JP2018173354A - Rotary drive type hammering sound mechanism - Google Patents

Rotary drive type hammering sound mechanism Download PDF

Info

Publication number
JP2018173354A
JP2018173354A JP2017071903A JP2017071903A JP2018173354A JP 2018173354 A JP2018173354 A JP 2018173354A JP 2017071903 A JP2017071903 A JP 2017071903A JP 2017071903 A JP2017071903 A JP 2017071903A JP 2018173354 A JP2018173354 A JP 2018173354A
Authority
JP
Japan
Prior art keywords
elastic
hammer
pipe
elastic bar
hub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017071903A
Other languages
Japanese (ja)
Other versions
JP6800448B2 (en
Inventor
神村 明哉
Akiya Kamimura
明哉 神村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017071903A priority Critical patent/JP6800448B2/en
Publication of JP2018173354A publication Critical patent/JP2018173354A/en
Application granted granted Critical
Publication of JP6800448B2 publication Critical patent/JP6800448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable correct inspection and diagnosis of the progress of corrosion to be performed over the entire conduit length by an elastic hammer driven to rotate.SOLUTION: A rotary drive type hammering sound mechanism 1 comprises a cage part 6 composed of a front hub 2 and a rear hub 3 towed by a tow cable 7 and a plurality of elastic bars 5 connected to be curved respectively in a circular-arc shape, a motor 4 fixed to one of the front hub 2 and the rear hub 3, a hummer rotation part 10 driven by the motor 4 and rotated relative to the cage part 6, and an elastic hammer 11 mounted on the hammer rotation part 10 and having a hammering sound part 11a on the tip end. When the cage part 6 is inserted into the conduit, the centering is performed by causing the tip end of the elastic bar 5 to press against the inner wall of the conduit. The inner wall of the conduit is hammered with the next-coming elastic bar 5 by an elastic force accumulated when a hammering sound part 11a of the elastic hammer 11 climbs over the elastic bar 5 by the rotation of the hammer rotation part 10, and the hammering is performed.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、化学プラントにおける配管検査に用いる、回転駆動式打音機構に関する。   The present invention relates to a rotary drive sounding mechanism used for, for example, pipe inspection in a chemical plant.

化学プラント等においては、多くの配管が施設内に敷設されており、万一漏洩事故が発生すると火災、有害ガスの発生など、深刻な事態を招くおそれがある。
特に、配管内部の腐食や、保温材下の配管外面腐食(CUI)は、目視検査では腐食の進行を確認することができない。
このため、従来から、AE法(アコースティックエミッション)による検査や、CCDカメラユニット、渦電流探傷ユニット等の検査ユニットを配管内部に挿通して行う検査が採用されている。
In chemical plants and the like, many pipes are laid in the facility, and if a leakage accident occurs, a serious situation such as fire or generation of harmful gases may occur.
In particular, the progress of corrosion cannot be confirmed by visual inspection of corrosion inside the pipe and external pipe corrosion (CUI) under the heat insulating material.
For this reason, conventionally, an inspection by an AE method (acoustic emission) and an inspection performed by inserting an inspection unit such as a CCD camera unit or an eddy current flaw detection unit into the pipe are employed.

特許文献1には、検査用の連結車両にCCDカメラユニットや渦電流探傷ユニットを搭載した配管検査装置が記載されている。
また、特許文献2には検査装置ヘッドに接続される回転駆動部に、剛性の異なるケーブルを多段に連結した配管検査機構が記載されている。
Patent Document 1 describes a pipe inspection apparatus in which a CCD camera unit and an eddy current flaw detection unit are mounted on a connecting vehicle for inspection.
Further, Patent Document 2 describes a pipe inspection mechanism in which cables having different rigidity are connected in multiple stages to a rotary drive unit connected to an inspection apparatus head.

特開2005−241474号公報JP 2005-241474 A 特開平11−125385号公報JP-A-11-125385

しかし、AE法による配管検査では、機器が高価であるばかりか、設置が煩雑で、電磁ノイズの影響で検査精度の悪化を招くおそれがある。
また、特許文献1、2に開示される配管検査装置も機構が煩雑で、特に屈曲した細管等では、配管内部をスムースに移動できず、屈曲角度が大きいところでは検査装置がロックしてしまい、検査が不能になる、さらには、取り出すこと自体不可能になるといった問題があった。
However, in the pipe inspection by the AE method, not only the equipment is expensive, but the installation is complicated, and there is a possibility that the inspection accuracy is deteriorated due to the influence of electromagnetic noise.
Also, the piping inspection apparatus disclosed in Patent Documents 1 and 2 has a complicated mechanism, especially in a bent thin tube or the like, the inside of the pipe cannot be smoothly moved, and the inspection apparatus is locked at a large bending angle, There is a problem that the inspection becomes impossible, and further, the removal itself becomes impossible.

