JP6791702B2 - Rechargeable battery module - Google Patents

Rechargeable battery module Download PDF

Info

Publication number
JP6791702B2
JP6791702B2 JP2016192519A JP2016192519A JP6791702B2 JP 6791702 B2 JP6791702 B2 JP 6791702B2 JP 2016192519 A JP2016192519 A JP 2016192519A JP 2016192519 A JP2016192519 A JP 2016192519A JP 6791702 B2 JP6791702 B2 JP 6791702B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
positive electrode
current
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016192519A
Other languages
Japanese (ja)
Other versions
JP2018054521A (en
Inventor
高光 鎌田
高光 鎌田
貴宏 相馬
貴宏 相馬
柏野 博志
博志 柏野
大川 圭一朗
圭一朗 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Vehicle Energy Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vehicle Energy Japan Inc filed Critical Vehicle Energy Japan Inc
Priority to JP2016192519A priority Critical patent/JP6791702B2/en
Publication of JP2018054521A publication Critical patent/JP2018054521A/en
Application granted granted Critical
Publication of JP6791702B2 publication Critical patent/JP6791702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、例えば自動車用の電源として用いられる二次電池モジュールにおいて、劣化推定方法及び劣化推定装置に関するものである。 The present invention relates to a deterioration estimation method and a deterioration estimation device, for example, in a secondary battery module used as a power source for an automobile.

近年、リチウムイオン二次電池は、電気自動車及びハイブリッド自動車の電源として用いられている。自動車用のリチウムイオン二次電池は、高出力、高エネルギー密度さらに長寿命であることが要求されている。 In recent years, lithium ion secondary batteries have been used as a power source for electric vehicles and hybrid vehicles. Lithium-ion secondary batteries for automobiles are required to have high output, high energy density, and long life.

また、リチウムイオン二次電池では制御の観点からも長寿命に使いこなすと言う考えがある。そのため、リチウムイオン二次電池の劣化状態を正確に把握し、劣化状態に基づいて適切に制御することも求められている。 In addition, there is an idea that lithium-ion secondary batteries can be used for a long life from the viewpoint of control. Therefore, it is also required to accurately grasp the deteriorated state of the lithium ion secondary battery and appropriately control it based on the deteriorated state.

上記課題を解決するため、特許文献1には使用される二次電池の劣化状態を推定する推定方法が開示されている。 In order to solve the above problems, Patent Document 1 discloses an estimation method for estimating the deterioration state of the secondary battery used.

特許第5466564号Patent No. 5466564

特許文献1には、温度と充電状態(SOC:State Of Charge)によって細分化された使用条件を、単一の基準劣化モードに換算することによって、電池の劣化状態を推定している。 In Patent Document 1, the deterioration state of the battery is estimated by converting the usage conditions subdivided according to the temperature and the charging state (SOC: State Of Charge) into a single reference deterioration mode.

しかしながら、特許文献1の方法では実走行を想定していない条件を基準劣化モードとして用いているため、電池毎のばらつきまで考慮した劣化予測にはなっていない。 However, in the method of Patent Document 1, since the condition not assuming actual running is used as the reference deterioration mode, the deterioration prediction does not take into consideration the variation for each battery.

そのため、本発明では上記課題を解決することを目的とする。具体的には、電池毎のばらつきも考慮した劣化予測方法及び劣化予測装置を提供することを課題とする。 Therefore, an object of the present invention is to solve the above problems. Specifically, it is an object of the present invention to provide a deterioration prediction method and a deterioration prediction device in consideration of variations among batteries.

上記課題を解決するために本発明における二次電池モジュールは、二次電池と、前記二次電池の電流を測定する電流測定部と、前記二次電池の温度を測定する温度測定部と、時間を測定するタイマーと、前記測定された電流及び前記タイマーによる前記時間から、前記二次電池の電流時間積算量及びSOC範囲を算出する演算部とを備え、前記演算部は、算出した前記SOC範囲と、前記測定された温度が含まれる温度範囲とを組み合せた区分ごとに分けて前記電流時間積算量に対する前記二次電池の劣化率の推移を記録し、所定の前記SOC範囲における第一の温度範囲における電流時間積算量を、当該電流時間積算量に対する劣化率に対応する第二の温度範囲における電流時間積算量に変換し、その後は、第二の温度範囲における、前記電流時間積算量に対する前記二次電池の劣化率の推移に従って劣化率を算出する。 In order to solve the above problems, the secondary battery module in the present invention includes a secondary battery, a current measuring unit that measures the current of the secondary battery, a temperature measuring unit that measures the temperature of the secondary battery, and time. The calculation unit includes a timer for measuring the above, and a calculation unit for calculating the current time integration amount and the SOC range of the secondary battery from the measured current and the time by the timer, and the calculation unit calculates the SOC range. When, separately for each category that combines the temperature range including the measured temperature, the current changes in the degradation rate of the secondary battery was recorded against time integration amount, the first at a given the SOC range the current time integrated amount in a temperature range, converts the current time integrated amount in a second temperature range corresponding to the deterioration rate for the current time integrated amount, then, in a second temperature range, relative to the current time integrated amount calculating a deterioration rate in accordance with changes in the degradation rate of the secondary battery.

また、本発明における二次電池モジュールは、二次電池と、二次電池の電圧を測定する測定部と測定された電圧から所定電圧値を超えた場合、使用SOC範囲の上限値を低くする。 Further, in the secondary battery module of the present invention, when a predetermined voltage value is exceeded from the secondary battery, the measuring unit for measuring the voltage of the secondary battery, and the measured voltage, the upper limit value of the used SOC range is lowered.

本発明によれば、実走行を想定していないような基準劣化モードを介さずに劣化予測ができるため、より正確な劣化予測を行うことが可能となる。 According to the present invention, deterioration can be predicted without going through a reference deterioration mode that does not assume actual driving, so that more accurate deterioration prediction can be performed.

角形二次電池の外観斜視図External perspective view of a square secondary battery 角形二次電池の分解斜視図An exploded perspective view of a square secondary battery 捲回電極群の分解斜視図An exploded perspective view of the wound electrode group 本実施形態に係る二次電池モジュール1のブロック概念図Block conceptual diagram of the secondary battery module 1 according to this embodiment 本実施形態の温度―SOCに対応した電流積算量の区分けテーブルClassification table of current integrated amount corresponding to temperature-SOC of this embodiment 本実施形態の区分けテーブルに対応したサイクル特性図Cycle characteristic diagram corresponding to the classification table of this embodiment 本実施形態の制御フローチャートControl flowchart of this embodiment 繰り返し演算の方法を説明する図The figure explaining the method of the iterative operation 図6を用いて総劣化率を算出する方法Method of calculating total deterioration rate using FIG.

以下、実施例1について説明する。 Hereinafter, Example 1 will be described.

1は、角形二次電池100の外観斜視図である。 FIG. 1 is an external perspective view of the square secondary battery 100.

角形二次電池100は、電池缶1および蓋(電池蓋)6を備える。電池缶1は、相対的に面積の大きい一対の対向する幅広面と相対的に面積の小さい一対の対向する幅狭面とを有する側面と底面を有し、その上方に開口部1a(図2)を有する。 The square secondary battery 100 includes a battery can 1 and a lid (battery lid) 6. The battery can 1 has a side surface and a bottom surface having a pair of opposing wide surfaces having a relatively large area and a pair of opposing narrow surfaces having a relatively small area, and an opening 1a above the side surface (FIG. 2). ) .

電池缶1内には、捲回群3(図2)が収納され、電池缶1の開口部1aが電池蓋6によって封止されている。電池蓋6は略矩形平板状であって、電池缶1の上方開口部1aを塞ぐように溶接されて電池缶1が封止されている。電池蓋6には、正極外部端子12と、負極外部端子14が設けられている。正極外部端子12と負極外部端子14を介して捲回群3に充電され、また外部負荷に電力が供給される。電池蓋6には、ガス排出弁10が一体的に設けられ、電池容器内の圧力が上昇すると、ガス排出弁10が開いて内部からガスが排出され、電池容器内の圧力が低減される。これによって、角形二次電池100の安全性が確保される。 The winding group 3 (FIG. 2) is housed in the battery can 1, and the opening 1a of the battery can 1 is sealed by the battery lid 6. The battery lid 6 has a substantially rectangular flat plate shape, and is welded so as to close the upper opening 1a of the battery can 1 to seal the battery can 1. The battery lid 6 is provided with a positive electrode external terminal 12 and a negative electrode external terminal 14 . The winding group 3 is charged via the positive electrode external terminal 12 and the negative electrode external terminal 14 , and power is supplied to the external load. A gas discharge valve 10 is integrally provided on the battery lid 6, and when the pressure inside the battery container rises, the gas discharge valve 10 opens to discharge gas from the inside, and the pressure inside the battery container is reduced. As a result, the safety of the square secondary battery 100 is ensured.

図2は、角形二次電池100の分解斜視図である。 FIG. 2 is an exploded perspective view of the square secondary battery 100 .

角形二次電池100の電池缶1は、矩形の底面1dと、底面1dから立ち上がる角筒状の側面1bと、側面1bの上端で上方に向かって開放された開口部1aとを有している。電池缶1内には、絶縁保護フィルム2を介して捲回群3が収容されている。 The battery can 1 of the prismatic secondary battery 100 has a rectangular bottom surface 1d, a rectangular cylindrical side surface 1b which rises from the bottom 1d, and an opening 1a, which is open upward at the upper end of the side surface 1b .. The winding group 3 is housed in the battery can 1 via the insulating protective film 2.

捲回群3は、扁平形状に捲回されているため、断面半円形状の互いに対向する一対の湾曲部と、これら一対の湾曲部の間に連続して形成される平面部とを有している。捲回群3は、捲回軸方向が電池缶1の横幅方向に沿うように、一方の湾曲部側から電池缶1内に挿入され、他方の湾曲部側が上部開口側に配置される。 Since the winding group 3 is wound in a flat shape, it has a pair of curved portions having a semicircular cross section facing each other and a flat surface portion continuously formed between the pair of curved portions. ing. The winding group 3 is inserted into the battery can 1 from one curved portion side so that the winding axis direction is along the lateral width direction of the battery can 1, and the other curved portion side is arranged on the upper opening side.

捲回群3の正極電極箔露出部32cは、正極集電板(集電端子)24を介して電池蓋6に設けられた正極外部端子12と電気的に接続されている。また、捲回群3の負極電極箔露出部34cは、負極集電板(集電端子)44を介して電池蓋6に設けられた負極外部端子14と電気的に接続されている。これにより、正極集電板24および負極集電板44を介して捲回群3から外部負荷へ電力が供給され、正極集電板24および負極集電板44を介して捲回群3へ外部発電電力が供給され充電される。 The positive electrode foil exposed portion 32c of the winding group 3 is electrically connected to the positive electrode external terminal 12 provided on the battery lid 6 via the positive electrode current collector plate (current collector terminal) 24 . Further, the negative electrode foil exposed portion 34c of the winding group 3 is electrically connected to the negative electrode external terminal 14 provided on the battery lid 6 via the negative electrode current collector plate (current collector terminal) 44 . Thus, from outside winding assembly 3 via a positive current collector plate 24 and negative electrode current collector plate 44 is supplied electric power to the external load, the winding assembly 3 via a positive current collector plate 24 and negative electrode terminal plate 44 The generated power is supplied and charged.

正極集電板24と負極集電板44、及び、正極外部端子12と負極外部端子14を、それぞれ電池蓋6から電気的に絶縁するために、ガスケット5および絶縁板7が電池蓋6に設けられている。また、注液口9から電池缶1内に電解液を注入した後、電池蓋6に注液栓11をレーザ溶接により接合して注液口9を封止し、角形二次電池100を密閉する。 A gasket 5 and an insulating plate 7 are provided on the battery lid 6 in order to electrically insulate the positive electrode current collector plate 24 and the negative electrode current collector plate 44 , and the positive electrode external terminal 12 and the negative electrode external terminal 14 from the battery lid 6, respectively. Has been done. Further, after injecting the electrolytic solution into the battery can 1 from the liquid injection port 9, the liquid injection plug 11 is joined to the battery lid 6 by laser welding to seal the liquid injection port 9, and the square secondary battery 100 is sealed. To do.

ここで、正極外部端子12および正極集電板24の形成素材としては、例えばアルミニ
ウム合金が挙げられ、負極外部端子14および負極集電板44の形成素材としては、例え
ば銅合金が挙げられる。また、絶縁板7およびガスケット5の形成素材としては、例えばポリブチレンテレフタレートやポリフェニレンサルファイド、ペルフルオロアルコキシフッ素樹脂等の絶縁性を有する樹脂材が挙げられる。
Here, examples of the material for forming the positive electrode external terminal 12 and the positive electrode current collector plate 24 include an aluminum alloy, and examples of the material for forming the negative electrode external terminal 14 and the negative electrode current collector plate 44 include a copper alloy. Examples of the material for forming the insulating plate 7 and the gasket 5 include resin materials having insulating properties such as polybutylene terephthalate, polyphenylene sulfide, and perfluoroalkoxy fluororesin.

また、電池蓋6には、電池容器内に電解液を注入するための注液9が穿設されており、この注液9は、電解液を電池容器内に注入した後に注液栓11によって封止される。ここで、電池容器内に注入される電解液としては、例えばエチレンカーボネート等の炭酸エステル系の有機溶媒に6フッ化リン酸リチウム(LiPF6)等のリチウム塩が溶解された非水電解液を適用することができる。 Further, the battery lid 6 is provided with a liquid injection port 9 for injecting an electrolytic solution into the battery container, and the liquid injection port 9 is a liquid injection plug after injecting the electrolytic solution into the battery container. Sealed by 11. Here, as the electrolytic solution to be injected into the battery container, for example, a non-aqueous electrolytic solution in which a lithium salt such as lithium hexafluorophosphate (LiPF6) is dissolved in a carbonic acid ester-based organic solvent such as ethylene carbonate is applied. can do.

正極外部端子12、負極外部端子14は、バスバー等に溶接接合される溶接接合部を有している。溶接接合部は、電池蓋6から上方に突出する直方体のブロック形状を有しており、下面が電池蓋6の表面に対向し、上面が所定高さ位置で電池蓋6と平行になる構成を有している。 The positive electrode external terminal 12 and the negative electrode external terminal 14 have a welded joint portion to be welded to a bus bar or the like. The welded joint has a rectangular parallelepiped block shape that protrudes upward from the battery lid 6, and has a configuration in which the lower surface faces the surface of the battery lid 6 and the upper surface is parallel to the battery lid 6 at a predetermined height position. Have.

正極接続部12、負極接続部14は、正極外部端子12、負極外部端子14の下面からそれぞれ突出して先端が電池蓋6の正極側貫通孔26、負極側貫通孔46に挿入可能な円柱形状を有している。正極接続部12a、負極接続部14aは、電池蓋6を貫通して正極集電板24、負極集電板44の正極集電板基部21、負極集電板基部41よりも電池缶1の内部側に突出しており、先端がかしめられて、正極外部端子12、負極外部端子14と、正極集電板24、負極集電板44を電池蓋6に一体に固定している。正極外部端子12、負極外部端子14と電池蓋6との間には、ガスケット5が介在されており、正極集電板24、負極集電板44と電池蓋6との間には、絶縁板7が介在されている。 The positive electrode connection portion 12 a and the negative electrode connection portion 14 a are cylinders whose tips protrude from the lower surfaces of the positive electrode external terminal 12 and the negative electrode external terminal 14 , respectively, and whose tips can be inserted into the positive electrode side through hole 26 and the negative electrode side through hole 46 of the battery lid 6. It has a shape. The positive electrode connection portion 12a and the negative electrode connection portion 14a penetrate the battery lid 6 and penetrate the inside of the battery can 1 rather than the positive electrode current collector plate 24 , the positive electrode current collector plate base 21 of the negative electrode current collector plate 44 , and the negative electrode current collector plate base 41. The positive electrode external terminal 12 , the negative electrode external terminal 14 , the positive electrode current collector plate 24 , and the negative electrode current collector plate 44 are integrally fixed to the battery lid 6 by projecting to the side and crimping the tip. A gasket 5 is interposed between the positive electrode external terminal 12 , the negative electrode external terminal 14, and the battery lid 6, and an insulating plate is interposed between the positive electrode current collector plate 24 , the negative electrode current collector plate 44, and the battery lid 6. 7 is intervened.

正極集電板24、負極集電板44は、電池蓋6の下面に対向して配置される矩形板状の正極集電板基部21、負極集電板基部41と、正極集電板基部21、負極集電板基部41の側端で折曲されて、電池缶1の幅広面に沿って底面側に向かって延出し、捲回群3の正極箔接続部32c、負極箔接続部34cに対向して重ね合わされた状態で接続される正極側接続端部22、負極側接続端部42を有している。正極集電板基部22、負極集電板基部42には、正極接続部22、負極接続部42が挿通される正極側開口穴23、負極側開口穴41がそれぞれ形成されている。 The positive electrode current collector plate 24 and the negative electrode current collector plate 44 are a rectangular plate-shaped positive electrode current collector plate base portion 21 , a negative electrode current collector plate base portion 41, and a positive electrode current collector plate base portion 21 arranged so as to face the lower surface of the battery lid 6. , It is bent at the side end of the negative electrode current collector plate base 41 and extends toward the bottom surface along the wide surface of the battery can 1 to the positive electrode foil connecting portion 32c and the negative electrode foil connecting portion 34c of the winding group 3. It has a positive electrode side connection end 22 and a negative electrode side connection end 42 that are connected so as to face each other and overlap each other. The positive electrode current collector plate base 22 and the negative electrode current collector plate base 42 are formed with a positive electrode connection portion 22 , a positive electrode side opening hole 23 through which the negative electrode connection portion 42 is inserted, and a negative electrode side opening hole 41 , respectively.

捲回群3の扁平面に沿う方向でかつ捲回群3の捲回軸方向に直交する方向を中心軸方向として前記捲回群3の周囲には絶縁保護フィルム2が巻き付けられている。絶縁保護フィルム2は、例えばPP(ポリプロピレン)などの合成樹脂製の一枚のシートまたは複数のフィルム部材からなり、捲回群3の扁平面と平行な方向でかつ捲回軸
方向に直交する方向を巻き付け中心として巻き付けることができる長さを有している。
The insulating protective film 2 is wound around the winding group 3 with the direction along the flat surface of the winding group 3 and orthogonal to the winding axis direction of the winding group 3 as the central axis direction. The insulating protective film 2 is made of a single sheet or a plurality of film members made of synthetic resin such as PP (polypropylene), and is in a direction parallel to the flat surface of the winding group 3 and orthogonal to the winding axis direction. Has a length that can be wound as a winding center.

図3は、捲回電極群の一部を展開した状態を示す分解斜視図である。 FIG. 3 is an exploded perspective view showing a state in which a part of the wound electrode group is unfolded.

捲回群3は、負極電極32と正極電極34を間にセパレータ33を介して扁平状に捲回することによって構成されている。捲回群3は、最外周の電極が負極電極32であり、さらにその外側にセパレータ35が捲回される。セパレータ33,35は、正極電極31と負極電極32との間を絶縁する役割を有している。 The winding group 3 is configured by winding the negative electrode 32 and the positive electrode 34 in a flat shape with a separator 33 in between. In the winding group 3, the outermost electrode is the negative electrode 32, and the separator 35 is wound on the outer side thereof. The separators 33 and 35 have a role of insulating between the positive electrode 31 and the negative electrode 32.

負極電極32の負極合剤32bが塗布された部分は、正極電極34の正極合剤34bが塗布された部分よりも幅方向に大きく、これにより正極合剤34bが塗布された部分は、必ず負極合剤32bが塗布された部分に挟まれるように構成されている。正極箔露出部34c、負極箔露出部32cは、平面部分で束ねられて溶接等により接続される。尚、セパレータ33は、幅方向で負極合剤32bが塗布された部分よりも広いが、正極箔露出部34c、負極箔露出部32cで端部の金属箔面が露出する位置に捲回されるため、束ねて溶接する場合の支障にはならない。 Negative electrode mixture 32b of negative electrode 32 is coated portion is larger in the widthwise direction than the portion cathode mixture 34b of the positive electrode 34 is applied, thereby a portion electrode mixture 34b is applied is always negative It is configured to be sandwiched between the portions where the mixture 32b is applied. The positive electrode foil exposed portion 34c and the negative electrode foil exposed portion 32c are bundled at a flat surface portion and connected by welding or the like. The separator 33 is wider in the width direction than the portion coated with the negative electrode mixture 32b, but is wound at a position where the metal foil surface at the end is exposed at the positive electrode foil exposed portion 34c and the negative electrode foil exposed portion 32c. Therefore, it does not hinder the case of bundling and welding.

正極電極34は、正極集電体である正極電極箔の両面に正極活物質合剤を有し、正極電極箔の幅方向一方側の端部には、正極活物質合剤を塗布しない正極箔露出部34cが設けられている。 The positive electrode electrode 34 has a positive electrode active material mixture on both sides of the positive electrode foil which is a positive electrode current collector, and the positive electrode foil is not coated with the positive electrode active material mixture on one end in the width direction of the positive electrode foil. An exposed portion 34c is provided.

負極電極32は、負極集電体である負極電極箔の両面に負極活物質合剤を有し、正極電極箔の幅方向他方側の端部には、負極活物質合剤を塗布しない負極箔露出部32cが設けられている。正極箔露出部34cと負極箔露出部32cは、電極箔の金属面が露出した領域であり、捲回軸方向の一方側と他方側の位置に配置されるように捲回される。 The negative electrode electrode 32 has a negative electrode active material mixture on both sides of the negative electrode electrode foil which is a negative electrode current collector, and a negative electrode foil in which the negative electrode active material mixture is not applied to the other end in the width direction of the positive electrode electrode foil. An exposed portion 32c is provided. The positive electrode foil exposed portion 34c and the negative electrode foil exposed portion 32c are regions where the metal surface of the electrode foil is exposed, and are wound so as to be arranged at positions on one side and the other side in the winding axis direction.

負極電極32に関しては、負極活物質として非晶質炭素粉末100重量部に対して、結着剤として10重量部のポリフッ化ビニリデン(以下、PVDFという。)を添加し、これに分散溶媒としてN−メチルピロリドン(以下、NMPという。)を添加、混練した負極合剤を作製した。この負極合剤を厚さ10μmの銅箔(負極電極箔)の両面に溶接部(負極未塗工部)を残して塗布した。その後、乾燥、プレス、裁断工程を経て、銅箔を含まない負極活物質塗布部厚さ70μmの負極電極32を得た。 Regarding the negative electrode 32, 10 parts by weight of polyvinylidene fluoride (hereinafter referred to as PVDF) was added as a binder to 100 parts by weight of the amorphous carbon powder as the negative electrode active material, and N was added as a dispersion solvent. -Methylpyrrolidone (hereinafter referred to as NMP) was added and kneaded to prepare a negative electrode mixture. This negative electrode mixture was applied to both sides of a copper foil (negative electrode electrode foil) having a thickness of 10 μm, leaving welded portions (negative electrode uncoated portions). Then, through the drying, pressing, and cutting steps, a negative electrode 32 having a thickness of 70 μm in the negative electrode active material coating portion containing no copper foil was obtained.

尚、本実施形態では、負極活物質に非晶質炭素を用いる場合について例示したが、これに限定されるものではなく、リチウムイオンを挿入、脱離可能な天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素質材料やSiやSnなどの化合物(例えば、SiO、TiSi2等)、またはそれの複合材料でもよく、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。 In this embodiment, the case where amorphous carbon is used as the negative electrode active material has been illustrated, but the present invention is not limited to this, and natural graphite capable of inserting and removing lithium ions and various artificial graphite materials are used. , A carbonaceous material such as coke, a compound such as Si or Sn (for example, SiO, TiSi2, etc.), or a composite material thereof, and the particle shape thereof is particularly limited to scaly, spherical, fibrous, lumpy, etc. It is not something that is done.

正極電極34に関しては、正極活物質としてマンガン酸リチウム(化学式LiMn2O4)100重量部に対し、導電材として10重量部の鱗片状黒鉛と結着剤として10重量部のPVDFとを添加し、これに分散溶媒としてNMPを添加、混練した正極合剤を作製した。この正極合剤を厚さ20μmのアルミニウム箔(正極電極箔)の両面に溶接部(正極未塗工部)を残して塗布した。その後、乾燥、プレス、裁断工程を経て、アルミニウム箔を含まない正極活物質塗布部厚さ90μmの正極電極34を得た。 Regarding the positive electrode electrode 34 , 10 parts by weight of scaly graphite as a conductive material and 10 parts by weight of PVDF as a binder were added to 100 parts by weight of lithium manganate (chemical formula LiMn2O4) as a positive electrode active material. NMP was added as a dispersion solvent and kneaded to prepare a positive electrode mixture. This positive electrode mixture was applied to both sides of an aluminum foil (positive electrode electrode foil) having a thickness of 20 μm, leaving welded portions (positive electrode uncoated portions). Then, through a drying, pressing, and cutting steps, a positive electrode 34 having a thickness of 90 μm in the positive electrode active material coating portion containing no aluminum foil was obtained.

また、本実施形態では、正極活物質にマンガン酸リチウムを用いる場合について例示したが、スピネル結晶構造を有する他のマンガン酸リチウムや一部を金属元素で置換又はドープしたリチウムマンガン複合酸化物や層状結晶構造を有すコバルト酸リチウムやチタン酸リチウムやこれらの一部を金属元素で置換またはドープしたリチウム-金属複合酸化物を用いるようにしてもよい。 Further, in the present embodiment, the case where lithium manganate is used as the positive electrode active material has been illustrated, but other lithium manganate having a spinel crystal structure, a lithium manganese composite oxide obtained by partially substituting or doping with a metal element, or a layered layer. Lithium cobalt oxide or lithium titanate having a crystal structure or a lithium-metal composite oxide obtained by substituting or doping a part of these with a metal element may be used.

また、本実施形態では、正極電極34、負極電極32における塗工部の結着材としてPVDFを用いる場合について例示したが、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレンブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体およびこれらの混合体などを用いることができる。また、軸芯としては例えば、正極電極34、負極電極32、セパレータ33,35のいずれよりも曲げ剛性の高い樹脂シートを捲回して構成したものを用いることができる。 Further, in the present embodiment, the case where PVDF is used as a binder for the coated portion of the positive electrode electrode 34 and the negative electrode electrode 32 has been illustrated, but polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, and nitrile rubber have been exemplified. , Styrene butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latex, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, polymers such as acrylic resin, and mixtures thereof. Can be used. Further, as the shaft core, for example, a resin sheet having a higher bending rigidity than any of the positive electrode 34 , the negative electrode 32 , and the separators 33 and 35 can be used.

続いて図4を用いて、本実施形態に係る二次電池モジュール101のブロック概念図について説明する。本実施形態の二次電池モジュール101は、角形二次電池100を複数個直列に接続されているとともに演算部107等の制御回路を含んで構成される。この直列回路に接続されるのが電流測定手段104であり、この直列回路に流れる電流を検出している。 Subsequently, the block conceptual diagram of the secondary battery module 101 according to the present embodiment will be described with reference to FIG. The secondary battery module 101 of the present embodiment is configured by connecting a plurality of square secondary batteries 100 in series and including a control circuit such as a calculation unit 107. The current measuring means 104 is connected to the series circuit, and detects the current flowing through the series circuit.

そして、電流測定手段104で検出された電流情報は演算部107に送信される。また、一方で、この直列回路とは並列に電圧測定手段103が設けられている。この電圧検出手段103で測定された電圧情報も演算部107に出力される。 Then, the current information detected by the current measuring means 104 is transmitted to the calculation unit 107. On the other hand, the voltage measuring means 103 is provided in parallel with this series circuit. The voltage information measured by the voltage detecting means 103 is also output to the calculation unit 107.

さらに演算部107には角形二次電池100の温度情報及び、タイマー106から出力される時間情報が入力される。そして、演算部107はこれらの情報からSOCを算出し、電流時間積算総量値の区分けテーブル108と対応付けるように値を記録していく。このような方法を取ることによって、現在使用されている角形二次電池100の現実のデータが蓄積されるようになる。 Further, the temperature information of the square secondary battery 100 and the time information output from the timer 106 are input to the calculation unit 107. Then, the calculation unit 107 calculates the SOC from this information and records the value so as to be associated with the classification table 108 of the current time integrated total amount value. By adopting such a method, the actual data of the square secondary battery 100 currently in use can be accumulated.

図5は温度とSOC範囲を対応づける表で、それぞれ電流時間積算量が格納されていく。このデータは電池コントローラに記憶された記憶部(不図示)にA1,A2,A3,B1,B2,・・・C3と格納されていくことになる。なお、本実施例では3×3のマトリクスを用いて説明するが、マトリクスの数が増えれば増えるだけより正確な劣化予測が可能となる。一方で、マトリクスの数が少ない方が計算の負荷が少なくなるというメリットもある。 FIG. 5 is a table for associating the temperature with the SOC range, and the current time integration amount is stored for each. This data is stored in a storage unit (not shown) stored in the battery controller as A1, A2, A3, B1, B2, ... C3. In this embodiment, a 3 × 3 matrix will be used for explanation, but as the number of matrices increases, more accurate deterioration prediction becomes possible. On the other hand, the smaller the number of matrices, the smaller the calculation load.

また、本実施形態では図6に記載されるような各温度―SOC範囲に対応する劣化カーブの近似式を有している。そのため、図7に示すような制御をおこなうことが可能となり、実走行を想定していないような基準劣化モードを介さずに劣化予測ができる。従って、より正確な劣化予測を行うことが可能となる。 Further, the present embodiment has an approximate expression of a deterioration curve corresponding to each temperature-SOC range as shown in FIG. Therefore, it is possible to perform the control as shown in FIG. 7, and it is possible to predict the deterioration without going through the reference deterioration mode that does not assume the actual running. Therefore, it is possible to perform more accurate deterioration prediction.

続いて図7を用いて本実施形態の制御方法を説明する。 Subsequently, the control method of the present embodiment will be described with reference to FIG. 7.

まずステップS1では、SOC範囲0〜30%、温度‐30〜25℃のA1の電流時間積算量から劣化カーブの近似式を使用し、劣化率を算出する。 First, in step S1, the deterioration rate is calculated by using an approximate expression of the deterioration curve from the current-time integration amount of A1 having an SOC range of 0 to 30% and a temperature of -30 to 25 ° C.

そしてステップS2でSOC範囲0〜30%、温度25〜45℃の劣化カーブの近似式からステップS1で算出された劣化量に相当する電流時間積算量X1を算出する。 Then, in step S2, the current-time integrated amount X1 corresponding to the deterioration amount calculated in step S1 is calculated from the approximate expression of the deterioration curve having an SOC range of 0 to 30% and a temperature of 25 to 45 ° C.

その後ステップS3では、ステップS2で算出された電流時間積算量X1とSOC範囲0〜30%、温度25〜45℃での電流時間積算量A2を加算し、SOC範囲0〜30%、温度25〜50℃の劣化カーブの近似式から劣化率を算出する。 After that, in step S3, the current time integrated amount X1 calculated in step S2, the SOC range 0 to 30%, and the current time integrated amount A2 at a temperature of 25 to 45 ° C. are added, and the SOC range 0 to 30% and the temperature 25 to 25 to The deterioration rate is calculated from the approximate expression of the deterioration curve at 50 ° C.

そして、最後にステップS4に記載されるように繰り返し計算によって算出された電流時間積算量X8にSOC範囲50〜100%、温度45〜60℃での電流時間積算量C3を加算し、 SOC範囲50〜100%、温度45〜60℃の劣化カーブの近似式から総劣化率を算出するようにする。 Finally, the SOC range 50 to 100% and the current time integration amount C3 at a temperature of 45 to 60 ° C. are added to the current time integration amount X8 calculated by iterative calculation as described in step S4, and the SOC range 50 The total deterioration rate is calculated from the approximate expression of the deterioration curve at ~ 100% and the temperature of 45 to 60 ° C.

図8は繰り返しの計算順序を示す図である。本実施形態ではA1,A2,A3の順に計算し、その後B1,B2,B3,そして最後にC1,C2,C3の順に計算する流れとなる。一方で、同じSOC範囲内であれば計算順序にこだわる必要は無くA1から順に計算するのではなくB1から順に計算してもよいし、C1から先に計算しても良い。 FIG. 8 is a diagram showing a repeating calculation order. In the present embodiment, the calculation is performed in the order of A1, A2, A3, then B1, B2, B3, and finally C1, C2, C3. On the other hand, if it is within the same SOC range, it is not necessary to be particular about the calculation order, and the calculation may be performed in order from B1 instead of calculating in order from A1, or may be calculated in order from C1.

図9は図8におけるC2からC3の計算を視覚的に示した図である。このようにC2での劣化率をC3に対応する劣化式の電流時間積算量X8に換算し、そこからさらにC3を加えてまた劣化式に代入することによって最終的な総劣化率が算出されることとなる。 FIG. 9 is a diagram visually showing the calculations of C2 to C3 in FIG. In this way, the final total deterioration rate is calculated by converting the deterioration rate at C2 into the current-time integration amount X8 of the deterioration formula corresponding to C3, adding C3 further, and substituting it into the deterioration formula. It will be.

以上のように制御することによって、実走行を想定していないような基準劣化モードを介さずに劣化予測ができる。そのため、より正確な劣化予測を行うことが可能となる。 By controlling as described above, deterioration can be predicted without going through a reference deterioration mode that does not assume actual driving. Therefore, it is possible to perform more accurate deterioration prediction.

簡単に実施例1についてまとめる。本発明に記載の劣化予測装置は、二次電池と、二次電池の電圧を測定する電圧測定部と、二次電池の電流を測定する電流測定部と、測定された電流及び電圧から二次電池の電流時間積算量及び使用SOC範囲を算出する演算部を有する劣化予測装置において、演算部は、所定SOC範囲における第一の温度範囲及び第二の温度範囲での電流時間積算量を算出し、第一の温度範囲における電流時間積算量を第二の温度範囲における電流時間積算量に変換し、第二の温度範囲における電流時間積算量と前記変換された電流時間積算量とを合算した値を用いて総劣化率を算出することを特徴とする。このような構成にすることによって、実走行を想定していないような基準劣化モードを介さずに劣化予測ができる。そのため、より正確な劣化予測を行うことが可能となる。 The first embodiment will be briefly summarized. The deterioration prediction device described in the present invention includes a secondary battery, a voltage measuring unit that measures the voltage of the secondary battery, a current measuring unit that measures the current of the secondary battery, and a secondary from the measured current and voltage. In the deterioration prediction device having a calculation unit for calculating the current time integration amount and the used SOC range of the battery, the calculation unit calculates the current time integration amount in the first temperature range and the second temperature range in the predetermined SOC range. , The current time integration amount in the first temperature range is converted into the current time integration amount in the second temperature range, and the total value of the current time integration amount in the second temperature range and the converted current time integration amount. It is characterized in that the total deterioration rate is calculated using. With such a configuration, deterioration can be predicted without going through a reference deterioration mode that does not assume actual driving. Therefore, it is possible to perform more accurate deterioration prediction.

1…電池缶、1a… 開口部、2…絶縁保護フィルム、3…捲回群、4A…正極集電板、4B…負極集電板、5…ガスケット、6…電池蓋、6A…正極側貫通孔、6B…負極側貫通孔、7…絶縁板、8A…正極外部端子、8B…負極外部端子、9…注液口、10…ガス排出弁、11…注液栓、12A…正極接続部、12B…負極接続部、21…側面、22…底面、31…正極電極、31a…正極箔、31b…正極合剤、31c…正極箔露出部、32…負極電極、32a…負極箔、32b…負極合剤、32c…負極箔露出部、31d…正極箔接続部、32d…負極箔接続部、33…セパレータ、100…角形二次電池、101…二次電池モジュール、103…電圧測定手段、104…電流測定手段、107…演算部、108…テーブル 1 ... Battery can, 1a ... Opening, 2 ... Insulation protective film, 3 ... Winding group, 4A ... Positive electrode current collector, 4B ... Negative electrode current collector, 5 ... Gasket, 6 ... Battery lid, 6A ... Positive electrode side penetration Holes, 6B ... Negative electrode side through holes, 7 ... Insulating plate, 8A ... Positive electrode external terminal, 8B ... Negative electrode external terminal, 9 ... Liquid injection port, 10 ... Gas discharge valve, 11 ... Liquid injection plug, 12A ... Positive electrode connection, 12B ... Negative electrode connection part, 21 ... Side surface, 22 ... Bottom surface, 31 ... Positive electrode, 31a ... Positive electrode foil, 31b ... Positive electrode mixture, 31c ... Positive electrode foil exposed part, 32 ... Negative electrode, 32a ... Negative electrode foil, 32b ... Negative electrode Mixture, 32c ... Negative electrode foil exposed part, 31d ... Positive electrode foil connection part, 32d ... Negative electrode foil connection part, 33 ... Separator, 100 ... Square secondary battery, 101 ... Secondary battery module, 103 ... Voltage measuring means, 104 ... Current measuring means, 107 ... Calculation unit, 108 ... Table

Claims (1)

二次電池モジュールにおいて、
二次電池と、
前記二次電池の電流を測定する電流測定部と、
前記二次電池の温度を測定する温度測定部と、
時間を測定するタイマーと、
前記測定された電流及び前記タイマーによる前記時間から、前記二次電池の電流時間積算量及びSOC範囲を算出する演算部と
を備え、
前記演算部は、
算出した前記SOC範囲と、前記測定された温度が含まれる温度範囲とを組み合せた区分ごとに分けて前記電流時間積算量に対する前記二次電池の劣化率の推移を記録し、
所定の前記SOC範囲における第一の温度範囲における電流時間積算量を、当該電流時間積算量に対する劣化率に対応する第二の温度範囲における電流時間積算量に変換し、
その後は、第二の温度範囲における、前記電流時間積算量に対する前記二次電池の劣化率の推移に従って劣化率を算出する二次電池モジュール。
In the secondary battery module
With a secondary battery
A current measuring unit that measures the current of the secondary battery,
A temperature measuring unit that measures the temperature of the secondary battery,
With a timer to measure time,
It is provided with a calculation unit that calculates the current time integration amount and SOC range of the secondary battery from the measured current and the time by the timer.
The calculation unit
And calculated the SOC range is divided for each category that combines the temperature range including the measured temperature, and record the changes in the degradation rate of the secondary battery with respect to the current time integrated amount,
The current-time integrated amount in the first temperature range in the predetermined SOC range is converted into the current-time integrated amount in the second temperature range corresponding to the deterioration rate with respect to the current-time integrated amount.
Thereafter, the second secondary battery module for calculating the temperature range, the transition to therefore deterioration rate of deterioration rate of the secondary battery with respect to the current time integrated amount of.
JP2016192519A 2016-09-30 2016-09-30 Rechargeable battery module Active JP6791702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016192519A JP6791702B2 (en) 2016-09-30 2016-09-30 Rechargeable battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016192519A JP6791702B2 (en) 2016-09-30 2016-09-30 Rechargeable battery module

Publications (2)

Publication Number Publication Date
JP2018054521A JP2018054521A (en) 2018-04-05
JP6791702B2 true JP6791702B2 (en) 2020-11-25

Family

ID=61833155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016192519A Active JP6791702B2 (en) 2016-09-30 2016-09-30 Rechargeable battery module

Country Status (1)

Country Link
JP (1) JP6791702B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111257752B (en) * 2018-11-30 2021-02-26 宁德时代新能源科技股份有限公司 Remaining charge time estimation method, apparatus, system, and storage medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8648603B2 (en) * 2010-04-21 2014-02-11 Toyota Jidosha Kabushiki Kaisha Deterioration degree calculating apparatus for secondary battery, vehicle equipped with the apparatus, and deterioration degree calculating method for secondary battery
JP5382208B2 (en) * 2010-04-26 2014-01-08 トヨタ自動車株式会社 Deterioration estimation device and degradation estimation method for storage element
JP5668136B2 (en) * 2011-04-18 2015-02-12 日立オートモティブシステムズ株式会社 Power storage device
JP2014081238A (en) * 2012-10-15 2014-05-08 Sony Corp Battery deterioration and service life estimation method, battery deterioration and service life estimation device, electric vehicle and power supply device
JP6488538B2 (en) * 2013-07-23 2019-03-27 日本電気株式会社 Deterioration coefficient determination system, deterioration prediction system, deterioration coefficient determination method and program
JP6165620B2 (en) * 2013-12-19 2017-07-19 日立オートモティブシステムズ株式会社 Secondary battery module and secondary battery monitoring device
US9559390B2 (en) * 2013-12-19 2017-01-31 Ford Global Technologies, Llc Battery degradation accumulation methods

Also Published As

Publication number Publication date
JP2018054521A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
CN106575721B (en) Square secondary battery
WO2011007805A1 (en) Monitoring system for lithium ion secondary cell and monitoring method for lithium ion secondary cell
US20160204393A1 (en) Nonaqueous electrolyte battery and manufacturing method thereof
CN107799837B (en) Recovery method and reuse method for secondary battery
JP6446239B2 (en) Secondary battery
JP6165620B2 (en) Secondary battery module and secondary battery monitoring device
JP2004273139A (en) Lithium secondary battery
WO2021176906A1 (en) Secondary battery, electronic device, and electric tool
JP5232751B2 (en) Lithium ion secondary battery
JP2023115135A (en) secondary battery
JP6913766B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using it
JP6791702B2 (en) Rechargeable battery module
JP2000277176A (en) Lithium secondary battery and method for using the same
JP6403644B2 (en) Secondary battery
WO2016088505A1 (en) Rectangular secondary cell
JP2003243037A (en) Lithium ion battery
JP2018056085A (en) Secondary battery
JP6401589B2 (en) Lithium secondary battery
JP2015002043A (en) Lithium ion secondary battery
WO2015125223A1 (en) Secondary battery
JP6978500B2 (en) Secondary battery
JP6216203B2 (en) Winding type secondary battery
JP6806796B2 (en) Rechargeable battery
JP2011028980A (en) Nonaqueous electrolyte secondary battery
JP6255502B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201105

R150 Certificate of patent or registration of utility model

Ref document number: 6791702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250