JPH0443989A - Method and instrument for measuring elastic wave speed - Google Patents

Method and instrument for measuring elastic wave speed

Info

Publication number
JPH0443989A
JPH0443989A JP2149789A JP14978990A JPH0443989A JP H0443989 A JPH0443989 A JP H0443989A JP 2149789 A JP2149789 A JP 2149789A JP 14978990 A JP14978990 A JP 14978990A JP H0443989 A JPH0443989 A JP H0443989A
Authority
JP
Japan
Prior art keywords
ground
elastic wave
elastic
wave
casing pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2149789A
Other languages
Japanese (ja)
Other versions
JPH0756513B2 (en
Inventor
Yasuo Yoshida
吉田 保夫
Koji Kudo
康二 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP14978990A priority Critical patent/JPH0756513B2/en
Publication of JPH0443989A publication Critical patent/JPH0443989A/en
Publication of JPH0756513B2 publication Critical patent/JPH0756513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To enable an elastic wave survey on a soft ground by finding the S-wave speed of an elastic wave which is propagated in the ground from the difference in wave front arrival time between two vibration receivers. CONSTITUTION:A clockwise and an anticlockwise shock are applied alternately to the ground through a gear-shaped ring 8 to generate two S waves which are inverted in waveform in the ground. The two elastic waves which are inverted in waveform are detected by the receivers 4 and 5 to confirm that the waves are S waves and also finds the elastic wave speed in the ground from the wave front arrival time difference between the receivers 4 and 5 and the distance between both the receivers 4 and 5. At this time, the measurement signals of the receivers 4 and 5 are contrasted with each other to remove a noise transmitted through a casing pipe 1, etc. While the casing pipe 1 is inserted into the ground, the S-wave speed is found in the depth direction to find the S-wave speed distribution of respective beds in the ground in detail.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は弾性波による地盤調査に用いる弾性波速度計測
方法及びそれを実施する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an elastic wave velocity measuring method used for ground investigation using elastic waves, and an apparatus for carrying out the method.

更に詳述すると、本発明は地盤中を伝播する弾性波の直
接波の伝播速度から地盤等の探査を行なう弾性波速度計
測方法及びその装置に関する。
More specifically, the present invention relates to an elastic wave velocity measuring method and apparatus for investigating the ground based on the propagation velocity of a direct elastic wave propagating in the ground.

(従来の技術) 弾性波による地盤調査の1つとして、地中において横坑
やポーリング孔を利用して直接波の伝播速度を測定して
岩盤の良否の判定や岩盤分類の一指標とするものがある
。この弾性波による調査は物理探査法の中で最も汎用性
があり通常の岩盤調査に用いられている。
(Conventional technology) As a type of ground investigation using elastic waves, the propagation speed of waves is directly measured underground using a shaft or a polling hole, and this is used as an indicator for determining the quality of the rock mass and for classifying the rock mass. There is. This survey using elastic waves is the most versatile of the geophysical survey methods and is used for ordinary rock surveys.

従来の弾性波探査は、地表又は地中の一点で爆発等によ
って人工的に衝撃を与え、地盤・岩盤を振動させ、発生
した弾性波が周囲に広がっていく際の波動の速度を検出
して岩盤の物理的性質等を調査するものである0弾性波
の速度は蝋質である地盤や岩盤の物理的性質に左右され
ることから、弾性波の伝播速度から岩盤の適否判断、掘
削線の決定、岩盤の緩み、領域の判定、グラウト効果の
判定等を行なうことができるし、また弾性波速度を原位
置試験に対する分類上の指標としても用いられる。
Conventional elastic wave exploration involves applying an artificial shock, such as an explosion, at a point on the ground surface or underground, causing the ground/rock to vibrate, and then detecting the speed of the generated elastic waves as they spread to the surrounding area. The speed of the zero elastic wave, which is used to investigate the physical properties of rock, is affected by the waxy ground and the physical properties of the rock. The elastic wave velocity can be used as a classification indicator for in-situ testing.

この弾性波による探査は縦波(P波)と横波(S波)を
使用して行われている0例えば、横坑内の爆破点からの
直接波を他の横坑内に設けた幾つかの受振点で受けてそ
の間の弾性波速度を多数測定して岩盤のゾーン区分とそ
の平均速度を求めることがあり、またある間隔で数本の
ポーリング孔内部にその深さに応じて側線を求め、直接
波定時曲線を求めて深度に応じた速度を求めることもあ
る。
This exploration using elastic waves is carried out using longitudinal waves (P waves) and transverse waves (S waves). In some cases, the zonal division of the rock and its average velocity can be determined by measuring the elastic wave velocity at a number of points, and the lateral lines are determined according to the depth inside several poling holes at certain intervals, and the lateral lines are measured directly. Sometimes, a wave time curve is obtained to determine the speed depending on the depth.

