JP4104570B2 - Manufacturing method of sliding member - Google Patents

Manufacturing method of sliding member Download PDF

Info

Publication number
JP4104570B2
JP4104570B2 JP2004083372A JP2004083372A JP4104570B2 JP 4104570 B2 JP4104570 B2 JP 4104570B2 JP 2004083372 A JP2004083372 A JP 2004083372A JP 2004083372 A JP2004083372 A JP 2004083372A JP 4104570 B2 JP4104570 B2 JP 4104570B2
Authority
JP
Japan
Prior art keywords
coating
test piece
polishing
electric discharge
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004083372A
Other languages
Japanese (ja)
Other versions
JP2005272855A (en
Inventor
功 町田
晃央 横尾
Original Assignee
パーカー熱処理工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パーカー熱処理工業株式会社 filed Critical パーカー熱処理工業株式会社
Priority to JP2004083372A priority Critical patent/JP4104570B2/en
Publication of JP2005272855A publication Critical patent/JP2005272855A/en
Application granted granted Critical
Publication of JP4104570B2 publication Critical patent/JP4104570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications

Description

本発明は、金属材料の表面に放電加工による硬質被膜を形成し、耐摩耗性ならびに耐焼付き性などの摩擦・摺動性能などの表面特性が改質された摺動部材の製造方法に関する。 The present invention is made of a hard coating according EDM on the surface of the metallic material is formed to a method for producing a sliding member in which the surface properties such as friction and sliding performance was modified such wear resistance and seizure resistance.

近年、各種金型、ダイス、パンチ、ドリルなどの各種部材の耐久寿命の向上を目的として、これらの部材表面に放電加工により硬質被膜を形成する方法が、既存の熱処理などと組合せて、幅広く利用されつつある(非特許文献1)。これらの放電加工による表面硬化処理を、機械部品などの高面圧がかかる摺動部材の改質に応用することも検討されているが、放電加工により形成された被膜は高硬度であるとともに、表面に微細な凹凸形状を有していることから、これらの被膜を設けた摺動部材は、摺動時に相手側部材を攻撃し、相手側部材を摩耗させたり、齧りを生じるなどの不具合を引き起こすことが判明している。   In recent years, the method of forming a hard coating on the surface of various members such as dies, dies, punches and drills by electric discharge machining has been widely used in combination with existing heat treatment. (Non-Patent Document 1). While applying these surface hardening treatments by electric discharge machining to the modification of sliding members to which high surface pressure is applied such as machine parts, the coating formed by electric discharge machining has high hardness, Since the surface has a fine concavo-convex shape, the sliding member provided with these coatings has problems such as attacking the mating member during sliding, causing the mating member to wear, and causing sag. It has been found to cause.

また、特許文献1によれば、前記の硬質被膜はその表面に微細な凹凸面が残っており、該微細な凹凸面が残ったままの硬質被膜を有する摺動部材は、そのまま使用すれば大きな摩擦を起こし、該摺動部材は破損に至る。また、上記硬質被膜は脆く剥離が起こりやすいため、ラップ加工にて鏡面仕上げと同時に除去して使用することが望ましいといわれている。よって放電加工を機械部品などの摺動部材に適用するにあたっては、上記硬質被膜自体の特性や形態などについて抜本的な改善を行い、相手側部材への攻撃性を低減させるための改善が不可欠である。
型技術2003Vol.18、No.12 特開2000−301278公報
Further, according to Patent Document 1, the hard coating has a fine uneven surface left on its surface, and a sliding member having a hard coating with the fine uneven surface remaining is large if used as it is. Friction is caused and the sliding member is damaged. Moreover, since the said hard film is brittle and easy to peel, it is said that it is desirable to remove and use it at the same time as mirror finishing by lapping. Therefore, when applying electrical discharge machining to sliding members such as machine parts, it is essential to make fundamental improvements to the characteristics and form of the hard coating itself, and to reduce the aggression on the mating member. is there.
Mold technology 2003 Vol. 18, no. 12 JP 2000-301278 A

前記放電加工被膜の表面凹凸による相手側部材に対する攻撃性を改善する方法として、機械的または物理的な方法、例えば、研摩加工や硬球を利用したショット加工などを用いる種々の方法が考えられ、硬質被膜の表面粗度を改善することにより、硬質被膜の表面摩擦係数を低減させることができる。しかしながら、硬質被膜が相手側部材に直に接する摺動部材においては、これらの一般的な仕上げ加工のみでは、相手側部材に対する攻撃性の完全な払拭は困難であることが判明した。   As a method for improving the aggression against the mating member due to the surface unevenness of the electric discharge machining film, various methods using a mechanical or physical method such as a polishing process or a shot process using a hard ball are conceivable. By improving the surface roughness of the coating, the surface friction coefficient of the hard coating can be reduced. However, it has been found that in a sliding member in which the hard coating is in direct contact with the mating member, it is difficult to completely wipe off the aggressiveness against the mating member only by these general finishing processes.

また、特開平6−280044号公報によれば、放電加工を用いた追加2次加工を行い、その際、加工面に有毒でないガスを用い、放電被膜による表面凹凸の生成を弱め、放電加工処理表面が凹凸になりにくい、平坦化などの改善が提案されている。しかしながら、これらの再処理は生産性の低下や還元性ガスなどによるコストアップの懸案がある。
従って本発明の目的は、金属材料の表面に放電加工による硬質被膜を形成する際、該摺動部材の相手側部材に対する攻撃性が改善された摺動部材を提供することである。
Further, according to Japanese Patent Laid-Open No. 6-280044, additional secondary machining using electric discharge machining is performed, and at that time, a non-toxic gas is used on the machining surface, the generation of surface irregularities by the electric discharge film is weakened, and electric discharge machining treatment is performed. Improvements such as flattening, where the surface is less likely to be uneven, have been proposed. However, these reprocessing have concerns about cost reduction due to productivity reduction and reducing gas.
Accordingly, an object of the present invention is to provide a sliding member with improved attacking ability of the sliding member against the mating member when a hard film is formed on the surface of the metal material by electric discharge machining.

上記目的は以下の本発明によって達成される。すなわち、本発明は、金属材料の表面に、タングステンカーバイド系の消耗型電極を用いて、炭化水素系放電加工液中での放電加工により、厚さ5〜30μmの硬質被膜を形成した後、該被膜の最表層を、表面粗度2〜10μmRyに研磨し、かつ該表面の研磨後の放電被膜面積率を30%〜70%に保持させ、さらに表面に燐酸塩処理(以下単に「化成処理」という場合がある)を施すことを特徴とする摺動部材の製造方法を提供する。 The above object is achieved by the present invention described below. That is, in the present invention, a hard film having a thickness of 5 to 30 μm is formed on the surface of a metal material by electric discharge machining in a hydrocarbon electric discharge machining liquid using a tungsten carbide consumable electrode, The outermost layer of the coating is polished to a surface roughness of 2 to 10 μm Ry, and the discharge coating area ratio after polishing of the surface is maintained at 30% to 70% . Further, the surface is subjected to phosphate treatment (hereinafter simply referred to as “chemical conversion treatment”). A method of manufacturing a sliding member, characterized in that the manufacturing method is performed.

