JP6795995B2 - Soft magnetic flat powder - Google Patents

Soft magnetic flat powder Download PDF

Info

Publication number
JP6795995B2
JP6795995B2 JP2017019328A JP2017019328A JP6795995B2 JP 6795995 B2 JP6795995 B2 JP 6795995B2 JP 2017019328 A JP2017019328 A JP 2017019328A JP 2017019328 A JP2017019328 A JP 2017019328A JP 6795995 B2 JP6795995 B2 JP 6795995B2
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
flat powder
coercive force
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017019328A
Other languages
Japanese (ja)
Other versions
JP2018127647A (en
Inventor
滉大 三浦
滉大 三浦
澤田 俊之
俊之 澤田
亮介 越智
亮介 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2017019328A priority Critical patent/JP6795995B2/en
Priority to CN201880009552.5A priority patent/CN110234449A/en
Priority to KR1020197020884A priority patent/KR102393236B1/en
Priority to PCT/JP2018/003983 priority patent/WO2018143472A1/en
Publication of JP2018127647A publication Critical patent/JP2018127647A/en
Application granted granted Critical
Publication of JP6795995B2 publication Critical patent/JP6795995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

各種電子デバイスに用いられる、電磁波吸収体用軟磁性扁平粉末に関する。 The present invention relates to a soft magnetic flat powder for an electromagnetic wave absorber used in various electronic devices.

近年、パソコンやスマートフォンなどの電子機器、情報機器が急速に発達するのに伴い、情報伝達の高速化が進行している。それにより、電子機器の内部において、電磁波による誤作動が問題になっている。さらに、それら電子機器は放射する電磁波の人体への影響も問題視されている。これら電子機器の電磁波吸収体として、軟磁性フェライトや軟磁性扁平粉末が使用されている。 In recent years, with the rapid development of electronic devices such as personal computers and smartphones and information devices, the speed of information transmission has been increasing. As a result, malfunctions due to electromagnetic waves have become a problem inside electronic devices. Furthermore, the effects of electromagnetic waves emitted by these electronic devices on the human body are also regarded as a problem. Soft magnetic ferrite and soft magnetic flat powder are used as electromagnetic wave absorbers for these electronic devices.

特に、軟磁性扁平粉末は、軟磁性フェライトのように焼結して固化成形する必要がなく、樹脂などと混合し、成形されることから、フレキシブルで装着部への自由度が高いため、主に小型の電子機器に広く利用されている。 In particular, soft magnetic flat powder does not need to be sintered and solidified unlike soft magnetic ferrite, but is mixed with resin and molded, so it is flexible and has a high degree of freedom to the mounting part. Widely used in small electronic devices.

この軟磁性扁平粉末は、アトライター装置を使用し、金属粉末を扁平化する手法が用いられ作製される。これはトルエンといった有機溶媒、金属粉末と粉砕媒体(鋼球)をアトライター装置に装入し、装置内部にある回転羽根によって、粉砕および扁平化される。このような手法には、主に軟磁性合金のFe−Si−Al合金といった脆い材料が使用される。 This soft magnetic flat powder is produced by using an attritor device and using a method of flattening a metal powder. It is charged with an organic solvent such as toluene, a metal powder and a crushing medium (steel ball) into an attritor device, and crushed and flattened by a rotating blade inside the device. For such a method, a brittle material such as a soft magnetic alloy Fe-Si-Al alloy is mainly used.

例えば、特開2014−204051号公報(特許文献1)では、上述した手法を用いて作製されたFe−Si−Al合金について述べられている。ここでは、Feは84%〜96%と高濃度であり、かつ、Feに対して、Ti、V、Cr、Mn、Co、Ni、Cuの元素がFeに対して、置換されることを特徴としている。 For example, Japanese Patent Application Laid-Open No. 2014-204501 (Patent Document 1) describes an Fe-Si-Al alloy produced by using the above-mentioned method. Here, Fe has a high concentration of 84% to 96%, and the elements of Ti, V, Cr, Mn, Co, Ni, and Cu are substituted with respect to Fe. It is said.