(発明が解決しようとする8B”) しかしながら、従来の探査方法はいずれも地表面に弾性
波発振源を設けるか、あらがしめポーリング孔を開けて
その孔の中に弾性波の発振源と受振器とを備えて探査す
るようにしているので、弾性波発振源を地表面に設置で
きないような調査例えば海底地質や海底地盤の調査にお
いては使用できなかった。また、ポーリング孔を使用し
て弾性波探査を行う場合にはポーリング孔をあらかじめ
設けるための時間とコストがかかるし、砂地のような柔
らかい地盤では実施できない、特に、2本の縦坑を組合
せることによって深度方向の弾性波速度を測定すること
も可能であるが、複雑なポーリングを必要とするなめ費
用がかさむ上に弾性波発振源と弾性波受振器の距離が一
定でないため測定精度が充分にでない問題がある。また
、縦坑を利用した弾性波探査では地盤の深度方向の弾性
波速度が計測できないため詳細な地盤の速度構造が得ら
れない。
(8B to be solved by the invention) However, in all conventional exploration methods, an elastic wave oscillation source is provided on the ground surface, or a poling hole is drilled and an elastic wave oscillation source is placed inside the hole. This method cannot be used in surveys where it is not possible to install an elastic wave oscillation source on the ground surface, such as surveys of seabed geology or seabed soil. When conducting wave exploration, it takes time and cost to prepare polling holes in advance, and it cannot be carried out on soft ground such as sand. Although measurement is possible, it requires complicated polling, which increases the cost of licking, and the distance between the elastic wave oscillation source and the acoustic wave geophone is not constant, so the measurement accuracy is insufficient. Elastic wave exploration using a pit cannot measure the elastic wave velocity in the depth direction of the ground, so detailed ground velocity structures cannot be obtained.

本発明は測定精度が良く深度方向に連続して弾性波速度
が測定できかつ調査費用が安価につく弾性波速度計測方
法及びその装置を捷供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an elastic wave velocity measuring method and apparatus that have good measurement accuracy, can measure elastic wave velocity continuously in the depth direction, and are inexpensive to investigate.

(課題を解決するための手段) かかる目的を達成するため、本発明の弾性波速度計測方
法は、弾性波による調査を行う地盤に弾性波受振器と地
盤を伝播する弾性波の速度を測定する2個の受振器とを
1本のパイプに収めて地盤に貫入し、前記弾性波発振源
から発振される弾性波が地盤中を伝播するS波速度を前
記2個の受振器の波動到達時間差から求め、前記パイプ
を貫入して深度方向に連続的にS波速度を求めるように
している。
(Means for Solving the Problems) In order to achieve the above object, the elastic wave velocity measurement method of the present invention includes an elastic wave geophone attached to the ground to be investigated using elastic waves, and the velocity of elastic waves propagating through the ground is measured. The two geophones are housed in one pipe that penetrates the ground, and the S-wave velocity at which the elastic wave oscillated from the elastic wave oscillation source propagates in the ground is determined by the wave arrival time difference between the two geophones. The S-wave velocity is determined continuously in the depth direction by penetrating the pipe.

また、本発明の弾性波速度計測装置は、地中に貫入可能
なケーシングパイプと、このパイプ内に収容されると共
に一部がケーシングパイプの外に突出した加振部材を有
する弾性波発振源と、地盤中を伝播する弾性波のS波速
度を測定する受振器とから成り、前記受振器は深度方向
に一定間隔を開けて2個配置するようにしている。
Further, the elastic wave velocity measuring device of the present invention includes a casing pipe that can penetrate into the ground, and an elastic wave oscillation source that is housed in the pipe and has an excitation member that partially protrudes outside the casing pipe. , and a geophone for measuring the S-wave velocity of elastic waves propagating in the ground, and two of the geophones are arranged at a constant interval in the depth direction.

(作用) したがって、ケーシングパイプを地盤内に貫入すること
によって弾性波発振源と受振器とを一定の間隔をあけて
地中にa置し、弾性波速度測定を実施することができる
0弾性波発振源から与えられたS波は地盤を伝わって深
度方向に伝播し2個の受振器によってそれぞれ検出され
る。この2個の受振器に到達するS波の到達時間差とこ
れら受振器間の距離とからS波速度が求められる。また
、その深度における弾性波探査が終了した後、更にケー
シングパイプを貫入して探査深度を変えつつ弾性波によ
る探査を繰返すことによって深度方向のS波の速度を連
続的に求める。
(Function) Therefore, by penetrating the casing pipe into the ground, the elastic wave oscillation source and the geophone are placed underground at a certain distance, and elastic wave velocity measurement can be performed. The S wave given from the oscillation source propagates through the ground in the depth direction and is detected by two geophones. The S-wave velocity is determined from the arrival time difference of the S-waves reaching these two geophones and the distance between these geophones. After the elastic wave exploration at that depth is completed, the casing pipe is further penetrated and the exploration using elastic waves is repeated while changing the exploration depth to continuously determine the velocity of the S wave in the depth direction.