上記本発明においては、前記研磨後の硬質被膜の表面にさらに化成処理を施し、さらにその上層部に固体潤滑系の処理をすることが好ましい。 In the present invention, it is preferable that the surface of the hard coating after the polishing is further subjected to a chemical conversion treatment , and the upper layer portion thereof is further subjected to a solid lubricating treatment.

本発明によれば、金属材料の表面に放電加工による硬質被膜を形成し、該被膜を改質することにより、相手側部材に対する攻撃性が改善された摺動部材が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the sliding member by which the aggressiveness with respect to the other party member was improved is provided by forming the hard film by electric discharge machining on the surface of a metal material, and modifying this film.

本発明者らは、前記課題を解決するため、放電加工被膜の表面形態について、放電加工したままの状態、さらにはショットなどによる表面改質後の表層の形態や、研摩加工後の放電被膜の形態などについて、走査型電子顕微鏡による各種解析調査を行った。また、摺動部材の焼付き性能の評価では摩擦摩耗試験機を用いた各種実験による耐焼付き性、摩擦面の発熱状況、摩擦係数の変化など、摩擦摺動界面の繊細な種々解析実験を行い、放電加工における硬質被膜を有効に活用し、最大の課題である相手側部材に対する攻撃性を緩和させ、耐摩耗および耐焼付き性の優れた摺動部材の製造方法を開発した。 In order to solve the above problems, the inventors of the present invention have made the surface form of the electric discharge machining film as it is, the state of the surface layer after surface modification by shots, etc. Various analysis investigations with a scanning electron microscope were conducted on the form and the like. In the evaluation of the seizure performance of sliding members, various delicate analysis experiments on the frictional sliding interface, such as seizure resistance by various experiments using a frictional wear tester, the heat generation state of the friction surface, and changes in the friction coefficient, were conducted. , by effectively utilizing the hard film in the discharge machining, to relax the aggressiveness against the counterpart member is the biggest challenge has been developed a method of manufacturing a wear and seizure resistance excellent sliding member.

本発明の摺動部材の対象になる金属材料としては、主に鉄鋼材料(鉄系焼結合金を含む)、チタン、アルミニウムなどであり、これらの金属材料は、予め下地処理を施したものでもよい。鉄鋼材料の下地処理としては、例えば、浸炭焼入れ、高周波焼入れ、軟窒化処理などの表面硬化処理ならびに焼入れ、焼き戻しなどが挙げられ、また、チタンおよびアルミニウムなどの場合には、例えば、固溶化および時効処理または無処理が挙げられる。上記金属材料からなる摺動部材の種類としては、輸送機器、産業機械、電気、工具、日用品などにおける摺動部に用いる部材であり、広義には相手部材との間でお互いに摺動される部材を意味し、具体的には往復摺動部材や回転摺動部材である。   The metal materials that are the objects of the sliding member of the present invention are mainly steel materials (including iron-based sintered alloys), titanium, aluminum, and the like, and these metal materials may be those that have been subjected to ground treatment in advance. Good. Examples of the base treatment of the steel material include surface hardening treatment such as carburizing quenching, induction quenching, soft nitriding treatment, quenching, tempering, etc. In the case of titanium and aluminum, for example, solid solution and Aging treatment or no treatment can be mentioned. The sliding member made of the metal material is a member used for a sliding portion in transportation equipment, industrial machinery, electricity, tools, daily necessities, etc., and slides with each other in a broad sense. It means a member, specifically a reciprocating sliding member or a rotational sliding member.

本発明において、上記の如き金属材料の表面に、放電加工被膜を形成する方法としては、特開2001−138141公報などに詳述されている通り、タングステンカーバイドが硬質被膜形成成分として含まれている粉末加圧成形体の消耗型電極を用い、炭化水素系放電加工液中にて被処理材である金属材料の表面との間にパルス放電を発生させることにより電極組成が溶解し、被処理材である金属材料の表面に無数の放電痕被膜と共に約5〜30μmの厚みの硬質被膜が形成される方法を用いる。 In the present invention, as a method for forming an electric discharge machining film on the surface of the metal material as described above, tungsten carbide is included as a hard film forming component as detailed in JP-A-2001-138141 and the like. The electrode composition is dissolved by using a consumable electrode of a powder pressure molded body and generating a pulse discharge between the surface of the metal material that is the material to be treated in the hydrocarbon-based electric discharge machining fluid, and the material to be treated A method is used in which a hard coating having a thickness of about 5 to 30 μm is formed on the surface of the metal material together with countless discharge trace coatings.

上記硬質被膜の最表層を解析すると、主に電極成分のタングステン、コバルトなどと被処理材との放電加工により生じた硬質なセラミックス系の被膜が生成していることが認められ、さらにその深部には電極主成分と被処理部材とが反応して生成した傾斜型組成の拡散層が数μmの厚さにわたって存在している。次に被膜の最表層の特徴は極めて硬質で凹凸が激しく、この凹凸の基となる放電被膜の形態を解析すると、鋭角な稜線が多数重なりあった硬質被膜であることが判明した。よってこの激しい凹凸を有する状態で摺動部材として使用した場合、相手側部材を傷つけたり、相手側部材を齧ったりするなど不具合を発生し好ましくないことが考えられる。   When the outermost layer of the hard coating is analyzed, it is recognized that a hard ceramic coating produced mainly by electrical discharge machining of the electrode components tungsten, cobalt, etc. and the material to be treated is generated, and further in the deep part. Has a diffusion layer having a gradient composition formed by the reaction of the electrode main component and the member to be processed over a thickness of several μm. Next, the characteristics of the outermost layer of the coating were extremely hard and rugged, and analysis of the form of the discharge coating on which the projections and depressions were based revealed that the coating was a hard coating in which a number of sharp ridges overlapped. Therefore, when it is used as a sliding member in a state having such severe unevenness, it may be undesirable because it causes problems such as damaging the mating member or scooping the mating member.

次に特開平11−320272号公報によれば、放電加工により形成された硬質被膜に潤滑性を付与する方法として、被処理材に放電加工による硬質被膜を形成した後、該硬質被膜の表面を研摩加工し、表面に穴を有する被膜の製造方法が提案されている。上記公報によれば、放電加工により形成した被膜表面は、鱗状に形成された状態で、例えば、タングステンカーバイト系の電極を用いた場合に形成される硬質被膜の硬度は、1500HV相当の硬さであり、表面粗度は約5μmRy相当となり、これらの硬質被膜は工具や金型の用途に使用できるが、機械部品などの摺動部材には使用できないといわれている。一方、上記表面には無数の細かい穴が存在することから、この穴を利用して潤滑油だまりとし、潤滑性の向上を図る目的で該表面に細かい穴が残るように研摩加工する方法が提案されている。この効果としては、機械部品の摺動面で焼付き防止するために必要な潤滑油量が従来に比べ半減できると記載されている。   Next, according to Japanese Patent Application Laid-Open No. 11-320272, as a method for imparting lubricity to a hard coating formed by electric discharge machining, after forming a hard coating by electric discharge machining on a material to be treated, the surface of the hard coating is applied. There has been proposed a method for producing a coating which is polished and has holes on the surface. According to the above publication, the surface of the coating formed by electric discharge machining is in a scale-like state. For example, the hardness of the hard coating formed when a tungsten carbide electrode is used is equivalent to 1500 HV. The surface roughness is equivalent to about 5 μm Ry, and these hard coatings can be used for tools and molds, but it is said that they cannot be used for sliding members such as machine parts. On the other hand, since there are innumerable fine holes on the surface, a lubrication oil pool is created using these holes, and a method of polishing so that fine holes remain on the surface for the purpose of improving lubricity is proposed. Has been. As this effect, it is described that the amount of lubricating oil necessary for preventing seizure on the sliding surface of the machine part can be halved compared to the conventional case.

