JP6783500B2 - Surface treatment method for sliding members and sliding members - Google Patents

Surface treatment method for sliding members and sliding members Download PDF

Info

Publication number
JP6783500B2
JP6783500B2 JP2014259453A JP2014259453A JP6783500B2 JP 6783500 B2 JP6783500 B2 JP 6783500B2 JP 2014259453 A JP2014259453 A JP 2014259453A JP 2014259453 A JP2014259453 A JP 2014259453A JP 6783500 B2 JP6783500 B2 JP 6783500B2
Authority
JP
Japan
Prior art keywords
sliding
base material
convex portion
sliding portion
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014259453A
Other languages
Japanese (ja)
Other versions
JP2016117935A (en
Inventor
間瀬 恵二
恵二 間瀬
正三 石橋
正三 石橋
祐介 近藤
祐介 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Manufacturing Co Ltd
Original Assignee
Fuji Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Manufacturing Co Ltd filed Critical Fuji Manufacturing Co Ltd
Priority to JP2014259453A priority Critical patent/JP6783500B2/en
Publication of JP2016117935A publication Critical patent/JP2016117935A/en
Application granted granted Critical
Publication of JP6783500B2 publication Critical patent/JP6783500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • ing And Chemical Polishing (AREA)

Description

本発明は,金型,工具,刃物,軸受等,他部材と摺接される部分(本発明において「摺動部」という)を有する摺動部材の表面処理方法,及び該方法で処理された表面を有する摺動部材に関する。 The present invention is a surface treatment method for a sliding member having a portion (referred to as a “sliding portion” in the present invention) that is in sliding contact with another member, such as a mold, a tool, a cutting tool, and a bearing, and is treated by the method. The present invention relates to a sliding member having a surface.

摺動部材の摺動部の低摩擦性,耐摩耗性を実現するために,従来から各種の表面処理技術が提案されている。 Various surface treatment techniques have been conventionally proposed in order to realize low friction and wear resistance of the sliding portion of the sliding member.

このような低摩擦性,耐摩耗性を実現するための表面処理の1つとして,二硫化モリブデンや酸化スズ等の固体潤滑剤を,摺動部に対しバインダと共に塗布し,メッキし,あるいはスパッタリング等で蒸着することにより,固体潤滑剤を含む被膜を形成することが提案されている。 As one of the surface treatments for achieving such low friction resistance and wear resistance, a solid lubricant such as molybdenum disulfide or tin oxide is applied to the sliding part together with a binder, plated, or sputtered. It has been proposed to form a film containing a solid lubricant by vapor deposition with or the like.

一例として,後掲の特許文献1では,この様な固体潤滑剤を含む被膜を比較的簡単に形成する方法として,摺動部の表面にブラスト加工装置を使用して二硫化モリブデンの微細粉体を衝突させることにより,表面から深さ20μm以内の表面に,固体潤滑剤である二硫化モリブデンを含有する層を形成することを提案している(特許文献1の請求項1他参照)。 As an example, in Patent Document 1 described later, as a method of relatively easily forming a coating film containing such a solid lubricant, a blasting device is used on the surface of a sliding portion to obtain a fine powder of molybdenum disulfide. It has been proposed to form a layer containing molybdenum disulfide, which is a solid lubricant, on the surface within a depth of 20 μm from the surface by colliding with each other (see claim 1 and others of Patent Document 1).

また,前述した低摩擦性,耐摩耗性を,摺動部に対する潤滑油の給油性の向上と,潤滑油の保持力の向上によって実現することも提案されており,このような給油性や保持力の向上を得るために,後掲の特許文献2には,摺動部材の摺動面に,所定のパターンで寸法が0.5〜500μmの凹凸を形成することが提案されている(特許文献2参照)。 It has also been proposed to achieve the above-mentioned low friction and wear resistance by improving the lubricity of the lubricating oil to the sliding parts and the holding power of the lubricating oil. In order to obtain an improvement in force, Patent Document 2 described later proposes forming unevenness having a size of 0.5 to 500 μm in a predetermined pattern on the sliding surface of the sliding member (Patent). Reference 2).

国際公開2002/040743号公報International Publication No. 2002/040743 特開2002−323045号公報JP-A-2002-323045

以上で説明した従来技術のうち,摺動部の表面に固体潤滑剤を含有する被膜を形成する構成では,摺動部は固体潤滑剤を含有する被膜を介して相手方の部材と接触することとなるため,低摩擦性,耐摩耗性を向上させることができる。 Among the conventional techniques described above, in the configuration in which a film containing a solid lubricant is formed on the surface of the sliding portion, the sliding portion comes into contact with the other member via the film containing the solid lubricant. Therefore, low friction resistance and wear resistance can be improved.

しかし,このような被膜の形成によって低摩擦性と耐摩耗性を実現した摺動部材では,固体潤滑剤が被膜より脱落し,又は,固体潤滑剤を含む被膜が剥離してしまうと,低摩擦性や耐摩耗性が失われる。 However, in a sliding member that achieves low friction and wear resistance by forming such a film, low friction occurs when the solid lubricant falls off from the film or the film containing the solid lubricant peels off. Loss of property and abrasion resistance.

そのため,被膜は下地に対し強固に付着している必要があり,高い付着強度を得るためには,処理時間,その他の処理条件の厳格な管理が必要で,処理作業に専門性が必要となる。 Therefore, the coating must be firmly adhered to the substrate, and in order to obtain high adhesion strength, strict control of the treatment time and other treatment conditions is required, and specialization is required in the treatment work. ..

また,固体潤滑剤を含有する被膜は,下地層の材質や加工状態によっては剥離が生じ易くなるため,被膜の剥離を防止して,長期間,低摩擦性や耐摩耗性を発揮させるためには,適切な下地処理が必要となり,作業工数が多くなる。 In addition, the film containing a solid lubricant is likely to peel off depending on the material and processing condition of the base layer, so in order to prevent the film from peeling off and to exhibit low friction and abrasion resistance for a long period of time. Requires appropriate surface treatment, which increases the work man-hours.

なお,前述したように,ブラスト加工装置を使用して二硫化モリブデンの粉体を噴射するという比較的簡単な方法により固体潤滑剤を含有する被膜を摺動部の表面に形成することができる特許文献1に記載の方法では,バインダによる塗布やメッキ,スパッタリング等の方法によって固体潤滑剤を含有する被膜を形成する場合に比較して,被膜の形成が容易である。 As described above, a patent that allows a film containing a solid lubricant to be formed on the surface of a sliding portion by a relatively simple method of injecting molybdenum disulfide powder using a blasting apparatus. In the method described in Document 1, the formation of a coating film is easier than in the case of forming a coating film containing a solid lubricant by a method such as coating with a binder, plating, or sputtering.

しかし,特許文献1に記載の方法によって固体潤滑剤を含有する被膜を形成した場合であっても,形成した被膜が摩耗や摩擦剥離によって消滅すれば,低摩擦性や耐摩耗性を発揮しなくなる。 However, even when a film containing a solid lubricant is formed by the method described in Patent Document 1, if the formed film disappears due to abrasion or friction peeling, low friction and abrasion resistance will not be exhibited. ..

従って,このように固体潤滑剤を含有する被膜の形成による低摩擦性,耐摩耗性の向上は,摺動部材の使用開始から比較的短期間の間,初期なじみを向上させる目的で採用するのが一般的であり,長期間,安定的に低摩擦性や耐摩耗性を得られるものとはなっていない。 Therefore, the improvement of low friction resistance and wear resistance by forming a film containing a solid lubricant in this way is adopted for the purpose of improving the initial familiarity for a relatively short period of time from the start of use of the sliding member. Is common, and it has not been possible to stably obtain low friction resistance and wear resistance for a long period of time.

これに対し,摺動部の表面に微細な凹凸を形成した特許文献2に記載の構成では,面圧の高い摺動部においても凹凸間に潤滑油が入り込むことで,摺動部に対する給油性が向上すると共に,油膜の保持性が向上し,これにより,低摩擦性と耐摩耗性を実現することができるものとなっている。 On the other hand, in the configuration described in Patent Document 2 in which fine irregularities are formed on the surface of the sliding portion, lubricating oil enters between the irregularities even in the sliding portion having a high surface pressure, so that the lubricating property can be supplied to the sliding portion. The oil film retention is improved, and as a result, low friction and abrasion resistance can be realized.

また,特許文献2に記載の構成は,摺動部の表面凹凸形状によって低摩擦性や耐摩耗性を得ようというものであり,固体潤滑剤を含む被膜の形成によって低摩擦性,耐摩耗性を実現する特許文献1に記載の方法とは異なり,被膜の剥離に伴う性能の低下等といった問題も生じない。 Further, the configuration described in Patent Document 2 is intended to obtain low friction and wear resistance by the surface uneven shape of the sliding portion, and low friction and wear resistance by forming a film containing a solid lubricant. Unlike the method described in Patent Document 1, which realizes the above, there is no problem such as deterioration of performance due to peeling of the coating film.

しかし,摺動部の表面に凹凸を形成した特許文献2に記載の構成においても,摺動部の表面に形成した凹凸の凸部が,経時と共に相手方の部材と擦れ合うことで摩耗し,これに伴い摺動部が平滑化することにより給油性や油膜の保持性能が低下する。 However, even in the configuration described in Patent Document 2 in which irregularities are formed on the surface of the sliding portion, the convex portions of the irregularities formed on the surface of the sliding portion are worn by rubbing against the other member over time. As the sliding portion becomes smooth, the oil supply property and the oil film holding performance deteriorate.

そこで本発明は,上記従来技術として説明した構成中,摺動部の表面に凹凸を形成することにより得られる給油性と油膜保持性の向上により,低摩擦性,耐摩耗性の向上を図るものでありながら,経時によっても凹凸形状の平滑化が生じ難く,従って長期間にわたって安定して低摩擦性,耐摩耗性を発揮することができる摺動部材の表面処理方法,及び前記方法によって表面処理された摺動部材を提供することを目的とする。 Therefore, the present invention aims to improve low friction and wear resistance by improving the oil supply property and the oil film retention property obtained by forming irregularities on the surface of the sliding portion in the configuration described as the above-mentioned prior art. However, smoothing of the uneven shape is unlikely to occur over time, and therefore, a surface treatment method for sliding members capable of stably exhibiting low friction and wear resistance over a long period of time, and surface treatment by the above method. It is an object of the present invention to provide a sliding member.