(実施例) 以下、本発明の構成を図面に示す実施例に基づいて#細
に説明する。
(Example) Hereinafter, the configuration of the present invention will be described in detail based on an example shown in the drawings.

第1図に本発明の弾性波速度計測装置の原理図を示す、
この弾性波速度計測装置は、先端にコーン2を有するケ
ーシングパイプ1とこの中に設置されている弾性波発振
源3と2個の受振器4.5と先端抵抗を検出する荷重計
6とから構成されており、上部の弾性波発振源3から地
盤に加えられた弾性波のS波速度を2個の受振器4.5
で測定し、各受振器4.5の間の弾性波到達時間差から
弾性波速度を求めるようにしている。
FIG. 1 shows a principle diagram of the elastic wave velocity measuring device of the present invention.
This elastic wave velocity measuring device consists of a casing pipe 1 having a cone 2 at its tip, an elastic wave oscillation source 3 installed inside the casing pipe, two geophones 4.5, and a load cell 6 for detecting tip resistance. The S-wave velocity of the elastic wave applied to the ground from the upper elastic wave oscillation source 3 is detected by two geophones 4.5.
The elastic wave velocity is determined from the difference in arrival time of elastic waves between each geophone 4.5.

ケーシングパイプ1は地盤に貫入できる程度の強度を要
すれば足りるが、一般には鋼管が採用される。このケー
シングパイプ1の先端には地盤への貫入を容易にするた
め、コーン2が設けられている。このコーン2の先端の
角度は例えば60゜程度に設定されている。
The casing pipe 1 only needs to have enough strength to penetrate the ground, but generally a steel pipe is used. A cone 2 is provided at the tip of the casing pipe 1 to facilitate penetration into the ground. The angle of the tip of this cone 2 is set to, for example, about 60°.

先端抵抗計測用荷重計6は貫入時にケーシングパイプ1
の先端にかかる地盤の強さを求めるためのもので、コー
ン2にかかる先端抵抗(土圧)から地盤の硬さ・強さを
求め、S波速度との数値的関係を求めるデータとして利
用するようにしている。
The load cell 6 for measuring tip resistance is connected to the casing pipe 1 during penetration.
This is used to determine the strength of the ground applied to the tip of cone 2.The hardness and strength of the ground is determined from the resistance (earth pressure) applied to the tip of cone 2, and is used as data to calculate the numerical relationship with the S-wave velocity. That's what I do.

弾性波発振源3は、例えば第2図の詳細図に示すように
、正逆回転モータ7と、弾性波を発生させ地盤に与える
加振部材8と、この加振部材8に衝撃を与える回転ハン
マー9と、この回転ハンマー9と正逆回転モータ7とを
連結し回転力を伝播するフォーク10とから構成されて
いる。正逆回転モータ7は地上の制御装置(図示省略)
からの指示にようへて正回転と逆回転とを行なう、尚、
モータには減速ギア11が内蔵されており、低速回転で
回転出力が得られるように設けられている。
As shown in the detailed view of FIG. 2, the elastic wave oscillation source 3 includes, for example, a forward and reverse rotation motor 7, an excitation member 8 that generates elastic waves and applies them to the ground, and a rotating motor that applies an impact to the excitation member 8. It is composed of a hammer 9 and a fork 10 that connects the rotary hammer 9 and a forward/reverse rotary motor 7 to transmit rotational force. The forward/reverse rotation motor 7 is a control device on the ground (not shown)
Perform forward and reverse rotation according to the instructions from
The motor has a built-in reduction gear 11, and is provided so that rotational output can be obtained at low speed rotation.

