rotated with respect to the cage portion. It consists of an elastic hammer that is attached to the rotating part of the hammer and has a tapping sound part at the tip. When the cage part is inserted into the pipe, the apex of the elastic bar is compressed against the inner wall of the pipe. As a result, the elastic bar centers the central axis of the rotating part of the hammer so that it coincides with the central axis of the pipe, and the rotation of the rotating part of the hammer causes the elastic hammer's striking part to get over the elastic bar. The force was used to hit the inner wall of the pipe with the next elastic bar to make a sound.

本発明によれば、ケージ部が配管内部の形状に合わせて柔軟に屈曲することで、スムースな通過を可能にするとともに、モータにより回転駆動される弾性ハンマーにより、周期的に打音を発生させることができ、この打音を音響解析することで、配管検査装置の小型軽量化、低コスト化を実現し、屈曲部を有する細管であっても、全管路長にわたって、腐食の進行度などの正確な検査、診断を行うことができる。 According to the present invention, the cage portion flexibly bends according to the shape inside the pipe to enable smooth passage, and the elastic hammer rotationally driven by the motor periodically generates a tapping sound. By acoustically analyzing this tapping sound, it is possible to reduce the size and weight of the piping inspection device and reduce the cost, and even for thin pipes with bent parts, the degree of corrosion progress over the entire length of the pipe, etc. Can perform accurate inspection and diagnosis.

図1は、実施例の全体構成を示す図である。FIG. 1 is a diagram showing an overall configuration of an embodiment. 図2は、前方ハブ2を牽引方向前方側からみた図である。FIG. 2 is a view of the front hub 2 as viewed from the front side in the towing direction. 図3は、直角に屈曲した配管を通過する際のケージ部6の挙動を示す図である。FIG. 3 is a diagram showing the behavior of the cage portion 6 when passing through a pipe bent at a right angle. 図4は、配管直角屈曲部で弾性バー5にへこみが発生する様子を示す図である。FIG. 4 is a diagram showing how a dent is generated in the elastic bar 5 at the right-angled bent portion of the pipe. 図5は、弾性バー5の長さを可変にした変形例を示す図である。FIG. 5 is a diagram showing a modified example in which the length of the elastic bar 5 is variable. 図6は、打音発生機構1の前後に調心機構、マイクポップノイズ低減用ケージを設けた変形例を示す図である。FIG. 6 is a diagram showing a modified example in which a centering mechanism and a cage for reducing microphone pop noise are provided before and after the tapping sound generation mechanism 1. 図7は、本実施例を用いた配管検査装置のシステム図である。FIG. 7 is a system diagram of a piping inspection device using this embodiment. 図8は、実験に用いた腐食模擬配管を示す図である。FIG. 8 is a diagram showing a corrosion simulation pipe used in the experiment. 図9は、打音発生機構1により得られた打音の音響解析の手順を示す図である。FIG. 9 is a diagram showing a procedure for acoustic analysis of the tapping sound obtained by the tapping sound generation mechanism 1. 図10は、音響解析結果を示す図である。FIG. 10 is a diagram showing the results of acoustic analysis.

以下、図面を用いて本発明の実施例を説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings.

図1は、本発明の実施例を示すもので、打音発生機構1は、牽引方向(図1では左方向)前端に設けられた前方ハブ2と、牽引方向後端に設けられた後方ハブ3と、前方に出力軸4aを備え、後方が後方ハブ3に嵌着支持されるモータ4とを備えている。
前方ハブ2と後方ハブ3間は、周方向に均等な角度ごとに弾性バー5により連結されており、図1では、36°ごとに10本設けられている。これらの弾性バー5は、円弧を形成するように屈曲させた状態で、両端部が前方ハブ2と後方ハブ3に斜めに差し込まれており、弾性バー5の長さを設定することで、各弾性バー5が広がろうとする力が釣り合って、前方ハブ2と後方ハブ3間で湾曲し、最大径が配管径より数ミリ程度大きいケージ部6を形成している。
FIG. 1 shows an embodiment of the present invention, in which the tapping sound generation mechanism 1 includes a front hub 2 provided at the front end in the towing direction (left direction in FIG. 1) and a rear hub provided at the rear end in the towing direction. 3 and a motor 4 having an output shaft 4a in the front and being fitted and supported by a rear hub 3 in the rear.
The front hub 2 and the rear hub 3 are connected by elastic bars 5 at equal angles in the circumferential direction, and in FIG. 1, 10 bars are provided every 36 °. Both ends of these elastic bars 5 are obliquely inserted into the front hub 2 and the rear hub 3 in a state of being bent so as to form an arc. By setting the length of the elastic bars 5, each of these elastic bars 5 is formed. The force of the elastic bar 5 to spread is balanced, and the front hub 2 and the rear hub 3 are curved to form a cage portion 6 having a maximum diameter of several millimeters larger than the pipe diameter.

これにより、配管内部においては、湾曲する各弾性バー5の頂点が、配管内壁に対し所定の弾発力で均等に押圧された状態となり、ケージ部6のセンタリングを行う。
なお、この実施例では、弾性バー5は、結束バンドに用いられているインシュロック(登録商標)により形成され、断面が1.7mm(幅)×0.7mm(厚さ)の長方形である。
As a result, inside the pipe, the apex of each curved elastic bar 5 is uniformly pressed against the inner wall of the pipe with a predetermined elastic force, and the cage portion 6 is centered.
In this embodiment, the elastic bar 5 is formed by an insulator (registered trademark) used for a binding band, and has a rectangular cross section of 1.7 mm (width) × 0.7 mm (thickness).

前方ハブ2の前端には、牽引ケーブル7が接続されており、配管の他端外方に設置された電動巻き取り機が打音発生機構1を所定速度で牽引する。
また、後方ハブ3の後方には、電源・音声信号ケーブル8を介して、配管の法線に対し上下方向に指向する2個の集音マイク9が設けられており、その後方には、電源・音声信号ケーブル8が延び、後述するDC電源及び解析装置に接続されている。
A tow cable 7 is connected to the front end of the front hub 2, and an electric winder installed outside the other end of the pipe pulls the tapping sound generating mechanism 1 at a predetermined speed.
Further, behind the rear hub 3, two sound collecting microphones 9 are provided which are directed in the vertical direction with respect to the normal line of the piping via the power supply / audio signal cable 8, and behind the power supply / audio signal cable 8. -The audio signal cable 8 extends and is connected to a DC power supply and an analyzer described later.

各弾性バー5の頂点と配管内壁との間に作用する摩擦力は、牽引ケーブル7によるスムースな牽引が可能となるよう、牽引方向(打音発生機構1の中心軸方向)に小さく、一方、後述するハンマー回転部10の回転による反作用により、ケージ部6自体が回転しないよう、周方向に大きくすることが好ましい。このため、弾発力を最適な値に調整したうえで、各弾性バー5の表面に軸方向に延びる溝を設けることにより、あるいは、打音発生機構1の中心軸に直交する断面形状において、厚さを小さくすることにより(上記の例では0.7mm)法線方向の剛性を下げ、幅を大きくすることにより(上記の例では1.7mm)周方向の剛性を高めるようにするとよい。 The frictional force acting between the apex of each elastic bar 5 and the inner wall of the pipe is small in the towing direction (the direction of the central axis of the tapping sound generation mechanism 1) so that the tow cable 7 can be smoothly towed. It is preferable to increase the size in the circumferential direction so that the cage portion 6 itself does not rotate due to the reaction caused by the rotation of the hammer rotating portion 10 described later. Therefore, after adjusting the elastic force to an optimum value, a groove extending in the axial direction is provided on the surface of each elastic bar 5, or in a cross-sectional shape orthogonal to the central axis of the tapping sound generation mechanism 1. It is preferable to reduce the rigidity in the normal direction by reducing the thickness (0.7 mm in the above example) and increase the rigidity in the circumferential direction by increasing the width (1.7 mm in the above example).

モータ4の出力軸4aには、ハンマー回転部10が取り付けられており、その外周には、先端にベアリングなどの打音部11aを備えた弾性ハンマー11が取り付けられている。
弾性ハンマー11は弾性部材で形成されており、その先端に取り付けられた打音部11aが配管内壁を適度な押圧力で押圧するよう、弾性ハンマー11の形状、長さ、弾性係数が選定されている。
A hammer rotating portion 10 is attached to the output shaft 4a of the motor 4, and an elastic hammer 11 having a hammering sound portion 11a such as a bearing at the tip thereof is attached to the outer periphery thereof.
The elastic hammer 11 is made of an elastic member, and the shape, length, and elastic modulus of the elastic hammer 11 are selected so that the tapping sound portion 11a attached to the tip of the elastic hammer 11 presses the inner wall of the pipe with an appropriate pressing force. There is.

図2は、前方ハブ2を牽引方向前方側からみた図であり、この実施例では、弾性ハンマー11はモータ4により時計方向に回転し、弾性ハンマー11は、回転方向に向けて凸となるよう円弧状に湾曲している。
モータ4によりハンマー回転部10が回転すると、その外周に取り付けられた弾性ハンマー11が回転する。この回転に伴い、先端の打音部11aが弾性バー5のひとつを乗り上げると、弾性ハンマー11が屈曲して弾性力を蓄積する。弾性バー5が通過すると、蓄積された弾性力により、弾性ハンマー11先端の打音部11aが配管内壁に向けて弾かれ、このとき打音を発生することになる。この打音は、打音部11aが、次の弾性バー5を通過するたびに発生する。
FIG. 2 is a view of the front hub 2 viewed from the front side in the traction direction. In this embodiment, the elastic hammer 11 is rotated clockwise by the motor 4, and the elastic hammer 11 is convex in the rotation direction. It is curved in an arc shape.
When the hammer rotating portion 10 is rotated by the motor 4, the elastic hammer 11 attached to the outer periphery thereof rotates. Along with this rotation, when the tapping portion 11a at the tip rides on one of the elastic bars 5, the elastic hammer 11 bends and accumulates elastic force. When the elastic bar 5 passes, the accumulated elastic force causes the tapping sound portion 11a at the tip of the elastic hammer 11 to be repelled toward the inner wall of the pipe, and at this time, a tapping sound is generated. This tapping sound is generated every time the tapping sound portion 11a passes through the next elastic bar 5.

図3は、本実施例の打音発生機構1が、直角に屈曲した配管を通過する際のケージ部6の挙動を示している。(a)のように打音発生機構1が直角屈曲部に近接した後、(b)のように、ケージ部6の弾性バー5の一部が直角屈曲部の内周端に接触する。
さらに牽引されると、弾性バー5と直角屈曲部の内周端との接触部を起点として弾性バー5がたわみ、(c)のように、直角屈曲部の外周側の弾性バー5とともに球形状となり、スムースな通過が可能となる。
FIG. 3 shows the behavior of the cage portion 6 when the tapping sound generation mechanism 1 of this embodiment passes through a pipe bent at a right angle. After the tapping sound generating mechanism 1 approaches the right-angled bent portion as shown in (a), a part of the elastic bar 5 of the cage portion 6 comes into contact with the inner peripheral end of the right-angled bent portion as shown in (b).
When further pulled, the elastic bar 5 bends starting from the contact portion between the elastic bar 5 and the inner peripheral end of the right-angled bent portion, and as shown in (c), has a spherical shape together with the elastic bar 5 on the outer peripheral side of the right-angled bent portion. Therefore, smooth passage is possible.

なお、配管内径とケージ部6の寸法、形状によっては、図4に示すように、直角屈曲部の内周端側に弾性バー5にへこみが発生し、摩擦抵抗が急増するために、直角屈曲部の通過が不可能になるおそれがある。
そこで、図5に示すように、弾性バー5を、前方ハブ2側に接続される前方部5aと、後方ハブ3側に接続される後方部5bに2分割し、後方部5bの先端に設けたスライド部5cに前方部5aの先端を差し込み、配管内壁との接触圧に応じて弾性バー5を伸縮可能とし、直角屈曲部の通過時、接触圧が増大する内周側の弾性バー5を収縮させるようにしてもよい。
Depending on the inner diameter of the pipe and the size and shape of the cage portion 6, as shown in FIG. 4, a dent is generated in the elastic bar 5 on the inner peripheral end side of the right-angled bent portion, and the frictional resistance rapidly increases. It may be impossible to pass through the part.
Therefore, as shown in FIG. 5, the elastic bar 5 is divided into a front portion 5a connected to the front hub 2 side and a rear portion 5b connected to the rear hub 3 side, and provided at the tip of the rear portion 5b. The tip of the front portion 5a is inserted into the sliding portion 5c so that the elastic bar 5 can be expanded and contracted according to the contact pressure with the inner wall of the pipe, and the elastic bar 5 on the inner peripheral side where the contact pressure increases when passing through the right-angled bending portion is provided. It may be made to shrink.

また、図6に示すように、配管の形態に応じて、打音発生機構1の前方あるいは後方の少なくとも一方に、打音発生機構1のケージ構造と同様の調心機構やマイクポップノイズ低減用ケージ、配管内径と同じ直径のボール形状や円錐形状の調心機構や放射状ブラシを連結することで、牽引時に発生する打音発生機構1のピッチングや、打音以外のノイズを防止して、確実な打音が行われるようにしてもよい。 Further, as shown in FIG. 6, depending on the form of the piping, at least one of the front side and the rear side of the tapping sound generating mechanism 1 is for a centering mechanism similar to the cage structure of the tapping sound generating mechanism 1 and for reducing microphone pop noise. By connecting a ball-shaped or conical centering mechanism or radial brush with the same diameter as the cage and the inner diameter of the pipe, pitching of the tapping sound generation mechanism 1 generated during towing and noise other than tapping sound are prevented and surely. The tapping sound may be made.

打音発生機構1により発生する打音は、集音マイク9により計測され、その音声信号は、図7に示すように、電源・音声信号ケーブル8を介して解析ユニット12に入力され、電動巻き取り機13からの巻き取り量信号に基づき、配管の位置に対応させて記録され、音響解析が行われたのち、表示・出力装置14に出力される。弾性ハンマー11をモータ4により駆動するための電流は、DC電源15より電源・音声信号ケーブル8を介して供給される。 The tapping sound generated by the tapping sound generation mechanism 1 is measured by the sound collecting microphone 9, and the audio signal is input to the analysis unit 12 via the power supply / audio signal cable 8 as shown in FIG. 7, and is electrically wound. Based on the take-up amount signal from the taker 13, it is recorded in correspondence with the position of the pipe, acoustic analysis is performed, and then it is output to the display / output device 14. The current for driving the elastic hammer 11 by the motor 4 is supplied from the DC power supply 15 via the power supply / audio signal cable 8.

本実施例の打音発生機構を用いた実験について説明する。打音発生機構は、弾性バー5を60度毎に6本備えたものを用い、配管は、内径25mm、外径35mm(肉厚5mm)、長さ150cmの鉄製配管、牽引ケーブルとしてダイニーマ糸を用いた。
図8に示すように、鉄製配管には、右端から30cm地点に彫り込み深さ1mm、長さ5cmの削り取り部を、以下20cmの間隔を置いて、彫り込み深さ1.5mm、2mm、2.5mm、長さがそれぞれ5cmの削り取り部を設け、彫り込み深さ2.5mmの左方に15cmの間隔を置いて、彫り込み深さ3mm、長さ5cmの削り取り部を設けた。
An experiment using the tapping sound generation mechanism of this example will be described. The tapping sound generation mechanism uses six elastic bars 5 every 60 degrees, and the piping is an iron pipe with an inner diameter of 25 mm, an outer diameter of 35 mm (thickness 5 mm), and a length of 150 cm, and a Dyneema thread as a tow cable. Using.
As shown in FIG. 8, in the iron pipe, a carved portion having a carving depth of 1 mm and a length of 5 cm is provided at a point 30 cm from the right end at an interval of 20 cm below, and the carving depth is 1.5 mm, 2 mm, 2.5 mm. , A shaving portion having a length of 5 cm was provided, and a shaving portion having an engraving depth of 3 mm and a length of 5 cm was provided at an interval of 15 cm to the left of the engraving depth of 2.5 mm.

ハンマー回転部10を駆動するモータ4の電圧を10Vとし、電動巻き取り機13による牽引速度を3cm/s(speed 2)、4cm/s(speed 3)、5cm/s(speed 4)、6.5cm/s(speed 5)、7.5cm/s(speed 6)、8.5cm/s(speed 7)でそれぞれ2回ずつ行った。 The voltage of the motor 4 for driving the hammer rotating portion 10 is 10 V, and the traction speed by the electric winder 13 is 3 cm / s (speed 2), 4 cm / s (speed 3), 5 cm / s (speed 4), 6. It was performed twice at 5 cm / s (speed 5), 7.5 cm / s (speed 6), and 8.5 cm / s (speed 7).

図9は、音響解析の手順を示しており、記録した打音ファイルを入力し、時間・周波数変換を行う。そして、パイプ反響周波数域を検知し、統計処理により以上箇所の検知を行い、状態評価の結果を出力させた。
図10は、これら12回の計測結果であり、上段は左から、牽引速度を3cm/s(speed 2)、4cm/s(speed 3)としたときのそれぞれ2回ずつの計測結果を、中段は左から、牽引速度を5cm/s(speed 4)、6.5cm/s(speed 5)としたときのそれぞれ2回ずつの計測結果を、下段は左から、牽引速度を7.5cm/s(speed 6)、8.5cm/s(speed 7)、としたときのそれぞれ2回ずつの計測結果を示している。
この結果から、牽引速度が速いケースでも削り深さ2mm以上(肉厚5mmに対して40%以上の腐食)に関して、異常を検知できることが確認できた。
FIG. 9 shows a procedure of acoustic analysis, in which a recorded tapping sound file is input and time / frequency conversion is performed. Then, the pipe echo frequency range was detected, the above points were detected by statistical processing, and the result of the state evaluation was output.
FIG. 10 shows the measurement results of these 12 times. From the left, the upper row shows the measurement results of 2 times each when the traction speed is 3 cm / s (speed 2) and 4 cm / s (speed 3). From the left, the measurement results are measured twice each when the traction speed is 5 cm / s (speed 4) and 6.5 cm / s (speed 5), and from the left, the traction speed is 7.5 cm / s. The measurement results are shown twice for each of (speed 6) and 8.5 cm / s (speed 7).
From this result, it was confirmed that an abnormality can be detected for a cutting depth of 2 mm or more (corrosion of 40% or more with respect to a wall thickness of 5 mm) even in a case where the traction speed is high.

計測結果には、牽引速度、ハンマー回転部10の回転速度、弾性バー5の厚さ、打音部の材質など、様々な要素が影響するものと考えられ、配管の形状、曲率、内径、材質に応じて最適なものを選択する必要がある。 It is considered that various factors such as the traction speed, the rotation speed of the hammer rotating portion 10, the thickness of the elastic bar 5, and the material of the tapping portion affect the measurement results, and the shape, curvature, inner diameter, and material of the pipe. It is necessary to select the most suitable one according to.

以上説明したように、本発明によれば、配管検査装置の小型軽量化、低コスト化が可能となり、屈曲部を有する細管であっても、全管路長にわたって、腐食の進行度などの正確な検査、診断を行うことができるので、 化学プラント等における各種配管の検査装置として広く採用されることが期待できる。 As described above, according to the present invention, it is possible to reduce the size and weight of the piping inspection device and the cost, and even for a thin pipe having a bent portion, the progress of corrosion and the like can be accurately measured over the entire length of the pipe. Since it can perform various inspections and diagnoses, it can be expected to be widely adopted as an inspection device for various pipes in chemical plants and the like.

1・・・打音発生機構
2・・・前方ハブ
3・・・後方ハブ
4・・・モータ
5・・・弾性バー
6・・・ケージ部
7・・・牽引ケーブル
8・・・電源・音声信号ケーブル
9・・・集音マイク
10・・・ハンマー回転部
11・・・弾性ハンマー
11a・・打音部
12・・・解析ユニット
13・・・電動巻き取り機
14・・・表示・出力装置
15・・・DC電源
1 ... Striking sound generation mechanism 2 ... Front hub 3 ... Rear hub 4 ... Motor 5 ... Elastic bar 6 ... Cage 7 ... Tow cable 8 ... Power supply / sound Signal cable 9 ... Sound collecting microphone 10 ... Hammer rotating part 11 ... Elastic hammer 11a ... Sound tapping part 12 ... Analysis unit 13 ... Electric winder 14 ... Display / output device 15 ... DC power supply

Claims (3)

牽引ケーブルにより牽引される前方ハブと、後方ハブと、両端が両ハブのそれぞれに連結され、円周方向にわたり一定間隔に配置され、かつ、円弧状に湾曲するよう連結された複数の弾性バーとからなるケージ部と、
前記前方ハブと前記後方ハブの一方に固定されるモータと、このモータにより駆動され、前記ケージ部に対し回転されるハンマー回転部と、
前記ハンマー回転部に取り付けられ、先端に打音部を備えた弾性ハンマーとからなり、
前記ケージ部が配管内部に挿入されたとき、前記弾性バーの頂点を配管内壁に対し弾圧させることにより、前記弾性バーのそれぞれが、前記ハンマー回転部の中心軸を配管の中心軸と一致するようセンタリングを行うとともに、
前記ハンマー回転部の回転により、前記弾性ハンマーの打音部が前記弾性バーを乗り越える際に蓄えられた弾発力により、その次の弾性バーとの間で配管内壁を叩き、打音を行うようにしたことを特徴とする回転駆動式打音機構。
A front hub towed by a tow cable, a rear hub, and a plurality of elastic bars whose ends are connected to each of the hubs, arranged at regular intervals in the circumferential direction, and connected so as to be curved in an arc shape. Cage part consisting of
A motor fixed to one of the front hub and the rear hub , a hammer rotating portion driven by the motor and rotated with respect to the cage portion,
It consists of an elastic hammer attached to the hammer rotating part and having a hammering part at the tip.
When the cage portion is inserted into the pipe, the apex of the elastic bar is repressed against the inner wall of the pipe so that each of the elastic bars coincides with the central axis of the hammer rotating portion with the central axis of the pipe. Centering and
Due to the rotation of the hammer rotating portion, the elastic force stored when the hitting portion of the elastic hammer gets over the elastic bar hits the inner wall of the pipe with the next elastic bar to make a tapping sound. Rotational drive type tapping mechanism characterized by the fact that
前記弾性バーの両端部が前記前方ハブと前記後方ハブのそれぞれに斜めに差し込まれており、前記弾性バーの長さを設定することにより、前記弾性バーのそれぞれが広がろうとする力を均衡させ、前記弾性バーが前記前方ハブと前記後方ハブ間で湾曲して、最大径が配管径よりわずかに大きい前記ケージ部を形成することを特徴とする請求項1に記載された回転駆動式打音機構。 Wherein and both end portions of the elastic bar is inserted obliquely to each of the rear hub and the front hub, by setting the length of the elastic bar, force, each of which attempts to spread the resilient bar to balance, said elastic bar is curved between the rear hub and the front hub, the maximum diameter according to claim 1, characterized in that to form the cage portion slightly larger than the diameter of the pipe Rotational drive type tapping mechanism. 前記弾性バーを前記前方ハブ側に接続される前方部と、前記後方ハブ側に接続される後方部とに2分割し、両者を互いにスライド可能に接続することにより、配管内壁との接触圧に応じて前記弾性バーを伸縮可能としたことを特徴とする請求項1または2に記載された回転駆動式打音機構。 The elastic bar is divided into a front portion connected to the front hub side and a rear portion connected to the rear hub side, and the two are slidably connected to each other to reduce the contact pressure with the inner wall of the pipe. The rotary drive type tapping mechanism according to claim 1 or 2, wherein the elastic bar can be expanded and contracted accordingly.
JP2017071903A 2017-03-31 2017-03-31 Rotational drive type tapping mechanism Active JP6800448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071903A JP6800448B2 (en) 2017-03-31 2017-03-31 Rotational drive type tapping mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071903A JP6800448B2 (en) 2017-03-31 2017-03-31 Rotational drive type tapping mechanism

Publications (2)

Publication Number Publication Date
JP2018173354A JP2018173354A (en) 2018-11-08
JP6800448B2 true JP6800448B2 (en) 2020-12-16

Family

ID=64106702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071903A Active JP6800448B2 (en) 2017-03-31 2017-03-31 Rotational drive type tapping mechanism

Country Status (1)

Country Link
JP (1) JP6800448B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249049A (en) * 1984-05-25 1985-12-09 Nippon Kokan Kk <Nkk> Defect detecting device
JPH0334694Y2 (en) * 1985-08-22 1991-07-23
JPH052851Y2 (en) * 1986-10-31 1993-01-25
JP2688198B2 (en) * 1987-05-30 1997-12-08 大阪瓦斯株式会社 In-service wire
JPH0756513B2 (en) * 1990-06-11 1995-06-14 財団法人電力中央研究所 Method and apparatus for measuring elastic wave velocity
AU4109193A (en) * 1992-07-17 1994-02-14 Niagara Mohawk Power Corporation Centralizer for internal pipe inspection device
JP2003333719A (en) * 2002-05-17 2003-11-21 Ryosei Densetsu Kk Diameter enlarging apparatus for cable conduit
JP2014115202A (en) * 2012-12-11 2014-06-26 Jfe Steel Corp Device to inspect wall surface of structure and inspection method

Also Published As

Publication number Publication date
JP2018173354A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP4935165B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP2016048267A5 (en)
JP2009020090A5 (en)
JP6781612B2 (en) Deterioration diagnosis method for shield machines
JP4929810B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
WO2017145687A1 (en) Abnormality diagnosing device and abnormality diagnosing method
JP6800448B2 (en) Rotational drive type tapping mechanism
JP2013164386A (en) Ball screw abnormality diagnostic device and ball screw abnormality diagnostic method
JP4730166B2 (en) Machine equipment abnormality diagnosis apparatus and abnormality diagnosis method
JP2020521977A (en) Monitoring system for grounding equipment
JP3875981B2 (en) Anomaly diagnosis method and apparatus for rolling bearing
EP3007863B1 (en) A method for diagnosing a torque impulse generator
JP6714844B2 (en) Abnormality diagnosis method
JP6800447B2 (en) Rolling tapping mechanism
JP6897064B2 (en) Bearing abnormality diagnosis method and diagnosis system
WO2018088564A1 (en) Bearing abnormality diagnostic method and diagnostic system
KR101466267B1 (en) Stall detecting device
JP4003086B2 (en) Evaluation method and apparatus
JP6243940B2 (en) Wind power generation system abnormality sign diagnosis system
JP2011203046A (en) Underwater inspection system
JP2017150885A (en) Abnormality diagnosis device and abnormality diagnosis method
Saidi et al. The use of spectral kurtosis as a trend parameter for bearing faults diagnosis
JP4998706B2 (en) Transformer internal abnormality diagnosis method
JP2006008385A (en) Deterioration diagnosing method for handrail of escalator
JP6561720B2 (en) Bearing evaluation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201112

R150 Certificate of patent or registration of utility model

Ref document number: 6800448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250