上記目的を達成するための,本発明の摺動部材の表面処理方法は,
摺動部材のうち少なくとも他部材と摺接される部分である摺動部の素地を,前記素地よりも高硬度の粒状組織である炭化物及び/又は前記素地よりも高硬度の金属間化合物が前記素地中に散在して析出した合金(但し,Al−Si系合金を除く。)により形成し,
前記摺動部の表面付近における前記素地を選択的に除去することにより,前記摺動部の表面に,前記素地部分に形成された凹部と,前記炭化物及び/又は金属間化合物部分に形成された凸部を設け,前記凸部の高さを0.05〜3.0μm,好ましくは0.1〜2.0μm,平面視における前記凸部の面積を前記摺動部の面積の4%以上としたことを特徴とする(請求項1,2)。
The surface treatment method for sliding members of the present invention for achieving the above object is described.
The base material of the sliding portion, which is at least a portion of the sliding member that is in sliding contact with another member, is a carbide having a granular structure having a hardness higher than that of the base material and / or an intermetallic compound having a hardness higher than that of the base material. Formed from alloys scattered and precipitated in the substrate (excluding Al—Si alloys),
By selectively removing the base material in the vicinity of the surface of the sliding portion, recesses formed in the base material portion and the carbide and / or intermetallic compound portion formed on the surface of the sliding portion . A convex portion is provided , the height of the convex portion is 0.05 to 3.0 μm , preferably 0.1 to 2.0 μm , and the area of the convex portion in a plan view is 4% or more of the area of the sliding portion. (Claims 1 and 2).

ここで,本発明の表面形状の定義について説明する。表面形状の「凸部の高さ」の定義については,下記の方法により測定した数値で定義する。
凸部の高さの測定方法
1.測定装置
キーエンス社製 レーザー顕微鏡VK-X250を使用。
2.測定法
上記測定装置で測定したデータに対して,任意の位置のプロファイル曲線を測定。
プロファイル曲線に表れる凹部内の平坦部から凸部の山頂までの高さを任意に測定して,それを凸部高さとした(図7)。
なお,鏡面は凸部高さ「0」とする。
Here, the definition of the surface shape of the present invention will be described. The definition of the "height of the convex part" of the surface shape is defined by the numerical value measured by the following method.
How to measure the height of the convex part
1. Measuring device Keyence laser microscope VK-X250 is used.
2. Measurement method Measure the profile curve at any position with respect to the data measured by the above measuring device.
The height from the flat portion in the concave portion to the peak of the convex portion appearing in the profile curve was arbitrarily measured and used as the convex portion height (Fig. 7).
The height of the convex portion of the mirror surface is "0".

また,前記素地の除去は,前記摺動部の表面を,例えば,Ra0.03μm以下の鏡面に鏡面研磨した後に行うことが好ましい(請求項3)。 Further, it is preferable that the base material is removed after the surface of the sliding portion is mirror-polished to, for example, a mirror surface of Ra 0.03 μm or less (claim 3).

なお,前記凸部の面積比(%)の算出は,SEMで撮影した写真(平面)中の面積比から求めた。 The area ratio (%) of the convex portion was calculated from the area ratio in the photograph (plane) taken by SEM.

なお,前記凹部及びの形成後,形成された前記凹部及びを維持した状態で前記摺動部の表面に耐摩擦性及び/又は耐摩耗性を有する被膜をコーティングするものとしても良い(請求項)。 Incidentally, as for coating the concave portion and after the formation of the protrusions, formed the concave portion and the coating having abrasion resistance and / or abrasion resistance on the surface of the sliding portion while maintaining a convex portion Also good (Claim 4 ).

また,本発明の摺動部材は,
他部材と摺接される摺動部を備え,
少なくとも前記摺動部の素地が,
前記素地よりも高硬度の粒状組織である炭化物及び/又は前記素地よりも高硬度の金属間化合物が前記素地中に散在して析出した合金(但し,Al−Si系合金を除く。)により形成されていると共に,
前記摺動部の表面が,前記素地部分に形成された凹部と,前記炭化物及び/又は金属間化合物部分に形成された凸部を有し,該凸部の高さは,0.05〜3.0μm,好ましくは0.1〜2.0μmであり,平面視における前記凸部の面積が前記摺動部の面積の4%以上であることを特徴とする(請求項5,6)。
Further, the sliding member of the present invention is
Equipped with a sliding part that is in sliding contact with other members
At least the base material of the sliding part is
Formed by an alloy (excluding Al—Si based alloys) in which carbides and / or intermetallic compounds having a hardness higher than that of the base material are scattered and precipitated in the base material, which is a granular structure having a hardness higher than that of the base material. As well as being
The surface of the sliding portion, and a recess formed in the base material portion, comprising the carbides and / or intermetallic convex portion formed on the chemical moiety, the height of the convex portion is 0.05 to 3 .0Myuemu, preferably Ri 0.1~2.0μm der, the area of the convex portion in plan view, characterized in der Rukoto least 4% of the area of the sliding portion (claim 5, 6) ..

なお,前記凹部及びが形成された前記摺動部の表面に,前記凹部及びを維持した状態で耐摩擦性及び/又は耐摩耗性を有する被膜を形成するものとしても良い(請求項)。 Incidentally, the concave portion and the surface of the sliding portion having a convex portion formed may be those which form a film having abrasion resistance and / or abrasion resistance while maintaining the concave portion and the convex portion (Claim 7 ).

以上で説明した本発明の構成により,本発明の摺動部材の表面処理方法及び摺動部材によれば,以下の顕著な効果を得ることができた。 With the configuration of the present invention described above, the following remarkable effects could be obtained according to the surface treatment method for the sliding member and the sliding member of the present invention.

摺動部材の少なくとも摺動部を,素地中に炭化物及び/又は金属間化合物が散在した合金により形成し,前記摺動部の表面付近における前記素地を選択的に除去することで,前記摺動部に,前記炭化物及び/又は金属間化合物から成る凸部を有し,且つ,前記凸部の高さを0.05〜3.0μm,好ましくは0.1〜2.0μmに形成したことで,炭化物或いは金属間化合物という高硬度の材質で形成された凸部と,これに対し低硬度の素地によって形成された凹部から成る凹凸を摺動部の表面に形成することができた。 The sliding portion is formed by forming at least the sliding portion of the sliding member with an alloy in which carbides and / or intermetallic compounds are scattered in the substrate, and selectively removing the substrate near the surface of the sliding portion. By having a convex portion made of the carbide and / or an intermetallic compound in the portion and forming the height of the convex portion to 0.05 to 3.0 μm, preferably 0.1 to 2.0 μm. , Concavities and convexities consisting of convex portions formed of a high-hardness material such as carbides or intermetallic compounds and concave portions formed of a low-hardness substrate could be formed on the surface of the sliding portion.

その結果,摺動部に形成された凹凸の存在により,摺動部に対し潤滑油が供給され易く,且つ,油膜が保持され易くなると共に,本発明の方法で摺動部に形成された凹凸の凸部は高硬度であるために摩耗し難く,経時による凹凸の平滑化が生じ難く,その結果,前述した良好な給油性と油膜の保持性を,長期間,安定的に維持することができ,低摩擦性と耐摩耗性を長期に亘って発揮する摺動部材を提供することができた。 As a result, due to the presence of the unevenness formed on the sliding portion, the lubricating oil is easily supplied to the sliding portion, the oil film is easily held, and the unevenness formed on the sliding portion by the method of the present invention. Since the convex part has a high hardness, it is difficult to wear, and it is difficult for the unevenness to be smoothed over time. As a result, the above-mentioned good lubrication property and oil film retention property can be stably maintained for a long period of time. It was possible to provide a sliding member that exhibits low friction resistance and wear resistance for a long period of time.

しかも,素地部分に対し,素地中に析出した炭化物及び/又は金属間化合物は高硬度であることから,摺動部の表面に対し既知の機械的,化学的な研磨,例えばブラスト加工,ドライエッチング,ウェットエッチング等によって,素地部分を選択的に除去し,炭化物や金属間化合物から成る高硬度の凸部を比較的容易に形成することができた。 Moreover, since the carbides and / or intermetallic compounds precipitated in the base material have high hardness with respect to the base material portion, known mechanical and chemical polishing, such as blasting and dry etching, is performed on the surface of the sliding part. , The substrate part was selectively removed by wet etching, etc., and a high-hardness convex part composed of carbides and intermetallic compounds could be formed relatively easily.

すなわち,素地と炭化物,及び/又は素地と金属間化合物間に硬度差が存在することにより,摺動部に対し研磨やエッチングを行うと,素地に比較して,炭化物及び/又は金属間化合物の部分は研磨やエッチングがされ難いことから,炭化物及び/又は金属間化合物の部分が残って突出することとなる。 That is, due to the existence of a hardness difference between the base material and the carbide and / or the base material and the intermetallic compound, when the sliding portion is polished or etched, the carbide and / or the intermetallic compound is compared with the base material. Since the portion is difficult to be polished or etched, the portion of the carbide and / or the intermetallic compound remains and protrudes.

そのため,前述したように既知の各種の方法で研磨あるいはエッチングを行うことで,比較的容易に炭化物や金属間化合物を突出させて凸部を形成可能であると共に,仮に経時に伴い凸部が摩耗した場合であっても,これを容易に再生することができた。 Therefore, as described above, by polishing or etching by various known methods, carbides and intermetallic compounds can be relatively easily projected to form convex portions, and the convex portions are temporarily worn over time. Even if it did, it could be easily regenerated.

しかも,素地の除去を行う際,凸部として残る炭化物や金属間化合物の部分に対しても,僅かながら研磨やエッチングが及ぶことから,凸部は,角が取れた丸みを帯びた形状に形成されることで,他部材に対し摺接した際に相手方部材への攻撃性も低下させることができる。 Moreover, when the substrate is removed, the carbides and intermetallic compounds that remain as convex parts are also slightly polished and etched, so the convex parts are formed into a rounded shape with rounded corners. By doing so, it is possible to reduce the aggression to the other member when it is in sliding contact with another member.

その結果,凸部が丸みを帯びた形状であることは,凸部が高硬度であることとも相俟って,摺動時における摺動抵抗の減少にも寄与するものとなっている。 As a result, the rounded shape of the convex portion, together with the high hardness of the convex portion, contributes to the reduction of sliding resistance during sliding.

また,前記凸部の高さを0.05〜3.0μm,より好ましくは0.1〜2.0μmの範囲とした構成では,摩擦抵抗を極小化することができた(図3)。 Further, in the configuration in which the height of the convex portion is in the range of 0.05 to 3.0 μm, more preferably 0.1 to 2.0 μm, the frictional resistance can be minimized (FIG. 3).

更に,素地部分の除去を,摺動部を鏡面とした後に行う構成にあっては,素地部分の除去によって形成された凸部の高さを比較的均一な状態に揃えることができた。 Furthermore, in the configuration in which the base portion is removed after the sliding portion is mirrored, the height of the convex portion formed by the removal of the base portion can be made uniform in a relatively uniform state.

更に,前述した低摩擦性,耐摩耗性は,前述平面視における前記凸部の面積を,前記摺動部の面積の4%以上に形成することで得ることができた。 Further, the above-mentioned low friction property and wear resistance could be obtained by forming the area of the convex portion in the above-mentioned plan view to 4% or more of the area of the sliding portion.