モータ7と回転ハンマー9とはフォーク10を介して連
結されており、モータ7によって回転するフォーク10
がハンマー9を挟持して回転させるように設けられてい
る。一方、ハンマー9はケーシングパイプ1に固着され
ている板ばね12にピン25を介して当接し、この板ば
ね12によってその回転が一時的に阻止されるように設
けられている。したがって、回転エネルギーが板ばね1
2に蓄えられ、尚も回転を続けることによってハンマー
9が板ばね12から外れたときにハンマー9がフォーク
10から離れて自由回転をし加振部材8の一部である打
撃棒14あるいは15を勢いよく打撃するように設けら
れている。打撃方向の切替えは地上のスイッチ(図示省
略)の切り替えによってモータ7の回転方向を切替える
ことによって行なわれる。加振部材8を介して地盤に右
回転と左回転の打撃を加えることによって地盤内に波形
が互いに逆転しなS波を発生させる。ハンマー9はケー
シングパイプ1内の中心に回転自在に設置されている1
例えば、ケーシングパイプl内に固着された隔壁板16
にハンマー9の回転軸17をケーシングパイプ1と同心
状に固着し、該軸17にハンマー9を回転自在に取付け
ている。
The motor 7 and the rotary hammer 9 are connected via a fork 10, and the fork 10 is rotated by the motor 7.
is provided so as to grip and rotate the hammer 9. On the other hand, the hammer 9 is provided so that it comes into contact with a leaf spring 12 fixed to the casing pipe 1 via a pin 25, and its rotation is temporarily prevented by the leaf spring 12. Therefore, the rotational energy of leaf spring 1
2, and by continuing to rotate, when the hammer 9 comes off the leaf spring 12, the hammer 9 separates from the fork 10 and rotates freely, causing the striking rod 14 or 15, which is a part of the vibrating member 8, to move. It is designed to strike with force. The direction of impact is changed by switching the direction of rotation of the motor 7 by switching a switch on the ground (not shown). By applying clockwise and counterclockwise impacts to the ground via the vibrating member 8, S waves whose waveforms are reversed are generated in the ground. The hammer 9 is rotatably installed in the center of the casing pipe 1.
For example, the partition plate 16 fixed inside the casing pipe l
A rotary shaft 17 of the hammer 9 is fixed concentrically to the casing pipe 1, and the hammer 9 is rotatably attached to the shaft 17.

また、ケーシングパイプ1の外周面にはケーシングパイ
プ1内のハンマー9によって打撃され弾性波を地盤に伝
達する加振部材8が設けられている。この加振部材8と
しては、本実施例の場合、歯車状のリングが採用されて
いる。歯車状リングだと地盤への貫入時の抵抗がフラン
ジに比べて週かに小さいにもかかわらず、加振時には歯
面の間の土にも振動を与え環状フランジと同じS波を得
ることができる。このリング8はハンマー9による打撃
力をケーシングパイプ1の周囲の地盤に伝達するための
もので、ケーシングパイプ1の外周に設置されると共に
その一部の打撃棒14.15がケーシングパイプ1内に
突出し、ハンマー9の回転軌跡上に位置するように設け
られている。歯車状リング8はケーシングパイプlの外
周面に形成された環状溝18内に収容され、打撃棒14
゜15部分がケーシングパイプ1を貫通する孔19を通
ってケーシングパイプ1内に突出している。
Furthermore, a vibrating member 8 is provided on the outer peripheral surface of the casing pipe 1 and is struck by a hammer 9 inside the casing pipe 1 to transmit elastic waves to the ground. In this embodiment, a gear-shaped ring is used as the vibrating member 8. Even though the resistance when penetrating into the ground with a gear-shaped ring is slightly smaller than that of a flange, it is possible to vibrate the soil between the tooth surfaces during excitation and obtain the same S wave as an annular flange. can. This ring 8 is for transmitting the striking force of the hammer 9 to the ground around the casing pipe 1, and is installed around the outer circumference of the casing pipe 1, and a part of the striking rod 14, 15 is inserted into the casing pipe 1. It protrudes and is provided so as to be located on the rotation locus of the hammer 9. The gear-shaped ring 8 is housed in an annular groove 18 formed on the outer circumferential surface of the casing pipe l, and is inserted into the striking rod 14.
15 portion projects into the casing pipe 1 through a hole 19 passing through the casing pipe 1.

この歯車状リング8とケーシングパイプ1との間には0
リング20及びテフロン(テトラフルオロエチレン)製
のシート状ワッシャ21などの制振材料を介在して振動
がケーシングパイプlに伝播されるのを防いでいる。F
i動の遮断は上述の0リング20やテフロン製ワッシャ
21などに限定されず、他の割振材料やエラストマー材
の使用も可能である。
Between this gear-shaped ring 8 and the casing pipe 1, there is no
Vibration is prevented from being propagated to the casing pipe l by interposing vibration damping materials such as a ring 20 and a sheet washer 21 made of Teflon (tetrafluoroethylene). F
I-motion isolation is not limited to the above-mentioned O-ring 20 or Teflon washer 21, but other distribution materials or elastomer materials can also be used.

第1図に示すように、上述の弾性波発振源3よりも先端
側には2個の受振器4.5が内蔵されている0例えば、
ケーシングパイプ1の外周面に形成された環状溝22部
に防振ゴム23を介在させて塩化ビニルのパイプ24を
装着し、該パイプ24に受振器4,5を固定し、地盤を
伝播する弾性波の振動振動を検出するように設けられて
いる。
As shown in FIG. 1, two geophones 4.5 are built in on the tip side of the elastic wave oscillation source 3 described above.
A vinyl chloride pipe 24 is attached to the annular groove 22 formed on the outer peripheral surface of the casing pipe 1 with a vibration isolating rubber 23 interposed therebetween, and the vibration receivers 4 and 5 are fixed to the pipe 24 to reduce the elasticity that propagates through the ground. It is arranged to detect vibrational vibrations of waves.

