JP6800000B2 - 加熱対象物計測システム - Google Patents

加熱対象物計測システム Download PDF

Info

Publication number
JP6800000B2
JP6800000B2 JP2016224737A JP2016224737A JP6800000B2 JP 6800000 B2 JP6800000 B2 JP 6800000B2 JP 2016224737 A JP2016224737 A JP 2016224737A JP 2016224737 A JP2016224737 A JP 2016224737A JP 6800000 B2 JP6800000 B2 JP 6800000B2
Authority
JP
Japan
Prior art keywords
heating
optical
measuring device
transparent body
convection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016224737A
Other languages
English (en)
Other versions
JP2018081041A (ja
Inventor
征利 井上
征利 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Toko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Toko Co Ltd filed Critical Takaoka Toko Co Ltd
Priority to JP2016224737A priority Critical patent/JP6800000B2/ja
Publication of JP2018081041A publication Critical patent/JP2018081041A/ja
Application granted granted Critical
Publication of JP6800000B2 publication Critical patent/JP6800000B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明の実施形態は、高温または加熱中の対象物の観察や表面形状計測などを行なうための加熱対象物計測システムに関する。
高温加熱が必要であり、かつ加熱に伴う形状や物理的諸特性の変化が問題となる製品あるいは物質が工業生産品の中には数多く存在する。高温または加熱中に観察が求められている対象物の一例として、電子回路基板製造におけるリフロー工程の半田ボール電極およびその基板がある。リフロー工程では、半田をボール状に形成するために、半田が溶融する250度前後まで半田を加熱する必要がある。しかし、リフロー工程においては、半田だけでなく基板も一緒に加熱されてしまう。このため、半田の溶融状態だけでなく、基板の反りなどの変形が問題となる場合がある。
これらのリフロー工程中に発生する問題は、製品の品質や歩留まりに影響してしまうことから、リフロー工程中の半田ボールの融解状態や基板の反りを観察あるいは計測し、そのメカニズムを解明することが重要となる。このメカニズム解明のため、高温または加熱中の対象物を観察し、あるいは表面形状を計測するための技術の開発が求められている。
高温または加熱中の対象物を観察する技術としては、たとえば、当該対象物を筐体内に密閉することにより熱気を遮断するとともに、密閉筐体の一部に断熱ガラスで観察用の窓を設け、光学系によりその観察窓を通して対象物を観察し、あるいは表面形状を計測する技術がある(たとえば特許文献1参照)。
しかし、この種の技術では、観察窓のガラスが高温になってしまうほか、温度勾配によってガラスに応力が発生し偏光に影響を与えてしまうことがある。また、観察窓のガラスを介して温められた気体が、光学系の対物レンズなどに熱の影響を与えてしまう可能性がある。光学系に熱の影響があると、キャリブレーション値が変化してしまうなど観測結果や計測結果に無視できない影響を与えてしまう。このため、この種の技術では、光学系が観察窓を含む筐体で発生する熱の影響を受けないように、光学系と観察窓とを離して設置しなければならない。
特開平6−102193号公報
対象物が微細な場合には、顕微鏡のような高分解能の光学計測器が必要となる。しかし、高分解能の光学計測器のワーキングディスタンス(光学系と対象物との距離)は非常に短いため、そもそも高分解能の光学計測器と観察窓とは、離して設置することができない。他方、対象物を非接触で加熱するための方法には、大きく輻射加熱技術と対流加熱技術があるが、リフロー工程中の半田ボールの融解状態や基板の反りを観察あるいは計測し、そのメカニズムを解明するための対象物の加熱方法としては、対流加熱が好ましい。
本発明は、上述した事情を考慮してなされたもので、対流加熱中の対象物を、高分解能の光学計測装置により高精度かつ確実に観察および計測することができる加熱対象物計測システムを提供することを目的とする。
本発明の一実施形態に係る加熱対象物計測システムは、上述した課題を解決するために、対象物を対流加熱する対流加熱装置と、対流加熱中の前記対象物の形状を計測する光学計測装置と、前記対流加熱装置が発する熱が前記光学計測装置に到達することを妨げる熱交換器と、を備える。前記対流加熱装置は、前記対象物を載置する載置台を内包するとともに、前記光学計測装置の光路上に前記対象物と離間して開口部が設けられた加熱炉筐体と、前記加熱炉筐体の前記開口部をふさぐ観察窓用透明体と、を有する。前記光学計測装置は、前記光路上の前記観察窓用透明体を介して前記対象物に対向する位置に設けられた対物レンズを有する。前記熱交換器は、それぞれが平行平板型の薄型透明体により構成され、前記対物レンズおよび前記観察窓用透明体のいずれとも互いに離間して設けられ、かつ、各薄型透明体の面が前記光路に交差するとともに互いの面どうしが平行かつ互いに離間するように設けられた、複数枚の薄型透明体と、前記複数枚の薄型透明体どうしの離間した空間により形成され、強制的に一方向に気体を流される第1断熱流路と、を有する。
本発明の一実施形態に係る加熱対象物計測システムの一例を示す全体構成図。 対流加熱装置、光学計測装置および熱交換器の位置関係の一例を示す説明図。 熱交換器の一構成例を示す断面図。 空冷用の第1断熱流路および水冷用の第2断熱流路の一例を示す平面図。 本実施形態に係る熱交換器を用いることによる断熱効果の一例を示す説明図。 対物レンズと対象物との相対的な位置関係を変更する場合の両者の位置関係の一例を示す説明図。 (a)は三角測量法による形状計測方法の一例を示す説明図、(b)は共焦点法による形状計測方法の一例を示す説明図。
本発明に係る加熱対象物計測システムの実施の形態について、添付図面を参照して説明する。
図1は、本発明の一実施形態に係る加熱対象物計測システム10の一例を示す全体構成図である。加熱対象物計測システム10は、対流加熱装置11、光学計測装置12、熱交換器13、および処理装置14を有する。また、図2は、対流加熱装置11、光学計測装置12および熱交換器13の位置関係の一例を示す説明図である。なお、以下の説明では、光学計測装置12の光軸をz方向、対流加熱用の気流方向をx方向とする場合の例を示す(図1等参照)。
図1に示すように、対流加熱装置11、光学計測装置12および熱交換器13は、筐体15に内包される。筐体15の内部のたとえば内壁面には、筐体内の温度および湿度を調整するための空調機16が設けられる。光学計測装置12のうち熱交換器13の上方に位置する部分は、図3に示す断熱材17により周囲を囲まれてもよい。断熱材17自身が時間経過とともに温度上昇することを未然に防ぐよう、断熱材17としては、熱伝導率が低く熱容量の大きい材質のものを用いることが好ましい。
空調機16は、対流加熱装置11からの発熱により、時間経過とともに筐体15の内部空間の温度が上昇していくのを防ぎ、温度を一定にするのが主な役割である。空調機16は、処理装置14に制御されて、光学計測装置12の周辺に熱が滞留しないよう、気体の対流を起こしたり、不要な熱を廃棄したりする機能をもつ。また、熱交換器13は空冷および水冷の機能を有するため、光学計測装置12の周辺に結露が発生しないように湿度を管理することもできる。
対流加熱装置11は、加熱炉筐体21、加熱部22、および加熱炉駆動部23を有する。加熱炉筐体21の内部に設けられた載置台24には、計測対象となる対象物25が載置される。加熱部22は、少なくとも加熱用ヒータと温度センサを有し、処理装置14により制御されて、たとえば工場エアを加熱用ヒータで所定温度に加熱して加熱炉筐体21の内部へ送る。加熱炉筐体21の内部に送られた高温の気体は、加熱炉筐体21の内部をたとえば層流となって対流することにより対象物25を対流加熱し、加熱炉筐体21に設けられた排熱口26から排気される。
加熱炉筐体21の光学計測装置12の光路上には、対象物25と離間して開口部27が設けられる。この開口部27は、観察窓用透明体28でふさがれる。観察窓用透明体28は、光学計測装置12の観察窓として機能する。
この観察窓用透明体28は、対流加熱に用いられる高温の気体により、加熱炉筐体21の内部から温められる。この観察窓用透明体28から伝わる熱などの対流加熱装置11が発する熱が光学計測装置12に到達すると、光学計測装置12による計測結果に悪影響を及ぼしてしまう。特に、対象物25が微細な場合には、光学計測装置12として顕微鏡のような高分解能の光学計測器を用いる場合、光学計測装置12のワーキングディスタンスWDは非常に短くなる。このため、当然ながら光学計測装置12の対物レンズ34と観察窓用透明体28との距離d1も短くなり、光学計測装置12は対流加熱装置11が発する熱の影響を受けやすくなってしまう。
そこで、本実施形態に係る加熱対象物計測システム10は、対流加熱装置11が発する熱が光学計測装置12に到達することを妨げるよう、対流加熱装置11および光学計測装置12のいずれとも互いに離間する熱交換器13を備える。
加熱炉駆動部23は、ステッピングモータやサーボモータ、あるいはピエゾモータなどの一般的な駆動装置により構成され、加熱炉筐体21をx方向、y方向およびz方向の少なくとも1方向に変位させることにより、光学計測装置12の対物レンズ34と対象物25との相対的な位置関係を変更する。この変位の量、方向およびタイミングは、処理装置14により制御される。
光学計測装置12は、光学系31、支持部32および光学系駆動部33を有し、対流加熱中の対象物25の形状を計測する。光学計測装置12としては、たとえば共焦点光学系を用いた共焦点光学顕微鏡を用いることができる。
光学系31の対物レンズ34は、図2に示すように、光路上の観察窓用透明体28を介して対象物25に対向する位置に設けられる。光学系駆動部33は支持部32を介して、光学系31と熱交換器13とを一体として、x方向、y方向およびz方向の少なくとも1方向に変位させることにより、光学計測装置12の対物レンズ34と対象物25との相対的な位置関係を変更する。この変位の量、方向およびタイミングは、処理装置14により制御される。加熱対象物計測システム10は、加熱炉駆動部23および光学系駆動部33の少なくとも一方を備えることにより、対物レンズ34と対象物25との相対的な位置関係を変更可能に構成されることが好ましい。
図3は、熱交換器13の一構成例を示す断面図である。熱交換器13は、底部41を含む支持筐体42を有する。底部41の光路上には、対物レンズ34および対象物25のいずれとも離間するように開口部43が設けられる。支持筐体42は、支持筐体42の底部41に設けられた開口部43をふさぐように、複数枚の平行平板型の薄型透明体44を支持する。
複数枚の薄型透明体44のそれぞれは、対物レンズ34および観察窓用透明体28のいずれとも互いに離間して設けられる。また、複数枚の薄型透明体44のそれぞれは、各薄型透明体44の面が光路に交差するとともに、互いの面どうしが平行かつ互いに離間するように設けられる。
図4は、空冷用の第1断熱流路45および水冷用の第2断熱流路48の一例を示す平面図である。
複数枚の薄型透明体44どうしの間には空間が形成され、空冷用の第1断熱流路45として利用される。この結果、第1断熱流路45は、対物レンズ34および観察窓用透明体28のいずれとも互いに離間して位置することになる。
たとえば、吸気口46から導入された工場エアが、第1断熱流路45を経て、排気口47から排出されることにより、第1断熱流路45には強制的に一方向に気体が流される。
2枚の薄型透明体44の間の伝熱は前記強制対流によって遮断される。また、薄型透明体44は高温にさらされるため、その材質としては、耐熱性に優れた、たとえば合成石英ガラスなどが好ましい。
2枚の薄型透明体44の間の伝熱の原因は、伝熱の3形態(熱伝導、熱伝達、熱放射)のうち、熱伝達が主である。常温の強制対流を流し続けることにより、第1断熱流路45は十分な断熱効果を挙げることができる。複数枚の薄型透明体44どうしの間を空冷用の第1断熱流路45とすることにより、層流状態の気体を流すことができ、気体の屈折率を安定させて、そのゆらぎによる計測ノイズを低減することが可能となる。干渉計測をするような場合は屈折率のゆらぎは大きな問題となる。検証実験では、気体を対流させた状態を干渉計で観測してもゆらぎがないことを確認している。また、その状態でリフロー中の対象物25を観測しても画像のゆらぎは見られなかった。
なお、薄型透明体44は、3枚以上配置し、強制対流させる層を増やしてもよい。また、熱源からは輻射熱も発生する。これは電磁波の形で空間を伝播し、気体に影響をほぼ受けずに熱が伝わるため、熱交換器13では防ぐことが難しい。輻射熱の影響は、たとえば薄型透明体44に熱源からの輻射熱のピーク波長を反射するような薄膜を塗布することで、光学計測装置12への熱伝達を低減することができる。
以上説明したように、薄型透明体44は、輻射熱対策以外はそれ自身に断熱または冷却する機能を必要としないため、熱的には厚さを任意に選択することができる。これにより、従来の観察方法で光路中に置かれるガラス厚に対し、厚さを大幅に薄くしても光学計測装置12に対する熱遮断を可能としている。
薄型透明体44を薄くすることができるのは、光学計測装置12にとっては大きなメリットである。特に、光学計測装置12のワーキングディスタンスWDが小さい場合でも、薄型透明体44を薄くすることにより、光学計測装置12の対物レンズ34と観察窓用透明体28との距離d1を短くすることが可能となる。
また、光学計測装置12の中には、顕微鏡のように結像性能が非常に重要であるものが存在する。対物レンズ34の開口数が比較的大きいものにおいては、光路中に透明体が挿入されると球面収差あるいは色収差が発生し、画質を劣化させてしまう。画質の劣化量は透明体の厚さの影響により変わり、薄いものであれば影響は小さい。この点、本実施形態に係る薄型透明体44は、顕微鏡のカバーガラスレベルの厚さにすることもできる。このため、薄型透明体44が光学計測装置12の画質に与える影響を非常に小さくすることができる。
また、光学計測装置12には、光の持つ偏光特性を利用したもの、あるいは対象物25の偏光特性を計測するものなども含まれるが、このような場合、光路中に挿入された薄型透明体44が複屈折特性を有していると正しい計測ができなくなってしまう。ここで、複屈折とは、物質に固有なある軸を考え、その軸方向に振動する光線を常光線、その軸に直交する方向に振動する光線を異常光線と呼ぶことにすると、これら2つの光線に対する物質の屈折率がそれぞれ異なる値をもつ現象のことをいう。通常ガラスはアモルファスな構造を持つため、複屈折現象は見られないが、物理的な圧力負荷がかかると、分子配列に方向性が生じ、複屈折現象が現れることが知られている。
本実施形態に係る薄型透明体44は、対象物25の対向面が高温となる。このため、対象物25側に位置する薄型透明体44には熱歪みが発生する可能性があり、その歪みにより複屈折が発生するおそれがある。複屈折が発生すると直線偏光が直線でなくなり、例えば楕円偏光となり計測に影響を与えることになる。
ここで、この影響の程度は、薄型透明体44の厚さによって異なる。したがって、薄型透明体44を十分薄くできるならば、その影響を小さくすることができ、計測には無視できる。薄型透明体44として薄さ0.12mmの合成石英ガラスを使用した検証実験を行った結果、この薄さが、上述の画像に与える影響がなく、また複屈折が計測に影響を与えない程度の薄さであることを確認することができた。
また、支持筐体42は、底部41の開口部43を囲む領域内を走行し、液体を流されて支持筐体42を冷却する水冷用の第2断熱流路48を有する。なお、図4には第2断熱流路48が円環状の走行路を有する循環用パイプにより構成される場合の例を示したが、走行路は蛇行してもよいし、循環しなくてもよい。
熱交換器13は、熱伝導率の高い材質を構成部材に用いることで熱交換効率を上げることができる。また、底部41の内部に第2断熱流路48を通しているため、熱交換器13の小型化を図ることができるとともに、装置の形状に合わせて、均一に冷却できるように第2断熱流路48を配置することも可能となる。
さらに、第2断熱流路48を通す底部41に厚みができたとしても、光路を含む対物レンズ34が挿入される領域には第2断熱流路48は設けられない。このため、底部41のうち対物レンズ34が挿入される領域は、非常に薄く設計することができる。したがって、光学計測装置12として顕微鏡のような高分解能の光学計測器を用いる場合であって、光学計測装置12のワーキングディスタンスWDが非常に短い場合であっても、底部41のうち対物レンズ34が挿入される領域は、当該ワーキングディスタンスよりも十分に薄くすることができる。
また、第2断熱流路48を流れる液体の温度を低くすれば冷却効果は高まるが、低すぎても光学計測装置12の測定結果に悪影響を与えると考えられる。このため、液体の温度は、定常状態で室温レベルとなるように設定するのが望ましい。また、局所的に低温となる部分などがあると、その部分で結露してしまう可能性があるため、空調機16によって筐体15の内部空間の湿度を調整することが好ましい。
処理装置14は、処理回路、RAMおよびROMをはじめとする記憶媒体、入力部および表示部などを有する一般的なパーソナルコンピュータなどの情報処理装置によって構成することができる。処理回路は、この記憶媒体に記憶されたプログラムに従って加熱対象物計測システム10の動作の全般的な制御を実行する。処理装置14の処理回路は、専用のハードウェアで構成してもよいし、プロセッサによるソフトウェア処理で各種機能を実現するように構成してもよい。ここで、プロセッサとは、専用または汎用のCPU(Central Processing Unit)、GPU(Graphics Processing Unit)を含む。また、専用のハードウェアとは、特定用途向け集積回路(ASIC:Application Specific Integrated Circuit)、プログラマブル論理デバイス、およびフィールドプログラマブルゲートアレイ(FPGA:Field Programmable Gate Array)などの回路を含む。上記プログラマブル論理デバイスとしては、例えば、単純プログラマブル論理デバイス(SPLD:Simple Programmable Logic Device)、複合プログラマブル論理デバイス(CPLD:Complex Programmable Logic Device)などが挙げられる。
ここでは一例として、処理装置14の処理回路がプロセッサである場合について説明する。この場合、処理装置14は、記憶媒体に記憶されたプログラムを読み出して実行することにより、少なくとも空調制御機能、加熱制御機能および計測機能を実現する。
なお、処理回路は、単一のプロセッサによって構成されてもよいし、複数の独立したプロセッサの組み合わせによって構成されてもよい。プロセッサが複数設けられる場合、プログラムを記憶する記憶媒体は、プロセッサごとに個別に設けられてもよいし、1つの記憶媒体が全てのプロセッサの機能に対応するプログラムを一括して記憶してもよい。
処理装置14は、空調制御機能により、筐体15内の温度および湿度を所定の値に維持するよう、空調機16を制御する。処理装置14は、加熱制御機能により、対流加熱装置11の加熱部22を制御することにより、対象物25の対流加熱を制御する。処理装置14は、計測機能により、光学計測装置12の光検出器の出力信号に応じて、対象物25の立体形状計測処理を実行する。たとえば、光学計測装置12が共焦点光学系を用いて構成される場合、処理装置14は、計測機能により、共焦点光学系の出力に応じて対象物25の立体形状計測処理を実行する。また、処理装置14は、計測機能により、必要に応じて加熱炉駆動信号により加熱炉駆動部23を制御し、あるいは光学系駆動信号により光学系駆動部33を制御して、対物レンズ34と対象物25との相対的な位置関係を変更する。
図5は、本実施形態に係る熱交換器13を用いることによる断熱効果の一例を示す説明図である。図5に示すように、熱交換器13を用いることにより、対象物25が約240度の高温であるときであっても、対物レンズ34の温度は、雰囲気気体の温度と同程度の温度である24度で安定させることができる。
本実施形態に係る加熱対象物計測システム10は、対流加熱装置11が発する熱が光学計測装置12に到達することを妨げる複数枚の薄型透明体44を有する熱交換器13を備える。このため、光学計測装置12として共焦点光学系を用いる場合など、光学計測装置12のワーキングディスタンスWDが小さいために対物レンズ34と対象物25とを近づけなければならない場合であっても、対物レンズ34と観察窓用透明体28との距離d1を近づけつつ、対物レンズ34を熱から守ることができる。
一般に、ミクロンレベルの計測を行なう場合、対象物25と対物レンズ34との距離WDは数十ミリに近づける必要がある。ところが、この種の高分解能の対物レンズ34は、わずか数度の温度上昇でも光学計測装置12の出力データに悪影響があるばかりでなく、レンズが不可逆な損傷を受けることもある。そして、本実施形態に係る加熱対象物計測システム10が計測対象とする対象物25は、200度以上の高温体である。したがって、ミクロンレベルの計測を行なう場合、対物レンズ34を対象物25の熱から守ることが必須となる。
本実施形態に係る加熱対象物計測システム10によれば、熱交換器13を備えることにより、光学計測装置12が熱による影響を受けることがない。このため、対流加熱中の対象物25を、高分解能の光学計測装置12により、非常に近い距離WD(たとえば15〜50mmなど)から高精度かつ確実に観察および計測することができる。
また、対流加熱装置11を用いて対流加熱方式により対象物25を加熱することにより、赤外線を用いた輻射加熱方式を適用する場合に比べ、加熱炉筐体21内の温度均一性を高めることができるとともに、半田のリフローに近い状況を再現できる。
また、対象物25が半田のフラックスを含む場合、対流加熱方式であれば、加熱された対象物25から観察窓用透明体28に向けて立ち昇る気化したフラックスを対流する加熱気体によって押し流すことができる。このため、輻射加熱方式に比べ、対流加熱方式を用いる本実施形態に係る加熱対象物計測システム10によれば、観察窓用透明体28がフラックスによって汚れることを未然に防ぐことができ、対象物25の正確な計測が可能である。
また、対流加熱方式は、加熱炉筐体21内の空気が層流として対流するため、輻射加熱方式に比べ、対象物25と観察窓用透明体28との間の気体のゆらぎを抑止することができる。ゆらぎの発生は、局所的な空気の屈折率の変化を意味し、計測精度に悪影響を及ぼすことが知られている。
また、加熱対象物計測システム10は、上述の通り、対物レンズ34を熱から守りつつ、高分解能の光学計測装置12の対物レンズ34と観察窓用透明体28との距離d1を短くすることができる。このため、熱交換器13の薄型透明体44と観察窓用透明体28との距離d2(図2参照)を短くすることができ(たとえば2〜5mmなど)、薄型透明体44と観察窓用透明体28との空間を狭くすることができる。したがって、薄型透明体44と観察窓用透明体28との空間の気体のゆらぎを抑えることができる。
また、観察窓用透明体28のみで対物レンズ34の断熱を試みる場合には、観察窓用透明体28は、たとえば30mmや40mm程度の厚みが必要となってしまう。一方、本実施形態に係る加熱対象物計測システム10は、熱交換器13によって対物レンズ34を熱から守ることができるため、観察窓用透明体28をたとえば1〜2mm程度の薄さにすることができる。このため、対物レンズ34を熱から守りつつ、ワーキングディスタンスWDをさらに短くすることができる。また、観察窓用透明体28の厚みを薄くすることができるため、光路上に挿入される透明体の厚さを薄くすることができ、光学計測装置12の結像性能を高く維持することができる。
また、観察窓用透明体28は、自身も加熱炉によって加熱されてしまうため、一般に加熱炉筐体21の外部から強制対流によって冷却する必要がある。しかし、外部から観察窓用透明体28を冷却すると、加熱炉筐体21内の気体の熱が観察窓用透明体28に奪われてしまい、加熱炉筐体21内の温度均一性が損なわれてしまう。また、観察窓用透明体28を強制対流によって冷却すると、観察窓用透明体28の近傍の雰囲気気体がゆらいでしまうおそれがある。このため、このゆらぎを防ぐように強制対流の強度等を制御しなければならず煩雑である。一方、本実施形態に係る加熱対象物計測システム10は、熱交換器13を備えることにより、光学計測装置12が熱による影響を受けることがない。このため、そもそも観察窓用透明体28を冷却する必要はなく、加熱炉筐体21内の温度均一性が損なわれることも、観察窓用透明体28の近傍の雰囲気気体がゆらぐこともない。
なお、観察窓用透明体28もまた同様に、複数枚の平行平板型の薄型透明体により構成してもよい。このとき、複数枚の平行平板型の薄型透明体は、熱交換器13の薄型透明体44と同様に、各薄型透明体の面どうしが平行かつ互いに離間するように設けられるとよい。観察窓用透明体28を複数枚の平行平板型の薄型透明体により構成する場合、加熱炉筐体21内の温度が外部雰囲気から影響をうけづらくなる。このため、加熱炉筐体21内の温度分布をより均一にすることができ、対象物25をさらに均一に加熱することができる。
図6は、対物レンズ34と対象物25との相対的な位置関係を変更する場合の両者の位置関係の一例を示す説明図である。加熱炉駆動部23および光学系駆動部33の少なくとも一方を備えることにより、光学系31と熱交換器13とを一体として、対物レンズ34と対象物25との相対的な位置関係を変更できる。したがって、光学計測装置12は常に熱交換器13の効果を受け続けることができ、ワーキングディスタンスWDを維持し続けることができるため、高分解能のまま広範囲の計測を行うことができる。
また、本実施形態に係る光学計測装置12が共焦点光学系を用いて構成される場合、処理装置14は、計測機能により、共焦点法により対象物25の立体形状計測を行なうことができる。共焦点光学系は光学系31内の、対物レンズ34の焦点位置と共役な位置に微小な穴ピンホールを配置することで、光源から照射された照明光を対物レンズ34を介して対象物25の表面上に照射した場合、対物レンズ34と対象物25とのZ方向の位置関係によって、光検出器に受光する反射光量が変化する。この位置関係を微動させることで、光検出器に受光する反射光量が最大となる位置を求め、対象物25の形状計測が可能となる。
また、共焦点法による形状計測方法は、三角測量法による一般的な形状計測方法に比べて死角の少ない正確な形状計測が可能である。
図7(a)は三角測量法による形状計測方法の一例を示す説明図であり、(b)は共焦点法による形状計測方法の一例を示す説明図である。
一般に、光学系を用いた形状計測では反射光の光軸に沿った仮想的な視線から観察が行われることになるが、三角測量法では照明光の入射角と対物レンズ34の光軸(受光素子へ向かう反射光の方向)とが大きな角度をなすために、不可視領域ができてしまう(図7(a)参照)。一方、共焦点法では、対象物25に対する照明光の入射光の光軸と対象物25による反射光の光軸とが一致する(図7(b)参照)。このため、共焦点法によれば、不可視領域がなく、正確に対象物25の形状を計測することができることがわかる。
以上説明した少なくとも1つの実施形態によれば、対流加熱中の対象物25を、高分解能の光学計測装置12により高精度かつ確実に観察および計測することができる。
なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10…加熱対象物計測システム
11…対流加熱装置
12…光学計測装置
13…熱交換器
15…筐体
16…空調機
21…加熱炉筐体
23…加熱炉駆動部
24…載置台
25…対象物
27…加熱炉筐体の開口部
28…観察窓用透明体
31…光学系
33…光学系駆動部
34…対物レンズ
41…底部
42…支持筐体
43…熱交換器の開口部
44…薄型透明体
45…第1断熱流路
48…第2断熱流路

Claims (8)

  1. 対象物を対流加熱する対流加熱装置と、対流加熱中の前記対象物の形状を計測する光学計測装置と、前記対流加熱装置が発する熱が前記光学計測装置に到達することを妨げる熱交換器と、を備えた加熱対象物計測システムであって、
    前記対流加熱装置は、
    前記対象物を載置する載置台を内包するとともに、前記光学計測装置の光路上に前記対象物と離間して開口部が設けられた加熱炉筐体と、
    前記加熱炉筐体の前記開口部をふさぐ観察窓用透明体と、を有し、
    前記光学計測装置は、
    前記光路上の前記観察窓用透明体を介して前記対象物に対向する位置に設けられた対物レンズを有し、
    前記熱交換器は、
    それぞれが平行平板型の薄型透明体により構成され、前記対物レンズおよび前記観察窓用透明体との間にいずれとも互いに離間して設けられ、かつ、各薄型透明体の面が前記光路に交差するとともに互いの面どうしが平行かつ互いに離間するように設けられた、複数枚の薄型透明体と、
    前記光路上に前記対物レンズおよび前記対象物との間にいずれとも離間するように開口部が設けられた底部を有し、前記底部の前記開口部をふさぐように前記複数枚の薄型透明体を支持する支持筐体と、
    前記複数枚の薄型透明体どうしの離間した空間により形成され、強制的に一方向に気体を流される第1断熱流路と、
    を有する、
    加熱対象物計測システム。
  2. 前記熱交換器は
    前記底部の前記開口部を囲む領域内を走行し、液体を流されて前記支持筐体を冷却する第2断熱流路と、
    をさらに有する請求項1記載の加熱対象物計測システム。
  3. 前記光学計測装置は、
    前記光路の光軸に直交する第1方向、前記光軸に直交し前記第1方向に直交する第2方向および前記光軸に平行な第3方向の少なくとも1つの方向に、前記光学計測装置と前記熱交換器とを一体に移動させることにより、前記対物レンズと前記対象物との相対的な位置関係を変更する光学系駆動部、
    をさらに有する請求項1または2に記載の加熱対象物計測システム。
  4. 前記対流加熱装置は、
    前記光路の光軸に直交する第1方向、前記光軸に直交し前記第1方向に直交する第2方向および前記光軸に平行な第3方向の少なくとも1つの方向に、前記加熱炉筐体を移動させることにより、前記対物レンズと前記対象物との相対的な位置関係を変更する加熱炉駆動部、
    をさらに有する請求項1ないし3のいずれか1項に記載の加熱対象物計測システム。
  5. 前記対流加熱装置の前記加熱炉筐体の前記観察窓用透明体は、
    複数枚の平行平板型の薄型透明体により構成され、各薄型透明体の面どうしが平行かつ互いに離間するように設けられた、
    請求項1ないし4のいずれか1項に記載の加熱対象物計測システム。
  6. 前記対流加熱装置、前記光学計測装置、および前記熱交換器を内包するとともに、内部の温度および湿度を調整するための空調機を内包する筐体と、
    前記筐体内の温度および湿度を所定の値に維持するよう前記空調機を制御する空調制御部と、
    をさらに備えた請求項1ないし5のいずれか1項に記載の加熱対象物計測システム。
  7. 前記対流加熱装置による前記対象物の対流加熱を制御する加熱制御部、
    をさらに備えた請求項1ないし6のいずれか1項に記載の加熱対象物計測システム。
  8. 前記光学計測装置は、
    共焦点光学系を用いて構成され、前記対流加熱装置の前記観察窓用透明体、前記熱交換器の前記複数枚の薄型透明体、および前記対物レンズを介して受光した前記対象物の反射光の強度に応じた信号を出力する光検出器をさらに有し、
    前記光検出器の出力に応じて前記対象物の立体形状計測処理を実行する計測部、
    をさらに備えた請求項1ないし7のいずれか1項に記載の加熱対象物計測システム。
JP2016224737A 2016-11-18 2016-11-18 加熱対象物計測システム Active JP6800000B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016224737A JP6800000B2 (ja) 2016-11-18 2016-11-18 加熱対象物計測システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016224737A JP6800000B2 (ja) 2016-11-18 2016-11-18 加熱対象物計測システム

Publications (2)

Publication Number Publication Date
JP2018081041A JP2018081041A (ja) 2018-05-24
JP6800000B2 true JP6800000B2 (ja) 2020-12-16

Family

ID=62197685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016224737A Active JP6800000B2 (ja) 2016-11-18 2016-11-18 加熱対象物計測システム

Country Status (1)

Country Link
JP (1) JP6800000B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102492065B1 (ko) * 2020-10-22 2023-01-26 한국원자력연구원 광학 측정 장치 및 방법

Also Published As

Publication number Publication date
JP2018081041A (ja) 2018-05-24

Similar Documents

Publication Publication Date Title
US9753509B2 (en) Imaging apparatus for thermal analyzer and thermal analyzer including the same
US20130063833A1 (en) Shape stabilized mirror module and method to stabilize a reflective element
TWI564611B (zh) 於微影投影曝光設備中熱致動鏡之元件配置及其致動方法
US20110080663A1 (en) Adaptive laser beam shaping
JP5436706B2 (ja) 計測装置
JP6800000B2 (ja) 加熱対象物計測システム
JP2018044881A (ja) クラック検査装置及びクラック検査方法
JP4435157B2 (ja) 熱によって光学的な歪曲を減少させるための装置及び方法
KR100881713B1 (ko) 진공 흑체 소스 패키지
US20200353561A1 (en) Device for a laser working system, laser working system having same, and method for setting a focal position of an optical element
KR20200083037A (ko) 열화상 장치
JP2013217908A (ja) 計測装置
US5505543A (en) Emissivity measurement apparatus and method
JP2010101808A (ja) 曲率半径測定方法および装置
US11808938B2 (en) Apparatus for measuring optical characteristics of a test optical element under low-temperature environment
JP5812609B2 (ja) 加熱装置
JP2006322787A (ja) 劣化試験装置及び劣化試験方法
JP2011058969A (ja) 光学計測器用断熱装置
JP7441621B2 (ja) 赤外線測定システム
Gerasyutenko et al. Improvement of Methods and Means for the Verification and Calibration of Thermal Imagers
JP4613340B2 (ja) 被検光学系の焦点位置の測定方法
TWI848424B (zh) 熱成像鏡頭
TW201923316A (zh) 微輻射熱計及製造方法
Saunders et al. A focus effect in some thermal imaging systems
Batsale et al. Thermographic analysis of material behavior

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201124

R150 Certificate of patent or registration of utility model

Ref document number: 6800000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150