なお,前記凹凸の形成後の摺動部の表面に,前記凹凸を維持した状態で更に耐摩擦性及び/又は耐摩耗性を有する被膜をコーティングした構成では,前述した凹凸の形成との相乗効果により更なる低摩擦性と耐摩耗性の向上を得ることができた。 In addition, in the configuration in which the surface of the sliding portion after the formation of the unevenness is coated with a coating film having abrasion resistance and / or wear resistance while maintaining the unevenness, a synergistic effect with the formation of the unevenness described above is obtained. Therefore, further improvement in low friction resistance and wear resistance could be obtained.

本発明の表面処理方法を実施した試験片(SKD11)の表面電子顕微鏡写真(SEM像)。A surface electron micrograph (SEM image) of a test piece (SKD11) carrying out the surface treatment method of the present invention. ボールオンディスク摩擦摩耗試験の試験方法の説明図。Explanatory drawing of the test method of a ball-on-disc friction and wear test. 摺動部に形成された凹凸の凸部の高さと摩擦係数の関係を示すグラフ。The graph which shows the relationship between the height of the convex part of the unevenness formed in the sliding part, and the friction coefficient. 本発明の表面処理方法を実施した試験片(SUS440)の表面電子顕微鏡写真(SEM像)。A surface electron micrograph (SEM image) of a test piece (SUS440) carrying out the surface treatment method of the present invention. 本発明の表面処理方法を実施した試験片(粉末ハイス鋼:SKH51)の表面電子顕微鏡写真(SEM像)。A surface electron micrograph (SEM image) of a test piece (powdered high-speed steel: SKH51) carrying out the surface treatment method of the present invention. 本発明の表面処理方法を実施した試験片(Al−Si系合金:AC8A)の表面電子顕微鏡写真(SEM像)。A surface electron micrograph (SEM image) of a test piece (Al—Si alloy: AC8A) carrying out the surface treatment method of the present invention. 凸部の高さを規定するプロファイル曲線を示す。A profile curve that defines the height of the convex portion is shown.

次に,本発明の実施形態につき添付図面を参照しながら以下説明する。 Next, an embodiment of the present invention will be described below with reference to the accompanying drawings.

〔処理対象〕
本発明の表面処理方法は,使用時に他部材と摺接される部分である摺動部を備えた摺動部材全般を対象とし,このような摺動部材の一例としては,金型(例えば,絞り,曲げ等のプレス金型等),各種工具や刃物(例えばドリル等の穴あけ工具,バイト,フライス等の切削工具),軸,軸受等を挙げることができるが,特にこれらに限定されるものではない。
〔Processing object〕
The surface treatment method of the present invention targets all sliding members having a sliding portion that is a portion that is in sliding contact with another member during use, and an example of such a sliding member is a mold (for example, a mold (for example). Press dies for drawing, bending, etc.), various tools and cutting tools (for example, drilling tools such as drills, cutting tools such as tools, milling cutters, etc.), shafts, bearings, etc., but are particularly limited to these. is not.

本発明で処理対象とする摺動部材は,少なくともその摺動部を,素地中に炭化物や金属間化合物が散在した合金によって形成する。 The sliding member to be treated in the present invention has at least its sliding portion formed of an alloy in which carbides and intermetallic compounds are scattered in the substrate.

このような合金の例として炭素鋼の一種である合金工具鋼(SKD1)を例に取り説明すると,この合金工具鋼(SKD1)の焼入れ,焼戻し組織では,焼戻しマルテンサイトから成る素地中に,Cr73から成る比較的粗大な粒状組織と,Cr236から成る比較的微細な粒状組織が「炭化物」として析出,散在しており,このような構造を備えた合金は,前述した摺動部の材質として使用可能である。 Taking alloy tool steel (SKD1), which is a kind of carbon steel, as an example of such an alloy, in the quenching and tempering structure of this alloy tool steel (SKD1), Cr is contained in a substrate composed of tempered maltensite. A relatively coarse granular structure composed of 7 C 3 and a relatively fine granular structure composed of Cr 23 C 6 are precipitated and scattered as “carbides”, and an alloy having such a structure is a slide having the above-mentioned structure. It can be used as a material for moving parts.

上記合金工具鋼(SKD1)の例では,素地中に散在している炭化物はCr73,Cr236であったか,このような炭化物としては,例えば,M3C,M236,M73,M2C,M6C,MC等(Mは金属元素)を挙げることができ,M(金属元素)としては,Fe,Cr,Mo,W,V,Ti等を挙げることができる。 In the above example of alloy tool steel (SKD1), the carbides scattered in the substrate were Cr 7 C 3 and Cr 23 C 6 , or such carbides include, for example, M 3 C, M 23 C 6 , M 7 C 3 , M 2 C, M 6 C, MC, etc. (M is a metal element) can be mentioned, and M (metal element) can be Fe, Cr, Mo, W, V, Ti, etc. Can be done.

なお,本発明における「炭化物」には炭素(C)と金属(M)の化合物のみならず,更に窒素(N)が結合した「炭窒化物」を含む。 The "carbide" in the present invention includes not only a compound of carbon (C) and a metal (M) but also a "carbonitride" in which nitrogen (N) is bonded.

また,金属間化合物は,2つ以上の成分金属が結合してできたもので,一例として,CuAl2,Mg2Si,Ni3Al,Fe2Mo等がある。 The intermetallic compound is formed by bonding two or more component metals, and examples thereof include CuAl 2 , Mg 2 Si, Ni 3 Al, and Fe 2 Mo.

このような炭化物あるいは金属間化合物が素地中に析出した合金としては,前述した合金工具鋼(SKD)の他,ハイス鋼(SKH),炭素工具鋼(SK),合金工具鋼(SKS),ステンレス鋼(SUS),高炭素クロム軸受鋼(SUJ)等の炭素鋼や,Cu,Mg,Ni等を合金成分として添加した多元Al−Si合金,青銅等を挙げることができる。 Examples of alloys in which such carbides or intermetallic compounds are deposited in the substrate include alloy tool steel (SKD) described above, high-speed steel (SKH), carbon tool steel (SK), alloy tool steel (SKS), and stainless steel. Examples thereof include carbon steel such as steel (SUS) and high carbon chrome bearing steel (SUJ), multi-element Al—Si alloy to which Cu, Mg, Ni and the like are added as alloy components, bronze and the like.

このように,素地中に炭化物や金属間化合物が散在した合金では,素地(炭素鋼ではFe,多元Al−Si合金ではAl,青銅ではCu)に対し,炭化物や金属間化合物の硬度は高いものとなる。 In this way, in alloys in which carbides and intermetallic compounds are scattered in the base material, the hardness of the carbides and intermetallic compounds is higher than that of the base material (Fe for carbon steel, Al for multi-element Al-Si alloy, Cu for bronze). It becomes.

本発明では,このように素地に対し,炭化物や金属間化合物が高硬度である点を利用して,以下に説明するように摺動部の表面に,低摩擦性,耐摩耗性の向上に有効な給油性,油膜保持性を実現する凹凸を形成する。 In the present invention, by utilizing the fact that carbides and intermetallic compounds have high hardness with respect to the base material, as described below, the surface of the sliding portion is improved in low friction resistance and abrasion resistance. Forming irregularities that realize effective oil supply and oil film retention.

〔凹凸の形成〕
前述したように,本発明の方法で処理対象とする摺動部材は,少なくとも摺動部が,素地中に炭化物や金属間化合物が散在した合金によって形成されていることから,この摺動部に対し,研磨やエッチングを施すと,相対的に高硬度である炭化物や金属間化合物の研磨速度或いはエッチング速度に比較して,相対的に低硬度である素地部分の研磨速度或いはエッチング速度は速くなる。
[Formation of unevenness]
As described above, in the sliding member to be treated by the method of the present invention, at least the sliding portion is formed of an alloy in which carbides and intermetallic compounds are scattered in the base material. On the other hand, when polishing or etching is performed, the polishing rate or etching rate of the base portion having a relatively low hardness becomes faster than the polishing rate or etching rate of carbides and intermetallic compounds having a relatively high hardness. ..

その結果,摺動部の表面に対し研磨やエッチングを施すと,素地部分に対しては研磨やエッチングが進行する一方,高硬度である炭化物や金属間化合物に対しては研磨やエッチングが殆ど生じず,素地部分のみが選択的に除去されて炭化物や金属間化合物の部分が突出して凸部を形成することで,摺動部の表面に凹凸が形成される。 As a result, when the surface of the sliding part is polished or etched, polishing or etching proceeds for the base material, while polishing or etching is almost generated for carbides and intermetallic compounds having high hardness. Instead, only the substrate portion is selectively removed, and the carbide or intermetallic compound portion protrudes to form a convex portion, so that unevenness is formed on the surface of the sliding portion.

このように,本発明では,素地部分と,炭化物あるいは金属間化合物部分の硬度差によって生じる研磨速度,エッチング速度の相違に着目して凹凸を形成するものであることから,この凹凸の形成方法としては,既知の各種の機械的・化学的研磨方法,エッチング方法を使用することができる。 As described above, in the present invention, the unevenness is formed by paying attention to the difference in polishing rate and etching rate caused by the difference in hardness between the base material portion and the carbide or intermetallic compound portion. Can use various known mechanical and chemical polishing methods and etching methods.

一例として,このような研磨方法としては,ブラストによる研磨等を挙げることができ,また,エッチング方法としては,エッチングガスを使用して行うドライエッチング,エッチング液を使用して行うウェットエッチングを挙げることができる。 As an example, examples of such a polishing method include polishing by blasting, and examples of the etching method include dry etching performed using an etching gas and wet etching performed using an etching solution. Can be done.

もっとも,大がかりな装置が必要であると共に,使用後のエッチング液やエッチングガスの処理が必要となるドライエッチング,ウェットエッチングに比較して,比較的簡単な装置構成によって行うことができる機械的な研磨による凹凸の形成は,コスト面で有利である。 However, mechanical polishing that can be performed with a relatively simple equipment configuration compared to dry etching and wet etching, which require large-scale equipment and treatment of etching solution and etching gas after use. The formation of unevenness by etching is advantageous in terms of cost.

特に,ブラストによる研磨は,摺動部材の形状が複雑な場合であっても表面全体を均一に研磨することが比較的容易である点で好ましい。 In particular, polishing by blasting is preferable because it is relatively easy to uniformly polish the entire surface even when the shape of the sliding member is complicated.

なお,このような研磨やエッチングによる凹凸の形成は,研削や切削等の加工が施された後の摺動部に対して直接行うことも可能であるが,好ましくは,凹凸を形成する前に,摺動部を鏡面,好ましくはRa0.1μm以下,より好ましくはRa0.03μm以下の鏡面に加工してから行うことが好ましく,このように鏡面に加工した後に凹凸の形成を行うこことで,形成された凹凸の凸部の高さを所定の範囲内に揃え易くなる。 It should be noted that the formation of unevenness by such polishing or etching can be performed directly on the sliding portion after being subjected to processing such as grinding or cutting, but preferably before forming the unevenness. , It is preferable to process the sliding portion to a mirror surface, preferably Ra 0.1 μm or less, more preferably Ra 0.03 μm or less, and to form irregularities after processing to a mirror surface in this way. It becomes easy to align the height of the formed uneven convex portion within a predetermined range.

また,摺動部に対する凹凸の形成は,好ましくは,前記凸部の高さを0.05〜3.0μm,好ましくは0.1〜2.0μmとなるよう行う。 The unevenness on the sliding portion is preferably formed so that the height of the convex portion is 0.05 to 3.0 μm, preferably 0.1 to 2.0 μm.

更に,形成された凸部の表面積が,摺動部の表面積の4%以上となるように,前述した凹凸を形成する。 Further, the above-mentioned unevenness is formed so that the surface area of the formed convex portion is 4% or more of the surface area of the sliding portion.

以上のように,素地と炭化物の硬度差,素地と金属間化合物の硬度差,従って,研磨速度或いはエッチング速度の違いを利用して摺動部の表面に凹凸を形成することで,摺動部では,主として,素地部分が研磨により除去されて前述した凹凸が形成されるものの,炭化物や金属間化合物は高硬度であるとはいえ,これらの部分に対しても僅かながら研磨が及ぶ。 As described above, the sliding portion is formed by forming irregularities on the surface of the sliding portion by utilizing the difference in hardness between the base material and the carbide, the difference in hardness between the base material and the intermetallic compound, and therefore the difference in polishing speed or etching speed. Then, although the base material portion is mainly removed by etching to form the above-mentioned unevenness, the carbides and the intermetallic compounds have high hardness, but these portions are also slightly polished.

その結果,摺動部に形成された凸部は,角部が削られて丸みを帯びた形状に形成され,摺接される相手方部材に対する攻撃性が低減されたものとなると共に,この丸みを帯びた形状によって,摺接時における摩擦抵抗が軽減される。 As a result, the convex portion formed on the sliding portion is formed into a rounded shape by scraping the corner portion, and the aggression against the mating member to be slidably contacted is reduced, and this roundness is reduced. The tinged shape reduces frictional resistance during sliding contact.

なお,前述した各加工方法による凹凸の形成は,下記のようにして行うことができる。 The unevenness can be formed by each of the above-mentioned processing methods as follows.

(1)凹凸形成方法1(ブラスト加工)
ブラスト加工装置としては,圧縮気体と共に研磨材を噴射するエア式(サクション式,重力式,直圧式,ブロアー式)の他,遠心力によって研磨材を投射する遠心式,回転するインペラとの衝突によって研磨材を投射する打撃式等,各種方式のブラスト加工装置を使用可能である。
(1) Concavo-convex forming method 1 (blasting)
Blasting equipment includes air type (suction type, gravity type, direct pressure type, blower type) that injects abrasive material together with compressed gas, centrifugal type that projects abrasive material by centrifugal force, and collision with a rotating impeller. Various types of blasting equipment such as a striking type that projects an abrasive material can be used.

投射する研磨材としては,セラミックス系研磨材(アルミナ,SiC,ジルコニア,ガラス),樹脂系研磨材,金属系研磨材(スチール,ステンレス,ハイス,銅)等の球状あるいは不定形の研磨材(ショット,グリッド)を使用することができ,又は,弾性研磨材(ゴム系又はゼラチン系の弾性体に砥粒を練り込み,又は前記弾性体の表面に砥粒を付着させた研磨材)等,各種研磨材を使用することができる。 As the abrasive to be projected, spherical or amorphous abrasive (shot) such as ceramic abrasive (alumina, SiC, zirconia, glass), resin abrasive, metal abrasive (steel, stainless steel, high-speed, copper), etc. , Grid) can be used, or various types such as elastic abrasives (abrasives in which abrasive grains are kneaded into a rubber-based or gelatin-based elastic body or abrasive grains are attached to the surface of the elastic body), etc. Abrasives can be used.

使用する研磨材の粒径は,加工対象とする摺動部材の硬度,面粗度に応じて0.1〜1000μm(メディアン径D50)の範囲より選択することができ,特に,粒子径5μm以下の微粒子研磨材を使用する場合,炭化物や金属間化合物が削られ難く,素地部分が選択的に削られることで,炭化物や金属間化合物部分を隆起させ易い。 The particle size of the abrasive to be used can be selected from the range of 0.1 to 1000 μm (median diameter D50) according to the hardness and surface roughness of the sliding member to be processed, and in particular, the particle size is 5 μm or less. When the fine particle abrasive is used, carbides and intermetallic compounds are difficult to scrape, and the base portion is selectively scraped, so that carbides and intermetallic compound portions are easily raised.

また,前述した弾性研磨材を使用する場合,弾性体に練り込み,あるいは弾性体の表面に付着させる砥粒としては,セラミックス系(アルミナ,SiC等),ダイヤモンド,CBN,B4C等を使用することができ,その粒径は0.1〜10μm(メディアン径D50)を使用することができる。 Further, using the case of using the elastic abrasive described above, as the abrasive grains adhering to the surface of the kneading the elastic body or an elastic body, a ceramic-based (alumina, SiC, etc.), diamonds, CBN, B 4 C, etc. The particle size can be 0.1 to 10 μm (median diameter D50).

一例として,ブラスト加工装置としてエア式(直圧式)のものを使用する場合,加工対象の材料硬度,面粗度,形状等に応じて,噴射圧力を0.01〜1MPa,ノズル内径(直径)を1〜12mm,ノズル距離(ノズル先端から加工表面迄の距離)を10〜200mm,ノズル角度を10〜90°の範囲で調整することで,前述した凹凸の形成が可能である。 As an example, when an air type (direct pressure type) blasting device is used, the injection pressure is 0.01 to 1 MPa and the nozzle inner diameter (diameter) is 0.01 to 1 MPa depending on the material hardness, surface roughness, shape, etc. of the object to be processed. The above-mentioned unevenness can be formed by adjusting the nozzle distance (distance from the tip of the nozzle to the machined surface) of 10 to 200 mm and the nozzle angle in the range of 10 to 90 °.

なお,ブラスト加工を鏡面研磨された摺動部に対して行う場合,通常のブラスト加工ではRa0.03μm以下の鏡面状態として加工を行うことが好ましいが,弾性研磨材を使用する場合,Ra0.1μm以下であっても同様の凹凸形状の形成が可能である。 When blasting is performed on a mirror-polished sliding part, it is preferable to perform blasting in a mirror surface state of Ra 0.03 μm or less in normal blasting, but when an elastic abrasive is used, Ra 0.1 μm. Even if it is as follows, the same uneven shape can be formed.

また,通常のブラスト加工で凹凸を形成する場合,形成後の表面に対し弾性研磨材を使用したブラスト加工を更に行い,あるいは,後述する他の研磨方法やエッチング方法を行って表面を調整することで,更に機能向上を図るものとしても良い。 In addition, when unevenness is formed by normal blasting, the surface after formation is further blasted with an elastic abrasive, or the surface is adjusted by another polishing method or etching method described later. Therefore, the function may be further improved.

(2)凹凸形成方法2(エッチング)
摺動部に対する凹凸の形成は,エッチング(ドライ/ウェット)によって行うこともでき,摺動部を構成する材料,面粗度に応じて,エッチング液(シアン系,王水等の酸系,ヨウ素系),エッチングガス(CF,CHF,C,CFとOの混合ガス,SF,ClとHBrの混合ガス,SF,ClとBClの混合ガス,ClとCClの混合ガス,O),その他のエッチング条件を選択してエッチングを行う。
(2) Concavo-convex forming method 2 (etching)
The unevenness of the sliding part can be formed by etching (dry / wet), and depending on the material and surface roughness of the sliding part, the etching solution (cyan-based, acid-based such as royal water, iodine). System), etching gas (CF 4 , CHF 3 , C 4 F 8 , mixed gas of CF 4 and O 2 , mixed gas of SF 4 , Cl 2 and HBr, mixed gas of SF 6 , Cl 2 and BCl 3 , Cl Etching is performed by selecting a mixed gas of 2 and CCl 4 , O 2 ), and other etching conditions.

このエッチングによる凹凸の形成も,摺動部の面粗度に応じて,エッチング液やエッチングガス,その他の加工条件を変更して複数回にわたりエッチングを行うことで凹凸を形成するものとしても良く,また,エッチングによる加工後,弾性研磨材を使用した前述のブラスト加工等,他の加工方法と組み合わせて必要な凹凸面を形成するものとしても良い。 The unevenness may be formed by this etching by changing the etching solution, etching gas, and other processing conditions according to the surface roughness of the sliding portion and performing etching multiple times. Further, after processing by etching, a necessary uneven surface may be formed in combination with other processing methods such as the above-mentioned blasting process using an elastic abrasive.

なお,鏡面に形成された摺動部に対しエッチングを行うことによって凹凸を形成する場合,摺動部をRa0.03μm以下の鏡面状態として加工を行うことが好ましい。 When unevenness is formed by etching the sliding portion formed on the mirror surface, it is preferable to process the sliding portion in a mirror surface state of Ra 0.03 μm or less.

ラッピング,バフ研磨はワークとラップ板(バフ)との間に砥粒が入り,ほぼ一定した距離を保持して研磨される。これにより,金属素地のマトリックス組織とマトリックス組織より硬い組織ともに同一の研磨速度で研磨される。このため硬い組織が選択的に凸状にならない。本発明では,噴射により飛翔した研磨材により研磨されるため,柔らかいマトリックス組織は硬質部に比べて選択的に研磨され,硬質部と軟質部に研磨量の差ができるので,削れにくい硬質部による凸部が形成される。 In wrapping and buffing, abrasive grains are inserted between the work and the wrapping plate (buff), and polishing is performed while maintaining an almost constant distance. As a result, both the matrix structure of the metal substrate and the structure harder than the matrix structure are polished at the same polishing rate. Therefore, the hard tissue does not selectively become convex. In the present invention, since it is polished by the abrasive material flying by injection, the soft matrix structure is selectively polished as compared with the hard part, and the polishing amount can be different between the hard part and the soft part. A convex portion is formed.

〔耐摩耗・摩擦被膜の形成〕
以上のようにして凹凸が形成された摺動部材の摺動部は,これをそのままの状態で使用することも可能であるが,更に,その表面に,形成した凹凸を維持した状態で低摩擦性,耐摩耗性を付与するための被膜を形成するものとしても良い。
[Abrasion resistance / formation of friction film]
The sliding portion of the sliding member having irregularities formed as described above can be used as it is, but further, low friction is maintained while the irregularities formed on the surface are maintained. A film may be formed to impart properties and abrasion resistance.

このような被膜としては,DLC被膜やセラミックス系の被膜(TiN,TiAlN,TiCrN,CrN,TiCN,TiSiN,AlCrSiN,CrSiN,ZrN等),フッ素樹脂被膜,モリブデン被膜,ポリテトラフルオロエチレン(所謂「テフロン」(登録商標))被膜等を挙げることかできる。 Examples of such a coating include DLC coatings, ceramic coatings (TiN, TiAlN, TiCrN, CrN, TiCN, TiSiN, AlCrSiN, CrSiN, ZrN, etc.), fluororesin coatings, molybdenum coatings, and polytetrafluoroethylene (so-called "Teflon"). "(Registered trademark)) A film or the like can be mentioned.

このように,前述した凹凸の形成と共に,摺動部に低摩擦性,耐摩耗性の被膜を形成することで,凹凸の形成に伴う潤滑油の供給性の向上,油膜保持性の向上と,被膜の形成に伴う低摩擦性,耐摩耗性の相乗効果によって,摺動部の摩耗が生じ難くなる結果,より長期間にわたり,本発明の方法で表面処理を行った摺動部材に対し,低摩擦性と耐摩耗性を付与することができる。 In this way, by forming a film with low friction and abrasion resistance on the sliding part in addition to the formation of the unevenness described above, the supply of lubricating oil and the oil film retention are improved due to the formation of the unevenness. Due to the synergistic effect of low friction and abrasion resistance that accompanies the formation of the coating film, the sliding portion is less likely to be worn. Friction resistance and abrasion resistance can be imparted.

〔ボールオンディスク摩擦摩耗試験機による試験〕
(1)試験の概要
本発明の方法で摺動部に表面処理が施された摺動部材(実施例1)と,摺動部を鏡面研磨した摺動部材(比較例1),摺動部に圧痕により形成された無数の凹部(マイクロディンプル)を備えた摺動部材(比較例2)をそれぞれ作成し,摩擦抵抗,耐摩耗性につき確認試験を行った結果を,以下に説明する。
[Test with ball-on-disc friction and wear tester]
(1) Outline of test A sliding member whose sliding portion is surface-treated by the method of the present invention (Example 1), a sliding member whose sliding portion is mirror-polished (Comparative Example 1), and a sliding portion. Sliding members (Comparative Example 2) having innumerable recesses (microdimples) formed by indentations were prepared, and the results of confirmation tests on friction resistance and abrasion resistance will be described below.

(2)試験対象(実施例及び比較例)
(2-1) 実施例1
摺動部材であるSDK11製の試験片(縦40mm,横40mm,厚さ5mm)の片面(摺動面)に,弾性研磨材を使用したブラスト加工により凹凸を形成した。
(2) Test target (Example and Comparative Example)
(2-1) Example 1
Concavities and convexities were formed on one side (sliding surface) of a test piece (length 40 mm, width 40 mm, thickness 5 mm) made of SDK11, which is a sliding member, by blasting using an elastic abrasive.

摺動面の加工は,ブラスト加工を開始する前,予め摺動部の表面をRa0.1μmの鏡面とした状態で開始し,ブラスト加工装置として不二製作所製の「SFSR−2」(サクション式)を使用し,D50:1.2μmの砥粒(材質:SiC(炭化ケイ素)がゴム系の弾性体に分散された,全体粒径650μmの弾性研磨材を噴射して凹凸を形成した。 Before starting the blasting process, the sliding surface is processed with the surface of the sliding part made a mirror surface of Ra 0.1 μm, and the blasting device is Fuji Seisakusho's “SFSR-2” (suction type). ), D50: 1.2 μm abrasive grains (material: SiC (silicon carbide) dispersed in a rubber-based elastic body, an elastic abrasive with an overall particle size of 650 μm was sprayed to form irregularities.

なお,弾性研磨材の噴射は,噴射圧力0.2MPa,ノズル内径φ9mm,噴射距離50mm,噴射角度30°として加工時間10minで行った。 The elastic abrasive was injected at an injection pressure of 0.2 MPa, a nozzle inner diameter of φ9 mm, an injection distance of 50 mm, and an injection angle of 30 ° with a machining time of 10 min.

なお,上記処理後の試験片の表面を撮影した電子顕微鏡写真を図1に示す。 An electron micrograph of the surface of the test piece after the above treatment is shown in FIG.

図1中,濃色のグレーに表れている部分(図1中に○印で囲んだ部分)が,SKD11に含まれるクロム系の炭化物(Cr)であり,上記加工によって隆起し凸部となった部分である。 In FIG. 1, the part shown in dark gray (the part circled in FIG. 1) is the chromium-based carbide (Cr 7 C 3 ) contained in SKD11, and is raised and convex by the above processing. It is a part that became a part.

加工後の摺動部の凸部高さは0.2μmでSEM画像中に現れた凸部の面積は,摺動部の総面積に対し30%である。 The height of the convex portion of the sliding portion after processing is 0.2 μm, and the area of the convex portion appearing in the SEM image is 30% of the total area of the sliding portion.

(2-2) 比較例1(鏡面)
比較例1として,同様の試験片(SKD11)の片面を,Ra0.02μmの鏡面に研磨したのみで,他の処理を行っていない試験片を用意した。
(2-2) Comparative Example 1 (mirror surface)
As Comparative Example 1, a test piece prepared by simply polishing one side of a similar test piece (SKD11) to a mirror surface of Ra 0.02 μm and not performing any other treatment.

(2-3) 比較例2(マイクロディンプル)
比較例1の試験片の鏡面加工面(Ra0.02μm)に対し,下記の2工程の加工を行い,摺動部となる表面に,ショットの衝突によって形成された圧痕から成る無数の凹部(マイクロディンプル)を形成した。
(2-3) Comparative Example 2 (Micro Dimples)
The mirror-processed surface (Ra 0.02 μm) of the test piece of Comparative Example 1 was processed in the following two steps, and innumerable recesses (micro) composed of indentations formed by the collision of shots on the surface to be the sliding portion. Dimples) were formed.

工程1
不二製作所製のブラスト加工装置「SCF−3」(サクション式),ブラストガン「F2−4型」を使用して,ハイス鋼製のビーズ(不二製作所製「FHS♯400」)噴射圧力は0.5MPa,ノズル内径φ9mm,噴射距離100〜150mm,噴射角度90°,加工時間10〜20秒(40mm×40mmの範囲)で噴射して,試験片の表面に,ビーズの衝突によりマイクロディンプルを形成した。
Process 1
Using the blasting device "SCF-3" (suction type) manufactured by Fuji Seisakusho and the blast gun "F2-4 type", the injection pressure of beads made of high-speed steel ("FHS # 400" manufactured by Fuji Seisakusho) is Injection is performed at 0.5 MPa, nozzle inner diameter φ9 mm, injection distance 100 to 150 mm, injection angle 90 °, processing time 10 to 20 seconds (range of 40 mm × 40 mm), and micro dimples are applied to the surface of the test piece by collision of beads. Formed.

工程2
前記マイクロディンプルが形成された後の試験片の表面に対し,不二製作所製のブラスト加工装置シリウス「LDQWSR−3」(ブロワー式)を使用して,弾性研磨材(不二製作所製「SI−G100−7」)を噴射圧力は0.06MPa,ノズル内径φ9mm,噴射距離50〜100mm,噴射角度30〜40°,加工時間2秒(40mm×40mmの範囲)で噴射して,試験片の表面をRa0.2μmに調整した。
Process 2
On the surface of the test piece after the micro dimples are formed, an elastic abrasive (Fuji Seisakusho "SI-") is used with the blasting device Sirius "LDQWSR-3" (blower type) manufactured by Fuji Seisakusho. G100-7 ") is injected at an injection pressure of 0.06 MPa, a nozzle inner diameter of φ9 mm, an injection distance of 50 to 100 mm, an injection angle of 30 to 40 °, and a machining time of 2 seconds (in the range of 40 mm x 40 mm), and the surface of the test piece is injected. Was adjusted to Ra 0.2 μm.

(3)試験内容
(3-1) 試験方法
実施例1及び比較例1,2の各試験片に対し,ボールオンディスク摩擦摩耗試験機(レスカ製「FPR2100」)を使用して,摩擦摩耗試験を行った。
(3) Test content
(3-1) Test method Each test piece of Example 1 and Comparative Examples 1 and 2 was subjected to a friction and wear test using a ball-on-disk friction and wear tester (“FPR2100” manufactured by Reska).

ボールオンディスク摩擦摩耗試験法は,図2に示すように試験片にボールを所定の荷重をかけた状態で押しつけて回転摺動させることにより動摩擦係数を測定する試験方法であり(JIS R 1613),本試験例では,荷重を1500gf,回転速度200min-1,回転径を直径5mm,ボール材としてSUJ2(直径6mm)を使用して,測定を行った。 As shown in Fig. 2, the ball-on-disk friction and wear test method is a test method that measures the dynamic friction coefficient by pressing a ball against a test piece with a predetermined load and sliding it rotationally (JIS R 1613). In this test example, the measurement was performed using a load of 1500 gf, a rotation speed of 200 min -1 , a rotation diameter of 5 mm, and SUJ2 (diameter of 6 mm) as a ball material.

ボール材と試料との摺動部には,動粘度VG10である比較的低動粘度の潤滑油を給油している。 The sliding portion between the ball material and the sample is lubricated with lubricating oil having a relatively low kinematic viscosity of VG10.

(3-2) 検査事項と検査方法
動摩擦係数の測定
試験片毎に,時間の経過毎の動摩擦係数の変化を測定した。摩擦係数の変化の測定は,摩擦係数μが0.7以上になるまで,又は,試験開始後24時間経過する迄行った。
(3-2) Inspection items and inspection method Measurement of dynamic friction coefficient The change in dynamic friction coefficient was measured for each test piece over time. The change in the friction coefficient was measured until the friction coefficient μ became 0.7 or more, or until 24 hours had passed after the start of the test.

(4)試験結果
摩擦係数の変化確認
本発明の方法で摺動部の表面処理を行ったSKD11製の試験片(実施例1)と,摺動部を鏡面とした試験片(比較例1),及び摺動部にマイクロディンプルを形成した試験片(比較例2)それぞれの経時に対する摩擦係数の変化の状態を表1に示す。
(4) Test result Confirmation of change in friction coefficient A test piece made of SKD11 (Example 1) in which the surface treatment of the sliding portion was performed by the method of the present invention and a test piece having the sliding portion as a mirror surface (Comparative Example 1). Table 1 shows the state of change in the coefficient of friction of each of the test pieces (Comparative Example 2) in which microdimples are formed on the sliding portion.

表1より明らかなように,実施例1の試験片では,24時間の摩擦摩耗試験によっても摩擦係数が0.7以上に上昇することがなく,また,24時間経過後も摩擦係数は測定開始後1時間の摩擦係数に対し1.4倍程度の上昇しか示しておらず,安定的,且つ長期間に亘り低摩擦性を発揮しており,1500gfの荷重をかけた状態においても,少なくとも24時間以上の油膜保持力を有することが確認された。 As is clear from Table 1, in the test piece of Example 1, the friction coefficient did not increase to 0.7 or more even in the friction and wear test for 24 hours, and the friction coefficient started to be measured even after 24 hours had passed. It shows only a 1.4-fold increase in the coefficient of friction for the next 1 hour, is stable and exhibits low friction for a long period of time, and is at least 24 even when a load of 1500 gf is applied. It was confirmed that it had an oil film holding power for more than an hour.

これに対し,比較例1の試験片(鏡面)では,測定開始後,15時間で摩擦係数が0.7を超えており,比較的短時間で油膜保持力が失われていることが判る。 On the other hand, in the test piece (mirror surface) of Comparative Example 1, the friction coefficient exceeded 0.7 15 hours after the start of measurement, and it can be seen that the oil film holding force was lost in a relatively short time.

一方,比較例2の試験片(マイクロディンプル)では,24時間の経過後においても摩擦係数が0.7を超えることは無く,0.46程度に止まっていることから,ある程度の油膜保持力は維持されているものと考えられる。 On the other hand, in the test piece (micro dimples) of Comparative Example 2, the friction coefficient did not exceed 0.7 even after the lapse of 24 hours and remained at about 0.46, so that the oil film holding power to some extent was obtained. It is considered to be maintained.

しかし,比較例2の試験片では,測定開始後5時間で,測定後1時間の摩擦係数に対し,約3.4倍まで摩擦係数が上昇しており,比較的短時間で油膜保持力が大幅に低下していることが確認できた。 However, in the test piece of Comparative Example 2, the friction coefficient increased to about 3.4 times the friction coefficient of 1 hour after the measurement in 5 hours after the start of the measurement, and the oil film holding force was increased in a relatively short time. It was confirmed that the coefficient was significantly reduced.

以上の結果から,摺動部を鏡面とした比較例1の試験片では,摺動部の凹凸がRa0.02μmと微少であるために,摺動部の表面に対する油膜の保持力が元々小さく,面圧がかかると摺接面より潤滑油が排出されて相手方部材(ボール)と直接接触する結果,試験初期において点接触していたボールと試料が,摩耗の進行と共に面接触に変化して摩擦係数が増大することで,大幅な摩擦抵抗の上昇を示したものと考えられる。 From the above results, in the test piece of Comparative Example 1 in which the sliding portion is a mirror surface, the unevenness of the sliding portion is as small as Ra 0.02 μm, so that the holding force of the oil film on the surface of the sliding portion is originally small. When surface pressure is applied, lubricating oil is discharged from the sliding contact surface, and as a result of direct contact with the mating member (ball), the ball and sample that were in point contact at the beginning of the test change to surface contact as wear progresses and friction. It is probable that the increase in the coefficient showed a significant increase in frictional resistance.

これに対し,摺動部にマイクロディンプルが形成された比較例2の試験片では,ディンプル内に潤滑油が保持されることにより,摺動部を鏡面とした比較例1の試験片に比較して油膜保持効果を長時間維持し,その結果,試験開始後24時間を経過した後においても摩擦係数を0.7未満に維持することができているものと考えられる。 On the other hand, the test piece of Comparative Example 2 in which microdimples were formed on the sliding portion was compared with the test piece of Comparative Example 1 in which the sliding portion was a mirror surface because the lubricating oil was held in the dimples. It is considered that the oil film retention effect was maintained for a long time, and as a result, the friction coefficient could be maintained at less than 0.7 even after 24 hours had passed since the start of the test.

しかし,比較例2の摺動部に形成されたマイクロディンプルの形成によって生じた凹凸は,凸部が高硬度の材料によって形成されたものではないため,試験開始後,比較的短時間で凸部が相手方部材(ボール)との接触によって摩耗してしまい,凸部間に潤滑油の保持が行われているものの,試験開始当初に比較して保持できる潤滑油量が減少したことで,測定開始後,5時間程度の比較的短時間で摩擦係数の大幅な増大が生じたものと推測できる。 However, the unevenness generated by the formation of the micro dimples formed on the sliding portion of Comparative Example 2 is that the convex portion is not formed by a material having a high hardness, so that the convex portion is formed in a relatively short time after the start of the test. Is worn out due to contact with the mating member (ball), and the lubricating oil is retained between the protrusions, but the amount of lubricating oil that can be retained has decreased compared to the beginning of the test, so measurement has started. After that, it can be estimated that the friction coefficient increased significantly in a relatively short time of about 5 hours.

これに対し,本発明の方法で凹凸が形成された実施例1の試験片では,摺動部に形成された凹凸の凸部は,高硬度な炭化物或いは金属間化合物によって形成されたものであることから,相手方部材(ボール)との接触によっても摩耗し難く,長期にわたり初期の凹凸形状が維持されることで,潤滑油の高い保持力が長期間にわたり維持される結果,長時間,安定して低摩擦係数を示したものと考えられる。 On the other hand, in the test piece of Example 1 in which the unevenness was formed by the method of the present invention, the uneven convex portion formed on the sliding portion was formed of a high-hardness carbide or an intermetallic compound. Therefore, it is hard to wear even by contact with the mating member (ball), and by maintaining the initial uneven shape for a long period of time, the high holding power of the lubricating oil is maintained for a long period of time, and as a result, it is stable for a long time. It is considered that the friction coefficient was low.

〔凸部高さと摩擦係数の関係の確認試験〕
試験片(SKD11)に対するブラスト加工条件を変化させて,摺動部に形成する凸部の高さを0.1〜4μmの範囲で変化させたものと,鏡面(凸部高さ0)の摩擦係数の変化状態を測定した結果を図3に示す。このとき,鏡面の凸部高さは0とする。
[Confirmation test of the relationship between convex height and friction coefficient]
Friction between the mirror surface (convex height 0) and the one in which the height of the convex portion formed on the sliding portion is changed in the range of 0.1 to 4 μm by changing the blasting conditions for the test piece (SKD11). The result of measuring the change state of the coefficient is shown in FIG. At this time, the height of the convex portion of the mirror surface is set to 0.

凸部高さが0.05〜3.0μmの範囲では摩擦係数0.3以下という比較的低い値が実現されているが,特に0.1〜2.0μm以下の範囲においては摩擦係数0.2以下と非常に低い範囲で安定していることが確認された。 A relatively low value of 0.3 or less is realized in the range of the convex height of 0.05 to 3.0 μm, but the friction coefficient is 0, especially in the range of 0.1 to 2.0 μm. It was confirmed that it was stable in a very low range of 2 or less.

したがって,凸部高さは,より好ましくは0.1〜2.0μmであることが確認された。 Therefore, it was confirmed that the height of the convex portion is more preferably 0.1 to 2.0 μm.

〔軸受の耐久性試験〕
(1)SUS440製軸受
(1-1) 試験方法
SUS440(焼入れ焼き戻し鋼)製のニードルベアリング(外径52mm,内径25mm,長さ25mmの円筒形)を複数準備し,各ニードルベアリングの摺動部に対し,本発明の表面処理を施すことにより,未処理品に対し,どの程度の耐久性の向上(寿命の延長)が得られるかを確認する試験を行った。
[Bearing durability test]
(1) SUS440 bearing
(1-1) Test Method A plurality of needle bearings (cylindrical shape with outer diameter 52 mm, inner diameter 25 mm, length 25 mm) made of SUS440 (quenched tempered steel) were prepared, and the present invention was applied to the sliding portion of each needle bearing. A test was conducted to confirm how much durability improvement (extension of life) can be obtained for untreated products by applying the surface treatment of.

表面処理は,各ベアリングの摺動面(Ra0.1μm)に対し,エア式のブラスト加工装置(不二製作所製「FDDSR−4」;直圧式)を使用して,噴射圧力0.2MPa,ノズル内径φ7mm,ノズル距離50mm,噴射角度30°としてブラスト加工を行うことで,炭化物(CrC)乃至は金属間化合物の凸部を形成した。 For surface treatment, an air-type blasting device (“FDDSR-4” manufactured by Fuji Seisakusho; direct pressure type) is used for the sliding surface (Ra 0.1 μm) of each bearing, and the injection pressure is 0.2 MPa, and the nozzle. By performing blasting with an inner diameter of φ7 mm, a nozzle distance of 50 mm, and an injection angle of 30 °, convex portions of carbides (CrC) or intermetallic compounds were formed.

研磨材として使用した前述の弾性研磨材(平均粒径650μm)は,SiC砥粒(♯8000/D50:2μm)を弾性体に含有させたものを使用し,これを噴射量4kg/minで噴射した。 As the above-mentioned elastic abrasive (average particle size 650 μm) used as the abrasive, a material containing SiC abrasive grains (# 8000 / D50: 2 μm) in an elastic body is used, and this is injected at an injection amount of 4 kg / min. did.

ブラスト加工後のSUS440材の表面電子顕微鏡写真(SEM像)を図4に示す。図4中,僅かに白っぽく表れている部分(図4中に○印を付けた部分)が,SUS440に含まれるクロム系の炭化物(CrC)であり,上記加工によって突出して凸部となった部分である。 A surface electron micrograph (SEM image) of the SUS440 material after blasting is shown in FIG. In FIG. 4, the portion that appears slightly whitish (the portion marked with a circle in FIG. 4) is the chromium-based carbide (CrC) contained in SUS440, and the portion that protrudes and becomes a convex portion by the above processing. Is.

凸部高さは0.4μm。また,SEM像中に表れた凸部の面積は,摺動部の総面積に対し4%であった。
摺動部の表面状態の測定条件は,表2に示す通りである。
The height of the convex part is 0.4 μm. The area of the convex portion appearing in the SEM image was 4% of the total area of the sliding portion.
The measurement conditions for the surface condition of the sliding portion are as shown in Table 2.

耐久性(寿命)評価は,下記の3パターンの組み合わせから成る実施例に対して実施した。
実施例2:内輪,外輪及び転動体の摺動部全てに本発明の表面処理を実施。
実施例3:内輪及び外輪の摺動部に対してのみ本発明の表面処理を実施。
実施例4:転動体の摺動部に対してのみ本発明の表面処理を実施。
比較例3:表面処理を行っていない(購入したままの状態)。
Durability (life) evaluation was carried out for an example consisting of a combination of the following three patterns.
Example 2: The surface treatment of the present invention is applied to all the sliding portions of the inner ring, the outer ring and the rolling element.
Example 3: The surface treatment of the present invention is carried out only on the sliding portions of the inner ring and the outer ring.
Example 4: The surface treatment of the present invention is carried out only on the sliding portion of the rolling element.
Comparative Example 3: No surface treatment (as purchased).

測定は,軸受耐久試験機を使用して行い,潤滑剤としてグリースを使用し,実施例2〜4及び比較例3の軸受共に,いずれも一定のラジアル荷重,スラスト荷重を加えた状態で,且つ,いずれも軸受に取り付けた軸を一定の回転速度で継続的に回転させ,軸受の軌道面や転動体の表面にうろこ状の剥離が発生した時点を「寿命」と評価した。 The measurement was performed using a bearing durability tester, grease was used as a lubricant, and both the bearings of Examples 2 to 4 and Comparative Example 3 were subjected to a constant radial load and thrust load, and were measured. In each case, the shaft attached to the bearing was continuously rotated at a constant rotation speed, and the time when scaly peeling occurred on the raceway surface of the bearing and the surface of the rolling element was evaluated as "lifetime".

(1-2) 試験結果
未処理の軸受(比較例3)が寿命を迎える迄に要した時間を「1」とし,これに対し,各実施例(実施例2〜4)の軸受が寿命を迎える迄の時間が何倍に延長されているかを評価した結果を,表3に示す。
(1-2) Test Results The time required for the untreated bearing (Comparative Example 3) to reach the end of its life is set to "1", whereas the bearings of each Example (Examples 2 to 4) have a life. Table 3 shows the results of evaluating how many times the time to reach the bearings has been extended.

以上の結果,本発明の方法で表面処理を行うことで,いずれの組合せにおいて耐久性の向上が得られることが確認された。 As a result of the above, it was confirmed that the durability can be improved in any combination by performing the surface treatment by the method of the present invention.

特に,内輪,外輪,及び転動体の全ての摺動部に本発明の表面処理を施した場合(実施例2)には,未処理の場合(比較例3)に対し,3倍という大幅な耐久性の向上が得られており,本発明の表面処理方法が摺動部の低摩擦性及び耐摩耗性を実現する上で極めて有効な手段であることが確認された。 In particular, when the surface treatment of the present invention is applied to all the sliding portions of the inner ring, the outer ring, and the rolling element (Example 2), the amount is significantly 3 times that of the untreated case (Comparative Example 3). The durability has been improved, and it has been confirmed that the surface treatment method of the present invention is an extremely effective means for realizing low friction resistance and abrasion resistance of sliding parts.

(2)SUJ2製軸受
(2-1) 試験方法
SUJ2製の玉軸受(外径52mm,内径25mm,長さ12mmの円筒形)を複数準備し,各ベアリングの摺動部に対し,本発明の表面処理を施すことにより,未処理品に対し,どの程度の寿命の延長が得られるかを確認した。
(2) SUJ2 bearing
(2-1) Test Method By preparing a plurality of SUJ2 ball bearings (cylindrical with an outer diameter of 52 mm, an inner diameter of 25 mm, and a length of 12 mm) and subjecting the sliding portion of each bearing to the surface treatment of the present invention. , It was confirmed how much life extension could be obtained for the untreated product.

表面処理は,各ベアリングの摺動面(Ra0.2μm)に対し,エア式のブラスト加工装置(不二製作所製「SFSR−2」;サクション式)を使用して,噴射圧力0.15MPa,ノズル内径φ7mm,ノズル距離100mm,噴射角度40°としてブラスト加工を行うことで,炭化物(CrC)乃至は金属間化合物の凸部を形成した。凸部高さは0.3μm。 For surface treatment, an air-type blasting device (“SFSR-2” manufactured by Fuji Seisakusho; suction type) is used for the sliding surface (Ra 0.2 μm) of each bearing, and the injection pressure is 0.15 MPa, and the nozzle. By performing blasting with an inner diameter of φ7 mm, a nozzle distance of 100 mm, and an injection angle of 40 °, convex portions of carbides (CrC) or intermetallic compounds were formed. The height of the convex part is 0.3 μm.

研磨材として使用した前述の弾性研磨材(平均粒径1000μm)は,ダイヤモンド砥粒(♯10000/D50:1μm)をゼラチン製の核体に付着させたものを使用し,これを噴射量1kg/minで噴射した。 The above-mentioned elastic abrasive (average particle size 1000 μm) used as the abrasive used was a diamond abrasive grain (# 10000 / D50: 1 μm) attached to a gelatin core, and the injection amount was 1 kg / kg. It was sprayed with min.

なお,摺動部の表面状態の測定条件は,表2に示した通りである。
耐久性(寿命)の評価は,下記の3パターンの実施例に対して実施した。
実施例5:内輪,外輪及び転動体の摺動部全てに本発明の表面処理を実施。
実施例6:内輪及び外輪の摺動部に対してのみ本発明の表面処理を実施。
実施例7:転動体の摺動部に対してのみ本発明の表面処理を実施。
比較例4:表面処理を行っていない(購入したままの状態)。
The measurement conditions for the surface condition of the sliding portion are as shown in Table 2.
The durability (life) was evaluated for the following three patterns of examples.
Example 5: The surface treatment of the present invention is applied to all the sliding portions of the inner ring, the outer ring and the rolling element.
Example 6: The surface treatment of the present invention is carried out only on the sliding portions of the inner ring and the outer ring.
Example 7: The surface treatment of the present invention is carried out only on the sliding portion of the rolling element.
Comparative Example 4: No surface treatment (as purchased).

測定は,軸受耐久試験機を使用して行い,潤滑剤としてグリースを使用し,実施例5〜7及び比較例4の軸受共に,いずれも一定のラジアル荷重,スラスト荷重を加えた状態で,且つ,いずれも軸受に取り付けた軸を一定の回転速度で継続的に回転させ,軸受の軌道面や転動体の表面にうろこ状の剥離が発生した時点を「寿命」と評価した。 The measurement was performed using a bearing durability tester, grease was used as a lubricant, and both the bearings of Examples 5 to 7 and Comparative Example 4 were subjected to a constant radial load and thrust load, and were measured. In each case, the shaft attached to the bearing was continuously rotated at a constant rotation speed, and the time when scaly peeling occurred on the raceway surface of the bearing and the surface of the rolling element was evaluated as "lifetime".

(2-2) 試験結果
未処理の軸受(比較例4)が寿命を迎える迄に要した時間を「1」とし,これに対し,各実施例(実施例5〜7)の軸受が寿命を迎える迄の時間が何倍に延長されているかを評価した結果を,表4に示す。
(2-2) Test Results The time required for the untreated bearing (Comparative Example 4) to reach the end of its life is set to "1", whereas the bearings of each Example (Examples 5 to 7) have a life. Table 4 shows the results of evaluating how many times the time to reach the bearing is extended.

以上の結果,本発明の方法で表面処理を行うことで,いずれの組合せにおいて耐久性の向上が得られることが確認された。 As a result of the above, it was confirmed that the durability can be improved in any combination by performing the surface treatment by the method of the present invention.

特に,内輪,外輪,及び転動体の全ての摺動部に本発明の表面処理を施した場合(実施例5)には,未処理の場合(比較例4)に対し,2.7倍という大幅な耐久性の向上が得られており,本発明の表面処理方法が摺動部の低摩擦性及び耐摩耗性を実現する上で極めて有効な手段であることが確認された。 In particular, when the surface treatment of the present invention is applied to all the sliding portions of the inner ring, the outer ring, and the rolling element (Example 5), it is 2.7 times that of the untreated case (Comparative Example 4). A significant improvement in durability has been obtained, and it has been confirmed that the surface treatment method of the present invention is an extremely effective means for realizing low friction and abrasion resistance of sliding parts.

(3)CAC603製軸受
(3-1) 試験方法
CAC603製のメタル軸受(すべり軸受:外径31mm,内径25mm,長さ22mmの円筒形)を複数準備し,各軸受の摺動部(内周面)に対し,本発明の表面処理を施すことにより,未処理品に対し,どの程度の耐久性の向上(寿命の延長)が得られるかを確認した。
(3) CAC603 bearing
(3-1) Test method Prepare multiple CAC603 metal bearings (plain bearings: cylindrical with an outer diameter of 31 mm, an inner diameter of 25 mm, and a length of 22 mm), and apply this to the sliding part (inner peripheral surface) of each bearing. It was confirmed how much durability improvement (extension of life) can be obtained for the untreated product by applying the surface treatment of the present invention.

表面処理は,各軸受の摺動面(Ra0.1μm)に対し,エア式のブラスト加工装置(不二製作所製「SFSR−2」;サクション式)を使用して,噴射圧力0.1MPa,ノズル内径φ9mm,ノズル距離50mm,噴射角度30°としてブラスト加工を行うことで,銅合金中のスズ系金属間化合物(CuSn)の凸部を形成した。凸部の高さは0.3μmである。 For surface treatment, an air-type blasting device (“SFSR-2” manufactured by Fuji Seisakusho; suction type) is used for the sliding surface (Ra 0.1 μm) of each bearing, and the injection pressure is 0.1 MPa, and the nozzle. By performing blasting with an inner diameter of φ9 mm, a nozzle distance of 50 mm, and an injection angle of 30 °, a convex portion of a tin-based intermetallic compound (CuSn) in a copper alloy was formed. The height of the convex portion is 0.3 μm.

研磨材として使用した前述の弾性研磨材(平均粒径650μm)は,Al砥粒(♯6000/D50:3μm)を弾性体中に練り込んだものを使用し,これを噴射量1kg/minで噴射した。摺動部の表面状態の測定条件は,表2に示す通りである。 As the above-mentioned elastic abrasive (average particle size 650 μm) used as the abrasive, Al 2 O 3 abrasive grains (# 6000 / D50: 3 μm) were kneaded into the elastic body, and the injection amount was 1 kg. Injected at / min. The measurement conditions for the surface condition of the sliding portion are as shown in Table 2.

耐久性(寿命)の評価は,摺動部(内周面)に上記方法で表面処理を施したメタル軸受(実施例8)と,本発明の表面処理を行っていない,購入したままの状態のメタル軸受(比較例5)に対して実施した。 The durability (life) was evaluated by using a metal bearing (Example 8) in which the sliding portion (inner peripheral surface) was surface-treated by the above method, and the state in which the surface treatment of the present invention was not performed and as purchased. This was carried out for the metal bearing (Comparative Example 5) of.

測定は,軸受耐久試験機を使用して行い,潤滑剤としてグリースを使用し,実施例8及び比較例5の軸受共に,いずれも一定のラジアル荷重,スラスト荷重を加えた状態で,且つ,いずれも軸受に支承した軸を一定の回転速度で継続的に回転させ,軸受の軌道面の表面にうろこ状の剥離が発生した時点を「寿命」と評価した。 The measurement was performed using a bearing durability tester, grease was used as a lubricant, and both the bearings of Example 8 and Comparative Example 5 were subjected to a constant radial load and thrust load, and eventually. The shaft supported by the bearing was continuously rotated at a constant rotation speed, and the time when scaly peeling occurred on the surface of the raceway surface of the bearing was evaluated as "life".

(3-2) 試験結果
未処理の軸受(比較例5)が寿命を迎える迄に要した時間を「1」とし,これに対し,実施例8の軸受が寿命を迎える迄の時間が何倍に延長されているかを評価した結果を,表5に示す。
(3-2) Test Results The time required for the untreated bearing (Comparative Example 5) to reach the end of its life is set to "1", whereas the time required for the bearing of Example 8 to reach the end of its life is multiplied by several times. Table 5 shows the results of evaluating whether or not the bearings have been extended to.

以上の結果,本発明の方法で表面処理を行うことで,銅合金(CAC603)製の軸受についても耐久性の向上が得られることが確認され,本発明の表面処理方法が,炭素鋼のみならず,非鉄系の合金の摺動部材に対しても有効に利用できる表面処理方法であることが確認できた。 As a result, it was confirmed that the surface treatment by the method of the present invention can improve the durability of the copper alloy (CAC603) bearing, and if the surface treatment method of the present invention is only carbon steel. However, it was confirmed that this is a surface treatment method that can be effectively used for sliding members of non-ferrous alloys.

〔その他の材質に対する適用例〕
本発明の方法で表面処理を行った粉末ハイス鋼(SKH51)製の試験片の表面電子顕微鏡写真を図5に,Al−Si系合金(AC8A)製の試験片の表面電子顕微鏡写真を図6にそれぞれ示す。○で囲んだ部分が,炭化物である。
[Application example for other materials]
FIG. 5 shows a surface electron micrograph of a test piece made of powdered high-speed steel (SKH51) surface-treated by the method of the present invention, and FIG. 6 shows a surface electron micrograph of a test piece made of an Al—Si alloy (AC8A). Each is shown in. The part circled is the carbide.

いずれの試験片共に,炭化物あるいは金属間化合物からなる凸部の隆起を確認することができ,本発明の表面処理が,通常の炭素鋼のみならず,粉末ハイス鋼のような粉末冶金によって製造された鋼や,Al−Si系合金等の非鉄系合金に対しても適用できることが確認された。 In each of the test pieces, the ridges of the protrusions made of carbides or intermetallic compounds can be confirmed, and the surface treatment of the present invention is produced not only by ordinary carbon steel but also by powder metallurgy such as powdered heiss steel. It was confirmed that it can be applied to steel and non-ferrous alloys such as Al—Si alloys.

このように,本発明の表面処理方法は,素地中に炭化物や金属間化合物が散在している合金によって少なくとも摺動部が形成されている摺動部材に対し広く適用可能である。 As described above, the surface treatment method of the present invention can be widely applied to a sliding member in which at least a sliding portion is formed by an alloy in which carbides and intermetallic compounds are scattered in the substrate.

Claims (7)

摺動部材のうち少なくとも他部材と摺接される部分である摺動部の素地を,前記素地よりも高硬度の粒状組織である炭化物及び/又は前記素地よりも高硬度の金属間化合物が前記素地中に散在して析出した合金(但し,Al−Si系合金を除く。)により形成し,
前記摺動部の表面付近における前記素地を選択的に除去することにより,前記摺動部の表面に,前記素地部分に形成された凹部と,前記炭化物及び/又は金属間化合物部分に形成された凸部を設け,前記摺動部の表面の前記凸部の高さを0.05〜3.0μm,平面視における前記凸部の面積を前記摺動部の面積の4%以上としたことを特徴とする摺動部材の表面処理方法。
The base material of the sliding portion, which is at least a portion of the sliding member that is in sliding contact with another member, is a carbide having a granular structure having a hardness higher than that of the base material and / or an intermetallic compound having a hardness higher than that of the base material. Formed from alloys scattered and precipitated in the substrate (excluding Al—Si alloys),
By selectively removing the substrate near the surface of the sliding portion, a recess formed in the substrate portion and a carbide and / or an intermetallic compound portion formed on the surface of the sliding portion . A convex portion is provided , the height of the convex portion on the surface of the sliding portion is 0.05 to 3.0 μm , and the area of the convex portion in a plan view is 4% or more of the area of the sliding portion. A characteristic surface treatment method for sliding members.
前記素地の除去を,前記凸部の高さが0.1〜2.0μmとなるよう行うことを特徴とする請求項1記載の摺動部材の表面処理方法。 The surface treatment method for a sliding member according to claim 1, wherein the base material is removed so that the height of the convex portion is 0.1 to 2.0 μm. 前記素地の除去を,前記摺動部の表面を鏡面研磨した後に行うことを特徴とする請求項1又は2記載の摺動部材の表面処理方法。 The surface treatment method for a sliding member according to claim 1 or 2, wherein the base material is removed after the surface of the sliding portion is mirror-polished. 前記凹部及びの形成後,形成された前記凹部及びを維持した状態で前記摺動部の表面に耐摩擦性及び/又は耐摩耗性を有する被膜をコーティングすることを特徴とする請求項1〜いずれか1項記載の摺動部材の表面処理方法。 And wherein the coating the concave portion and after the formation of the protrusions, formed the concave portion and the coating having abrasion resistance and / or abrasion resistance on the surface of the sliding portion while maintaining a convex portion The method for surface treating a sliding member according to any one of claims 1 to 3 . 他部材と摺接される摺動部を備え,
少なくとも前記摺動部の素地が,
前記素地よりも高硬度の粒状組織である炭化物及び/又は前記素地よりも高硬度の金属間化合物が前記素地中に散在して析出した合金(但し,Al−Si系合金を除く。)により形成されていると共に,
前記摺動部の表面が,前記素地部分に形成された凹部と,前記炭化物及び/又は金属間化合物部分に形成された凸部を有し,前記凸部の高さが0.05〜3.0μmであり,平面視における前記凸部の面積が前記摺動部の面積の4%以上であることを特徴とする摺動部材。
Equipped with a sliding part that is in sliding contact with other members
At least the base material of the sliding part is
Formed by an alloy (excluding Al—Si based alloys) in which carbides and / or intermetallic compounds having a hardness higher than that of the base material are scattered and precipitated in the base material, which is a granular structure having a hardness higher than that of the base material. As well as being
The surface of the sliding portion, and a recess formed in the base material portion, comprising the carbides and / or projections formed on the intermetallic compound part, a height of the convex portion is 0.05 to 3. 0μm der is, the sliding member having the area of the convex portion in plan view, characterized in der Rukoto least 4% of the area of the sliding portion.
前記摺動部の凸部の高さが0.1〜2.0μmであることを特徴とする請求項記載の摺動部材。 The sliding member according to claim 5, wherein the height of the convex portion of the sliding portion is 0.1 to 2.0 μm. 前記凹部及びが形成された前記摺動部の表面に,前記凹部及びを維持した状態で耐摩擦性及び/又は耐摩耗性を有する被膜を形成したことを特徴とする請求項5又は6いずれか1項記載の摺動部材。 Claims wherein the recess and the surface of the sliding portion having a convex portion formed, characterized in that the formation of the coating having abrasion resistance and / or abrasion resistance while maintaining the concave portion and the convex portion Item 5. The sliding member according to any one of Items 5 and 6 .
JP2014259453A 2014-12-22 2014-12-22 Surface treatment method for sliding members and sliding members Active JP6783500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014259453A JP6783500B2 (en) 2014-12-22 2014-12-22 Surface treatment method for sliding members and sliding members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014259453A JP6783500B2 (en) 2014-12-22 2014-12-22 Surface treatment method for sliding members and sliding members

Publications (2)

Publication Number Publication Date
JP2016117935A JP2016117935A (en) 2016-06-30
JP6783500B2 true JP6783500B2 (en) 2020-11-11

Family

ID=56243764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014259453A Active JP6783500B2 (en) 2014-12-22 2014-12-22 Surface treatment method for sliding members and sliding members

Country Status (1)

Country Link
JP (1) JP6783500B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2724706B2 (en) * 1987-02-20 1998-03-09 トヨタ自動車株式会社 Finishing method for sliding members
JPH02173212A (en) * 1988-12-26 1990-07-04 Hitachi Ltd Sliding material and surface treatment method thereof
JPH03199433A (en) * 1989-12-26 1991-08-30 Kanai Hiroyuki Ring for spinning frame
JPH1036983A (en) * 1996-07-23 1998-02-10 Sumitomo Light Metal Ind Ltd Sliding material
JPH1046366A (en) * 1996-08-02 1998-02-17 Toyota Motor Corp Liquid etchant for aluminum alloy and etching method
JP3507388B2 (en) * 2000-02-08 2004-03-15 大同メタル工業株式会社 Copper-based sliding material
JP2004068067A (en) * 2002-08-05 2004-03-04 Nippon Parkerizing Co Ltd Copper-based alloy material and method for manufacturing the same

Also Published As

Publication number Publication date
JP2016117935A (en) 2016-06-30

Similar Documents

Publication Publication Date Title
TWI682833B (en) Structure of blade leading edge of machining tool and its surface treatment method
Podgornik et al. Influence of surface roughness and coating type on the galling properties of coated forming tool steel
KR101446259B1 (en) Abrasive for blast processing and blast processing method employing the same
JP4873617B2 (en) Hard film covering member with low friction characteristics and peel resistance
JP4503097B2 (en) DLC-coated sliding member and manufacturing method thereof
US20100011826A1 (en) Surface for reduced friction and wear and method of making the same
JP2005001088A (en) Member coated with hard coating film and its manufacturing method
JP2009202307A (en) Grinding method for rolling and sliding device member and rolling and sliding device member
Adoberg et al. The effect of surface pre-treatment and coating post-treatment to the properties of TiN coatings
JP2004084014A (en) Coating method with diamond-like carbon film and die for plastic working
Chen et al. Process-surface morphology-tribological property relationships for H62 brass employing various manufacturing approaches
Kameyama et al. Fabrication of micro-textured and plateau-processed functional surface by angled fine particle peening followed by precision grinding
JP6783500B2 (en) Surface treatment method for sliding members and sliding members
WO2017150655A1 (en) Steel wire material and method for manufacturing same, and method for manufacturing steel wire
WO2020044585A1 (en) Metal product surface member and method for burnishing same
Zeng et al. Influence of a hybrid treatment consisting of fine particle bombardment and powder impact plating on the scuffing behavior of ductile cast iron
JP2005224902A (en) Substrate processing method of base material surface, base material having substrate processed surface by this method and product
JP2009202308A (en) Grinding method for rolling and sliding device member and rolling and sliding device member
CN111975297B (en) Preparation and rolling post-treatment strengthening process for high-energy micro-arc deposition layer on copper alloy surface
Sato et al. Tribological properties of bronze containing micro sized sulfide-application of atomic force microscopy
JP4541062B2 (en) Functional member and manufacturing method thereof
JP4104570B2 (en) Manufacturing method of sliding member
JP2010076094A (en) Metal bond diamond grinding wheel and method of manufacturing the same
Rachmat et al. Effect of burnishing tool diameter and coolant strategies on burnishing performance
JP7300096B2 (en) Sequential molding tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201022

R150 Certificate of patent or registration of utility model

Ref document number: 6783500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250