尚、受振器4.5はケーシングパイ11の貫通孔26を
通過してパイプ24に固着されている。ケーシングパイ
プ1の一部を塩化ビニールのパイプ24に1換するのは
、鋼管から成るケーシングパイプ1を伝わる打撃の雑音
を遮断するためであり、特に塩化ビニール製パイプに限
定されるものではなく、S波の伝達速度がケーシングパ
イプ1と違う材質のものを採用すれば足りる。受振器4
,5としては一般に速度ピックアップあるいは加速度ピ
ックアップが採用される。尚、本実施例では貫入時の抵
抗を小さくするために、ケーシングパイプ1と塩化ビニ
ールパイプ24とが面一となるようにほぼ同じ外径のパ
イプに設けられているが、特にこれに限定されるもので
はなく、ケーシングパイプ1に対して受振器4.5を取
付けなパイプ24を僅かに大径ないし小径とすることも
可能である。
Note that the geophone 4.5 passes through the through hole 26 of the casing pipe 11 and is fixed to the pipe 24. The reason why a part of the casing pipe 1 is replaced with a vinyl chloride pipe 24 is to block the noise of impact transmitted through the casing pipe 1 made of a steel pipe, and is not limited to a pipe made of vinyl chloride. It is sufficient to use a material whose S wave transmission speed is different from that of the casing pipe 1. Geophone 4
, 5 are generally speed pickups or acceleration pickups. In this embodiment, in order to reduce the resistance during penetration, the casing pipe 1 and the vinyl chloride pipe 24 are provided on pipes having approximately the same outer diameter so as to be flush with each other, but the present invention is not particularly limited to this. It is also possible to attach the vibration receiver 4.5 to the casing pipe 1 and to make the pipe 24 have a slightly larger or smaller diameter.

尚、上述の実施例は本発明の好適な実施の一例ではある
がこれに限定されるものではなく本発明の要旨を逸脱し
ない範囲において種々変形実施可能である0例えば、加
振部材8としては歯車状リングに特に限定されず、セレ
ーション形状やスプライン形状、ピン形状あるいは環状
フランジ形状であっても良い、また、本実施例では左右
方向に打撃回転を与えることによって波形を反転させ、
S波であることの確認を行なっているが、特にこれに限
定されるものではなくS波の確認が他の方法でとれるの
であれば一方向の回転打撃だけでも実施可能である。勿
論、本発明をS波よりも測定が容易なP波の速度測定に
使用できることはいうまでもない。
Although the above-mentioned embodiment is an example of a preferred implementation of the present invention, it is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, as the vibrating member 8, The ring is not particularly limited to a gear-like ring, and may have a serration shape, a spline shape, a pin shape, or an annular flange shape.In this embodiment, the waveform is reversed by applying impact rotation in the left and right direction,
Although we have confirmed that it is an S wave, the present invention is not particularly limited to this, and if the S wave can be confirmed by other methods, it can be carried out using only one-directional rotational impact. Of course, it goes without saying that the present invention can be used to measure the velocity of P waves, which are easier to measure than S waves.

更に、弾性波発振源3としては上述のモータ7と打撃ハ
ンマー9と歯車状リング8との組合せに限定されず、他
の発振源例えば爆発物による弾性波の発生を採用するこ
とも可能である。また、2個の受振器のうちの1個を弾
性波発振源に設け、弾性波発生から他の受振器到達まで
の時間からS波速度を求めることも可能である。
Furthermore, the elastic wave oscillation source 3 is not limited to the above-mentioned combination of the motor 7, percussion hammer 9, and gear-shaped ring 8, but other oscillation sources such as generation of elastic waves by explosives can also be used. . It is also possible to provide one of the two geophones as an elastic wave oscillation source and determine the S-wave velocity from the time from generation of the elastic wave to arrival at the other geophone.

以上のように構成したので、次のようにして弾性波によ
る探査が行なわれる。まず、探査対象たる地盤の地表か
らケーシングパイプ1を測定しようとする深度まで、ボ
ーリングロッド(図示省略)を介して油圧シリンダ(図
示省略)で貫入する。
With the configuration as described above, exploration using elastic waves is performed as follows. First, a hydraulic cylinder (not shown) is used to penetrate the casing pipe 1 from the ground surface to the depth to be measured via a boring rod (not shown).