本発明者らは上記の記載内容を検証するため、リングオンディスク方式の摩擦摩耗試験を用い、上記硬質被膜のオイル潤滑化での表面粗度と耐焼付き性の関連を調査した。図1に試験機の構造と試験片形状ならびに装置への取付け状態を示す。ここで耐焼付き性評価は、原則として回転側のディスクとしてJIS−SCM420機械構造用鋼を用い、これを有効硬化深さ約0.7mmにガス浸炭焼入れしたものを用いて行なった。なお、相手側の固定されるリングは浸炭焼入れと研摩加工仕上げとした。   In order to verify the above description, the present inventors investigated the relationship between surface roughness and seizure resistance in oil lubrication of the hard coating using a ring-on-disk friction and wear test. FIG. 1 shows the structure of the testing machine, the shape of the test piece, and the state of attachment to the apparatus. Here, the seizure resistance evaluation was performed using, as a rule, JIS-SCM420 machine structural steel as the rotating disk and gas carburizing and quenching to an effective hardening depth of about 0.7 mm. The ring to be fixed on the other side was carburized and polished.

次に被処理材ディスクの摺動面に液中放電加工によるタングステンカーバイト系の硬質被膜を約20μmの厚さに形成した。これを用いて下記の試験片a〜cを用意した。
・試験片a:放電加工硬質被膜を形成したままで、表面粗度が12μmRyであり、表面研磨が施されていないもの。
・試験片b:被膜面をショットと研摩加工にて表面粗度を6.5μmRy仕上げたもの。
・試験片c:被膜面をショットと研摩加工にて表面粗度を1.5μmRy仕上げたものの3種の試験片、および
・比較用試験片d:放電加工せずに、浸炭焼入れおよび研摩仕上げ(表面粗度≒1〜2μmRy)したものの1種の試験片で、合計で4種の試験片。
Next, a tungsten carbide hard coating having a thickness of about 20 μm was formed on the sliding surface of the workpiece disk by submerged electric discharge machining. Using this, the following test pieces a to c were prepared.
-Test piece a: The surface roughness is 12 μm Ry and the surface is not polished while the electric discharge machining hard coating is formed.
-Specimen b: The coated surface is finished with a surface roughness of 6.5 μm Ry by shot and polishing.
-Test piece c: Three types of test pieces whose surface roughness is 1.5 μm Ry finished by shot and polishing the coating surface, and-Comparative test piece d: Carburizing quenching and polishing finish without electric discharge machining ( One kind of test piece having a surface roughness of about 1 to 2 μm Ry), and a total of four kinds of test pieces.

摩擦摩耗テストに先立ち、上記試験片a〜cの表面形態を走査型電子顕微鏡にて解析し、その結果を図2(走査型電子顕微鏡写真)に示す。図2aは、硬質被膜のままの試験片aの表面写真であり、その表面形態は非常に凹凸が激しく、無数のボイドやミクロ亀裂が観察され、さらに放電加工時、消耗型電極材料組成の溶融反応により生成するスラグも認められる。図2bは、試験片bの表面写真であり、その被膜面をショットブラスト後、研摩加工にて表面粗度を6.5μmRyに調整した面を示し、試験片aと比較して表面のスラグなどが除去された比較的平坦な面が観察される。図2cは、試験片cの表面写真であり、特開平11−320272号公報を想定した研摩加工表面の穴を再現したものであり、試験片aに比べて凹凸が平坦化され、表面粗度が1.5μmRyとなり、放電被膜物が所々に認められる。   Prior to the frictional wear test, the surface morphology of the test pieces a to c was analyzed with a scanning electron microscope, and the results are shown in FIG. 2 (scanning electron micrograph). Fig. 2a is a photograph of the surface of the test piece "a" with a hard coating. The surface morphology is extremely uneven, and numerous voids and microcracks are observed. Further, during electric discharge machining, the consumable electrode material composition melts. Slag produced by the reaction is also observed. FIG. 2b is a photograph of the surface of the test piece b. The surface of the coating surface after shot blasting is adjusted to a surface roughness of 6.5 μm Ry by polishing, and the surface slag is compared with the test piece a. A relatively flat surface from which is removed is observed. FIG. 2c is a photograph of the surface of the test piece c, which is a reproduction of a hole on the polished surface assuming Japanese Patent Laid-Open No. 11-320272. Is 1.5 μm Ry, and discharge coatings are observed in several places.

表1に、前記各試験片a〜dの表面粗度と耐焼付き性との関係を調べた摩擦摩耗試験結果を示す。これらの結果より、表面研磨されていない試験片aは、浸炭焼入れ試験片dに比べて焼付き荷重が若干向上するが、摩擦係数の変動や界面の発熱が非常に大きく、相手側部材に対する攻撃性の問題があることが判明した。次に研摩加工仕上げした試験片bおよび試験片cのうち、先ず試験片bの摩擦係数の変動は比較的少なく、浸炭焼入れ試験片dとの比較でも、焼付き荷重が約1.5倍に向上した。一方、放電被膜を一部残し、表面粗度を1.5μmRy仕上げの試験片cの場合は、摩擦係数の変動は少ないが、焼付き荷重が浸炭焼入れのみの試験片dとほぼ同等であり、放電加工被膜の優位性が無いことが判明した。 Table 1 shows the results of a frictional wear test in which the relationship between the surface roughness and the seizure resistance of each of the test pieces a to d was examined. From these results, the specimen a that has not been surface- polished has a slightly improved seizure load compared to the carburized and quenched specimen d, but the fluctuation of the friction coefficient and the heat generation at the interface are very large, and the attack on the mating member It turns out that there is a sex problem. Next, among the specimens b and c finished by polishing, the friction coefficient of the specimen b is relatively small, and the seizure load is about 1.5 times that of the carburized and quenched specimen d. Improved. On the other hand, in the case of the test piece c having a part of the discharge coating and having a surface roughness of 1.5 μm Ry finish, although the coefficient of friction is small, the seizure load is almost equivalent to the test piece d of only carburizing and quenching, It has been found that there is no superiority of the EDM film.