また、例えば、特開2008−50644号公報(特許文献2)では、Feに対して、Si:9.0%〜12%、Al:1.0%〜5.0%、Cr:1.0%〜5.0%を添加することで、従来にない高固有抵抗かつ低保磁力を実現している。 Further, for example, in Japanese Patent Application Laid-Open No. 2008-50644 (Patent Document 2), Si: 9.0% to 12%, Al: 1.0% to 5.0%, Cr: 1.0 with respect to Fe. By adding% to 5.0%, unprecedented high intrinsic resistance and low coercive force are realized.

特開2014−204051号公報Japanese Unexamined Patent Publication No. 2014-204051 特開2008−50644号公報Japanese Unexamined Patent Publication No. 2008-50644

上述したように軟磁性扁平扁平粉末を得るには、乾式または湿式加工によって、水または有機溶媒中で金属粉末と粉砕媒体を混合、粉砕して作製される。その際、水または有機溶媒中で長時間加工されるため、金属粉末は酸化し、磁気特性が劣化する傾向ある。したがって、この金属粉末の酸化を防ぎ、扁平化することが求められている。 As described above, in order to obtain a soft magnetic flat flat powder, a metal powder and a pulverizing medium are mixed and pulverized in water or an organic solvent by a dry method or a wet process. At that time, since it is processed in water or an organic solvent for a long time, the metal powder tends to be oxidized and its magnetic properties tend to deteriorate. Therefore, it is required to prevent oxidation of this metal powder and flatten it.

しかし、上述した特許文献1において、扁平加工時および熱処理時における酸化による組成ズレについて述べられているが、明確な対策は行われておらず、成分検討の意図はあくまで、磁気特性に関してのみである。さらに、Feは84%〜96%と、高濃度であり、耐酸化性および耐食性については、言及されていないものの、これら特性が低いことが推測される。 However, although the above-mentioned Patent Document 1 describes the compositional deviation due to oxidation during flattening and heat treatment, no clear measures have been taken and the intention of examining the components is only regarding the magnetic properties. .. Further, Fe has a high concentration of 84% to 96%, and although the oxidation resistance and corrosion resistance are not mentioned, it is presumed that these characteristics are low.

また、特許文献2については、AlおよびCrを含有することで、耐食性を向上させると述べられているが、Alについては5.0%以下と低い値である。また、扁平化加工時に生じる酸化による磁気特性の劣化については考慮されていない。 Further, in Patent Document 2, it is stated that the corrosion resistance is improved by containing Al and Cr, but the value of Al is as low as 5.0% or less. In addition, deterioration of magnetic properties due to oxidation that occurs during flattening is not taken into consideration.

上述したような特許文献1および2において、考慮されていなかった課題について、発
明者ら鋭意開発を進めた結果、Alの添加量を増加させ、さらに、Si、Al以外の元素を意図的に添加することで、耐酸化性および耐食性を高め、かつ高い磁気特性を得られることがわかった。その本発明の要旨とするところは、
(1)軟磁性粉末を扁平化処理することにより得られた扁平粉末であって、軟磁性扁平粉末が、Fe:78%〜83%、Si:13%以下(0は含まない)、Al:5.0%超〜13%、Cr、Ni、Mo、Cu、Tiのうち少なくとも1種類の合計:1.0%〜5.0%、残部がFeおよび不可避的微量不純物からなる合金であることを特徴とする軟磁性扁平粉末。
As a result of the inventors' diligent development on the issues not considered in Patent Documents 1 and 2 as described above, the amount of Al added was increased, and elements other than Si and Al were intentionally added. It was found that by doing so, oxidation resistance and corrosion resistance were enhanced, and high magnetic properties could be obtained. The gist of the present invention is
(1) A flat powder obtained by flattening a soft magnetic powder, wherein the soft magnetic flat powder contains Fe: 78% to 83%, Si: 13% or less (excluding 0), Al: More than 5.0% to 13%, total of at least one of Cr, Ni, Mo, Cu, Ti: 1.0% to 5.0%, the balance being an alloy consisting of Fe and unavoidable trace impurities A soft magnetic flat powder characterized by.