そして、地上からの操作によって正逆回転モータ7を回
転させ、モータ7の回転によって駆動されるフォーク1
0がハンマー9を挾持して正転方向(第4図上反時計回
転方向)に回転させる。このとき、ケーシングパイプ1
の板ばね12によってハンマー9の回転が阻止されてい
るため回転エネルギーが板ばね12に蓄えられる。そし
て、更に回転を続けることによってハンマー9が板ばね
12から外れて打撃棒14を勢いよく打撃する。この打
撃によって歯車状リング8に弾性波が生じ、ケーシング
パイプ1の外の歯面8a部分を中心に地盤に振動を与え
る。一方の打撃終了後、スイッチの切り替えによってモ
ータ7を逆回転させ、反対側の打撃棒15を同様にして
ハンマー9で打撃し逆回転の弾性波即ちS波を地盤に与
える。歯車状リング8を介して地盤に右回転と左回転の
打撃を交互に加えて地盤内に波形が反転した2個のS波
を発生させる。この波形が反転した2つの弾性波を受振
器4.5によってそれぞれ検出することによって、S波
であることを確認すると共に各受振器4.5への波動到
達時間差と受振器4.5間の距離から地盤内を伝播する
弾性波速度を求める。
Then, the forward and reverse rotation motor 7 is rotated by an operation from the ground, and the fork 1 is driven by the rotation of the motor 7.
0 grips the hammer 9 and rotates it in the forward rotation direction (counterclockwise rotation direction in the top of FIG. 4). At this time, casing pipe 1
Since rotation of the hammer 9 is prevented by the leaf spring 12, rotational energy is stored in the leaf spring 12. Then, as the rotation continues, the hammer 9 comes off the leaf spring 12 and hits the striking rod 14 with force. This impact generates elastic waves in the gear-like ring 8, which vibrates the ground around the outer tooth surface 8a of the casing pipe 1. After one impact is completed, the motor 7 is reversely rotated by switching a switch, and the opposite impact rod 15 is similarly impacted with the hammer 9 to apply a reversely rotated elastic wave, ie, an S wave, to the ground. Two S waves with reversed waveforms are generated in the ground by alternately applying clockwise and counterclockwise strikes to the ground via a gear ring 8. By detecting the two elastic waves whose waveforms are inverted by the geophones 4.5, it is confirmed that they are S waves, and the difference in wave arrival time to each geophone 4.5 and the difference between the waves between the geophones 4.5 and 4.5 are confirmed. Find the velocity of elastic waves propagating in the ground from the distance.

波動到達時間差は測定波形のピークからビークの時間を
求めることによって得られる。このとき、各受振器4,
5の測定信号を対照することによってケーシングパイプ
1などを伝わるノイズを除去できる。
The wave arrival time difference is obtained by determining the peak to peak time of the measured waveform. At this time, each geophone 4,
By comparing the measurement signals of 5, noise transmitted through the casing pipe 1 and the like can be removed.

斯様にケーシングパイプ1を地盤中に貫入させながら深
度方向に連続的にS波速度を求めることによって地盤内
各地層のS波速炭分布を詳細に求められる。
In this way, by penetrating the casing pipe 1 into the ground and continuously determining the S-wave velocity in the depth direction, the S-wave velocity coal distribution in each stratum within the ground can be determined in detail.

(発明の効果) 以上の説明から明らかなように、本発明は弾性波による
調査を゛行う地盤に弾性波発振源と地盤を伝播する弾性
波の速度を測定する2個の受振器とを1本のケーシング
パイプに収めて地盤に貫入し、弾性波発振源から発振さ
れる弾性波が地盤中を伝播するS波速度を2個の受振器
の波動到達時間差から求め、パイプを貫入して深度方向
に連続的にS波速度を求めるようにしているので、海底
地盤などのように発振源を地表面に設置できない場合や
ポーリング孔をあけ難い柔らかい地盤での弾性波探査を
可能とする。
(Effects of the Invention) As is clear from the above description, the present invention provides a system in which an elastic wave oscillation source and two geophones for measuring the velocity of the elastic waves propagating through the ground are installed in the ground to be investigated using elastic waves. The S-wave velocity at which the elastic wave oscillated from the elastic wave oscillation source propagates through the ground is determined from the difference in wave arrival time between two geophones, and the S-wave velocity is determined by penetrating the pipe and penetrating into the ground. Since the S-wave velocity is continuously determined in the direction, it is possible to perform elastic wave exploration in cases where an oscillation source cannot be installed on the ground surface, such as undersea ground, or in soft ground where it is difficult to drill a polling hole.

また本発明によると、ケーシングパイプの貫入によって
弾性波発振源と受振器を地盤中にセットできるので、探
査に先立ってポーリング孔を穿孔しなくとも良く、調査
費用が安くできる。
Further, according to the present invention, since the elastic wave oscillation source and the receiver can be set in the ground by penetrating the casing pipe, there is no need to drill a polling hole prior to exploration, and the survey cost can be reduced.

また本発明によると、単一ケーシングパイプ内の深度方
向に設置された2mの受振器の間の波動到達時間差から
弾性波の速度を求めるようにしているので、測定間隔が
一定している上に各受振器の出力信号の対照によってノ
イズを除去できるため測定精度が良い、更に、本発明に
よると、ケーシングパイプを貫入することによって深度
方向に連続してS波速度を計測できるので、詳細な地盤
の速度構造が得られる。
Furthermore, according to the present invention, the velocity of elastic waves is determined from the difference in wave arrival times between 2m geophones installed in the depth direction within a single casing pipe, so the measurement interval is constant and The measurement accuracy is good because noise can be removed by comparing the output signals of each geophone.Furthermore, according to the present invention, the S-wave velocity can be measured continuously in the depth direction by penetrating the casing pipe, so detailed ground The velocity structure is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の弾性波速度計測装置の原理図である。 第2図は同装置の詳細な構造の一例を示す縦断面図であ
る。 第3図は第2図の■方向矢視図である。 第4図は第2図のTV−TV線断面図である。 1・・・ケーシングパイプ、 2・・・コーン、 3・・・弾性波発振源、 4.5・・・受振器、 7・・・正逆回転モータ、 8・・・加振部材、 14.15・・・打撃棒、 9・・・回転ハンマー
FIG. 1 is a diagram showing the principle of the elastic wave velocity measuring device of the present invention. FIG. 2 is a longitudinal sectional view showing an example of the detailed structure of the device. FIG. 3 is a view taken in the direction of arrow (■) in FIG. 2. FIG. 4 is a sectional view taken along the line TV--TV in FIG. 2. DESCRIPTION OF SYMBOLS 1... Casing pipe, 2... Cone, 3... Elastic wave oscillation source, 4.5... Earth receiver, 7... Forward/reverse rotation motor, 8... Excitation member, 14. 15...Blowing rod, 9...Rotary hammer

Claims (4)

【特許請求の範囲】[Claims] (1)弾性波による調査を行う地盤に弾性波発振源と地
盤を伝播する弾性波の速度を測定する2個の受振器とを
1本のパイプに収めて地盤に貫入し、前記弾性波発振源
から発振される弾性波が地盤中を伝播するS波速度を前
記2個の受振器の波動到達時間差から求め、前記パイプ
を貫入して深度方向に連続的にS波速度を求めることを
特徴とする弾性波速度計測方法。
(1) An elastic wave oscillation source and two geophones that measure the velocity of the elastic waves propagating through the ground are housed in one pipe, which penetrates the ground to be investigated using elastic waves, and the elastic wave oscillation source is inserted into the ground. The S-wave velocity at which an elastic wave oscillated from a source propagates through the ground is determined from the difference in wave arrival times between the two geophones, and the S-wave velocity is determined continuously in the depth direction by penetrating the pipe. A method for measuring elastic wave velocity.
(2)地中に貫入可能なケーシングパイプと、このパイ
プ内に収容されると共に一部がケーシングパイプの外に
突出した加振部材を有する弾性波発振源と、地盤中を伝
播する弾性波のS波速度を測定する受振器とから成り、
前記受振器は深度方向に一定間隔を開けて2個配置され
ていることを特徴とする弾性波速度計測装置。
(2) A casing pipe that can penetrate into the ground; an elastic wave oscillation source that is housed within the pipe and has a vibrating member that partially protrudes outside the casing pipe; It consists of a geophone that measures the S-wave velocity,
An elastic wave velocity measuring device characterized in that two of the geophones are arranged at a constant interval in the depth direction.
(3)前記ケーシングパイプは先端にコーンを具備した
中空体であることを特徴とする請求項2記載の弾性波探
査装置。
(3) The elastic wave exploration device according to claim 2, wherein the casing pipe is a hollow body having a cone at its tip.
(4)前記加振部材は歯車状リングであることを特徴と
する請求項2又は3記載の弾性波探査装置。
(4) The elastic wave exploration device according to claim 2 or 3, wherein the vibrating member is a gear-shaped ring.
JP14978990A 1990-06-11 1990-06-11 Method and apparatus for measuring elastic wave velocity Expired - Fee Related JPH0756513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14978990A JPH0756513B2 (en) 1990-06-11 1990-06-11 Method and apparatus for measuring elastic wave velocity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14978990A JPH0756513B2 (en) 1990-06-11 1990-06-11 Method and apparatus for measuring elastic wave velocity

Publications (2)

Publication Number Publication Date
JPH0443989A true JPH0443989A (en) 1992-02-13
JPH0756513B2 JPH0756513B2 (en) 1995-06-14

Family

ID=15482752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14978990A Expired - Fee Related JPH0756513B2 (en) 1990-06-11 1990-06-11 Method and apparatus for measuring elastic wave velocity

Country Status (1)