上記における各種物性の測定方法、およびそれ以降の記載における各種物性の測定方法は次の通りである。
「表面粗度の測定方法(触針式表面粗さ測定)」
JIS B0651に従う測定器を用いて測定し、JIS B0601に従う用語、定義および表面性状パラメーターで表示した。
「焼付き荷重の測定方法」
図1に示す摩擦摩耗試験機の試験片(リング)4と、試験片(ディスク)5との間の摩擦により生ずるトルクならびに界面の接触温度が急激に上昇した時点の焼付き荷重を意味する。
「焼付き温度の測定方法」
図1の試験片(リング)4の摺動面近傍に予め挿入した熱電対にて焼付き時の温度を測定した。
「摩擦係数の測定方法」
図1に示すトルクメーター3にて、試験片(リング)4と試験片(ディスク)5との摩擦により発生するトルクを測定し、試験機構造により決まる下記に示す摩擦係数計算式に当てはめて摩擦係数(μ)を求めた。
摩擦係数計算式:μ=FR/Wr
(上記式中、μは摩擦係数、FRはトルク値、Wは加圧荷重、rは試験片(リング)の平均半径を示す。)
The measuring method of various physical properties in the above and the measuring method of various physical properties in the following description are as follows.
"Measurement method of surface roughness (stylus surface roughness measurement)"
It measured using the measuring device according to JIS B0601, and was displayed by the term according to JIS B0601, the definition, and the surface property parameter.
"Measurement method of seizure load"
It means the seizure load at the time when the torque generated by the friction between the test piece (ring) 4 and the test piece (disk) 5 of the friction and wear tester shown in FIG.
"Measurement method of seizure temperature"
The temperature at the time of seizure was measured with a thermocouple previously inserted in the vicinity of the sliding surface of the test piece (ring) 4 in FIG.
"Method of measuring friction coefficient"
The torque generated by the friction between the test piece (ring) 4 and the test piece (disk) 5 is measured with the torque meter 3 shown in FIG. 1 and applied to the friction coefficient calculation formula shown below determined by the test machine structure. The coefficient (μ) was determined.
Friction coefficient calculation formula: μ = FR / Wr
(In the above formula, μ is a friction coefficient, FR is a torque value, W is a pressurizing load, and r is an average radius of a test piece (ring).)

すなわち、試験片aは、そのままでは相手側部材に対して攻撃性が非常に強く、また、研摩加工で表面粗度を機械加工の一般的な仕上げ精度の約1μmRy相当まで研摩した試験片cは、被膜が本来持つ耐摩耗性の特徴を失うなど、非常に不安定な要素が介在していることが分った。従って摺動部材の改良のために放電加工を応用するにあたっては、放電加工による硬質被膜の形態、表面粗度、膜厚ならびに相手側部材との界面反応などを考慮した改善が必須である。   That is, the test piece a is very aggressive against the mating member as it is, and the test piece c polished to a surface roughness equivalent to about 1 μm Ry, which is a general finishing accuracy of machining, is obtained by polishing. It was found that very unstable elements were intervening, such as the loss of the wear resistance characteristic inherent in the coating. Therefore, in applying electric discharge machining to improve the sliding member, it is essential to consider the form of the hard film by electric discharge machining, the surface roughness, the film thickness, and the interface reaction with the counterpart member.

そこで、摺動部材の耐焼付き性などの表面を改質する目的で、放電加工による硬質被膜を適用する場合には、上記硬質被膜の表面形態が最も影響を及ぼすことが考えられるため、本発明者らは、放電加工による被膜面に存在する凹凸の形態制御方法を種々検討した。その結果、放電加工被膜の原点となる放電被膜の形態ならびに分布状態に焦点を絞り、先ずは放電被膜物の縁にあたる稜線を平坦かつなだらかに表面仕上げし、下地中の放電被膜面積率の最適分布形態を探究し、さらには硬質被膜の表面凹凸部に潤滑特性を有する化成処理被膜を予め均一にコーティングし、自己潤滑性ならびに摺動における潤滑油保持に利用する摺動部材およびその製法を開発した。   Therefore, in the case of applying a hard coating by electric discharge machining for the purpose of modifying the surface such as seizure resistance of the sliding member, the surface form of the hard coating is considered to have the most influence. The inventors studied various methods for controlling the form of unevenness present on the coating surface by electric discharge machining. As a result, the focus is on the shape and distribution state of the discharge coating, which is the origin of the EDM coating, and first, the ridge line corresponding to the edge of the discharge coating is flat and gently finished, and the optimal distribution of the discharge coating area ratio in the substrate In search of the form, and furthermore, a chemical conversion treatment film having lubricating properties was uniformly coated in advance on the surface irregularities of the hard film, and a self-lubricating and sliding member used for retaining lubricating oil during sliding and a method for producing the same were developed. .

本発明において「放電被膜」とは、放電加工のパルス放電にて生ずる消耗電極成分と被処理材との反応生成物(硬質被膜形成成分)を意味し、また、「下地中の放電被膜面積率」または「放電被膜面積率」とは、摺動部材の摺動面の全面積に占める放電被膜の面積比率を意味する。   In the present invention, the “discharge coating” means a reaction product (hard film forming component) between a consumable electrode component and a material to be processed generated by pulse discharge in electric discharge machining. The “discharge coating area ratio” means the area ratio of the discharge coating to the total area of the sliding surface of the sliding member.

ここで硬質被膜面に化成処理や固体潤滑剤を直接塗布し、潤滑性を改善する方法が考えられるが、上記硬質被膜は前述の如く生地に近い所では電極成分との反応による傾斜型組成になっているが、最表面部は硬質で脆いセラミックス系被膜で構成されており、硬質被膜を形成したままの状態では化成処理膜や固体潤滑膜の密着性が悪く適用が困難である。ここで被処理基材として鉄鋼素材を用い、その表面にタングステン系の放電加工被膜を形成し、その表面に燐酸塩系の化成処理を直接施す実験を行った結果、最表層のセラミックス被膜と化成処理液との界面反応が鈍く、燐酸塩の結晶が均一に生成せず、化成処理被膜全体にスケムラが発生することが分かった。このため放電加工被膜の最上層のセラミックス系被膜をショット、研削加工、または化学研摩、さらには電解研摩などを用いて除去し、鉄リッチの最表面組成に改質する必要がある。   Here, it is conceivable to apply a chemical conversion treatment or a solid lubricant directly to the hard coating surface to improve the lubricity, but the hard coating has a gradient composition by reaction with electrode components near the cloth as described above. However, the outermost surface portion is composed of a hard and brittle ceramic-based coating, and in the state where the hard coating is formed, the adhesiveness of the chemical conversion treatment film and the solid lubricating film is poor and application is difficult. Here, as a result of an experiment in which a steel material was used as the substrate to be treated, a tungsten-based electric discharge machining film was formed on the surface, and a phosphate-based chemical conversion treatment was directly applied to the surface, the outermost ceramic film and the chemical conversion film were formed. It was found that the interfacial reaction with the treatment liquid was slow, phosphate crystals were not uniformly formed, and skettle was generated throughout the chemical conversion coating. For this reason, it is necessary to remove the ceramic-based film as the uppermost layer of the electric discharge machining film by shot, grinding, chemical polishing, or electrolytic polishing to improve the iron-rich surface composition.

次に化成処理工程や固体潤滑処理工程における硬質被膜との密着性や硬質被膜自体の保油・保持効果を最大限に引き出すために、放電被膜の形態ならびにその分布状況を種々解析調査した。その結果、硬質被膜の表層部をショットまたは研摩などを用いて改質する際のポイントは、耐摩耗性に効果のある放電被膜をできるだけ多く残し、さらに表面粗度を最適範囲に設定することが望ましいこと判明した。   Next, in order to maximize the adhesion to the hard coating and the oil retention / holding effect of the hard coating itself in the chemical conversion treatment process and the solid lubrication treatment process, various analyzes and investigations were conducted on the form and distribution of the discharge coating. As a result, the point of modifying the surface layer part of the hard coating by using shot or polishing is to leave as many discharge coatings as effective in wear resistance and to set the surface roughness within the optimum range. It turned out to be desirable.

解析方法としてはJIS−SCR420鋼材で製作した円盤試験片を用い、有効硬化深さ約1mmの浸炭焼入れ後、研摩加工し、その上にタングステン系電極にて約20μm厚の放電硬質被膜を形成した。次に被膜の表面粗度調整として、鉱砕粉を用いたショットピーニングにて被膜の最上層にあるセラミックス系被膜を剥離し、さらにその面を研摩加工にて表面粗度レベルを4段階に調整して試験片A〜Dを作成した。それらの表面粗度と放電被膜面積率との関連を調査し、表2に示した結果を得た。   As an analysis method, a disk test piece made of JIS-SCR420 steel material was used. After carburizing and quenching with an effective hardening depth of about 1 mm, polishing was performed, and a discharge hard coating having a thickness of about 20 μm was formed on the tungsten-based electrode. . Next, to adjust the surface roughness of the coating, the ceramic coating on the top layer of the coating is peeled off by shot peening using crushed powder, and the surface roughness level is adjusted to 4 levels by polishing. Thus, test pieces A to D were prepared. The relationship between the surface roughness and the discharge coating area ratio was investigated, and the results shown in Table 2 were obtained.

これらの結果より硬質被膜の最表面をショット仕上げおよび研摩仕上げ後における表面粗度(μmRy)と、放電被膜面積率との両者にほぼ相関性があることがわかった。ここで放電加工の初期表面粗度は約15μmRyと比較的大きいため(試験片A)、表面仕上げにて表面粗度を改善する場合、放電被膜がより薄くなると硬質被膜を形成している放電被膜面積比率も減少することが分かった(試験片B〜D)。一方、耐焼付き性は表1に示すごとく表面粗度との関連があることから、これら両者の関係より放電被膜面積率は30%〜70%が最適と認められる。以上の如く仕上げ加工時の表面粗度を適度な範囲に調整することで、耐摩耗性や耐焼付き性に効果のある放電被膜の分布形態を最適な状態に調整することが可能となった。 From these results, it was found that both the surface roughness (μmRy) after shot finishing and polishing finishing of the outermost surface of the hard coating and the discharge coating area ratio are substantially correlated. Here, since the initial surface roughness of electric discharge machining is relatively large at about 15 μm Ry (test piece A), when the surface roughness is improved by surface finishing, the electric discharge coating that forms a hard coating when the electric discharge coating becomes thinner It was found that the area ratio also decreased (test pieces B to D). On the other hand, since seizure resistance is related to the surface roughness as shown in Table 1, it is recognized that the discharge coating area ratio is optimally 30% to 70% from the relationship between the two. As described above, by adjusting the surface roughness during finishing to an appropriate range, it is possible to adjust the distribution form of the discharge coating effective for wear resistance and seizure resistance to an optimum state.

以上の検討からして次のことが明らかになった。
1.放電加工による硬質被膜の最大の特長である耐摩耗性を維持しながら、相反する攻撃性を改善するには、硬質被膜およびその表面形態の改質を行う必要がある。
2.改質方法としてはブラスト、研摩加工、化学研摩、電解研摩など、単独もしくは複合処理にて最表層を最適な表面粗度に調整する。
3.その際のポイントは放電被膜の稜線や縁をなだらかに、かつ放電被膜面積率を30%〜70%とし、かつ表面粗度を2〜10μmRyに管理することにある。
4.また、さらに次工程で放電被膜の稜線、隙間、穴部など、表面凹凸部に均一に被覆できる潤滑特性を持つ化成処理被膜や固体潤滑剤を施すことにより、高面圧での摺動に対応できる摺動部材が提供できる。
From the above examination, the following became clear.
1. In order to improve the conflicting aggressiveness while maintaining the wear resistance which is the greatest feature of the hard coating by electric discharge machining, it is necessary to modify the hard coating and its surface form.
2. As a modification method, the outermost surface layer is adjusted to an optimum surface roughness by single or composite treatment such as blasting, polishing, chemical polishing, and electrolytic polishing.
3. The points at that time are to gently control the ridgeline and edges of the discharge coating, to control the discharge coating area ratio to 30% to 70% , and to manage the surface roughness to 2 to 10 μm Ry.
4). In addition, by applying a chemical conversion coating or a solid lubricant that has a lubricating property that can uniformly coat uneven surfaces such as ridgelines, gaps, and holes in the discharge coating in the next process, it can handle high surface pressure sliding. Can be provided.

次に実施例を挙げて本発明をさらに具体的に説明する。
〔実施例1〕
JIS−SCM420構造用鋼を用い、先に詳述した摩擦摩耗試験片用のディスク(φ50×5t)とリング(φ23×15t)を製作し、各々930℃×5hrの条件で浸炭処理し、850℃×2hrの条件で拡散処理および油焼入れを行ない、その後180℃×2時間の条件で焼き戻しを行い、表面硬度が730HVで、有効硬化深さが約0.7mmの浸炭した下地処理を行った。次に回転側のディスクの摺動面に放電加工被膜を形成し、相手側の固定されるリングは浸炭焼入れおよび研摩仕上げを行なって表面粗度を1μmRyとした。
Next, the present invention will be described more specifically with reference to examples.
[Example 1]
Using JIS-SCM420 structural steel, the disc (φ50 × 5t) and the ring (φ23 × 15t) for the frictional wear test piece described in detail above were manufactured and carburized under the condition of 930 ° C. × 5 hr. Diffusion treatment and oil quenching were performed under the conditions of ℃ × 2 hr, then tempering was performed under the conditions of 180 ℃ × 2 hours, and carburized ground treatment was performed with a surface hardness of 730 HV and an effective hardening depth of about 0.7 mm. It was. Next, an electric discharge machining film was formed on the sliding surface of the disk on the rotating side, and the ring to be fixed on the other side was carburized and polished to a surface roughness of 1 μm Ry.

上記放電加工では、タングステンカーバイト系の消耗型電極を負極に取付け、炭化水素系の加工液中にて行ない、約20μm厚の硬質被膜を形成した。次に硬質被膜の表面仕上げを行なった。表面仕上げは、鉱砕粉を用いたショット加工と研摩加工の組合せにて行ない、表面粗度Ryを調整し、(A)10μmRy、(B)6μmRy、(C)2μmRyおよび(D)1μmRyの4種の試験片を作成した。なお、比較用として(E)放電加工被膜のまま(ショット、研摩なし)、表面粗度1μmRy、(F)浸炭焼入れおよび研摩加工仕上げ、表面粗度1.5μmRyの2種の試験片も製作し、これらの試験片を用いて耐焼付き性を調査した。 In the electric discharge machining, a tungsten carbide-based consumable electrode was attached to the negative electrode, and this was performed in a hydrocarbon-based machining fluid to form a hard coating having a thickness of about 20 μm. Next, the surface of the hard coating was finished. Surface finishing is performed by a combination of shot processing and grinding processing using pulverized powder, and the surface roughness Ry is adjusted, and (A) 10 μm Ry, (B) 6 μm Ry, (C) 2 μm Ry and (D) 1 μm Ry 4 Specimen specimens were made. Incidentally, while the (E) EDM film for comparison (shot, no grinding), surface roughness 1 3 μmRy, (F) carburized and finish polishing process, also two test pieces of the surface roughness 1.5μmRy The seizure resistance was investigated using these test pieces.

なお、より高面圧化を目的に、上記試験片B、DおよびEには、表面仕上げ後、所定の前処理を行い、燐酸マンガン系化成処理剤を用いて化成処理を行い、約1〜3μmの膜厚の被膜で該表面を均一に被覆した。また、試験片Cには燐酸マンガン系化成処理剤で化成処理後、さらに二硫化モリブデン系固体潤滑塗料を約10μm厚に塗布し、焼き付け処理をした。   In addition, for the purpose of higher surface pressure, the test pieces B, D and E are subjected to a predetermined pretreatment after surface finishing, and a chemical conversion treatment using a manganese phosphate chemical conversion treatment agent is performed. The surface was uniformly coated with a film having a thickness of 3 μm. Further, the test piece C was subjected to a chemical conversion treatment with a manganese phosphate chemical conversion treatment agent, and then a molybdenum disulfide solid lubricant coating was applied to a thickness of about 10 μm and baked.

摩擦摩耗試験は、前述のリングオンディスク方式による摩擦摩耗試験機にて、焼付け荷重、焼付き温度、摩擦係数などを評価し、その結果を表3に示した。
In the frictional wear test, the seizure load, the seizure temperature, the friction coefficient, and the like were evaluated using the above-described ring-on-disk frictional wear tester, and the results are shown in Table 3.

放電加工被膜の表面粗度の焼付き荷重に及ぼす影響は、試験片A、BおよびCの表面粗度2〜10μmRyが最適であり、その効果は試験片Fの浸炭焼入れおよび研摩したものに比較し、約1.4〜1.5倍の耐焼付き性向上が確認された。一方、試験片Eの放電加工のままで、表面粗度が13μmRyでは、試験片Fに比較して焼付き荷重は若干上がるが、摩擦係数の変動より攻撃性が強く、齧りが早期に発生する問題がある。また、試験片Dの放電加工および研摩仕上げで表面粗度が2μmRy未満の場合、硬質被膜が薄くなりすぎて摩擦熱などによる試験片の軟化が進行し、耐焼付き性は試験片F並みと判明した。これら一連の結果より表面仕上げ後の最適表面粗度は2〜10μmRyであると認められる。   The effect of the surface roughness of the EDM film on the seizure load is optimal when the surface roughness of the test pieces A, B and C is 2 to 10 μm Ry, and the effect is compared with that of the test piece F which is carburized and polished. In addition, an improvement in seizure resistance of about 1.4 to 1.5 times was confirmed. On the other hand, when the surface roughness is 13 μm Ry with the electric discharge machining of the test piece E, the seizure load is slightly higher than that of the test piece F, but the aggressiveness is stronger than the fluctuation of the friction coefficient, and the sag occurs early. There's a problem. In addition, when the surface roughness is less than 2 μm Ry in EDM and polishing finish of Specimen D, the hard coating becomes too thin and the test piece softens due to frictional heat and the seizure resistance becomes the same as Specimen F. did. From the series of results, it is recognized that the optimum surface roughness after surface finishing is 2 to 10 μm Ry.

次に潤滑性を有する化成処理を組み合わせ、表面粗度が5μmRyである試験片[B+化成]は、耐焼付き性が格段に向上し、その効果は試験片Fと比較して約2倍強に相当する。さらに二硫化モリブデン被膜を併用した試験片[C+化成+固体潤滑]は、焼付き荷重自体の更なる向上は少ないが、摩擦係数(μ)が非常に小さく、摺動部材には極めて有効である。なお、硬質被膜を表面粗度を1μmRyに研摩し、化成処理を施した試験片[D+化成]の場合、初期摩擦係数は低下するが、耐焼付き性能は試験片Fとほぼ同等で、改善効果は認められない。   Next, combined with a chemical conversion treatment having lubricity, the test piece [B + Chemical conversion] with a surface roughness of 5 μm Ry has significantly improved seizure resistance, and its effect is about twice as high as that of the test piece F. Equivalent to. Furthermore, the test piece [C + chemical conversion + solid lubrication] combined with molybdenum disulfide coating has little improvement in seizure load itself, but has a very small coefficient of friction (μ) and is extremely effective for sliding members. . In addition, in the case of a test piece [D + Chemical conversion] that has been hardened with a surface roughness of 1 μm Ry and subjected to chemical conversion treatment, the initial friction coefficient decreases, but the seizure resistance performance is almost the same as that of the test piece F, and the improvement effect It is not allowed.

耐焼付き性に効果が確認された化成処理方法は、被処理剤の表面粗度にマッチングした薬剤の使い分けがベターであり、表面粗度が細かい場合は薄膜型の被膜が、表面粗度が粗い場合は厚膜タイプの化成処理被膜が均一性や密着性、潤滑性などより望ましい。ここで燐酸塩被膜の他にも浸硫処理、酸化被膜なども有効である。さらに燐酸塩被膜に併用し摩擦係数の大幅低減に効果のある固体潤滑系被膜は、二硫化モリブデン以外に、グラファイト、テフロン(登録商標)などの単独あるいは複合の各種固体潤滑剤が有効であり、無潤滑下での摩擦低減や耐焼付き性向上にも有効である。なお、上記の「浸硫処理」とは、表層部の摩擦係数を低減する目的で、硫黄化合物を含む溶融塩または水溶液中にて鉄系部材を電解処理して表層に硫化鉄を形成させる処理方法であり、また、「酸化被膜処理」とは、高温スチームなどの雰囲気にて鉄系部材を処理することにより四三酸化鉄の層を形成する処理方法である。   In the chemical conversion treatment method that has been confirmed to have an effect on seizure resistance, the use of chemicals that match the surface roughness of the agent to be treated is better. If the surface roughness is fine, the thin film type coating is rough, and the surface roughness is rough. In this case, a thick film type chemical conversion coating is more desirable than uniformity, adhesion, lubricity and the like. Here, in addition to the phosphate coating, a sulfuration treatment, an oxide coating, and the like are also effective. In addition to molybdenum disulfide, solid or solid lubricants such as graphite and Teflon (registered trademark) are effective as solid lubricant coatings that are used in combination with phosphate coatings and are effective in reducing friction coefficient. It is also effective for reducing friction and improving seizure resistance without lubrication. The above-mentioned “sulfurization treatment” is a treatment for forming iron sulfide on the surface layer by electrolytic treatment of an iron-based member in a molten salt or aqueous solution containing a sulfur compound for the purpose of reducing the friction coefficient of the surface layer portion. The “oxide film treatment” is a treatment method for forming a layer of iron tetroxide by treating an iron-based member in an atmosphere such as high-temperature steam.

〔実施例2〕
輸送機器の駆動系部品にギアを変速させるシフトホーク部材は、相手側のギアとの摩擦摩耗を防止するため、浸炭や高周波焼入れなどの各種表面硬化処理が適用され、さらに高機能を要求される条件下では、その上層に硬質クロムメッキやモリブデン系の溶射被膜が施されている。近年、地球環境問題より部品製造工程においても種々見直しが検討され、硬質メッキや溶射などの被膜は製造環境対応やコスト低減などの目的より代替手法が模索されている。ここでは、これらの用途に対し、本発明の摺動部材の製造方法の適合性を評価する目的で、図1に示した摩擦摩耗試験を用いて、硬質クロムメッキならびにモリブデン溶射との耐焼付き性について比較テストを行った。
[Example 2]
Shift-hawk members that shift gears to drive system parts of transportation equipment are applied with various surface hardening treatments such as carburizing and induction hardening to prevent frictional wear with the gears on the other side, and higher functionality is required. Under the conditions, hard chrome plating or molybdenum-based thermal spray coating is applied on the upper layer. In recent years, various review of the part manufacturing process has been studied due to global environmental problems, and alternative methods for coating such as hard plating and thermal spraying are being sought for the purpose of reducing the manufacturing environment and reducing costs. Here, for the purpose of evaluating the suitability of the manufacturing method of the sliding member of the present invention for these applications, the friction and abrasion test shown in FIG. 1 is used, and seizure resistance with hard chromium plating and molybdenum spraying is used. A comparative test was conducted.

摩擦摩耗試験のディスクおよびリング試験片は、JIS−SCR415鋼材を用い、表面硬度720HV、有効浸炭深さ≒0.5mmのガス浸炭焼入れを行い、研摩仕上げしたものを基材として用いた。比較用試験片としては、この基材表面を下記の処理を施して2種類作成した。
試験片1:硬質クロムメッキ:表面硬度760HV、メッキ厚さ≒40μm、
試験片2:モリブデン溶射:表面硬度700HV、膜厚≒50μm
The discs and ring specimens for the frictional wear test were JIS-SCR415 steel, subjected to gas carburizing and quenching with a surface hardness of 720 HV and an effective carburization depth of about 0.5 mm, and used as a base material. Two types of test pieces for comparison were prepared by performing the following treatment on the surface of the base material.
Test piece 1: Hard chrome plating: surface hardness 760 HV, plating thickness ≈ 40 μm,
Test piece 2: Molybdenum spraying: surface hardness 700 HV, film thickness ≈ 50 μm

次に本発明による試験片3は、タングステン系電極を用いた硬質被膜を前記基材表面に約20μmの厚みに形成し、次工程にて硬球を用いたショットピーニングを行い、最表層のスラグとセラミックス層を除去し、表面粗度を5μmRyに仕上げた。さらに高性能向けとしての試験片4は、試験片3の表面に燐酸マンガン系化成処理被膜を約3μmの厚さに、また、試験片5は、試験片3の表面に二硫化モリブデン系固体潤滑塗料を約9μmの厚さに被覆した。さらに試験片6は、試験片3の表面に燐酸マンガン系化成処理被膜を約3μm+二硫化モリブデン系固体潤滑塗料を約9μmの厚さに被覆して作成した。上記の試験片について行なった一連のテスト結果を表4に示す。   Next, the test piece 3 according to the present invention forms a hard film using a tungsten-based electrode to a thickness of about 20 μm on the surface of the base material, and performs shot peening using a hard ball in the next step, The ceramic layer was removed, and the surface roughness was finished to 5 μm Ry. Further, the test piece 4 for high performance has a manganese phosphate-based chemical conversion coating on the surface of the test piece 3 to a thickness of about 3 μm, and the test piece 5 has a molybdenum disulfide-based solid lubricant on the surface of the test piece 3. The paint was coated to a thickness of about 9 μm. Further, the test piece 6 was prepared by coating the surface of the test piece 3 with a manganese phosphate-based chemical conversion treatment film with a thickness of about 3 μm + molybdenum disulfide-based solid lubricant paint with a thickness of about 9 μm. Table 4 shows the results of a series of tests performed on the above test pieces.

表4より、本発明の表面粗度を5μmRyに調整した試験片3の焼付き荷重は160kgであり、比較用の試験片1は160kg、試験片2は150kgであり、本発明による硬質被膜厚さが約10μm相当の薄膜(試験片3)にもかかわらず、厚膜の現行品(試験片1、2)とほぼ同等の耐焼付き性が確認できた。さらにこれらに燐酸マンガン系化成処理被膜または二硫化モリブデン系固体潤滑塗料を単独処理、ならびに燐酸マンガン系化成処理+二硫化モリブデン系固体潤滑塗料を複合処理した試験片4〜6は、約220〜230kgと耐焼付き性の大幅な向上が確認できた。   From Table 4, the seizure load of the test piece 3 in which the surface roughness of the present invention is adjusted to 5 μm Ry is 160 kg, the test piece 1 for comparison is 160 kg, and the test piece 2 is 150 kg. Despite a thin film having a thickness of about 10 μm (test piece 3), seizure resistance almost equal to that of the current thick film (test pieces 1 and 2) was confirmed. Further, test pieces 4 to 6 in which manganese phosphate-based chemical conversion coating or molybdenum disulfide-based solid lubricating paint is treated alone and manganese phosphate-based chemical conversion treatment + molybdenum disulfide-based solid lubricating paint are combined are about 220 to 230 kg. It was confirmed that the seizure resistance was greatly improved.

次に焼付き直前までの摩擦係数の変動を調べると、放電加工被膜の表面粗度を調整した試験片3では、μ≒0.08〜0.10であり、試験片1のμ≒0.07〜0.10とほぼ同等であった。一方、本発明の試験片5および6の摩擦係数はμ≒0.03〜0.05であり、大幅な摩擦係数の低減が確認できた。   Next, when the variation of the friction coefficient until just before seizure is examined, in the test piece 3 in which the surface roughness of the electric discharge machining film is adjusted, μ≈0.08 to 0.10, and the test piece 1 μ≈0.0. It was almost equivalent to 07-0.10. On the other hand, the friction coefficients of the test pieces 5 and 6 of the present invention are μ≈0.03 to 0.05, and it was confirmed that the friction coefficient was greatly reduced.

本発明は、機械用途など摺動部材に使用する金属材料の表面に放電加工による硬質被膜を約5〜30μm相当の厚さに形成し、次いでその表面をショット、研摩加工、化学研摩および電解研摩などにより硬質被膜の放電被膜面積率が30%〜70%有し、表面粗度を2〜10μmRyにコントロールすることにより、従来の浸炭や高周波焼入れなどの表面硬化やPVD、CVDなどのコーティング、ならびに溶射や各種硬質メッキを施したものと比較し、耐摩耗性、耐焼付き性および密着性などが格段に優れた摺動部材が得られる。さらにより高面圧の摺動部材の用途では、これらに化成処理と固体潤滑剤の最適組合せを行い、摩擦係数の低減や潤滑特性の付与が容易であり、金型、輸送機器、産業機械、電機などの摺動部材として広範な利用価値と耐久性向上が期待できる。 In the present invention, a hard coating by electric discharge machining is formed on a surface of a metal material used for a sliding member such as a machine to a thickness corresponding to about 5 to 30 μm, and then the surface is shot, polished, chemically polished and electrolytic polished. discharging coating area ratio of the hard coating has 30% to 70% due, by controlling the surface roughness to 2~10MyumRy, surface hardening and PVD, such as conventional carburizing or induction hardening, a coating such as CVD, and Compared with thermal sprayed or various hard plated ones, a sliding member with much superior wear resistance, seizure resistance and adhesion can be obtained. Furthermore, in the application of sliding members with higher surface pressures, the optimum combination of chemical conversion treatment and solid lubricant is applied to these, and it is easy to reduce the friction coefficient and impart lubrication characteristics, molds, transportation equipment, industrial machinery, A wide range of utility value and durability improvement can be expected as a sliding member for electric machines.

摩擦摩耗試験機の構造を示す図。The figure which shows the structure of a friction abrasion tester. 走査型電子顕微鏡による表面形態を示す図であり、(a)は放電加工した被膜の状態(研摩なし)を、(b)は放電加工被膜をショットおよび研摩加工で、表面粗度を7μmRyに調整した表面状態を、(c)は(b)と同様な方法で表面粗度を1μmRyに調整した表面状態を示す。It is a figure which shows the surface form by a scanning electron microscope, (a) is the state of the electrodischarge-processed film (no polishing), (b) is the electric discharge machined film being shot and polished, and the surface roughness is adjusted to 7 μmRy. (C) shows the surface state which adjusted the surface roughness to 1 micrometer Ry by the method similar to (b).

符号の説明Explanation of symbols

1:加圧ハンドル
2:加圧ロードセル
3:トルクメーター
4:試験片(リング)
5:試験片(ディスク)
6:オイルバス
7:回転モーター
1: Pressurization handle 2: Pressurization load cell 3: Torque meter 4: Test piece (ring)
5: Test piece (disc)
6: Oil bath 7: Rotating motor

Claims (3)

金属材料の表面に、タングステンカーバイド系の消耗型電極を用いて、炭化水素系放電加工液中での放電加工により、厚さ5〜30μmの硬質被膜を形成した後、該被膜の最表層を、表面粗度2〜10μmRyに研磨し、かつ該表面の研磨後の放電被膜面積率を30%〜70%に保持させ、さらに表面に燐酸塩処理を施すことを特徴とする摺動部材の製造方法。 After forming a hard coating having a thickness of 5 to 30 μm by electric discharge machining in a hydrocarbon-based electric discharge machining liquid using a tungsten carbide consumable electrode on the surface of the metal material, the outermost layer of the coating is A method for producing a sliding member, characterized by polishing to a surface roughness of 2 to 10 μm Ry, maintaining the discharge film area ratio after polishing of the surface at 30% to 70% , and further subjecting the surface to a phosphate treatment . 研磨を、ショットによる物理的な方法、研摩加工による機械的な方法または化学研摩による化学的な方法で行なう請求項1に記載の摺動部材の製造方法。   The method for manufacturing a sliding member according to claim 1, wherein the polishing is performed by a physical method by shot, a mechanical method by polishing, or a chemical method by chemical polishing. さらに、表面の上層部に固体潤滑系の処理を施す請求項1に記載の摺動部材の製造方法。 Further, the production method of a sliding member according to claim 1 which processes the solid lubrication system at the top of the front surface.
JP2004083372A 2004-03-22 2004-03-22 Manufacturing method of sliding member Expired - Fee Related JP4104570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004083372A JP4104570B2 (en) 2004-03-22 2004-03-22 Manufacturing method of sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004083372A JP4104570B2 (en) 2004-03-22 2004-03-22 Manufacturing method of sliding member

Publications (2)

Publication Number Publication Date
JP2005272855A JP2005272855A (en) 2005-10-06
JP4104570B2 true JP4104570B2 (en) 2008-06-18

Family

ID=35172836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083372A Expired - Fee Related JP4104570B2 (en) 2004-03-22 2004-03-22 Manufacturing method of sliding member

Country Status (1)

Country Link
JP (1) JP4104570B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4789971B2 (en) * 2008-05-08 2011-10-12 本田技研工業株式会社 Mold and manufacturing method thereof
WO2010013313A1 (en) * 2008-07-29 2010-02-04 三菱電機株式会社 Electric discharge surface treatment method and coating film generation method
WO2010128536A1 (en) * 2009-05-07 2010-11-11 三菱電機株式会社 Discharge surface treatment method and method for forming discharge surface treatment film
JP5934972B2 (en) * 2011-10-17 2016-06-15 長野県 Lubricationless sliding member
JP6126670B2 (en) * 2015-11-26 2017-05-10 三協オイルレス工業株式会社 Cam device grouping method

Also Published As

Publication number Publication date
JP2005272855A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
Paschke et al. Optimized plasma nitriding processes for efficient wear reduction of forging dies
WO2016171273A1 (en) Coated metal mold and method for manufacturing same
CN111108227B (en) Sliding member and piston ring
Duari et al. Study of wear and friction of chemically deposited Ni-PW coating under dry and lubricated condition
Dong et al. Study on self-lubricating properties of AlCoCrFeNi2. 1 eutectic high entropy alloy with electrochemical boronizing
JP4104570B2 (en) Manufacturing method of sliding member
Arslan et al. Investigation on structural and tribological properties of borided gear steel after phase homogenization
CN105154891A (en) Treatment method for improving mold steel surface frictional wear resistance
Solis Romero et al. Tribological evaluation of plasma nitride H13 steel
JP4392719B2 (en) Base material surface treatment method and base material and product having a surface treated by this method
JP2010007134A (en) Surface treatment method for steel material, surface treatment device, and steel obtained thereby
Duman et al. Effect of nitriding conditions and operation temperatures on dry sliding wear properties of the aluminum extrusion die steel in the industry
US9556531B2 (en) Method for ultra-fast boriding
JP5877408B2 (en) Method for surface treatment of steel members
Ilaiyavel et al. Investigation of wear coefficient of manganese phosphate coated tool steel
Rukanskis et al. Investigation of the Lubricated Tribo-System of Modified Electrospark Coatings. Coatings 2023, 13, 825
Zdravecká et al. Triboanalysis in industry for PVD-coated Stamping Dies
US20230151505A1 (en) Reciprocating devices including metal alloy coatings
Syed et al. Tribological behaviour of surface-treated and post-oxidized tool steels at room temperature and 400 C
Khosravi et al. Comparative tribological study of NiTi diffusion coated titanium with pure titanium
Al-Samarai et al. Surface Protection from Wear Through Coating
Kusmanov et al. Possibilities of Duplex Plasma Electrolytic Treatment for In-Creasing the Hardness and Wear Resistance of the CP-Ti Surface
Silveira et al. Effects of boron concentration on the microstructure, mechanical and tribological properties of powder-pack borided AISI 4140 steel
Wu et al. On Industrial Gas Nitriding of 42CrMo Steels for Tie Bars of Two Platen Injection Molding Machines
Zimmerman Wear and Galling Resistance of Borided (Boronized) Metal Surfaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees