JP2018054521A - Secondary battery module - Google Patents

Secondary battery module Download PDF

Info

Publication number
JP2018054521A
JP2018054521A JP2016192519A JP2016192519A JP2018054521A JP 2018054521 A JP2018054521 A JP 2018054521A JP 2016192519 A JP2016192519 A JP 2016192519A JP 2016192519 A JP2016192519 A JP 2016192519A JP 2018054521 A JP2018054521 A JP 2018054521A
Authority
JP
Japan
Prior art keywords
secondary battery
current
current time
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016192519A
Other languages
Japanese (ja)
Other versions
JP6791702B2 (en
Inventor
高光 鎌田
Takamitsu Kamata
高光 鎌田
貴宏 相馬
Takahiro Soma
貴宏 相馬
柏野 博志
Hiroshi Kayano
博志 柏野
大川 圭一朗
Keiichiro Okawa
圭一朗 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016192519A priority Critical patent/JP6791702B2/en
Publication of JP2018054521A publication Critical patent/JP2018054521A/en
Application granted granted Critical
Publication of JP6791702B2 publication Critical patent/JP6791702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a deterioration prediction method and deterioration prediction device that take into consideration variations for each battery.SOLUTION: A secondary battery module according to the present invention includes: a secondary battery; a current measurement unit that measures a current of the secondary battery; a temperature measurement unit that measures a temperature of the secondary battery; a timer that clocks a time; and a calculation unit that calculates an integration amount of a current time of the secondary battery and a use SOC range from the measured current and the time clocked by the timer. In the secondary battery module, the calculation unit calculates an integration amount of a current time within a first temperature range and second temperature range in a prescribed SOC range, converts the integration amount of the current time within the first temperature range into an integration amount of a current time within the second temperature range, and calculates a total deterioration rate using a value obtained by summing up the integration amount of the current time within the second temperature range and the converted integration amount of the current time.SELECTED DRAWING: Figure 9

Description

本発明は、例えば自動車用の電源として用いられる二次電池モジュールにおいて、劣化推定方法及び劣化推定装置に関するものである。   The present invention relates to a deterioration estimation method and a deterioration estimation device in a secondary battery module used as a power source for automobiles, for example.

近年、リチウムイオン二次電池は、電気自動車及びハイブリッド自動車の電源として用いられている。自動車用のリチウムイオン二次電池は、高出力、高エネルギー密度さらに長寿命であることが要求されている。   In recent years, lithium ion secondary batteries have been used as power sources for electric vehicles and hybrid vehicles. Lithium ion secondary batteries for automobiles are required to have high output, high energy density, and long life.

また、リチウムイオン二次電池では制御の観点からも長寿命に使いこなすと言う考えがある。そのため、リチウムイオン二次電池の劣化状態を正確に把握し、劣化状態に基づいて適切に制御することも求められている。   Moreover, there is an idea that a lithium ion secondary battery can be used for a long life from the viewpoint of control. Therefore, it is also required to accurately grasp the deterioration state of the lithium ion secondary battery and appropriately control based on the deterioration state.

上記課題を解決するため、特許文献1には使用される二次電池の劣化状態を推定する推定方法が開示されている。   In order to solve the above problems, Patent Document 1 discloses an estimation method for estimating a deterioration state of a secondary battery used.

特許第5466564号Japanese Patent No. 5466564

特許文献1には、温度と充電状態(SOC:State Of Charge)によって細分化された使用条件を、単一の基準劣化モードに換算することによって、電池の劣化状態を推定している。   Patent Document 1 estimates the deterioration state of a battery by converting use conditions subdivided by temperature and state of charge (SOC) into a single reference deterioration mode.

しかしながら、特許文献1の方法では実走行を想定していない条件を基準劣化モードとして用いているため、電池毎のばらつきまで考慮した劣化予測にはなっていない。   However, in the method of Patent Document 1, conditions that do not assume actual traveling are used as the reference deterioration mode, and therefore, deterioration prediction that takes into account variations among batteries is not performed.

そのため、本発明では上記課題を解決することを目的とする。具体的には、電池毎のばらつきも考慮した劣化予測方法及び劣化予測装置を提供することを課題とする。   Therefore, an object of the present invention is to solve the above problems. Specifically, it is an object to provide a deterioration prediction method and a deterioration prediction apparatus that take into account variations among batteries.

上記課題を解決するために本発明における二次電池モジュールは、二次電池と、前記二次電池の電流を測定する電流測定部と、前記二次電池の温度を測定する温度測定部と、時間を測定するタイマーと、前記測定された電流及び前記タイマーによる前記時間から前記二次電池の電流時間積算量及び使用SOC範囲を算出する演算部と、を有する二次電池モジュールにおいて、前記演算部は、所定SOC範囲における第一の温度範囲及び第二の温度範囲での電流時間積算量を算出し、前記第一の温度範囲における電流時間積算量を第二の温度範囲における電流時間積算量に変換し、
前記第二の温度範囲における電流時間積算量と前記変換された電流時間積算量とを合算した値を用いて総劣化率を算出する。
In order to solve the above problems, the secondary battery module according to the present invention includes a secondary battery, a current measurement unit that measures the current of the secondary battery, a temperature measurement unit that measures the temperature of the secondary battery, and a time. A secondary battery module comprising: a timer for measuring the current, and a calculation unit for calculating a current-time integrated amount and a used SOC range of the secondary battery from the measured current and the time by the timer. , Calculating the current time integrated amount in the first temperature range and the second temperature range in the predetermined SOC range, and converting the current time integrated amount in the first temperature range into the current time integrated amount in the second temperature range And
The total deterioration rate is calculated using a value obtained by adding the current time integrated amount in the second temperature range and the converted current time integrated amount.

また、本発明における二次電池モジュールは、二次電池と、二次電池の電圧を測定する測定部と測定された電圧から所定電圧値を超えた場合、使用SOC範囲の上限値を低くする。   Moreover, the secondary battery module in the present invention lowers the upper limit value of the used SOC range when the secondary battery, the measurement unit for measuring the voltage of the secondary battery, and the measured voltage exceed a predetermined voltage value.

本発明によれば、実走行を想定していないような基準劣化モードを介さずに劣化予測ができるため、より正確な劣化予測を行うことが可能となる。   According to the present invention, since it is possible to predict deterioration without going through a reference deterioration mode that does not assume actual traveling, it is possible to perform more accurate deterioration prediction.

角形二次電池の外観斜視図External perspective view of prismatic secondary battery 角形二次電池の分解斜視図Exploded perspective view of prismatic secondary battery 捲回電極群の分解斜視図Exploded perspective view of wound electrode group 本実施形態に係る二次電池モジュール1のブロック概念図The block conceptual diagram of the secondary battery module 1 which concerns on this embodiment. 本実施形態の温度―SOCに対応した電流積算量の区分けテーブルCurrent accumulated amount classification table corresponding to temperature-SOC of this embodiment 本実施形態の区分けテーブルに対応したサイクル特性図Cycle characteristic diagram corresponding to the classification table of this embodiment 本実施形態の制御フローチャートControl flowchart of this embodiment 繰り返し演算の方法を説明する図Diagram explaining the method of repeated calculation 図6を用いて総劣化率を算出する方法Method for calculating total deterioration rate using FIG.

以下、実施例1について説明する。 Example 1 will be described below.

本実施例では二次電池の劣化診断を図1は、角形二次電池100の外観斜視図である。   FIG. 1 is an external perspective view of a prismatic secondary battery 100 according to the present embodiment.

角形二次電池100は、電池缶1および蓋(電池蓋)6を備える。電池缶1は、相対的に面積の大きい一対の対向する幅広面と相対的に面積の小さい一対の対向する幅狭面とを有する側面と底面を有し、その上方に開口部1aを有する。   The prismatic secondary battery 100 includes a battery can 1 and a lid (battery lid) 6. The battery can 1 has a side surface and a bottom surface having a pair of opposed wide surfaces with a relatively large area and a pair of opposed narrow surfaces with a relatively small area, and has an opening 1a above it.

電池缶1内には、捲回群3が収納され、電池缶1の開口部1aが電池蓋6によって封止されている。電池蓋6は略矩形平板状であって、電池缶1の上方開口部1aを塞ぐように溶接されて電池缶1が封止されている。電池蓋6には、正極外部端子8Aと、負極外部端子8Bが設けられている。正極外部端子8Aと負極外部端子8Bを介して捲回群3に充電され、また外部負荷に電力が供給される。電池蓋6には、ガス排出弁10が一体的に設けられ、電池容器内の圧力が上昇すると、ガス排出弁10が開いて内部からガスが排出され、電池容器内の圧力が低減される。これによって、角形二次電池C1の安全性が確保される。   A wound group 3 is accommodated in the battery can 1, and an opening 1 a of the battery can 1 is sealed by a battery lid 6. The battery lid 6 has a substantially rectangular flat plate shape and is welded so as to close the upper opening 1 a of the battery can 1 to seal the battery can 1. The battery lid 6 is provided with a positive external terminal 8A and a negative external terminal 8B. The wound group 3 is charged via the positive external terminal 8A and the negative external terminal 8B, and power is supplied to the external load. The battery cover 6 is integrally provided with a gas discharge valve 10, and when the pressure in the battery container rises, the gas discharge valve 10 opens to discharge gas from the inside, and the pressure in the battery container is reduced. Thereby, the safety of the square secondary battery C1 is ensured.

図2は、角形二次電池の分解斜視図である。   FIG. 2 is an exploded perspective view of the prismatic secondary battery.

角形二次電池C1の電池缶1は、矩形の底面22と、底面22から立ち上がる角筒状の側面21と、側面21の上端で上方に向かって開放された開口部1aとを有している。電池缶1内には、絶縁保護フィルム2を介して捲回群3が収容されている。   The battery can 1 of the prismatic secondary battery C1 has a rectangular bottom surface 22, a rectangular tubular side surface 21 rising from the bottom surface 22, and an opening 1a opened upward at the upper end of the side surface 21. . A wound group 3 is accommodated in the battery can 1 via an insulating protective film 2.

捲回群3は、扁平形状に捲回されているため、断面半円形状の互いに対向する一対の湾曲部と、これら一対の湾曲部の間に連続して形成される平面部とを有している。捲回群3は、捲回軸方向が電池缶1の横幅方向に沿うように、一方の湾曲部側から電池缶1内に挿入され、他方の湾曲部側が上部開口側に配置される。   Since the wound group 3 is wound in a flat shape, the wound group 3 has a pair of opposed curved portions having a semicircular cross section and a flat portion formed continuously between the pair of curved portions. ing. The winding group 3 is inserted into the battery can 1 from one curved portion side so that the winding axis direction is along the lateral width direction of the battery can 1, and the other curved portion side is disposed on the upper opening side.