そこで本発明の目的は、配管内部の形状に合わせて柔軟に屈曲することで、スムースな通過を可能にするとともに、モータにより回転駆動される弾性ハンマーにより、全管路長にわたって、腐食の進行度などの正確な検査、診断を可能にすることにある。   Accordingly, an object of the present invention is to allow a smooth passage by bending flexibly in accordance with the shape of the inside of the pipe, and the degree of corrosion progression over the entire pipeline length by an elastic hammer that is rotationally driven by a motor. It is to enable accurate inspection and diagnosis.

この課題を解決するため、本発明の回転駆動式打音機構では、牽引ケーブルにより牽引される前方ハブと、後方ハブと、両端が両ハブのそれぞれに連結され、円周方向にわたり一定間隔に配置され、かつ、円弧状に湾曲するよう連結された複数の弾性バーとからなるケージ部と、前方ハブと後方ボスの一方に固定されるモータと、このモータにより駆動され、ケージ部に対し回転されるハンマー回転部と、ハンマー回転部に取り付けられ、先端に打音部を備えた弾性ハンマーとからなり、ケージ部が配管内部に挿入されたとき、弾性バーの頂点を配管内壁に対し弾圧させることにより、弾性バーがハンマー回転部の中心軸を配管の中心軸と一致するようセンタリングを行うとともに、ハンマー回転部の回転により、弾性ハンマーの打音部が弾性バーを乗り越える際に蓄えられた弾発力により、その次の弾性バーとの間で配管内壁を叩き、打音するようにした。   In order to solve this problem, in the rotational drive sounding mechanism of the present invention, the front hub, the rear hub, and both ends that are pulled by the traction cable are connected to both hubs, and are arranged at regular intervals in the circumferential direction. And a cage portion composed of a plurality of elastic bars connected so as to be curved in an arc shape, a motor fixed to one of the front hub and the rear boss, and driven by the motor to be rotated with respect to the cage portion. A hammer rotating part and an elastic hammer attached to the hammer rotating part and provided with a sounding part at the tip. When the cage part is inserted into the pipe, the top of the elastic bar is pressed against the pipe inner wall. Thus, the elastic bar performs centering so that the central axis of the hammer rotating part coincides with the central axis of the pipe, and the hammer hammering part rotates the sounding part of the elastic hammer. By the elastic force stored in overcoming bar, beating the pipe inner wall between its subsequent elastic bar, and so that knocking sound.

本発明によれば、ケージ部が配管内部の形状に合わせて柔軟に屈曲することで、スムースな通過を可能にするとともに、モータにより回転駆動される弾性ハンマーにより、周期的に打音を発生させることができ、この打音を音響解析することで、配管検査装置の小型軽量化、低コスト化を実現し、屈曲部を有する細管であっても、全管路長にわたって、腐食の進行度などの正確な検査、診断を行うことができる。   According to the present invention, the cage portion is flexibly bent according to the shape of the inside of the pipe, thereby enabling a smooth passage and generating an impact sound periodically by an elastic hammer that is rotationally driven by a motor. By acoustically analyzing this hitting sound, it is possible to reduce the size and weight of the pipe inspection device and reduce the cost, and even if it is a narrow tube with a bent portion, the progress of corrosion over the entire pipe length, etc. Accurate examination and diagnosis can be performed.

図1は、実施例の全体構成を示す図である。FIG. 1 is a diagram illustrating the overall configuration of the embodiment. 図2は、前方ハブ2を牽引方向前方側からみた図である。FIG. 2 is a view of the front hub 2 as viewed from the front side in the pulling direction. 図3は、直角に屈曲した配管を通過する際のケージ部6の挙動を示す図である。FIG. 3 is a diagram illustrating the behavior of the cage portion 6 when passing through a pipe bent at a right angle. 図4は、配管直角屈曲部で弾性バー5にへこみが発生する様子を示す図である。FIG. 4 is a diagram illustrating a state in which a dent is generated in the elastic bar 5 at a pipe right-angled bent portion. 図5は、弾性バー5の長さを可変にした変形例を示す図である。FIG. 5 is a view showing a modification in which the length of the elastic bar 5 is variable. 図6は、打音発生機構1の前後に調心機構、マイクポップノイズ低減用ケージを設けた変形例を示す図である。FIG. 6 is a view showing a modification in which a centering mechanism and a microphone pop noise reduction cage are provided before and after the sound generation mechanism 1. 図7は、本実施例を用いた配管検査装置のシステム図である。FIG. 7 is a system diagram of a pipe inspection apparatus using this embodiment. 図8は、実験に用いた腐食模擬配管を示す図である。FIG. 8 is a diagram showing a corrosion simulation pipe used in the experiment. 図9は、打音発生機構1により得られた打音の音響解析の手順を示す図である。FIG. 9 is a diagram illustrating a procedure of acoustic analysis of the hitting sound obtained by the hitting sound generation mechanism 1. 図10は、音響解析結果を示す図である。FIG. 10 is a diagram showing a result of acoustic analysis.

以下、図面を用いて本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例を示すもので、打音発生機構1は、牽引方向(図1では左方向)前端に設けられた前方ハブ2と、牽引方向後端に設けられた後方ハブ3と、前方に出力軸4aを備え、後方が後方ハブ3に嵌着支持されるモータ4とを備えている。
前方ハブ2と後方ハブ3間は、周方向に均等な角度ごとに弾性バー5により連結されており、図1では、36°ごとに10本設けられている。これらの弾性バー5は、円弧を形成するように屈曲させた状態で、両端部が前方ハブ2と後方ハブ3に斜めに差し込まれており、弾性バー5の長さを設定することで、各弾性バー5が広がろうとする力が釣り合って、前方ハブ2と後方ハブ3間で湾曲し、最大径が配管径より数ミリ程度大きいケージ部6を形成している。
FIG. 1 shows an embodiment of the present invention. A sound generation mechanism 1 includes a front hub 2 provided at the front end in the pulling direction (left direction in FIG. 1) and a rear hub provided at the rear end in the pulling direction. 3, and an output shaft 4 a at the front, and a motor 4 that is fitted and supported on the rear hub 3 at the rear.
The front hub 2 and the rear hub 3 are connected by elastic bars 5 at equal angles in the circumferential direction, and in FIG. 1, 10 are provided every 36 °. These elastic bars 5 are inserted into the front hub 2 and the rear hub 3 obliquely in a state of being bent so as to form an arc, and by setting the length of the elastic bar 5, The force with which the elastic bar 5 tries to spread is balanced and curved between the front hub 2 and the rear hub 3 to form a cage portion 6 whose maximum diameter is several millimeters larger than the pipe diameter.

これにより、配管内部においては、湾曲する各弾性バー5の頂点が、配管内壁に対し所定の弾発力で均等に押圧された状態となり、ケージ部6のセンタリングを行う。
なお、この実施例では、弾性バー5は、結束バンドに用いられているインシュロック(登録商標)により形成され、断面が1.7mm(幅)×0.7mm(厚さ)の長方形である。
Thereby, in the inside of piping, the vertex of each elastic bar 5 which curves is uniformly pressed with the predetermined elastic force with respect to the inner wall of piping, and centering of cage part 6 is performed.
In this embodiment, the elastic bar 5 is formed of Insulok (registered trademark) used for a binding band and has a rectangular shape with a cross section of 1.7 mm (width) × 0.7 mm (thickness).

前方ハブ2の前端には、牽引ケーブル7が接続されており、配管の他端外方に設置された電動巻き取り機が打音発生機構1を所定速度で牽引する。
また、後方ハブ3の後方には、電源・音声信号ケーブル8を介して、配管の法線に対し上下方向に指向する2個の集音マイク9が設けられており、その後方には、電源・音声信号ケーブル8が延び、後述するDC電源及び解析装置に接続されている。
A traction cable 7 is connected to the front end of the front hub 2, and an electric winder installed outside the other end of the pipe pulls the sound generation mechanism 1 at a predetermined speed.
Further, behind the rear hub 3, two sound collecting microphones 9 directed vertically with respect to the normal line of the pipe are provided via a power / audio signal cable 8. The audio signal cable 8 extends and is connected to a DC power source and an analysis device described later.

各弾性バー5の頂点と配管内壁との間に作用する摩擦力は、牽引ケーブル7によるスムースな牽引が可能となるよう、牽引方向(打音発生機構1の中心軸方向)に小さく、一方、後述するハンマー回転部10の回転による反作用により、ケージ部6自体が回転しないよう、周方向に大きくすることが好ましい。このため、弾発力を最適な値に調整したうえで、各弾性バー5の表面に軸方向に延びる溝を設けることにより、あるいは、打音発生機構1の中心軸に直交する断面形状において、厚さを小さくすることにより(上記の例では0.7mm)法線方向の剛性を下げ、幅を大きくすることにより(上記の例では1.7mm)周方向の剛性を高めるようにするとよい。   The frictional force acting between the apex of each elastic bar 5 and the inner wall of the pipe is small in the traction direction (the central axis direction of the sound generation mechanism 1) so that smooth traction by the traction cable 7 is possible, It is preferable to enlarge the cage portion 6 in the circumferential direction so that the cage portion 6 itself does not rotate due to a reaction caused by the rotation of the hammer rotating portion 10 described later. Therefore, after adjusting the elastic force to an optimum value, by providing a groove extending in the axial direction on the surface of each elastic bar 5, or in a cross-sectional shape orthogonal to the central axis of the sound generation mechanism 1, The rigidity in the normal direction may be reduced by reducing the thickness (0.7 mm in the above example), and the rigidity in the circumferential direction may be increased by increasing the width (1.7 mm in the above example).

モータ4の出力軸4aには、ハンマー回転部10が取り付けられており、その外周には、先端にベアリングなどの打音部11aを備えた弾性ハンマー11が取り付けられている。
弾性ハンマー11は弾性部材で形成されており、その先端に取り付けられた打音部11aが配管内壁を適度な押圧力で押圧するよう、弾性ハンマー11の形状、長さ、弾性係数が選定されている。
A hammer rotating part 10 is attached to the output shaft 4a of the motor 4, and an elastic hammer 11 having a sounding part 11a such as a bearing at the tip is attached to the outer periphery thereof.
The elastic hammer 11 is formed of an elastic member, and the shape, length, and elastic coefficient of the elastic hammer 11 are selected so that the sounding portion 11a attached to the tip of the elastic hammer 11 presses the inner wall of the pipe with an appropriate pressing force. Yes.

図2は、前方ハブ2を牽引方向前方側からみた図であり、この実施例では、弾性ハンマー11はモータ4により時計方向に回転し、弾性ハンマー11は、回転方向に向けて凸となるよう円弧状に湾曲している。
モータ4によりハンマー回転部10が回転すると、その外周に取り付けられた弾性ハンマー11が回転する。この回転に伴い、先端の打音部11aが弾性バー5のひとつを乗り上げると、弾性ハンマー11が屈曲して弾性力を蓄積する。弾性バー5が通過すると、蓄積された弾性力により、弾性ハンマー11先端の打音部11aが配管内壁に向けて弾かれ、このとき打音を発生することになる。この打音は、打音部11aが、次の弾性バー5を通過するたびに発生する。
FIG. 2 is a view of the front hub 2 as viewed from the front side in the pulling direction. In this embodiment, the elastic hammer 11 is rotated clockwise by the motor 4, and the elastic hammer 11 is convex toward the rotation direction. Curved in an arc.
When the hammer rotating portion 10 is rotated by the motor 4, the elastic hammer 11 attached to the outer periphery thereof is rotated. With this rotation, when the sound hitting portion 11a at the tip rides on one of the elastic bars 5, the elastic hammer 11 bends and accumulates elastic force. When the elastic bar 5 passes, the sounding portion 11a at the tip of the elastic hammer 11 is repelled toward the inner wall of the pipe by the accumulated elastic force, and at this time, sounding is generated. This hitting sound is generated every time the hitting part 11a passes through the next elastic bar 5.

図3は、本実施例の打音発生機構1が、直角に屈曲した配管を通過する際のケージ部6の挙動を示している。(a)のように打音発生機構1が直角屈曲部に近接した後、(b)のように、ケージ部6の弾性バー5の一部が直角屈曲部の内周端に接触する。
さらに牽引されると、弾性バー5と直角屈曲部の内周端との接触部を起点として弾性バー5がたわみ、(c)のように、直角屈曲部の外周側の弾性バー5とともに球形状となり、スムースな通過が可能となる。
FIG. 3 shows the behavior of the cage portion 6 when the sound generation mechanism 1 of the present embodiment passes through a pipe bent at a right angle. After the sound generation mechanism 1 approaches the right-angled bent portion as shown in (a), a part of the elastic bar 5 of the cage portion 6 contacts the inner peripheral end of the right-angled bent portion as shown in (b).
When pulled further, the elastic bar 5 bends starting from the contact portion between the elastic bar 5 and the inner peripheral end of the right-angled bent part, and as shown in FIG. Thus, a smooth passage is possible.

なお、配管内径とケージ部6の寸法、形状によっては、図4に示すように、直角屈曲部の内周端側に弾性バー5にへこみが発生し、摩擦抵抗が急増するために、直角屈曲部の通過が不可能になるおそれがある。
そこで、図5に示すように、弾性バー5を、前方ハブ2側に接続される前方部5aと、後方ハブ3側に接続される後方部5bに2分割し、後方部5bの先端に設けたスライド部5cに前方部5aの先端を差し込み、配管内壁との接触圧に応じて弾性バー5を伸縮可能とし、直角屈曲部の通過時、接触圧が増大する内周側の弾性バー5を収縮させるようにしてもよい。
Depending on the inner diameter of the pipe and the size and shape of the cage part 6, as shown in FIG. 4, the elastic bar 5 may be dented on the inner peripheral end side of the right-angled bent part, and the frictional resistance increases rapidly. There is a risk that it may not be possible to pass the part.
Therefore, as shown in FIG. 5, the elastic bar 5 is divided into two parts, a front part 5a connected to the front hub 2 side and a rear part 5b connected to the rear hub 3, and provided at the tip of the rear part 5b. The tip of the front part 5a is inserted into the slide part 5c, and the elastic bar 5 can be expanded and contracted according to the contact pressure with the inner wall of the pipe. You may make it shrink.

また、図6に示すように、配管の形態に応じて、打音発生機構1の前方あるいは後方の少なくとも一方に、打音発生機構1のケージ構造と同様の調心機構やマイクポップノイズ低減用ケージ、配管内径と同じ直径のボール形状や円錐形状の調心機構や放射状ブラシを連結することで、牽引時に発生する打音発生機構1のピッチングや、打音以外のノイズを防止して、確実な打音が行われるようにしてもよい。   Further, as shown in FIG. 6, depending on the form of the piping, at least one of the front and rear of the hitting sound generating mechanism 1 is the same as the centering mechanism and microphone pop noise reduction similar to the cage structure of the hitting sound generating mechanism 1. By connecting a ball-shaped or conical aligning mechanism or radial brush with the same diameter as the cage and piping inner diameter, the pitching of the hitting sound generating mechanism 1 generated during towing and noise other than hitting sound can be prevented and reliably It is also possible to make a simple hitting sound.

打音発生機構1により発生する打音は、集音マイク9により計測され、その音声信号は、図7に示すように、電源・音声信号ケーブル8を介して解析ユニット12に入力され、電動巻き取り機13からの巻き取り量信号に基づき、配管の位置に対応させて記録され、音響解析が行われたのち、表示・出力装置14に出力される。弾性ハンマー11をモータ4により駆動するための電流は、DC電源15より電源・音声信号ケーブル8を介して供給される。   The sound generated by the sound generation mechanism 1 is measured by the sound collecting microphone 9, and the sound signal is input to the analysis unit 12 via the power / audio signal cable 8 as shown in FIG. Based on the winding amount signal from the take-up machine 13, it is recorded in correspondence with the position of the pipe, subjected to acoustic analysis, and then output to the display / output device 14. A current for driving the elastic hammer 11 by the motor 4 is supplied from the DC power supply 15 via the power / audio signal cable 8.

本実施例の打音発生機構を用いた実験について説明する。打音発生機構は、弾性バー5を60度毎に6本備えたものを用い、配管は、内径25mm、外径35mm(肉厚5mm)、長さ150cmの鉄製配管、牽引ケーブルとしてダイニーマ糸を用いた。
図8に示すように、鉄製配管には、右端から30cm地点に彫り込み深さ1mm、長さ5cmの削り取り部を、以下20cmの間隔を置いて、彫り込み深さ1.5mm、2mm、2.5mm、長さがそれぞれ5cmの削り取り部を設け、彫り込み深さ2.5mmの左方に15cmの間隔を置いて、彫り込み深さ3mm、長さ5cmの削り取り部を設けた。
An experiment using the hitting sound generation mechanism of this embodiment will be described. The sound generation mechanism uses six elastic bars 5 every 60 degrees, and the pipe is an iron pipe with an inner diameter of 25 mm, an outer diameter of 35 mm (thickness of 5 mm), a length of 150 cm, and a dyneema thread as a traction cable. Using.
As shown in FIG. 8, the steel pipe has an engraved depth of 1 mm and a length of 5 cm at a point 30 cm from the right end, and an engraved depth of 1.5 mm, 2 mm, and 2.5 mm with an interval of 20 cm thereafter. A cut-out part with a length of 5 cm was provided, and a cut-out part with a cut-in depth of 3 mm and a length of 5 cm was provided at a distance of 15 cm on the left side with a cut-in depth of 2.5 mm.

ハンマー回転部10を駆動するモータ4の電圧を10Vとし、電動巻き取り機13による牽引速度を3cm/s(speed 2)、4cm/s(speed 3)、5cm/s(speed 4)、6.5cm/s(speed 5)、7.5cm/s(speed 6)、8.5cm/s(speed 7)でそれぞれ2回ずつ行った。   5. The voltage of the motor 4 for driving the hammer rotating unit 10 is set to 10 V, and the pulling speed by the electric winder 13 is 3 cm / s (speed 2), 4 cm / s (speed 3), 5 cm / s (speed 4), The test was conducted twice at 5 cm / s (speed 5), 7.5 cm / s (speed 6), and 8.5 cm / s (speed 7).

図9は、音響解析の手順を示しており、記録した打音ファイルを入力し、時間・周波数変換を行う。そして、パイプ反響周波数域を検知し、統計処理により以上箇所の検知を行い、状態評価の結果を出力させた。
図10は、これら12回の計測結果であり、上段は左から、牽引速度を3cm/s(speed 2)、4cm/s(speed 3)としたときのそれぞれ2回ずつの計測結果を、中段は左から、牽引速度を5cm/s(speed 4)、6.5cm/s(speed 5)としたときのそれぞれ2回ずつの計測結果を、下段は左から、牽引速度を7.5cm/s(speed 6)、8.5cm/s(speed 7)、としたときのそれぞれ2回ずつの計測結果を示している。
この結果から、牽引速度が速いケースでも削り深さ2mm以上(肉厚5mmに対して40%以上の腐食)に関して、異常を検知できることが確認できた。
FIG. 9 shows a procedure of acoustic analysis, in which a recorded hitting sound file is input and time / frequency conversion is performed. And the pipe reverberation frequency range was detected, the above-mentioned location was detected by statistical processing, and the result of state evaluation was output.
FIG. 10 shows the measurement results of these twelve times. From the left, the upper row shows the measurement results of two times each when the traction speed is 3 cm / s (speed 2) and 4 cm / s (speed 3). Shows the measurement results twice each from the left, when the traction speed is 5 cm / s (speed 4) and 6.5 cm / s (speed 5). The lower part shows the traction speed from the left, 7.5 cm / s. The measurement results are shown twice each when (speed 6) and 8.5 cm / s (speed 7).
From this result, it was confirmed that even when the traction speed was high, an abnormality could be detected for a cutting depth of 2 mm or more (corrosion of 40% or more with respect to a thickness of 5 mm).

計測結果には、牽引速度、ハンマー回転部10の回転速度、弾性バー5の厚さ、打音部の材質など、様々な要素が影響するものと考えられ、配管の形状、曲率、内径、材質に応じて最適なものを選択する必要がある。   Various factors such as the pulling speed, the rotation speed of the hammer rotating part 10, the thickness of the elastic bar 5, and the material of the sounding part are considered to affect the measurement result. The shape, curvature, inner diameter, and material of the pipe It is necessary to select the best one according to the situation.

以上説明したように、本発明によれば、配管検査装置の小型軽量化、低コスト化が可能となり、屈曲部を有する細管であっても、全管路長にわたって、腐食の進行度などの正確な検査、診断を行うことができるので、 化学プラント等における各種配管の検査装置として広く採用されることが期待できる。   As described above, according to the present invention, it is possible to reduce the size and weight of the pipe inspection device and reduce the cost, and even for a thin tube having a bent portion, it is possible to accurately measure the progress of corrosion over the entire pipe length. Therefore, it can be widely used as an inspection device for various pipes in chemical plants.

1・・・打音発生機構
2・・・前方ハブ
3・・・後方ハブ
4・・・モータ
5・・・弾性バー
6・・・ケージ部
7・・・牽引ケーブル
8・・・電源・音声信号ケーブル
9・・・集音マイク
10・・・ハンマー回転部
11・・・弾性ハンマー
11a・・打音部
12・・・解析ユニット
13・・・電動巻き取り機
14・・・表示・出力装置
15・・・DC電源
DESCRIPTION OF SYMBOLS 1 ... Sound generating mechanism 2 ... Front hub 3 ... Back hub 4 ... Motor 5 ... Elastic bar 6 ... Cage part 7 ... Traction cable 8 ... Power supply and sound Signal cable 9 ... Sound collecting microphone 10 ... Hammer rotating part 11 ... Elastic hammer 11a ... Sounding part 12 ... Analysis unit 13 ... Electric winder 14 ... Display / output device 15 ... DC power supply

Claims (3)

牽引ケーブルにより牽引される前方ハブと、後方ハブと、両端が両ハブのそれぞれに連結され、円周方向にわたり一定間隔に配置され、かつ、円弧状に湾曲するよう連結された複数の弾性バーとからなるケージ部と、
前記前方ハブと前記後方ボスの一方に固定されるモータと、このモータにより駆動され、前記ケージ部に対し回転されるハンマー回転部と、
前記ハンマー回転部に取り付けられ、先端に打音部を備えた弾性ハンマーとからなり、
前記ケージ部が配管内部に挿入されたとき、前記弾性バーの頂点を配管内壁に対し弾圧させることにより、前記弾性バーのそれぞれが、前記ハンマー回転部の中心軸を配管の中心軸と一致するようセンタリングを行うとともに、
前記ハンマー回転部の回転により、前記弾性ハンマーの打音部が前記弾性バーを乗り越える際に蓄えられた弾発力により、その次の弾性バーとの間で配管内壁を叩き、打音を行うようにしたことを特徴とする回転駆動式打音機構。
A front hub to be pulled by a tow cable, a rear hub, and a plurality of elastic bars having both ends connected to both hubs, arranged at regular intervals in the circumferential direction, and connected to be curved in an arc shape A cage portion comprising:
A motor fixed to one of the front hub and the rear boss, a hammer rotating portion driven by the motor and rotated relative to the cage portion;
It consists of an elastic hammer attached to the hammer rotating part and having a sounding part at the tip,
When the cage portion is inserted into the pipe, the top of the elastic bar is elastically pressed against the inner wall of the pipe so that each of the elastic bars matches the central axis of the hammer rotating portion with the central axis of the pipe. While performing centering,
Due to the rotation of the hammer rotating part, the resilient force stored when the sound hitting part of the elastic hammer gets over the elastic bar hits the inner wall of the pipe with the next elastic bar to make a hitting sound. A rotary drive sounding mechanism characterized by that.
前記弾性バー5の両端部が前記前方ハブと前記後方ハブのそれぞれに斜めに差し込まれており、前記弾性バー5の長さを設定することにより、前記弾性バー5のそれぞれが広がろうとする力を均衡させ、前記弾性バーが前方ハブ2と後方ハブ3間で湾曲して、最大径が配管径よりわずかに大きい前記ケージ部を形成することを特徴とする請求項1に記載された回転駆動式打音機構。   Both ends of the elastic bar 5 are obliquely inserted into the front hub and the rear hub, respectively, and by setting the length of the elastic bar 5, each elastic bar 5 has a force to spread. The rotary drive according to claim 1, wherein the elastic bar is curved between the front hub 2 and the rear hub 3 to form the cage portion whose maximum diameter is slightly larger than the pipe diameter. Type sounding mechanism. 前記弾性バーを前記前方ハブ側に接続される前方部と、前記後方ハブ側に接続される後方部とに2分割し、両者を互いにスライド可能に接続することにより、配管内壁との接触圧に応じて弾性バーを伸縮可能としたことを特徴とする請求項1または2に記載された回転駆動式打音機構。   The elastic bar is divided into two parts, a front part connected to the front hub side and a rear part connected to the rear hub side. The rotational drive type sounding mechanism according to claim 1 or 2, wherein the elastic bar can be expanded and contracted accordingly.
JP2017071903A 2017-03-31 2017-03-31 Rotational drive type tapping mechanism Active JP6800448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071903A JP6800448B2 (en) 2017-03-31 2017-03-31 Rotational drive type tapping mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071903A JP6800448B2 (en) 2017-03-31 2017-03-31 Rotational drive type tapping mechanism

Publications (2)

Publication Number Publication Date
JP2018173354A true JP2018173354A (en) 2018-11-08
JP6800448B2 JP6800448B2 (en) 2020-12-16

Family

ID=64106702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071903A Active JP6800448B2 (en) 2017-03-31 2017-03-31 Rotational drive type tapping mechanism

Country Status (1)

Country Link
JP (1) JP6800448B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249049A (en) * 1984-05-25 1985-12-09 Nippon Kokan Kk <Nkk> Defect detecting device
JPS6235258U (en) * 1985-08-22 1987-03-02
JPS6373668U (en) * 1986-10-31 1988-05-17
JPS63300958A (en) * 1987-05-30 1988-12-08 Osaka Gas Co Ltd In-tube cable running tool
JPH0443989A (en) * 1990-06-11 1992-02-13 Central Res Inst Of Electric Power Ind Method and instrument for measuring elastic wave speed
US5329824A (en) * 1992-07-17 1994-07-19 Niagara Mohawk Power Corporation Centralizer for internal pipe inspection device
JP2003333719A (en) * 2002-05-17 2003-11-21 Ryosei Densetsu Kk Diameter enlarging apparatus for cable conduit
JP2014115202A (en) * 2012-12-11 2014-06-26 Jfe Steel Corp Device to inspect wall surface of structure and inspection method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249049A (en) * 1984-05-25 1985-12-09 Nippon Kokan Kk <Nkk> Defect detecting device
JPS6235258U (en) * 1985-08-22 1987-03-02
JPS6373668U (en) * 1986-10-31 1988-05-17
JPS63300958A (en) * 1987-05-30 1988-12-08 Osaka Gas Co Ltd In-tube cable running tool
JPH0443989A (en) * 1990-06-11 1992-02-13 Central Res Inst Of Electric Power Ind Method and instrument for measuring elastic wave speed
US5329824A (en) * 1992-07-17 1994-07-19 Niagara Mohawk Power Corporation Centralizer for internal pipe inspection device
JP2003333719A (en) * 2002-05-17 2003-11-21 Ryosei Densetsu Kk Diameter enlarging apparatus for cable conduit
JP2014115202A (en) * 2012-12-11 2014-06-26 Jfe Steel Corp Device to inspect wall surface of structure and inspection method

Also Published As

Publication number Publication date
JP6800448B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
WO2008117765A1 (en) Abnormality diagnostic method and device of extremely low speed rotary machine
JP4935165B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP4826949B2 (en) Seamless pipe manufacturing status monitoring apparatus and method, and seamless pipe manufacturing equipment
WO2018109824A1 (en) Wire rope damage detection method, and signal processing device and damage detection device used for wire rope damage detection
JP4929810B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP2018173354A (en) Rotary drive type hammering sound mechanism
JP5692783B2 (en) Piping blockage diagnosis method
EP3330682A1 (en) Vibration analysis device and abnormality diagnosis system
JP6800447B2 (en) Rolling tapping mechanism
US8775100B2 (en) Cable for inspecting heat tubes and method of analyzing insertion force of cable
JP7346065B2 (en) Diagnostic method and device for low-speed rotating equipment
JP6243940B2 (en) Wind power generation system abnormality sign diagnosis system
TW201837463A (en) Flexible tube supporting device
JP2013160749A (en) Facility diagnostic method and facility diagnostic device of rotary machine
JP2006349693A (en) Method and device for evaluation
JP3228201U (en) Striking equipment
JP2008076296A (en) Ultrasonic flaw detecting technique using ultrasonic flaw detector and the lorentz force
JP2015009261A (en) Method and device for detecting chattering of cold rolling mill
CN104302415B (en) The omen detection method of stick-slip phenomenon, omen checkout gear and use the cold-drawing method of pipe of this omen detection method
JP5427053B2 (en) Tube thickness measuring device
JP5174361B2 (en) In-pipe inspection device
JP6785198B2 (en) Tube inspection device and tube inspection method using this
JP2006275557A (en) Vibration measuring structure and method for measuring vibration using this
KR20110076586A (en) System and method for detecting the damage of a bearing
JP6561720B2 (en) Bearing evaluation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201112

R150 Certificate of patent or registration of utility model

Ref document number: 6800448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250