(2)扁平粉末の長手方向に磁場を印加して測定した保磁力が230A/m以下であり、かつ飽和磁化が0.6〜1.5Tであることを特徴とする前記(1)に記載された軟磁性扁平粉末にある。 (2) The above-mentioned (1), wherein the coercive force measured by applying a magnetic field in the longitudinal direction of the flat powder is 230 A / m or less, and the saturation magnetization is 0.6 to 1.5 T. It is in the soft magnetic flat powder.

以上、上述したように本発明により、金属粉末の扁平化加工時の酸化を防ぎ、低い保磁力を実現することができる軟磁性扁平粉末を提供することにある。 As described above, it is an object of the present invention to provide a soft magnetic flat powder capable of preventing oxidation of a metal powder during flattening processing and realizing a low coercive force as described above.

次に、この発明の軟磁性扁平粉末の化学組成およびその磁気特性を上記のように限定した理由を説明する。
Fe:78%〜83%について
Feは、金属粉末に強磁性を持たせ、金属粉末に高い飽和磁束密度を持たせるのに必須元素である。しかし、83%を超えて含有すると金属粉末の耐酸化性および耐食性は減少する。一方、78%未満の場合、飽和磁束密度が大きく減少する。したがって、好ましくは、79%〜82%であり、より好ましくは79%超〜81%の範囲である。
Next, the reason why the chemical composition of the soft magnetic flat powder of the present invention and its magnetic properties are limited as described above will be described.
Fe: About 78% to 83% Fe is an essential element for imparting ferromagnetism to the metal powder and imparting a high saturation magnetic flux density to the metal powder. However, if it is contained in excess of 83%, the oxidation resistance and corrosion resistance of the metal powder are reduced. On the other hand, if it is less than 78%, the saturation magnetic flux density is greatly reduced. Therefore, it is preferably in the range of 79% to 82%, more preferably in the range of more than 79% to 81%.

Si:13%以下(0は含まない)について
Siは、結晶磁気異方性定数を減少させ、金属粉末の保磁力を減少させる必須元素である。添加量が少ない場合、結晶磁気異方性定数が高く、保磁力も高い傾向にあり、13%を超えると、金属粉末の飽和磁束密度を大きく減少させる。したがって、好ましくは、3.0%〜10%であり、より好ましくは5.0%〜9.5%の範囲である。
Si: For 13% or less (not including 0), Si is an essential element that reduces the magnetocrystalline anisotropy constant and reduces the coercive force of the metal powder. When the amount added is small, the magnetocrystalline anisotropy constant tends to be high and the coercive force tends to be high, and when it exceeds 13%, the saturation magnetic flux density of the metal powder is greatly reduced. Therefore, it is preferably 3.0% to 10%, and more preferably 5.0% to 9.5%.

Al:5.0%超〜13%以下について
Alは、金属粉末の結晶磁気異方性定数を減少させ、金属粉末の保磁力を減少させるとともに、耐酸化性および耐食性を向上させる必須元素である。添加量が5.0%以下の場合、耐食性に劣りかつ結晶磁気異方性定数が高く、保磁力も高い傾向にある。13%を超えると、金属粉末の飽和磁束密度を大きく減少させる。したがって、好ましくは、5.0%〜10%であり、より好ましくは6.0%〜9.0%の範囲である。
Al: About 5.0% to 13% Al is an essential element that reduces the magnetocrystalline anisotrophic constant of the metal powder, reduces the coercive force of the metal powder, and improves oxidation resistance and corrosion resistance. .. When the addition amount is 5.0% or less, the corrosion resistance tends to be poor, the magnetocrystalline anisotropy constant is high, and the coercive force tends to be high. If it exceeds 13%, the saturation magnetic flux density of the metal powder is greatly reduced. Therefore, it is preferably 5.0% to 10%, and more preferably in the range of 6.0% to 9.0%.

Cr、Ni、Mo、Cu、Tiのうち少なくとも1種類の合計:1.0%〜5.0%について
Cr、Ni、Mo、Cu、Tiは、金属粉末の耐酸化性および耐食性を向上させる必須元素である。添加量が1.0%未満の場合、耐酸化性および耐食性は向上せず、5.0%を超えると、析出物などの影響により保磁力を大きく増加させる場合がある。したがって、好ましくは、1.5%〜4.5%であり、より好ましくは2.0%〜4.0%の範囲である。
Total of at least one of Cr, Ni, Mo, Cu, and Ti: 1.0% to 5.0% Cr, Ni, Mo, Cu, and Ti are essential for improving the oxidation resistance and corrosion resistance of metal powders. It is an element. If the amount added is less than 1.0%, the oxidation resistance and corrosion resistance are not improved, and if it exceeds 5.0%, the coercive force may be greatly increased due to the influence of precipitates and the like. Therefore, it is preferably in the range of 1.5% to 4.5%, more preferably in the range of 2.0% to 4.0%.

扁平粉末の長手方向に磁場を印加して測定した保磁力が230A/m以下であり、かつ飽和磁束密度が0.6〜1.5Tについて
本発明において、扁平粉末が磁性シートとして利用される周波数領域は1〜15MHzであり、その領域において高い透磁率を得るためには、230A/m以下の保磁力でなければ使用に耐えない。したがって、好ましくは、190A/m以下、より好ましくは120A/m以下の範囲である。
The coercive force measured by applying a magnetic field in the longitudinal direction of the flat powder is 230 A / m or less, and the saturation magnetic flux density is 0.6 to 1.5 T. In the present invention, the frequency at which the flat powder is used as a magnetic sheet. The region is 1 to 15 MHz, and in order to obtain a high magnetic permeability in that region, it cannot be used unless it has a coercive force of 230 A / m or less. Therefore, it is preferably in the range of 190 A / m or less, more preferably 120 A / m or less.

本発明における扁平粉末の製造方法は従来提案されている方法で可能である。各種のアトマイズ法により、原料となる合金粉末を作製し、これをボールミルやアトライター装置によって乾式あるいは湿式で扁平加工をおこなう。その後、500℃以上の熱処理により保磁力を減少させることが可能である。 The method for producing a flat powder in the present invention is possible by a conventionally proposed method. Alloy powder as a raw material is produced by various atomization methods, and this is flattened by a ball mill or an attritor device in a dry or wet manner. After that, the coercive force can be reduced by heat treatment at 500 ° C. or higher.

以下に本発明について実施例により具体的に説明する。
[扁平粉末の作製]
まず表1、2に示す組成について、ガスアトマイズ法により金属粉末を作製し、−150μmに分級した。これらの原料粉末をアトライター装置により、扁平加工をおこなった。アトライターはSUJ2製の直径4.8mmのボールを使用し、原料粉末と工業エタノールとともに撹拌容器に投入し、羽根の回転数350rpmとして実施した。
Hereinafter, the present invention will be specifically described with reference to Examples.
[Preparation of flat powder]
First, with respect to the compositions shown in Tables 1 and 2, metal powders were prepared by the gas atomization method and classified into −150 μm. These raw material powders were flattened by an attritor device. The attritor was a SUJ2 ball having a diameter of 4.8 mm, which was put into a stirring container together with the raw material powder and industrial ethanol, and the rotation speed of the blade was 350 rpm.

得られた扁平粉末を、扁平加工中に導入された歪みを除去するためにAr雰囲気中で熱処理をおこなった。温度は粉末の焼結温度を考慮して、500〜900℃で3時間保持の熱処理をおこなった。 The obtained flat powder was heat-treated in an Ar atmosphere in order to remove the strain introduced during the flat processing. Considering the sintering temperature of the powder, the heat treatment was carried out at 500 to 900 ° C. for 3 hours.

[扁平粉末の評価]
熱処理を加えた扁平粉末をHcメーターおよびVSMを使用し保磁力、飽和磁束密度測定をおこなった。さらに耐食性ついては扁平粉を25℃の20%濃度塩水に100時間浸漬させ、浸漬後の発錆具合を大中小と発錆無の4段階で評価した。発錆無を◎印、浸漬後の発錆具合を小を○、中を△、大を×印とそれぞれ表記した。
[Evaluation of flat powder]
The coercive force and saturation magnetic flux density of the heat-treated flat powder were measured using an Hc meter and VSM. Further, regarding the corrosion resistance, the flat powder was immersed in 20% salt water at 25 ° C. for 100 hours, and the degree of rusting after the immersion was evaluated on a four-point scale of large, medium and small and no rusting. No rust is indicated by ◎, the degree of rusting after immersion is indicated by ○, medium is indicated by △, and large is indicated by ×.

表1、表2のNo.1〜31は本発明例であり、No.32〜43は比較例である。 Tables 1 and 2 No. 1-31 are examples of the present invention, and No. 32 to 43 are comparative examples.

比較例No.32は、Cr含有量によるFe,Si,Al以外の元素合金量が高いために、保磁力が高く、飽和磁束密度が低い。比較例No.33はFe含有量が低く、Ni含有量によるFe,Si,Al以外の元素合金量が高いために保磁力が高い。比較例No.34は、Mo含有量によるFe,Si,Al以外の元素合金量が高いために、保磁力が高く、かつ耐食性に劣る。比較例No.35は、Cu含有量によるFe,Si,Al以外の元素合金量が高いために、保磁力が高く、耐食性が悪い。比較例No.36は、Fe含有量が低く、Ti含有量によるFe,Si,Al以外の元素合金量が高いために、保磁力が高く、飽和磁束密度が低く、かつ耐食性が劣る。 Comparative Example No. No. 32 has a high coercive force and a low saturation magnetic flux density because the amount of elemental alloys other than Fe, Si, and Al due to the Cr content is high. Comparative Example No. No. 33 has a low Fe content and a high coercive force because the amount of elemental alloys other than Fe, Si, and Al due to the Ni content is high. Comparative Example No. No. 34 has a high coercive force and is inferior in corrosion resistance because the amount of elemental alloys other than Fe, Si, and Al is high depending on the Mo content. Comparative Example No. In No. 35, since the amount of elemental alloys other than Fe, Si, and Al is high depending on the Cu content, the coercive force is high and the corrosion resistance is poor. Comparative Example No. No. 36 has a low Fe content and a high amount of elemental alloys other than Fe, Si, and Al due to the Ti content, so that the coercive force is high, the saturation magnetic flux density is low, and the corrosion resistance is inferior.

比較例No.37〜39は、いずれもFe含有量が低く、Fe,Si,Al以外の元素合金量が高いために、保磁力が高く、耐食性がやや劣る。比較例No.40はFe,Si,Al以外の元素合金量が高いために、保磁力が高く、耐食性が悪い。比較例No.41は、Si含有量が高く、Al含有量が低いために、保磁力が高く、飽和磁束密度が低く、かつ耐食性が悪い。比較例No.42は、Al含有量が高いために、保磁力が高く、飽和磁束密度が低い。比較例No.43は、Al含有量が低いために、保磁力が高く、かつ耐食性が悪い。 Comparative Example No. All of 37 to 39 have a low Fe content and a high amount of elemental alloys other than Fe, Si, and Al, so that the coercive force is high and the corrosion resistance is slightly inferior. Comparative Example No. In No. 40, since the amount of elemental alloys other than Fe, Si, and Al is high, the coercive force is high and the corrosion resistance is poor. Comparative Example No. In No. 41, since the Si content is high and the Al content is low, the coercive force is high, the saturation magnetic flux density is low, and the corrosion resistance is poor. Comparative Example No. No. 42 has a high coercive force and a low saturation magnetic flux density because of its high Al content. Comparative Example No. In No. 43, since the Al content is low, the coercive force is high and the corrosion resistance is poor.

これに対し、本発明例No.1〜31は、いずれも本発明条件を満足していることから、長手方向に印加した場合の保磁力、飽和磁束密度および耐食性のいずれの特性をも優れていることが分かる。 On the other hand, the present invention example No. Since all of 1-31 satisfy the conditions of the present invention, it can be seen that they are excellent in all of the characteristics of coercive force, saturation magnetic flux density and corrosion resistance when applied in the longitudinal direction.

以上のように、本発明は、従来よりもFe以外の合金元素の含有量を高めることで、扁平加工時の酸化による磁気特性に劣化を防ぎ、かつ扁平粉の低い透磁率と高い耐食性を同時実現できる軟磁性扁平粉末を提供できる。


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, the present invention prevents deterioration of the magnetic properties due to oxidation during flattening by increasing the content of alloying elements other than Fe, and simultaneously achieves low magnetic permeability and high corrosion resistance of flat powder. It is possible to provide a soft magnetic flat powder that can be realized.


Patent applicant Sanyo Special Steel Co., Ltd.
Attorney attorney Akira Shiina

Claims (1)

軟磁性粉末を扁平化処理することにより得られた扁平粉末であって
上記軟磁性扁平粉末が、質量%で、Fe:79%〜82%、Si:5.0%〜9.5%、Al:6.0%〜9.0%、Cr、Ni、Mo、Cu、Tiのうち少なくとも1種類の合計:1.0%〜5.0%、残部がFeおよび不可避的微量不純物からなる合金であり、
上記扁平粉末の長手方向に磁場を印加して測定した保磁力が230A/m以下であり、かつ飽和磁化が0.6〜1.5Tであることを特徴とする軟磁性扁平粉末。
A flat powder obtained by flattening a soft magnetic powder .
The soft magnetic flat powder is Fe: 79% to 82% , Si: 5.0% to 9.5% , Al: 6.0% to 9.0% , Cr, Ni, Mo, Cu in mass%. , the sum of at least one of Ti: 1.0% ~5.0%, Ri alloy der balance being Fe and inevitable trace impurities,
It said flat longitudinal coercivity measured by applying a magnetic field of powder is not more than 230A / m, and the soft magnetic flat powder saturation magnetization and wherein 0.6~1.5T der Rukoto.
JP2017019328A 2017-02-06 2017-02-06 Soft magnetic flat powder Active JP6795995B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017019328A JP6795995B2 (en) 2017-02-06 2017-02-06 Soft magnetic flat powder
CN201880009552.5A CN110234449A (en) 2017-02-06 2018-02-06 The flat powder of soft magnetism
KR1020197020884A KR102393236B1 (en) 2017-02-06 2018-02-06 soft magnetic flat powder
PCT/JP2018/003983 WO2018143472A1 (en) 2017-02-06 2018-02-06 Soft magnetic flat powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017019328A JP6795995B2 (en) 2017-02-06 2017-02-06 Soft magnetic flat powder

Publications (2)

Publication Number Publication Date
JP2018127647A JP2018127647A (en) 2018-08-16
JP6795995B2 true JP6795995B2 (en) 2020-12-02

Family

ID=63040758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017019328A Active JP6795995B2 (en) 2017-02-06 2017-02-06 Soft magnetic flat powder

Country Status (4)

Country Link
JP (1) JP6795995B2 (en)
KR (1) KR102393236B1 (en)
CN (1) CN110234449A (en)
WO (1) WO2018143472A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7257150B2 (en) * 2019-01-21 2023-04-13 山陽特殊製鋼株式会社 Flame-retardant powder for magnetic components
JP7318218B2 (en) * 2019-01-30 2023-08-01 セイコーエプソン株式会社 Soft magnetic powders, dust cores, magnetic elements and electronic devices

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069480B2 (en) * 1997-01-20 2008-04-02 大同特殊鋼株式会社 Electromagnetic wave and magnetic shielding soft magnetic powder and shielding sheet
CN1146926C (en) * 1997-01-20 2004-04-21 大同特殊钢株式会社 Soft magnetic alloy powder for electromagnetic and magnetic shield, and shielding members containing the same
JP2000087192A (en) * 1998-09-17 2000-03-28 Mitsubishi Materials Corp FLAT Fe-BASE ALLOY POWDER FOR MAGNETIC SHIELDING
JP4449077B2 (en) * 2003-08-05 2010-04-14 三菱マテリアル株式会社 Fe-Ni-Mo-based flat metal soft magnetic powder and magnetic composite material including the soft magnetic powder
JP4717754B2 (en) * 2006-08-23 2011-07-06 山陽特殊製鋼株式会社 Flat powder for electromagnetic wave absorber and electromagnetic wave absorber
CN100429728C (en) * 2006-10-19 2008-10-29 武汉欣达磁性材料有限公司 Method for manufacturing powder used for pressing and manufacturing Fe-Si-Al magnetic core
KR100960699B1 (en) * 2008-01-16 2010-05-31 한양대학교 산학협력단 Fabrication Method of Fe-Si type soft magnet powder and soft magnet core using the same
JP5617173B2 (en) * 2009-02-26 2014-11-05 大同特殊鋼株式会社 Method for producing flat soft magnetic powder and electromagnetic wave absorber
JP2014204051A (en) 2013-04-09 2014-10-27 山陽特殊製鋼株式会社 Soft magnetic flat-particle powder, and magnetic sheet arranged by use thereof
JP6189633B2 (en) * 2013-05-16 2017-08-30 山陽特殊製鋼株式会社 Soft magnetic flat powder for magnetic sheets having excellent sheet surface smoothness and high permeability, magnetic sheet using the same, and method for producing soft magnetic flat powder
CN104036902A (en) * 2014-05-28 2014-09-10 浙江明贺钢管有限公司 Preparing method of metal magnetic powder core
JP6757117B2 (en) * 2014-10-02 2020-09-16 山陽特殊製鋼株式会社 Soft magnetic flat powder and its manufacturing method
JP6788328B2 (en) * 2015-03-17 2020-11-25 山陽特殊製鋼株式会社 Flat soft magnetic powder and its manufacturing method

Also Published As

Publication number Publication date
CN110234449A (en) 2019-09-13
KR102393236B1 (en) 2022-04-29
JP2018127647A (en) 2018-08-16
WO2018143472A1 (en) 2018-08-09
KR20190116267A (en) 2019-10-14

Similar Documents

Publication Publication Date Title
JP6472939B2 (en) Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic parts and dust core
JP6075605B2 (en) Soft magnetic material and manufacturing method thereof
JP5617173B2 (en) Method for producing flat soft magnetic powder and electromagnetic wave absorber
TW201339326A (en) Soft magnetic powder, dust core, and magnetic device
JP5732945B2 (en) Fe-Ni alloy powder
JP6815214B2 (en) Flat powder used at high frequency and magnetic sheet containing it
JP6795995B2 (en) Soft magnetic flat powder
JP2010272608A (en) Flat soft magnetic powder and magnetic body
JP6722548B2 (en) Soft magnetic flat powder, magnetic sheet and method for producing the same
KR20190088456A (en) Magnetic powder used at high frequency and magnetic resin composition containing the same
JP2007035826A (en) Composite magnetic material, and dust core and magnetic element using the same
JP2014204051A (en) Soft magnetic flat-particle powder, and magnetic sheet arranged by use thereof
CN109414760B (en) Flat powder and magnetic sheet for use at high frequencies
JP6756179B2 (en) Fe-based alloy composition
JP4573918B2 (en) Flat Fe-based alloy powder for magnetic shield
JP3094727B2 (en) Powder for magnetic shielding
JP4218111B2 (en) Fe-Ni alloy powder and method for producing the same
JP3094728B2 (en) Powder for magnetic shielding
CN109338242B (en) Corrosion-resistant soft magnetic amorphous steel
JP6618858B2 (en) Iron nitride magnet
JP4936233B2 (en) Flat Fe-based alloy powder for magnetic shield
JP2021150555A (en) Powder magnetic core and method of manufacturing the same
JP2005183503A (en) Material of permanent magnet
JP2000087193A (en) FLAT Fe-BASE ALLOY POWDER FOR MAGNETIC SHIELDING
JPH08250314A (en) Powder for magnetic shield

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201113

R150 Certificate of patent or registration of utility model

Ref document number: 6795995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250