捲回群3の正極電極箔露出部31cは、正極集電板(集電端子)4Aを介して電池蓋6に設けられた正極外部端子8Aと電気的に接続されている。また、捲回群3の負極電極箔露出部32cは、負極集電板(集電端子)4Bを介して電池蓋6に設けられた負極外部端子8Bと電気的に接続されている。これにより、正極集電板4Aおよび負極集電板4Bを介して捲回群3から外部負荷へ電力が供給され、正極集電板4Aおよび負極集電板4Bを介して捲回群3へ外部発電電力が供給され充電される。   The positive electrode foil exposed portion 31c of the wound group 3 is electrically connected to a positive external terminal 8A provided on the battery lid 6 via a positive current collector (current collector terminal) 4A. Further, the negative electrode foil exposed portion 32c of the wound group 3 is electrically connected to a negative external terminal 8B provided on the battery lid 6 via a negative current collector (current collector terminal) 4B. As a result, power is supplied from the wound group 3 to the external load via the positive current collector plate 4A and the negative current collector plate 4B, and externally supplied to the wound group 3 via the positive current collector plate 4A and the negative current collector plate 4B. The generated power is supplied and charged.

正極集電板4Aと負極集電板4B、及び、正極外部端子8Aと負極外部端子8Bを、それぞれ電池蓋6から電気的に絶縁するために、ガスケット5および絶縁板7が電池蓋6に設けられている。また、注液口9から電池缶1内に電解液を注入した後、電池蓋6に注液栓11をレーザ溶接により接合して注液口9を封止し、角形二次電池C1を密閉する。   In order to electrically insulate the positive electrode current collector plate 4A and the negative electrode current collector plate 4B, and the positive electrode external terminal 8A and the negative electrode external terminal 8B from the battery lid 6, respectively, a gasket 5 and an insulating plate 7 are provided on the battery lid 6. It has been. Moreover, after injecting electrolyte solution into the battery can 1 from the injection hole 9, the injection stopper 11 is joined to the battery cover 6 by laser welding to seal the injection hole 9, and the rectangular secondary battery C1 is sealed. To do.

ここで、正極外部端子8Aおよび正極集電板4Aの形成素材としては、例えばアルミニ
ウム合金が挙げられ、負極外部端子8Bおよび負極集電板4Bの形成素材としては、例え
ば銅合金が挙げられる。また、絶縁板7およびガスケット5の形成素材としては、例えばポリブチレンテレフタレートやポリフェニレンサルファイド、ペルフルオロアルコキシフッ素樹脂等の絶縁性を有する樹脂材が挙げられる。
Here, examples of the material for forming the positive electrode external terminal 8A and the positive electrode current collector plate 4A include an aluminum alloy, and examples of the material for forming the negative electrode external terminal 8B and the negative electrode current collector plate 4B include a copper alloy. Examples of the material for forming the insulating plate 7 and the gasket 5 include resin materials having insulating properties such as polybutylene terephthalate, polyphenylene sulfide, and perfluoroalkoxy fluororesin.

また、電池蓋6には、電池容器内に電解液を注入するための注液孔9が穿設されており、この注液孔9は、電解液を電池容器内に注入した後に注液栓11によって封止される。ここで、電池容器内に注入される電解液としては、例えばエチレンカーボネート等の炭酸エステル系の有機溶媒に6フッ化リン酸リチウム(LiPF)等のリチウム塩が溶解された非水電解液を適用することができる。 Further, the battery lid 6 is provided with a liquid injection hole 9 for injecting an electrolytic solution into the battery container. The liquid injection hole 9 is an injection stopper after the electrolytic solution is injected into the battery container. 11 is sealed. Here, as the electrolytic solution injected into the battery container, for example, a non-aqueous electrolytic solution in which a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a carbonic acid ester-based organic solvent such as ethylene carbonate is used. Can be applied.

正極外部端子8A、負極外部端子8Bは、バスバー等に溶接接合される溶接接合部を有している。溶接接合部は、電池蓋6から上方に突出する直方体のブロック形状を有しており、下面が電池蓋6の表面に対向し、上面が所定高さ位置で電池蓋6と平行になる構成を有している。   The positive external terminal 8A and the negative external terminal 8B have a weld joint that is welded to a bus bar or the like. The weld joint has a rectangular parallelepiped block shape protruding upward from the battery lid 6, and has a configuration in which the lower surface faces the surface of the battery lid 6 and the upper surface is parallel to the battery lid 6 at a predetermined height position. Have.

正極接続部12A、負極接続部12Bは、正極外部端子8A、負極外部端子8Bの下面からそれぞれ突出して先端が電池蓋6の正極側貫通孔6A、負極側貫通孔6Bに挿入可能な円柱形状を有している。正極接続部12A、負極接続部12Bは、電池蓋6を貫通して正極集電板4A、負極集電板4Bの正極集電板基部41A、負極集電板基部41Bよりも電池缶1の内部側に突出しており、先端がかしめられて、正極外部端子8A、負極外部端子8Bと、正極集電板4A、負極集電板4Bを電池蓋6に一体に固定している。正極外部端子8A、負極外部端子8Bと電池蓋6との間には、ガスケット5が介在されており、正極集電板4A、負極集電板4Bと電池蓋6との間には、絶縁板7が介在されている。   The positive electrode connecting portion 12A and the negative electrode connecting portion 12B have cylindrical shapes that protrude from the lower surfaces of the positive electrode external terminal 8A and the negative electrode external terminal 8B, respectively, and the tips can be inserted into the positive electrode side through hole 6A and the negative electrode side through hole 6B. Have. 12 A of positive electrode connection parts and the negative electrode connection part 12B penetrate the battery cover 6, and are inside of the battery can 1 rather than the positive electrode current collecting plate base 41A of the positive electrode current collecting plate 4A and the negative electrode current collecting plate 4B, and the negative electrode current collecting plate base 41B. The positive electrode external terminal 8 </ b> A, the negative electrode external terminal 8 </ b> B, the positive electrode current collector plate 4 </ b> A, and the negative electrode current collector plate 4 </ b> B are integrally fixed to the battery lid 6. A gasket 5 is interposed between the positive electrode external terminal 8A, the negative electrode external terminal 8B, and the battery cover 6, and an insulating plate is interposed between the positive electrode current collector plate 4A, the negative electrode current collector plate 4B, and the battery cover 6. 7 is interposed.

正極集電板4A、負極集電板4Bは、電池蓋6の下面に対向して配置される矩形板状の正極集電板基部41A、負極集電板基部41Bと、正極集電板基部41A、負極集電板基部41Bの側端で折曲されて、電池缶1の幅広面に沿って底面側に向かって延出し、捲回群3の正極箔接続部31d、負極箔接続部32dに対向して重ね合わされた状態で接続される正極側接続端部42A、負極側接続端部42Bを有している。正極集電板基部41A、負極集電板基部41Bには、正極接続部12A、負極接続部12Bが挿通される正極側開口穴43A、負極側開口穴43Bがそれぞれ形成されている。   The positive electrode current collector plate 4A and the negative electrode current collector plate 4B are a rectangular plate-shaped positive electrode current collector plate base 41A, a negative electrode current collector plate base 41B, and a positive electrode current collector plate base 41A, which are arranged to face the lower surface of the battery lid 6. The negative electrode current collector base 41B is bent at the side end and extends toward the bottom surface along the wide surface of the battery can 1 to form the positive electrode foil connection portion 31d and the negative electrode foil connection portion 32d of the wound group 3. It has a positive electrode side connection end portion 42A and a negative electrode side connection end portion 42B which are connected in a state of being overlapped facing each other. The positive electrode collector plate base 41A and the negative electrode collector plate base 41B are respectively formed with a positive electrode side opening hole 43A and a negative electrode side opening hole 43B through which the positive electrode connecting part 12A and the negative electrode connecting part 12B are inserted.

捲回群3の扁平面に沿う方向でかつ捲回群3の捲回軸方向に直交する方向を中心軸方向として前記捲回群3の周囲には絶縁保護フィルム2が巻き付けられている。絶縁保護フィルム2は、例えばPP(ポリプロピレン)などの合成樹脂製の一枚のシートまたは複数のフィルム部材からなり、捲回群3の扁平面と平行な方向でかつ捲回軸
方向に直交する方向を巻き付け中心として巻き付けることができる長さを有している。
The insulating protective film 2 is wound around the winding group 3 with the direction along the flat plane of the winding group 3 and the direction perpendicular to the winding axis direction of the winding group 3 as the central axis direction. The insulating protective film 2 is made of a single sheet or a plurality of film members made of synthetic resin such as PP (polypropylene), for example, and is a direction parallel to the flat surface of the wound group 3 and perpendicular to the winding axis direction. Has a length that can be wound around the winding center.

図3は、捲回電極群の一部を展開した状態を示す分解斜視図である。   FIG. 3 is an exploded perspective view showing a state in which a part of the wound electrode group is developed.

捲回群3は、負極電極32と正極電極31を間にセパレータ33を介して扁平状に捲回することによって構成されている。捲回群3は、最外周の電極が負極電極32であり、さらにその外側にセパレータ33が捲回される。セパレータ33は、正極電極31と負極電極32との間を絶縁する役割を有している。   The winding group 3 is configured by winding the negative electrode 32 and the positive electrode 31 in a flat shape with a separator 33 therebetween. In the winding group 3, the outermost electrode is the negative electrode 32, and the separator 33 is wound outside thereof. The separator 33 has a role of insulating between the positive electrode 31 and the negative electrode 32.

負極電極32の負極合剤32bが塗布された部分は、正極電極31の正極合剤31bが塗布された部分よりも幅方向に大きく、これにより正極合剤31bが塗布された部分は、必ず負極合剤32bが塗布された部分に挟まれるように構成されている。正極箔露出部31c、負極箔露出部32cは、平面部分で束ねられて溶接等により接続される。尚、セパレータ33は、幅方向で負極合剤32bが塗布された部分よりも広いが、正極箔露出部31c、負極箔露出部32cで端部の金属箔面が露出する位置に捲回されるため、束ねて溶接する場合の支障にはならない。   The portion of the negative electrode 32 to which the negative electrode mixture 32b is applied is larger in the width direction than the portion of the positive electrode 31 to which the positive electrode mixture 31b is applied. It is comprised so that it may be pinched | interposed into the part to which the mixture 32b was apply | coated. The positive foil exposed portion 31c and the negative foil exposed portion 32c are bundled at a plane portion and connected by welding or the like. The separator 33 is wider than the portion where the negative electrode mixture 32b is applied in the width direction, but is wound to a position where the metal foil surface at the end is exposed at the positive electrode foil exposed portion 31c and the negative electrode foil exposed portion 32c. Therefore, it does not hinder the welding when bundled.

正極電極31は、正極集電体である正極電極箔の両面に正極活物質合剤を有し、正極電極箔の幅方向一方側の端部には、正極活物質合剤を塗布しない正極箔露出部31cが設けられている。   The positive electrode 31 has a positive electrode active material mixture on both surfaces of a positive electrode foil that is a positive electrode current collector, and a positive electrode foil in which the positive electrode active material mixture is not applied to one end in the width direction of the positive electrode foil An exposed portion 31c is provided.

負極電極32は、負極集電体である負極電極箔の両面に負極活物質合剤を有し、正極電極箔の幅方向他方側の端部には、負極活物質合剤を塗布しない負極箔露出部32cが設けられている。正極箔露出部31cと負極箔露出部32cは、電極箔の金属面が露出した領域であり、捲回軸方向の一方側と他方側の位置に配置されるように捲回される。   The negative electrode 32 has a negative electrode active material mixture on both sides of a negative electrode foil that is a negative electrode current collector, and the negative electrode foil in which the negative electrode active material mixture is not applied to the other end in the width direction of the positive electrode foil An exposed portion 32c is provided. The positive foil exposed portion 31c and the negative foil exposed portion 32c are regions where the metal surface of the electrode foil is exposed, and are wound so as to be disposed at one side and the other side in the winding axis direction.

負極電極32に関しては、負極活物質として非晶質炭素粉末100重量部に対して、結着剤として10重量部のポリフッ化ビニリデン(以下、PVDFという。)を添加し、これに分散溶媒としてN−メチルピロリドン(以下、NMPという。)を添加、混練した負極合剤を作製した。この負極合剤を厚さ10μmの銅箔(負極電極箔)の両面に溶接部(負極未塗工部)を残して塗布した。その後、乾燥、プレス、裁断工程を経て、銅箔を含まない負極活物質塗布部厚さ70μmの負極電極32を得た。   Regarding the negative electrode 32, 10 parts by weight of polyvinylidene fluoride (hereinafter referred to as PVDF) is added as a binder to 100 parts by weight of amorphous carbon powder as a negative electrode active material, and N as a dispersion solvent. -A negative electrode mixture in which methylpyrrolidone (hereinafter referred to as NMP) was added and kneaded was prepared. This negative electrode mixture was applied to both surfaces of a 10 μm thick copper foil (negative electrode electrode foil) leaving a welded portion (negative electrode uncoated portion). Then, the negative electrode 32 with a negative electrode active material application part thickness of 70 micrometers which does not contain copper foil was obtained through drying, a press, and a cutting process.

尚、本実施形態では、負極活物質に非晶質炭素を用いる場合について例示したが、これに限定されるものではなく、リチウムイオンを挿入、脱離可能な天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素質材料やSiやSnなどの化合物(例えば、SiO、TiSi2等)、またはそれの複合材料でもよく、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。   In this embodiment, the case where amorphous carbon is used as the negative electrode active material is exemplified, but the present invention is not limited to this. Natural graphite capable of inserting and removing lithium ions and various artificial graphite materials Carbonaceous materials such as coke, compounds such as Si and Sn (for example, SiO, TiSi2 etc.), or composite materials thereof may be used, and the particle shape is particularly limited, such as scaly, spherical, fibrous, or massive Is not to be done.

正極電極31に関しては、正極活物質としてマンガン酸リチウム(化学式LiMn2O4)100重量部に対し、導電材として10重量部の鱗片状黒鉛と結着剤として10重量部のPVDFとを添加し、これに分散溶媒としてNMPを添加、混練した正極合剤を作製した。この正極合剤を厚さ20μmのアルミニウム箔(正極電極箔)の両面に溶接部(正極未塗工部)を残して塗布した。その後、乾燥、プレス、裁断工程を経て、アルミニウム箔を含まない正極活物質塗布部厚さ90μmの正極電極31を得た。   As for the positive electrode 31, 10 parts by weight of flaky graphite as a conductive material and 10 parts by weight of PVDF as a binder are added to 100 parts by weight of lithium manganate (chemical formula LiMn 2 O 4) as a positive electrode active material. A positive electrode mixture in which NMP was added and kneaded as a dispersion solvent was prepared. This positive electrode mixture was applied to both surfaces of an aluminum foil (positive electrode foil) having a thickness of 20 μm leaving a welded portion (positive electrode uncoated portion). Thereafter, a positive electrode 31 having a thickness of 90 μm in the thickness of the positive electrode active material coating portion not including an aluminum foil was obtained through drying, pressing, and cutting processes.

また、本実施形態では、正極活物質にマンガン酸リチウムを用いる場合について例示したが、スピネル結晶構造を有する他のマンガン酸リチウムや一部を金属元素で置換又はドープしたリチウムマンガン複合酸化物や層状結晶構造を有すコバルト酸リチウムやチタン酸リチウムやこれらの一部を金属元素で置換またはドープしたリチウム-金属複合酸化物を用いるようにしてもよい。   Further, in the present embodiment, the case where lithium manganate is used as the positive electrode active material is exemplified, but other lithium manganate having a spinel crystal structure or a lithium manganese composite oxide or layered in which a part is substituted or doped with a metal element A lithium cobalt oxide or lithium titanate having a crystal structure, or a lithium-metal composite oxide obtained by substituting or doping a part thereof with a metal element may be used.

また、本実施形態では、正極電極、負極電極における塗工部の結着材としてPVDFを用いる場合について例示したが、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレンブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体およびこれらの混合体などを用いることができる
また、軸芯としては例えば、正極箔31a、負極箔32a、セパレータ33のいずれよりも曲げ剛性の高い樹脂シートを捲回して構成したものを用いることができる。
Moreover, in this embodiment, although the case where PVDF was used as a binder of the coating part in a positive electrode and a negative electrode was illustrated, polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene Use polymers such as butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, acrylic resins, and mixtures thereof. Moreover, as a shaft core, what was comprised by winding the resin sheet whose bending rigidity is higher than any of the positive electrode foil 31a, the negative electrode foil 32a, and the separator 33 can be used, for example.

続いて図4を用いて、本実施形態に係る二次電池モジュール101のブロック概念図について説明する。本実施形態の二次電池モジュール101は、角形二次電池100を複数個直列に接続されているとともに演算部107等の制御回路を含んで構成される。この直列回路に接続されるのが電流測定手段104であり、この直列回路に流れる電流を検出している。   Then, the block conceptual diagram of the secondary battery module 101 which concerns on this embodiment is demonstrated using FIG. The secondary battery module 101 of the present embodiment includes a plurality of prismatic secondary batteries 100 connected in series and includes a control circuit such as the arithmetic unit 107. Connected to the series circuit is a current measuring means 104, which detects the current flowing through the series circuit.

そして、電流測定手段104で検出された電流情報は演算部107に送信される。また、一方で、この直列回路とは並列に電圧測定手段103が設けられている。この電圧検出手段103で測定された電圧情報も演算部107に出力される。   Then, the current information detected by the current measuring unit 104 is transmitted to the calculation unit 107. On the other hand, voltage measuring means 103 is provided in parallel with the series circuit. The voltage information measured by the voltage detection means 103 is also output to the calculation unit 107.

さらに演算部107には角形二次電池100の温度情報及び、タイマー6から出力される時間情報が入力される。そして、演算部107はこれらの情報からSOCを算出し、電流時間積算総量値の区分けテーブル108と対応付けるように値を記録していく。このような方法を取ることによって、現在使用されている角形二次電池100の現実のデータが蓄積されるようになる。   Further, the temperature information of the square secondary battery 100 and the time information output from the timer 6 are input to the calculation unit 107. Then, the calculation unit 107 calculates the SOC from these pieces of information, and records the values so as to be associated with the current time integrated total value division table 108. By adopting such a method, actual data of the currently used prismatic secondary battery 100 is accumulated.

図5は温度とSOC範囲を対応づける表で、それぞれ電流時間積算量が格納されていく。このデータは電池コントローラに記憶された記憶部(不図示)にA1,A2,A3,B1,B2,・・・C3と格納されていくことになる。なお、本実施例では3×3のマトリクスを用いて説明するが、マトリクスの数が増えれば増えるだけより正確な劣化予測が可能となる。一方で、マトリクスの数が少ない方が計算の負荷が少なくなるというメリットもある。   FIG. 5 is a table associating the temperature with the SOC range, and the current time integrated amount is stored in each table. This data is stored as A1, A2, A3, B1, B2,... C3 in a storage unit (not shown) stored in the battery controller. In the present embodiment, description will be made using a 3 × 3 matrix. However, as the number of matrices increases, more accurate deterioration prediction becomes possible. On the other hand, the smaller the number of matrices, there is also an advantage that the calculation load is reduced.

また、本実施形態では図6に記載されるような各温度―SOC範囲に対応する劣化カーブの近似式を有している。そのため、図7に示すような制御をおこなうことが可能となり、実走行を想定していないような基準劣化モードを介さずに劣化予測ができる。従って、より正確な劣化予測を行うことが可能となる。   Further, in the present embodiment, there is an approximate expression of a deterioration curve corresponding to each temperature-SOC range as shown in FIG. Therefore, control as shown in FIG. 7 can be performed, and deterioration can be predicted without going through a reference deterioration mode that does not assume actual traveling. Therefore, more accurate deterioration prediction can be performed.

続いて図7を用いて本実施形態の制御方法を説明する。   Next, the control method of this embodiment will be described with reference to FIG.

まずステップS1では、SOC範囲0〜30%、温度‐30〜25℃のA1の電流時間積算量から劣化カーブの近似式を使用し、劣化率を算出する。   First, in step S1, the deterioration rate is calculated using an approximate expression of a deterioration curve from the current-time integrated amount of A1 in the SOC range of 0 to 30% and the temperature of −30 to 25 ° C.

そしてステップS2でSOC範囲0〜30%、温度25〜45℃の劣化カーブの近似式からステップS1で算出された劣化量に相当する電流時間積算量X1を算出する。   Then, in step S2, a current-time integrated amount X1 corresponding to the deterioration amount calculated in step S1 is calculated from an approximate expression of a deterioration curve with an SOC range of 0 to 30% and a temperature of 25 to 45 ° C.

その後ステップS3では、ステップS2で算出された電流時間積算量X1とSOC範囲0〜30%、温度25〜45℃での電流時間積算量A2を加算し、SOC範囲0〜30%、温度25〜50℃の劣化カーブの近似式から劣化率を算出する。   Thereafter, in step S3, the current time integrated amount X1 calculated in step S2 is added to the SOC range 0 to 30%, and the current time integrated amount A2 at a temperature of 25 to 45 ° C., and the SOC range 0 to 30%, the temperature 25 to 25%. A deterioration rate is calculated from an approximate expression of a deterioration curve at 50 ° C.

そして、最後にステップS4に記載されるように繰り返し計算によって算出された電流時間積算量X8にSOC範囲50〜100%、温度45〜60℃での電流時間積算量C3を加算し、 SOC範囲50〜100%、温度45〜60℃の劣化カーブの近似式から総劣化率を算出するようにする。   Finally, as described in step S4, the current time integrated amount C3 at the SOC range of 50 to 100% and the temperature of 45 to 60 ° C. is added to the current time integrated amount X8 calculated by repetitive calculation, and the SOC range 50 The total deterioration rate is calculated from the approximate expression of the deterioration curve at ˜100% and the temperature of 45-60 ° C.

図8は繰り返しの計算順序を示す図である。本実施形態ではA1,A2,A3の順に計算し、その後B1,B2,B3,そして最後にC1,C2,C3の順に計算する流れとなる。一方で、同じSOC範囲内であれば計算順序にこだわる必要は無くA1から順に計算するのではなくB1から順に計算してもよいし、C1から先に計算しても良い。   FIG. 8 is a diagram showing a repeated calculation order. In this embodiment, the calculation is performed in the order of A1, A2, and A3, and then the calculation is performed in the order of B1, B2, B3, and finally C1, C2, and C3. On the other hand, if it is within the same SOC range, it is not necessary to be particular about the calculation order, and it may be calculated in order from B1 instead of calculating in order from A1, or may be calculated in advance from C1.

図9は図8におけるC2からC3の計算を視覚的に示した図である。このようにC2での劣化率をC3に対応する劣化式の電流時間積算量X8に換算し、そこからさらにC3を加えてまた劣化式に代入することによって最終的な総劣化率が算出されることとなる。   FIG. 9 is a diagram visually showing calculation of C2 to C3 in FIG. Thus, the final total deterioration rate is calculated by converting the deterioration rate at C2 into the current time integrated amount X8 of the deterioration equation corresponding to C3, and further adding C3 and substituting it into the deterioration equation. It will be.

以上のように制御することによって、実走行を想定していないような基準劣化モードを介さずに劣化予測ができる。そのため、より正確な劣化予測を行うことが可能となる。   By controlling as described above, it is possible to predict deterioration without going through a reference deterioration mode that does not assume actual traveling. Therefore, it becomes possible to perform more accurate deterioration prediction.

簡単に実施例1についてまとめる。本発明に記載の劣化予測装置は、二次電池と、二次電池の電圧を測定する電圧測定部と、二次電池の電流を測定する電流測定部と、測定された電流及び電圧から二次電池の電流時間積算量及び使用SOC範囲を算出する演算部を有する劣化予測装置において、演算部は、所定SOC範囲における第一の温度範囲及び第二の温度範囲での電流時間積算量を算出し、第一の温度範囲における電流時間積算量を第二の温度範囲における電流時間積算量に変換し、第二の温度範囲における電流時間積算量と前記変換された電流時間積算量とを合算した値を用いて総劣化率を算出することを特徴とする。このような構成にすることによって、実走行を想定していないような基準劣化モードを介さずに劣化予測ができる。そのため、より正確な劣化予測を行うことが可能となる。   The first embodiment will be briefly summarized. The degradation prediction apparatus according to the present invention includes a secondary battery, a voltage measurement unit that measures the voltage of the secondary battery, a current measurement unit that measures the current of the secondary battery, and a secondary current based on the measured current and voltage. In the deterioration prediction apparatus having a calculation unit that calculates the current time integrated amount of the battery and the used SOC range, the calculation unit calculates the current time integrated amount in the first temperature range and the second temperature range in the predetermined SOC range. The value obtained by converting the current time integrated amount in the first temperature range into the current time integrated amount in the second temperature range, and adding the current time integrated amount in the second temperature range and the converted current time integrated amount. The total deterioration rate is calculated using By adopting such a configuration, it is possible to predict deterioration without going through a reference deterioration mode that does not assume actual traveling. Therefore, it becomes possible to perform more accurate deterioration prediction.

1…電池缶、1a… 開口部、2…絶縁保護フィルム、3…捲回群、4A…正極集電板、4B…負極集電板、5…ガスケット、6…電池蓋、6A…正極側貫通孔、6B…負極側貫通孔、7…絶縁板、8A…正極外部端子、8B…負極外部端子、9…注液口、10…ガス排出弁、11…注液栓、12A…正極接続部、12B…負極接続部、21…側面、22…底面、31…正極電極、31a…正極箔、31b…正極合剤、31c…正極箔露出部、32…負極電極、32a…負極箔、32b…負極合剤、32c…負極箔露出部、31d…正極箔接続部、32d…負極箔接続部、33…セパレータ、100…角形二次電池、101…二次電池モジュール、103…電圧測定手段、104…電流測定手段、107…演算部、108…テーブル DESCRIPTION OF SYMBOLS 1 ... Battery can, 1a ... Opening part, 2 ... Insulating protective film, 3 ... Winding group, 4A ... Positive electrode collector plate, 4B ... Negative electrode collector plate, 5 ... Gasket, 6 ... Battery cover, 6A ... Positive electrode side penetration Hole, 6B ... negative electrode side through-hole, 7 ... insulating plate, 8A ... positive electrode external terminal, 8B ... negative electrode external terminal, 9 ... injection port, 10 ... gas discharge valve, 11 ... injection plug, 12A ... positive electrode connection part, 12B ... Negative electrode connection part, 21 ... Side face, 22 ... Bottom face, 31 ... Positive electrode, 31a ... Positive electrode foil, 31b ... Positive electrode mixture, 31c ... Positive electrode foil exposed part, 32 ... Negative electrode, 32a ... Negative electrode foil, 32b ... Negative electrode Mixture, 32c ... negative electrode foil exposed portion, 31d ... positive electrode foil connecting portion, 32d ... negative electrode foil connecting portion, 33 ... separator, 100 ... square secondary battery, 101 ... secondary battery module, 103 ... voltage measuring means, 104 ... Current measuring means, 107 ... calculation unit, 108 ... table

Claims (2)

二次電池と、
前記二次電池の電流を測定する電流測定部と、
前記二次電池の温度を測定する温度測定部と、
時間を測定するタイマーと、
前記測定された電流及び前記タイマーによる前記時間から前記二次電池の電流時間積算量及び使用SOC範囲を算出する演算部と、を有する二次電池モジュールにおいて、
前記演算部は、
所定SOC範囲における第一の温度範囲及び第二の温度範囲での電流時間積算量を算出し、前記第一の温度範囲における電流時間積算量を第二の温度範囲における電流時間積算量に変換し、
前記第二の温度範囲における電流時間積算量と前記変換された電流時間積算量とを合算した値を用いて総劣化率を算出する二次電池モジュール。
A secondary battery,
A current measuring unit for measuring the current of the secondary battery;
A temperature measuring unit for measuring the temperature of the secondary battery;
A timer to measure time,
In the secondary battery module, comprising: an arithmetic unit that calculates a current time integrated amount and a used SOC range of the secondary battery from the measured current and the time by the timer.
The computing unit is
The current time integrated amount in the first temperature range and the second temperature range in the predetermined SOC range is calculated, and the current time integrated amount in the first temperature range is converted into the current time integrated amount in the second temperature range. ,
The secondary battery module which calculates a total deterioration rate using the value which added the current time integrated amount in said 2nd temperature range and the converted said current time integrated amount.
請求項1に記載の二次電池モジュールおいて、
前記二次電池の電圧を測定する電圧測定部を有し、所定電圧値を超えた場合、使用SOC範囲の上限値を低くする二次電池モジュール。
The secondary battery module according to claim 1,
A secondary battery module that includes a voltage measurement unit that measures the voltage of the secondary battery, and lowers an upper limit value of a use SOC range when a predetermined voltage value is exceeded.
JP2016192519A 2016-09-30 2016-09-30 Rechargeable battery module Active JP6791702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016192519A JP6791702B2 (en) 2016-09-30 2016-09-30 Rechargeable battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016192519A JP6791702B2 (en) 2016-09-30 2016-09-30 Rechargeable battery module

Publications (2)

Publication Number Publication Date
JP2018054521A true JP2018054521A (en) 2018-04-05
JP6791702B2 JP6791702B2 (en) 2020-11-25

Family

ID=61833155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016192519A Active JP6791702B2 (en) 2016-09-30 2016-09-30 Rechargeable battery module

Country Status (1)

Country Link
JP (1) JP6791702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111257752A (en) * 2018-11-30 2020-06-09 宁德时代新能源科技股份有限公司 Remaining charge time estimation method, apparatus, system, and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132268A1 (en) * 2010-04-21 2011-10-27 トヨタ自動車株式会社 Secondary battery deterioration degree computation device, vehicle wherein same is included, and secondary battery deterioration degree computation method
WO2011135609A1 (en) * 2010-04-26 2011-11-03 トヨタ自動車株式会社 Degradation estimation device and degradation estimation method for storage battery device
WO2012143996A1 (en) * 2011-04-18 2012-10-26 日立ビークルエナジー株式会社 Electric storage device
JP2014081238A (en) * 2012-10-15 2014-05-08 Sony Corp Battery deterioration and service life estimation method, battery deterioration and service life estimation device, electric vehicle and power supply device
JP2015021934A (en) * 2013-07-23 2015-02-02 日本電気株式会社 Deterioration factor determination system, deterioration prediction system, deterioration factor determination method, and deterioration factor determination program
JP2015118024A (en) * 2013-12-19 2015-06-25 日立オートモティブシステムズ株式会社 Secondary battery module and secondary battery monitoring apparatus
US20150180090A1 (en) * 2013-12-19 2015-06-25 Ford Global Technologies, Llc Battery Degradation Accumulation Methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132268A1 (en) * 2010-04-21 2011-10-27 トヨタ自動車株式会社 Secondary battery deterioration degree computation device, vehicle wherein same is included, and secondary battery deterioration degree computation method
WO2011135609A1 (en) * 2010-04-26 2011-11-03 トヨタ自動車株式会社 Degradation estimation device and degradation estimation method for storage battery device
WO2012143996A1 (en) * 2011-04-18 2012-10-26 日立ビークルエナジー株式会社 Electric storage device
JP2014081238A (en) * 2012-10-15 2014-05-08 Sony Corp Battery deterioration and service life estimation method, battery deterioration and service life estimation device, electric vehicle and power supply device
JP2015021934A (en) * 2013-07-23 2015-02-02 日本電気株式会社 Deterioration factor determination system, deterioration prediction system, deterioration factor determination method, and deterioration factor determination program
JP2015118024A (en) * 2013-12-19 2015-06-25 日立オートモティブシステムズ株式会社 Secondary battery module and secondary battery monitoring apparatus
US20150180090A1 (en) * 2013-12-19 2015-06-25 Ford Global Technologies, Llc Battery Degradation Accumulation Methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111257752A (en) * 2018-11-30 2020-06-09 宁德时代新能源科技股份有限公司 Remaining charge time estimation method, apparatus, system, and storage medium
CN111257752B (en) * 2018-11-30 2021-02-26 宁德时代新能源科技股份有限公司 Remaining charge time estimation method, apparatus, system, and storage medium
US11269011B2 (en) 2018-11-30 2022-03-08 Contemporary Amperex Technology Co., Limited Method, device, system for estimating remaining charging time and storage medium

Also Published As

Publication number Publication date
JP6791702B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
CN106575721B (en) Square secondary battery
JP6363893B2 (en) Secondary battery
US11424488B2 (en) Rectangular secondary battery
JP6446239B2 (en) Secondary battery
JP6165620B2 (en) Secondary battery module and secondary battery monitoring device
JP2004273139A (en) Lithium secondary battery
KR101806416B1 (en) A lithium ion secondary battery comprising a reference electrode
JP5232751B2 (en) Lithium ion secondary battery
JP2015220044A (en) Cylindrical secondary battery
KR101357931B1 (en) Secondary battery
JP6403644B2 (en) Secondary battery
JP6913766B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using it
WO2016088505A1 (en) Rectangular secondary cell
JP2018054521A (en) Secondary battery module
JP2020035641A (en) Secondary battery
JP2016178053A (en) Square secondary battery
JP2015002043A (en) Lithium ion secondary battery
JP6978500B2 (en) Secondary battery
WO2015125223A1 (en) Secondary battery
JP2017004775A (en) Square secondary battery and method of manufacturing the same
JP2016143618A (en) Rectangular secondary battery
JP6216203B2 (en) Winding type secondary battery
JPWO2019003770A1 (en) Secondary battery and method of manufacturing the same
CN112952302B (en) Method for manufacturing secondary battery
JP2013218824A (en) Square secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201105

R150 Certificate of patent or registration of utility model

Ref document number: 6791702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250