Country Link
JP (1) JPH0756513B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186319A (en) * 1998-12-22 2000-07-04 Ohbayashi Corp Ground investigation method
CN107831218A (en) * 2017-11-29 2018-03-23 四川陆通检测科技有限公司 A kind of excitation apparatus and its method of testing for compressional wave
JP2018173354A (en) * 2017-03-31 2018-11-08 国立研究開発法人産業技術総合研究所 Rotary drive type hammering sound mechanism
CN112798474A (en) * 2020-12-18 2021-05-14 西安科技大学 Method and device for monitoring rock mass grouting diffusion range

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101120485B1 (en) * 2009-07-07 2012-02-29 한국지질자원연구원 Transverse wave generating apparatus for seismic survey

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210585A (en) * 1982-05-19 1983-12-07 エクソン・プロダクシヨン・リサ−チ・コムパニ− Measurement method by acoustic four pole shear wave and its device
JPS63315978A (en) * 1987-06-19 1988-12-23 Nippon Koei Kk Ground survey instrument
JPH01265185A (en) * 1988-04-18 1989-10-23 Chuo Kaihatsu Kk Measuring method for underground artificial elastic wave and its measuring sonde
JPH0255985A (en) * 1988-08-19 1990-02-26 Sankoo Consultant Kk Method and device for measuring speed of shear wave and compressional wave of bed logging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210585A (en) * 1982-05-19 1983-12-07 エクソン・プロダクシヨン・リサ−チ・コムパニ− Measurement method by acoustic four pole shear wave and its device
JPS63315978A (en) * 1987-06-19 1988-12-23 Nippon Koei Kk Ground survey instrument
JPH01265185A (en) * 1988-04-18 1989-10-23 Chuo Kaihatsu Kk Measuring method for underground artificial elastic wave and its measuring sonde
JPH0255985A (en) * 1988-08-19 1990-02-26 Sankoo Consultant Kk Method and device for measuring speed of shear wave and compressional wave of bed logging

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186319A (en) * 1998-12-22 2000-07-04 Ohbayashi Corp Ground investigation method
JP2018173354A (en) * 2017-03-31 2018-11-08 国立研究開発法人産業技術総合研究所 Rotary drive type hammering sound mechanism
CN107831218A (en) * 2017-11-29 2018-03-23 四川陆通检测科技有限公司 A kind of excitation apparatus and its method of testing for compressional wave
CN107831218B (en) * 2017-11-29 2024-02-27 四川陆通检测科技有限公司 Excitation device for longitudinal wave and test method thereof
CN112798474A (en) * 2020-12-18 2021-05-14 西安科技大学 Method and device for monitoring rock mass grouting diffusion range

Also Published As

Publication number Publication date
JPH0756513B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
JP4216590B2 (en) Method and apparatus for measuring LWD shear rate
US4965774A (en) Method and system for vertical seismic profiling by measuring drilling vibrations
AU2006216843B2 (en) Acoustic logging-while-drilling tools having a hexapole source configuration and associated logging methods
US7650962B2 (en) Rotary actuated seismic source and methods for continuous direct-push downhole seismic testing
US6098021A (en) Estimating formation stress using borehole monopole and cross-dipole acoustic measurements: theory and method
US5265067A (en) Methods and apparatus for simultaneous compressional, shear and Stoneley logging
EP3542190B1 (en) Soil probing device having built-in generators and detectors for compressional waves and shear waves
US5774418A (en) Method for on-line acoustic logging in a borehole
DK166396B (en) PROCEDURE AND APPARATUS FOR ACOUSTIC EXAMINATION OF Boreholes
CN111208198A (en) Method for measuring wave velocity of rock mass in real time and evaluating quality of rock mass
JP2007231729A (en) Method and device for prior survey in tunnel construction
NO174526B (en) Procedure and apparatus for multi-pole acoustic logging
US4549630A (en) Continuous shear wave logging apparatus
NO334654B1 (en) Acoustic logging apparatus and method for determining shear wave velocity and orientation.
CN115390129A (en) In-situ acoustic penetration device with built-in longitudinal and transverse wave transmitting and receiving transducers
JPH0443989A (en) Method and instrument for measuring elastic wave speed
JP4260329B2 (en) Geological exploration method in front of tunnel face
US4310066A (en) Torsional shear wave generator
JP4187042B2 (en) Seismic depth transmission method using underground insertion tube
US5432305A (en) Penetrometer acoustic soil sensor
JP3072621B2 (en) Ground survey method and device using S-wave generator and cone penetration device mounted on ground survey vehicle
NO168855B (en) PROCEDURE AND APPARATUS FOR ACOUSTIC CUTTING WAVE LOGGING IBOREHOLES
JPH04353191A (en) Geologic survey device
JPH02176011A (en) Method of evaluating ground properties
JP2000186319A (en) Ground investigation method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees