JP4541062B2 - Functional member and manufacturing method thereof - Google Patents

Functional member and manufacturing method thereof Download PDF

Info

Publication number
JP4541062B2
JP4541062B2 JP2004222639A JP2004222639A JP4541062B2 JP 4541062 B2 JP4541062 B2 JP 4541062B2 JP 2004222639 A JP2004222639 A JP 2004222639A JP 2004222639 A JP2004222639 A JP 2004222639A JP 4541062 B2 JP4541062 B2 JP 4541062B2
Authority
JP
Japan
Prior art keywords
functional member
fine particles
functional
treatment
peening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004222639A
Other languages
Japanese (ja)
Other versions
JP2005034990A (en
Inventor
充生 村田
敬 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha
Original Assignee
Doshisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha filed Critical Doshisha
Priority to JP2004222639A priority Critical patent/JP4541062B2/en
Publication of JP2005034990A publication Critical patent/JP2005034990A/en
Application granted granted Critical
Publication of JP4541062B2 publication Critical patent/JP4541062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、機械部品や治工具等の機能部材、特に表面相互間のトライボロジー(Tribology)性能を向上させるために好適な機能部材に関するものである。  The present invention relates to functional members such as machine parts and jigs, and more particularly to functional members suitable for improving tribological performance between surfaces.

機能部材は、組み合わせにより何らかの機構を構成するための一要素としての部材をいい、その表面性状は、複数の機能部材同士を互いに接触させて固定、嵌合、あるいは相互運動させる際の機能性に大きな影響を与える。表面性状の中でも特に表面粗さは上記機能性を大きく左右し、特にトライボロジー性能に関しては、機能部材で構成される装置全体の摩擦抵抗や効率、寿命などに大きな影響を与える。また、近年注目されているマイクロマシンやナノテクノロジーの分野になると、表面の粗さの程度によっては装置そのものが作動しないなどの不具合を招く可能性があり、表面粗さの良否が与える影響は極めて重大である。  A functional member refers to a member as an element for constituting some mechanism by combination, and the surface property is a function when a plurality of functional members are brought into contact with each other to be fixed, fitted, or mutually moved. It has a big impact. Among the surface properties, the surface roughness has a great influence on the above-mentioned functionality, and particularly the tribological performance has a great influence on the frictional resistance, efficiency, life and the like of the entire apparatus composed of functional members. Also, in the field of micromachines and nanotechnology that has been attracting attention in recent years, there is a possibility that the device itself may not operate depending on the degree of surface roughness, and the effect of surface roughness is extremely significant. It is.

このような機能部材の表面に関係する課題を解決するために、従来から様々な表面処理が試みられており、特に表面の平滑化と疲労強度の改善とを目的とするものとして、材料表面に粒子を打ち付け、表面近傍に高い圧縮残留応力を付与して硬度を上昇させるショットピーニングが広く知られている。  In order to solve the problems related to the surface of such a functional member, various surface treatments have been attempted in the past, and particularly for the purpose of smoothing the surface and improving fatigue strength, Shot peening that hits particles and imparts high compressive residual stress in the vicinity of the surface to increase the hardness is widely known.

しかしなから、ショットピーニングでは、粒子を打ち付けることに起因して、部材表面での結晶粒界の破損を招き、これによって表面に不規則な無数の凹凸が形成されるため、表面粗さが大幅に低下する場合がある。また、被加工物の寸法精度に狂いを生じさせるおそれやトライボロジーの接触面強度を大幅に低下させるおそれもある。この点を改善するため、特開平11−48036号(特許文献1)では、浸炭焼入れした機械部品にショットピーニングを施した後、バレル処理を行って表面を仕上げる提案がなされている。
特開平11−48036号
However, shot peening causes damage to the grain boundaries on the surface of the member due to the hitting of the particles, and this causes numerous irregular irregularities to be formed on the surface. May fall. Moreover, there is a possibility that the dimensional accuracy of the workpiece may be distorted and the contact surface strength of tribology may be significantly reduced. In order to improve this point, Japanese Patent Application Laid-Open No. 11-48036 (Patent Document 1) proposes that after carburizing and quenching machine parts, shot peening is performed, and then barrel treatment is performed to finish the surface.
JP 11-48036 A

しかしながら、この手法は、加工面に形成された加工痕をも一様に削るものであるため、バレル研摩後は加工痕による油の保持効果(プール効果)が失われる。従って、機能部材の中でも、相手部材との摩擦がそれほど問題とならない嵌合や固定を目的とするものはともかく、トライボロジー効果が期待されるものでは、目的とする効果が得られないという不具合が生じる。  However, since this method uniformly cuts the machining marks formed on the machined surface, the oil retention effect (pool effect) by the machining marks is lost after barrel polishing. Therefore, among functional members, there is a problem that the intended effect cannot be obtained if a tribological effect is expected, regardless of the purpose of fitting or fixing where friction with the counterpart member does not matter so much. .

さらに、この従来技術では、機械部品を焼入れして硬くすることによって表面の過剰研削を防止しているが、焼入れを前提としたのでは、表面処理できる素材が限定され、かつ達成できる表面粗さにも限度がある。  Furthermore, in this prior art, excessive grinding of the surface is prevented by quenching and hardening the machine parts. However, assuming quenching, the materials that can be surface-treated are limited, and the surface roughness that can be achieved. There is also a limit.

本発明は、以上の問題点を解決し、機能部材のさらなる機能性向上を図ることを目的とする。  An object of the present invention is to solve the above problems and to further improve the functionality of the functional member.

上記目的を達成するため、本発明にかかる機能部材は、ピーニング処理により、表面圧縮応力を持ち、かつ微細化された表面改質層が形成されると共に、表面改質層の表面が、微粒子との衝突により、ピーニング処理の加工痕に由来する凹部を残しつつ平坦化され、かつ平坦化後も前記表面改質層を残存させたものである。この場合、平坦化された表面改質層の表面には、微粒子との衝突によって消失した部分(削られた部分および塑性変形した部分の何れも含む)もしくはその集合体である平滑面と凹部とが形成される。  In order to achieve the above object, the functional member according to the present invention has a surface-modified layer having a surface compressive stress and is refined by a peening process, and the surface of the surface-modified layer is made of fine particles. By the collision, the surface is flattened while leaving the concave portion derived from the processing mark of the peening process, and the surface modified layer remains after the planarization. In this case, on the surface of the planarized surface modification layer, a portion (including both a shaved portion and a plastically deformed portion) lost due to collision with fine particles or a smooth surface and a concave portion that are aggregates thereof are included. Is formed.

このように本発明の機能部材は、その表面が平坦化されているので、転がり抵抗や摺動抵抗を抑えることができる。また、平坦化の進行に伴い、微粒子との衝突によって消失した部分(削られた部分および塑性変形した部分の何れも含む)が集合してある程度の広さを持ち(平滑面)、この平滑面に隣接してピーニング処理の加工痕に由来する凹部が形成されるので、機能部材同士を接触させた際の接触面積を増すことができ、かつ凹部によって接触面に空気を送り込むことができるので、無潤滑状態でも機能部材同士の凝着を防止することができる。ピーニング処理の前工程で機械加工を行った場合、素材の角部等にバリやカエリが形成され、これがトライボロジー効果に悪影響を及ぼすことも考えられるが、このバリ等はピーニング処理やその後の微粒子の噴射によって完全に除去されるため、この種の不具合も回避される。  Thus, since the surface of the functional member of the present invention is flattened, rolling resistance and sliding resistance can be suppressed. In addition, as the flattening progresses, the parts disappeared by collision with the fine particles (including both the shaved part and the plastically deformed part) gather to have a certain size (smooth surface). Since a recess derived from the processing mark of the peening process is formed adjacent to the contact area when the functional members are brought into contact with each other, and air can be sent to the contact surface by the recess, Even in a non-lubricated state, adhesion between functional members can be prevented. When machining is performed before the peening process, burrs and burrs are formed at the corners of the material, which may adversely affect the tribological effect. This kind of trouble is also avoided because it is completely removed by the injection.

また、機能部材の表面には、表面圧縮応力を持ち、かつ結晶粒が微細化した表面改質層が残存しているから、緻密かつ高硬度で靭性に富む組織が得られ、高い疲れ強さ、耐摩耗性、耐衝撃性等を確保することができる。  In addition, the surface of the functional member has a surface-modified layer with surface compressive stress and refined crystal grains, resulting in a dense, high-hardness and tough structure, and high fatigue strength. Further, it is possible to ensure wear resistance, impact resistance and the like.

この構成においては、平滑面の面積Aと凹部の面積Bとの面積比(A/B)は2〜20の範囲内(さらに望ましくは5〜15の範囲内)に設定するのが望ましい。この比が2を下回ると、凹部面積が必要以上に増大する結果、機能部材の凹部に相手側部材の凸状部(平滑面等)が嵌まり込みやすくなり、凹部に凸状部が噛み込むことによってトライボロジー効果に悪影響を与えるおそれがある。一方、この比が20を越えると、凹部面積が著しく減少するため、接触面に潤滑剤を介在させる場合に潤滑剤の保持効果が減じられ、同様にトライボロジーに悪影響を与える。この面積比は、素材ごとの弾性や塑性、あるいは摩擦特性等に応じて調整することができ、これにより求められるトライボロジー性能が任意に得られ、機能部材の使用条件に課される制約を減じることができる。  In this configuration, it is desirable to set the area ratio (A / B) between the area A of the smooth surface and the area B of the recesses within a range of 2 to 20 (more preferably within a range of 5 to 15). When this ratio is less than 2, the concave area increases more than necessary. As a result, the convex portion (smooth surface or the like) of the mating member is easily fitted into the concave portion of the functional member, and the convex portion bites into the concave portion. This may adversely affect the tribological effect. On the other hand, if this ratio exceeds 20, the area of the concave portion is remarkably reduced, so that when the lubricant is interposed on the contact surface, the effect of retaining the lubricant is reduced, and the tribology is similarly adversely affected. This area ratio can be adjusted according to the elasticity, plasticity, frictional characteristics, etc. of each material, so that the required tribological performance can be obtained arbitrarily and the restrictions imposed on the usage conditions of the functional members can be reduced. Can do.

ピーニング処理の前工程としては、材料除去加工(例えば切削加工や研削加工)のほか、鍛造・鋳造等の成形加工、あるいは超硬コーティング等の表面処理を採用することもできる。もちろんこれら前工程の前後に熱処理を行うこともできる。  As a pre-process of the peening treatment, in addition to material removal processing (for example, cutting processing or grinding processing), molding processing such as forging and casting, or surface treatment such as super hard coating can be employed. Of course, heat treatment can also be performed before and after these previous steps.

ここでいうピーニング処理は、平均粒径30〜300μm程度の粒子を高速で表面に打ち付けるものである。熱処理により高硬度が得られた表面に当該粒子を噴射すれば、粒子の噴射エネルギーにより加工面が急熱された後に急冷され、以後これが繰り返されるので、残留オーステナイト組織を再結晶化あるいは微細化してマルテンサイト組織にすることができ、表面硬度をさらに上昇させることができる。従って、高い表面硬度および圧縮残留応力の確保による疲れ強さの向上効果が得られる。  The peening treatment here is for hitting particles having an average particle size of about 30 to 300 μm on the surface at high speed. If the particles are sprayed on the surface with high hardness by heat treatment, the processed surface is rapidly heated by the spray energy of the particles and then rapidly cooled, and this is repeated thereafter, so that the residual austenite structure is recrystallized or refined. A martensite structure can be formed, and the surface hardness can be further increased. Therefore, the fatigue strength can be improved by ensuring high surface hardness and compressive residual stress.

以上に述べた機能部材は、ピーニング処理で表面温度をA3変態点以上に上昇させることにより、表面圧縮応力を持ち、かつ微細化された表面改質層を形成する第一工程と、微粒子を噴射することにより、表面改質層の表面を、ピーニング処理の加工痕に由来する凹部を残しつつ平坦化し、かつ平坦化後も前記表面改質層を残存させる第二工程とを経て製造することができる。  The functional member described above has a first step of forming a refined surface modified layer having a surface compressive stress by raising the surface temperature to the A3 transformation point or higher by peening treatment, and injecting fine particles. By doing so, the surface of the surface modification layer can be planarized while leaving a recess derived from the processing marks of the peening treatment, and the second step of remaining the surface modification layer after planarization can be produced. it can.

この時、第二工程で使用する微粒子としては、多孔質の担体に砥粒を付着させたものが使用可能である。この場合、平滑面には当該微粒子の衝突による塑性変形で形成された加工痕が残る場合もあるが、多孔質の担体を使用する関係で微粒子衝突時の衝撃が緩和されるため、加工痕の径寸法や深さは、同種構造を具備しない同サイズの硬質微粒子に比べて一般に小さくなる。  At this time, as the fine particles used in the second step, those obtained by attaching abrasive grains to a porous carrier can be used. In this case, processing marks formed by plastic deformation due to the collision of the fine particles may remain on the smooth surface, but the impact at the time of the fine particle collision is mitigated due to the use of a porous carrier. The diameter and depth are generally smaller than hard particles of the same size that do not have the same type of structure.

上記機能部材の製造に際しては、微粒子の噴射時間を制御することによって平滑面と凹部の面積比を調整し、求められる表面粗さに仕上げることが可能となる。これは、微粒子の噴射能力が一定の場合、微粒子の照射時間と表面粗さを決定する山部の除去割合とがほぼ比例していること、及び山部の断面(表面に直交する方向)が円錐形または円錐台形状を呈していることを利用したもので、噴射時間が短いと山部の頂点付近のみが除去されるのに対し、噴射時間が長いと山部の底部分(谷底)まで除去される結果、凹部が減少して平滑面が増大するためである。  In the production of the functional member, it is possible to adjust the area ratio between the smooth surface and the recess by controlling the spraying time of the fine particles, and finish the surface roughness as required. This is because, when the spraying ability of the fine particles is constant, the irradiation time of the fine particles and the removal ratio of the ridges that determine the surface roughness are almost proportional, and the cross-section of the ridges (direction perpendicular to the surface) It uses the shape of a cone or a truncated cone. If the injection time is short, only the top of the peak is removed, whereas if the injection time is long, it reaches the bottom of the peak (the valley bottom). This is because, as a result of the removal, the concave portion is reduced and the smooth surface is increased.

上記の何れかの機能部材の表面と、これに接触する相手部材の表面との間に潤滑剤を介在させた機構においては、部材同士を相対的に摺動させた際、凹部の容積変化によるポンピング作用を受けた潤滑剤が接触面に供給されるので、高いトライボロジー効果が得られる。ここでいう「相手部材」には、本発明を適用した機能部材のみならず、本発明を適用しないその他の部材も含まれる。  In the mechanism in which the lubricant is interposed between the surface of any one of the above functional members and the surface of the mating member in contact with the functional member, when the members are slid relative to each other, the volume of the recesses changes. Since the lubricant subjected to the pumping action is supplied to the contact surface, a high tribological effect can be obtained. The “mating member” here includes not only a functional member to which the present invention is applied but also other members to which the present invention is not applied.

このように接触面に潤滑剤を介在させ得る素材としては、潤滑油を含浸させた焼結金属が知られているが、この含油焼結金属では、連続気孔と球形粒子との組み合わせによる毛細管現象とそれ自体の濡れ性により潤滑性能は向上できるものの、粒子間結合力の脆弱さから接触応力は極端に制限される。この例からも明らかなように、従来では、自己潤滑性と接触応力の両立は困難と考えられていた。  As a material capable of interposing a lubricant on the contact surface as described above, a sintered metal impregnated with a lubricating oil is known, but in this oil-containing sintered metal, a capillary phenomenon due to a combination of continuous pores and spherical particles is known. Although the lubrication performance can be improved by its own wettability, the contact stress is extremely limited due to the weak interparticle bonding force. As is clear from this example, conventionally, it was considered difficult to achieve both self-lubricating properties and contact stress.

これに対し、本発明の機能部材では、平滑面と凹部の各稜線で構成される境界部分の角部が微粒子の噴射によってあたかも面取りしたかのように丸められ、かつ平滑面も平坦面もしくは表面から離れる方向を凸とする略円弧状断面に仕上がる。そして、前述のとおり、表面改質層が残存しており、かつ自己潤滑性を害するバリやカエリは微粒子の噴射によって完全に除去されている。従って、優れた自己潤滑性を有すると共に、大きな接触応力にも耐え得る機能部材を提供することができ、両者の両立が可能となる。  On the other hand, in the functional member of the present invention, the corner portion of the boundary portion composed of the smooth surface and each ridge line of the recess is rounded as if chamfered by injection of fine particles, and the smooth surface is also a flat surface or surface. Finished in a substantially arc-shaped cross section convex in the direction away from. As described above, the surface modified layer remains, and burrs and burrs that impair the self-lubricating property are completely removed by the injection of fine particles. Therefore, it is possible to provide a functional member that has excellent self-lubricating properties and can withstand a large contact stress, and both can be achieved.

このように本発明によれば、機能部材の接触面における油溜まり効果で良好なトライボロジー特性が得られ、さらには耐摩耗性や耐衝撃性の向上効果も期待できる。よってこれらの相乗作用で、機能部材の耐久寿命を大幅に向上させることができる。また、機能部材の形状を選ばず処理が可能で、かつ短時間に処理を完了でき、処理コストも安価に抑えることができる。  As described above, according to the present invention, good tribological characteristics can be obtained due to the oil reservoir effect on the contact surface of the functional member, and further, an effect of improving wear resistance and impact resistance can be expected. Therefore, these synergistic actions can significantly improve the durability life of the functional member. Further, the processing can be performed without selecting the shape of the functional member, the processing can be completed in a short time, and the processing cost can be suppressed at a low cost.

以下、本発明の実施形態を図1〜図4に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to FIGS.

本発明では、切削や鍛造等の前工程を経た機能部材に第一工程および第二工程が施される。後述するように、第一工程はピーニング処理を行う工程であり、第二工程は微粒子による噴射加工を行う工程である。図1は、第一工程を経た後、第二工程が完了するまでの機能部材1表面の断面形状の変化を概念的に示す図で、同図(a)は、第一工程のピーニング処理後、同図(b)は第二工程の噴射加工中、同図(c)は噴射加工終了後をそれぞれ表す。  In this invention, a 1st process and a 2nd process are given to the functional member which passed through previous processes, such as cutting and forging. As will be described later, the first step is a step of performing a peening process, and the second step is a step of performing injection processing with fine particles. FIG. 1 is a diagram conceptually showing a change in the cross-sectional shape of the surface of the functional member 1 until the second step is completed after passing through the first step. FIG. 1 (a) is after the peening process in the first step. FIG. 5B shows the second process during the injection process, and FIG. 4C shows the end of the injection process.

本発明においては、切削や鍛造等の前工程を経た機能部材に第一工程であるピーニング処理を施す前に、熱処理を行ってもよい。この「熱処理」は、主として表面硬度の向上を目的として行われる熱処理を意味し、ズブ焼入れ、高周波焼入れ、浸炭焼入れ等の焼入れ(焼戻し)処理の他、窒化処理や浸炭窒化処理等の熱処理が広く含まれる。この熱処理に加え、必要に応じて第一工程のピーニング処理と第二工程である微粒子噴射工程との間で熱処理を行うこともできる。  In this invention, you may heat-process before performing the peening process which is a 1st process to the functional member which passed through the previous processes, such as cutting and forging. This “heat treatment” means a heat treatment mainly performed for the purpose of improving the surface hardness. In addition to quenching (tempering) treatment such as sub-quenching, induction hardening, carburizing and quenching, heat treatment such as nitriding treatment and carbonitriding treatment is widely used. included. In addition to this heat treatment, a heat treatment can also be performed between the peening treatment of the first step and the fine particle injection step of the second step as necessary.

第一工程のピーニング処理は、機能部材の素材と同程度かそれ以上の硬度を有するショット、例えば炭化珪素(カーボランダム)、高速度鋼、セラミックス製等の粒子が素材の種類に応じて選択使用される。これらショットの平均粒子径は、30〜300μm程度とする。このショットを圧縮空気と共に例えば100m/s以上、好ましくは300m/s程度の速度でワークの表面に噴射することにより、その衝撃による塑性変形によって表層に圧縮残留応力が発生する。また、高速で衝突する粒子のエネルギーにより、表層部の温度が上昇して表層組織に変態が生じて金属組織が微細化される。すなわち、粒子の表面への衝突によってエネルギーの一部が熱エネルギーに変換される結果、表層部がA3変態点以上(非鉄系金属では再結晶温度以上)に加熱されて鋼組織にマルテンサイト変態が生じる。これは、一種の恒温変態に似た現象で、表層では残留オーステナイトがマルテンサイトに変態する。従って、高硬度でかつ靭性に富む組織が得られる。本発明者らの実験結果によれば、このピーニング処理後の圧縮残留応力は700〜1500MPa程度で、表面硬度は加工前よりも50〜400Hv程度上昇することが確認された。  The peening process in the first step is to select and use shots that have the same or higher hardness as the functional material material, such as silicon carbide (Carborundum), high-speed steel, and ceramics, depending on the type of material. Is done. The average particle diameter of these shots is about 30 to 300 μm. By injecting this shot onto the surface of the workpiece together with compressed air at a speed of, for example, 100 m / s or more, preferably about 300 m / s, a compressive residual stress is generated in the surface layer due to plastic deformation due to the impact. In addition, due to the energy of the particles that collide at high speed, the temperature of the surface layer portion rises, transformation occurs in the surface layer structure, and the metal structure is refined. That is, as a result of a part of the energy being converted into thermal energy by collision with the particle surface, the surface layer is heated to the A3 transformation point or higher (recrystallization temperature or higher for non-ferrous metals) and martensitic transformation occurs in the steel structure. Arise. This is a phenomenon similar to a type of isothermal transformation, and in the surface layer, retained austenite is transformed into martensite. Therefore, a structure having high hardness and high toughness can be obtained. According to the experiment results of the present inventors, it was confirmed that the compressive residual stress after the peening treatment is about 700 to 1500 MPa, and the surface hardness is about 50 to 400 Hv higher than that before the processing.

図1(a)では、このピーニング処理で形成された、圧縮残留応力および微細化組織を有する表面改質層13をクロスハッチングで表している。この表面改質層13の深さは15μm以内(概ね7〜12μm)である。このように表面改質層13が極表面に限定して形成されることにより、トライボロジーの諸問題を解決することが可能となる。一方、通常のショットピーニング処理では、影響層の深さが100μmを超えており(普通は200μm程度)、この点が上記第一工程のピーニング処理と最も異なる点となる。また、通常のショットピーニングでは、上記ピーニング処理のように最表面の結晶粒が微細化されることはない。  In FIG. 1A, the surface modified layer 13 having a compressive residual stress and a fine structure formed by the peening process is represented by cross-hatching. The depth of the surface modification layer 13 is within 15 μm (generally 7 to 12 μm). Thus, by forming the surface modification layer 13 limited to the extreme surface, it is possible to solve various problems of tribology. On the other hand, in the normal shot peening process, the depth of the influence layer exceeds 100 μm (usually about 200 μm), which is the most different point from the peening process in the first step. Further, in normal shot peening, the crystal grains on the outermost surface are not refined unlike the peening process.

ピーニング処理後の機能部材1の表面には、ショットの衝突による塑性変形により、ショットのサイズに対応した大きさの多数の加工痕が形成される。これにより、図1(a)に示すように、谷部2の谷底3に対して山部4が高くなった初期表面粗さを具備するに至る(なお、凹凸の高さ等は誇張して描かれている)。なお、初期表面粗さの形状や凹凸の深さは、切削、鍛造等の前工程で行った加工法にも依存する。  On the surface of the functional member 1 after the peening treatment, a large number of processing marks having a size corresponding to the size of the shot are formed by plastic deformation due to the collision of the shot. Thereby, as shown to Fig.1 (a), it comes to have the initial surface roughness which the peak part 4 became high with respect to the valley bottom 3 of the valley part 2 (In addition, the height of an unevenness etc. is exaggerated. Drawn). The shape of the initial surface roughness and the depth of the unevenness depend on the processing method performed in the previous process such as cutting and forging.

前工程を経た部材1には、第二工程として噴射加工が施される。この噴射加工は、図1(b)に示すように、噴射口5から微粒子6を噴射することにより、主に初期表面粗さの山部4を削り取りあるいは塑性変形させて、表面を平坦化させるものである。噴射口5は初期表面粗さの山部の側面41(谷底3から立ち上がって頂部に至るまでの面)を狙って配置されるが、噴射口5の部材表面(平坦面に近似させた時の表面)に対する傾斜角度αは鋭角でかつできるだけ小さくするのが望ましい。具体的には、5°以上で45°以下の範囲に設定するのがよい。部材1の表面が広い場合は、噴射口5の傾斜角度αを一定に保持したままで、噴射口5を矢印方向に平行移動させれば、広い表面で同様に山部4を除去することができる。  The member 1 that has undergone the previous process is subjected to injection processing as the second process. In this injection processing, as shown in FIG. 1 (b), by injecting fine particles 6 from the injection port 5, the crest 4 of the initial surface roughness is mainly scraped or plastically deformed to flatten the surface. Is. The injection port 5 is arranged aiming at the side surface 41 (the surface from the valley bottom 3 up to the top) of the peak portion of the initial surface roughness, but the member surface of the injection port 5 (when approximated to a flat surface) The inclination angle α with respect to the surface is preferably an acute angle and as small as possible. Specifically, it is good to set in the range of 5 degrees or more and 45 degrees or less. If the surface of the member 1 is wide, the crest 4 can be similarly removed on the wide surface by moving the injection port 5 in the direction of the arrow while keeping the inclination angle α of the injection port 5 constant. it can.

この微粒子6としては、図4に示すように、多孔質の担体14に多数の砥粒15を付着させた弾性微粒子が使用される。この場合、担体14は、部材1よりも軟質で、ある程度の塑性を備え、かつ軽量な0.1〜5mm程度の大きさのもので、例えば植物繊維などの天然繊維から生成することができる。砥粒15としては、炭化珪素やアルミナ、ダイヤモンド粉、酸化鉄などの研削材を1〜20μmに加工したものが使用される。砥粒15としては、以上に例示した素材・サイズに限らず、磨きやラップ工程で使用される種々の材質・サイズからなる研磨材の中から部材1の種類に応じて選択することができる。また、担体14として、植物繊維からの生成品を使用する場合には、その脂肪分または糖分を砥粒15を付着させる際の粘着材として機能させることができる。なお、担体14は、植物繊維等の天然繊維に限らず、上記物性を備えることを条件に人工的に組成することもできる。  As the fine particles 6, elastic fine particles in which a large number of abrasive grains 15 are attached to a porous carrier 14 are used as shown in FIG. 4. In this case, the carrier 14 is softer than the member 1, has a certain degree of plasticity, and is lightweight and has a size of about 0.1 to 5 mm, and can be produced from natural fibers such as plant fibers. As the abrasive 15, a material obtained by processing an abrasive such as silicon carbide, alumina, diamond powder, iron oxide or the like to 1 to 20 μm is used. The abrasive grains 15 are not limited to the materials and sizes exemplified above, but can be selected according to the type of the member 1 from among abrasives made of various materials and sizes used in polishing and lapping processes. Moreover, when using the product from a vegetable fiber as the support | carrier 14, the fat content or sugar content can be functioned as an adhesive material at the time of making the abrasive grain 15 adhere. The carrier 14 is not limited to natural fibers such as plant fibers, but may be artificially composed on the condition that the above properties are provided.

この微粒子6は、重量を増すために予め水や油を20〜70重量%含浸させて、部材1表面に吹き付けられる。この場合、微粒子6の担体14として軟質の多孔体を使用しているため、部材1表面に吹き付けられた微粒子6は、表面に衝突すると同時にその表面形状にならって変形する。変形した微粒子6は、弾性的に反発して部材表面から離れるが、反発するまでの間は表面を滑動する。  The fine particles 6 are impregnated with 20 to 70% by weight of water or oil in advance to increase the weight, and are sprayed on the surface of the member 1. In this case, since a soft porous body is used as the carrier 14 for the fine particles 6, the fine particles 6 sprayed on the surface of the member 1 collide with the surface and at the same time deform according to the surface shape. The deformed fine particles 6 are elastically repelled and separated from the surface of the member, but slide on the surface until they are repelled.

この微粒子6を山部4の側面41に向けて噴射することにより、常に他の山部4aよりも突出した山部4bが微粒子と衝突することになる。従って、微粒子6を一定時間連続して吹きつければ、各山部4が逐次削られ、あるいは衝撃により塑性変形し、やがて、図1(c)に示すように、この除去部分7の表面によって、あるいはその集合体によって平滑化された平滑面8が形成される。一方、初期表面粗さの谷部2のうち、平滑面8の形成後も残ったものは、その谷底3を溝底とする凹部10を構成する。凹部10は、初期表面粗さの谷部2に相当する形状を有するが、谷部2自身が微粒子6によって削られあるいは塑性変形するため、谷部2に比べてより滑らかな形状となる。  By injecting the fine particles 6 toward the side surface 41 of the peak portion 4, the peak portions 4b protruding from the other peak portions 4a always collide with the fine particles. Therefore, if the fine particles 6 are blown continuously for a certain period of time, each peak 4 is sequentially scraped or plastically deformed by impact, and eventually, as shown in FIG. Alternatively, the smooth surface 8 smoothed by the aggregate is formed. On the other hand, of the valleys 2 having the initial surface roughness, those remaining after the formation of the smooth surface 8 constitute the recesses 10 having the valley bottoms 3 as the groove bottoms. The concave portion 10 has a shape corresponding to the valley portion 2 having the initial surface roughness. However, since the valley portion 2 itself is shaved or plastically deformed by the fine particles 6, the shape becomes smoother than that of the valley portion 2.

このように微粒子6による表面加工は、ショットピーニングと異なり、微粒子を部材表面に衝突させるのではなく、表面上で滑らせて山部4を削り取ることを意図するものである。そのため、ショットピーニングに比べて、部材1に与える塑性変形による加工痕の形成や圧縮残留応力の付与等の影響を少なくし、表面に磨いたような平滑面8を創製することができる。また、バレル研摩等の既存の研摩方法では、第一工程で形成された表面改質層13が全て削られることになるが、上記噴射加工では、図1(c)に示すように、表面に表面改質層13が残る。従って、表面改質層13に特有の特性(疲れ強さ、耐摩耗性、耐衝撃性等)が失われることはない。  Thus, unlike the shot peening, the surface processing with the fine particles 6 is intended to scrape the ridges 4 by sliding on the surface, rather than causing the fine particles to collide with the surface of the member. Therefore, compared with shot peening, it is possible to create a smooth surface 8 that is polished on the surface by reducing the influence of formation of processing traces due to plastic deformation and application of compressive residual stress to the member 1. Further, in the existing polishing method such as barrel polishing, the surface modification layer 13 formed in the first step is all removed, but in the above-described injection processing, as shown in FIG. The surface modification layer 13 remains. Accordingly, the characteristics (fatigue strength, wear resistance, impact resistance, etc.) peculiar to the surface modified layer 13 are not lost.

また、機能部材1の表面には、ピーニング処理の加工痕に由来する無数の凹部10がミクロンオーダーで形成される。この加工痕は一般に潤滑油の油膜厚さよりも小さく形成されるので、表面での潤滑油の保持力が向上して油膜形成が容易となり、摩擦係数の低減に寄与することができる。  In addition, innumerable concave portions 10 derived from processing marks of the peening process are formed on the surface of the functional member 1 on the order of microns. Since the processing marks are generally formed smaller than the oil film thickness of the lubricating oil, the lubricating oil retention force on the surface is improved, the oil film can be easily formed, and the friction coefficient can be reduced.

これらの相乗的作用により、機能部材1は高いトライボロジー性能を具備すると共に、高い疲れ強さ・耐摩耗性・耐衝撃性等を具備することとなる。  By these synergistic actions, the functional member 1 has high tribological performance and high fatigue strength, wear resistance, impact resistance, and the like.

なお、図1中の水平線9aは微粒子6の噴射時間が短い場合、同図の水平線9bはそれよりも噴射時間が長い場合、同図の水平線9cはさらに微粒子6の噴射時間が長い場合に形成される平滑面8の高さレベルを表す。この図面からも明らかなように、微粒子6の噴射時間を制御すれば、容易に平滑面8の高さレベルを調整し、これによって平滑面8と凹部10の面積比を調整することが可能となる。なお、図1(c)は同図(b)の水平線9bのレベルで加工を終えた状態を示す。  1 is formed when the injection time of the fine particles 6 is short, the horizontal line 9b of FIG. 1 is formed when the injection time is longer than that, and the horizontal line 9c of FIG. 1 is formed when the injection time of the fine particles 6 is longer. Represents the height level of the smooth surface 8 to be applied. As is apparent from this drawing, if the injection time of the fine particles 6 is controlled, it is possible to easily adjust the height level of the smooth surface 8 and thereby adjust the area ratio between the smooth surface 8 and the recess 10. Become. FIG. 1 (c) shows a state where the machining is completed at the level of the horizontal line 9b in FIG. 1 (b).

図3は、上記機能部材1を組み合わせた機構の断面構造を表すもので、第二工程を経た機能部材1a、1bの平滑面8a、8b同士を接触させて接触面11を形成し、両部材1a、1bの凹部10に潤滑油12を介在させた状態が図示されている。この状態で、部材1a、1bを接触面11に沿って相対的に摺動させることにより、潤滑油12が凹部10の容積変化によるポンピング作用を受けて接触面11に供給され、油膜を形成する。  FIG. 3 shows a sectional structure of the mechanism in which the functional members 1 are combined. The smooth surfaces 8a and 8b of the functional members 1a and 1b that have undergone the second step are brought into contact with each other to form the contact surface 11, and both members A state in which the lubricating oil 12 is interposed in the recesses 10 of 1a and 1b is shown. In this state, the members 1a and 1b are relatively slid along the contact surface 11, so that the lubricating oil 12 is supplied to the contact surface 11 by being pumped by the volume change of the recess 10 to form an oil film. .

この場合、一方の機能部材(例えば1a)の平滑面8に対する凹部10の面積比が大きすぎると、凹部10に他方の機能部材(例えば1b)の平滑面8bが嵌まり込む結果、却って潤滑特性の低下を招く。一方、凹部10の面積比が小さすぎると、凹部10での油溜まり効果が減じられるため、同様に潤滑特性の低下を招く。以上の観点から、平滑面8の面積Aと凹部10の面積Bの面積比(A/B)は2以上で20以下(望ましくは5以上、15以下)とするのが良い。  In this case, if the area ratio of the concave portion 10 with respect to the smooth surface 8 of one functional member (for example, 1a) is too large, the smooth surface 8b of the other functional member (for example, 1b) is fitted into the concave portion 10, and as a result, lubrication characteristics. Cause a decline. On the other hand, if the area ratio of the concave portion 10 is too small, the oil pool effect in the concave portion 10 is reduced, and thus the lubrication characteristics are similarly lowered. From the above viewpoint, the area ratio (A / B) between the area A of the smooth surface 8 and the area B of the recess 10 is preferably 2 or more and 20 or less (preferably 5 or more and 15 or less).

なお、図1(c)では、平滑面8を平面的に表しているが、この平滑面8は、元の山部4(破線で示す)が除去されてできた面である限りその形状は特に問わず、例えば図2に示すように、表面から離れる方向を僅かに凸とした円弧状断面であってもよい。  In addition, in FIG.1 (c), although the smooth surface 8 is represented planarly, as long as this smooth surface 8 is a surface formed by removing the original peak part 4 (it shows with a broken line), the shape is For example, as shown in FIG. 2, an arc-shaped cross section having a slightly convex direction away from the surface may be used.

これらの相乗作用により、本発明によれば、高面圧下で転がり接触あるいは滑り接触する機械部品、例えば直動案内軸受の各要素(ガイドブロック、レール、ボール等)の耐久寿命を向上させることができ、同時に、摺動抵抗の低減をも達成することもできる。加工対象面が平面である場合の他、曲面や球面である場合にも本発明を適用することができる。もちろん機械部品に限らず、他の金属製品、例えば金型や治工具等に本発明を適用することができ、これによって優れた金型性や切削性の確保、および耐久寿命の向上等の効果を得ることができる。  By these synergistic effects, according to the present invention, it is possible to improve the durable life of each element (guide block, rail, ball, etc.) of a machine part that makes rolling contact or sliding contact under high surface pressure, such as a linear motion guide bearing. At the same time, a reduction in sliding resistance can be achieved. The present invention can be applied not only when the processing target surface is a flat surface but also when the processing target surface is a curved surface or a spherical surface. Of course, the present invention can be applied not only to machine parts but also to other metal products such as dies and jigs, thereby ensuring excellent moldability and machinability and improving the durability life. Can be obtained.

本発明にかかる機能部材の表面を得るための工程を示す図で、機能部材の断面形状イメージを表す拡大図である。  It is a figure which shows the process for obtaining the surface of the functional member concerning this invention, and is an enlarged view showing the cross-sectional shape image of a functional member. 平滑面の他の形状例を示す断面図である。  It is sectional drawing which shows the other shape example of a smooth surface. 機能部材同士を接触させた機構における接触面の断面形状イメージを表す拡大図である。  It is an enlarged view showing the cross-sectional shape image of the contact surface in the mechanism which made the functional members contact. 微粒子の構造の一例を示す拡大断面図である。  It is an expanded sectional view showing an example of the structure of fine particles.

符号の説明Explanation of symbols

1 機能部材
2 谷部
3 谷底
4 山部
41 側面
5 噴射口
6 微粒子
7 除去部分
8 平滑面
10 凹部
11 接触面
12 潤滑剤
13 表面改質層
DESCRIPTION OF SYMBOLS 1 Functional member 2 Valley part 3 Valley bottom 4 Mountain part 41 Side surface 5 Injection port 6 Fine particle 7 Removal part 8 Smooth surface 10 Recessed part 11 Contact surface 12 Lubricant 13 Surface modification layer

Claims (5)

平滑面とそれに隣接する凹部からなる表面を有する機能部材の製造方法であって、
炭化水素、高速度鋼、セラミックからなる群から選択される粒子を用いて機能部材の素材表面にピーニング処理を行い、前記素材の表面温度をA3変態点以上に上昇させ、それにより、前記素材表面に、圧縮応力を与え、かつ微細化された凹凸の表面改質層を形成する第一工程と、
多孔質の担体に砥粒を付着させた微粒子を前記素材表面に形成された前記凹凸の表面改質層に衝突させることにより、前記ピーニング処理の加工痕に由来する凹部表面改質層を残しつつ凸部表面改質層の一部を消失させて平坦化し、平滑面とそれに隣接する凹部からなる表面を形成するとともに、前記微粒子の噴射時間を制御することにより、平滑面の面積Aと凹部の面積Bとの面積比(A/B)を2〜20の範囲に調整し、平坦化後も前記表面改質層を残存させる第二工程とを含む、
ことを特徴とする機能部材の製造方法。
A method for producing a functional member having a surface comprising a smooth surface and a recess adjacent to the smooth surface,
The material surface of the functional member is peened using particles selected from the group consisting of hydrocarbon, high-speed steel, and ceramic, and the surface temperature of the material is raised to the A3 transformation point or higher, whereby the surface of the material A first step of applying a compressive stress and forming a refined uneven surface modification layer;
While leaving the concave surface modified layer derived from the processing marks of the peening process by colliding the fine particles having abrasive grains attached to the porous carrier with the uneven surface modified layer formed on the surface of the material, and abolished a part of the convex portion surface modification layer is planarized to form a smooth surface and a surface comprising a recess adjacent thereto, by controlling the injection time of the fine particles, the area a and the recess of the smooth surface Adjusting the area ratio (A / B) with the area B to a range of 2 to 20 and including the second step of leaving the surface modified layer after planarization;
The manufacturing method of the functional member characterized by the above-mentioned.
前記第一工程が、平均粒子径30〜300μmの粒子を、100m/s以上の速度で、前記機能部材の素材表面に噴射するピーニング処理である、請求項1記載の機能部材の製造方法。   The method for producing a functional member according to claim 1, wherein the first step is a peening treatment in which particles having an average particle diameter of 30 to 300 μm are sprayed onto the material surface of the functional member at a speed of 100 m / s or more. 前記第二工程が、前記機能部材の平坦面に近似させたときの表面に対して傾斜角度が5°以上45°以下の範囲で微粒子を噴射する、請求項1又は2記載の機能部材の製造方法。   The manufacturing of the functional member according to claim 1 or 2, wherein the second step injects fine particles within a range of an inclination angle of 5 ° or more and 45 ° or less with respect to a surface when approximated to a flat surface of the functional member. Method. 前記微粒子が、植物繊維の多孔質担体と、炭化珪素、アルミナ、ダイヤモンド粉、及び酸化鉄からなる群から選択される研削材とを含む、請求項1〜3のいずれか1項記載の機能部材の製造方法。   The functional member according to any one of claims 1 to 3, wherein the fine particles include a plant fiber porous carrier and a grinding material selected from the group consisting of silicon carbide, alumina, diamond powder, and iron oxide. Manufacturing method. 前記第一工程の前及び/又は前記第一工程と前記第二工程との間で、ズブ焼入れ、高周波焼入れ、浸炭焼入れ、窒化処理、浸炭窒化処理から選択される熱処理を行う、請求項1〜のいずれか1項記載の機能部材の製造方法。 The heat treatment selected from submerged quenching, induction quenching, carburizing quenching, nitriding treatment, and carbonitriding treatment is performed before and / or between the first step and the second step. 5. The method for producing a functional member according to any one of 4 above.
JP2004222639A 2003-07-02 2004-07-01 Functional member and manufacturing method thereof Active JP4541062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222639A JP4541062B2 (en) 2003-07-02 2004-07-01 Functional member and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003270392 2003-07-02
JP2004222639A JP4541062B2 (en) 2003-07-02 2004-07-01 Functional member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005034990A JP2005034990A (en) 2005-02-10
JP4541062B2 true JP4541062B2 (en) 2010-09-08

Family

ID=34220669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222639A Active JP4541062B2 (en) 2003-07-02 2004-07-01 Functional member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4541062B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5207525B2 (en) * 2007-05-09 2013-06-12 国立大学法人九州大学 Mold and mold manufacturing method
JP2009291889A (en) * 2008-06-05 2009-12-17 Mitsubishi Heavy Ind Ltd Metal member method for manufacturing, and metal member
JP2015508711A (en) * 2012-02-17 2015-03-23 アルコア インコーポレイテッド Die for forming container and method for producing the same
CN115823191A (en) * 2022-09-23 2023-03-21 广东极亚精机科技有限公司 RV speed reducer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2957492B2 (en) * 1996-03-26 1999-10-04 合資会社亀井鉄工所 Work surface grinding method
WO2000049186A1 (en) * 1999-02-19 2000-08-24 Suncall Corporation Spring of excellent fatigue resisting characteristics and surface treatment method for manufacturing the same
JP2001207160A (en) * 1999-11-19 2001-07-31 Yamashita Works:Kk Abrasive and method of abrasion using the abrasive
JP2002363643A (en) * 2001-06-11 2002-12-18 Shinji Kanda Method for heat-treating metal surface by powder blasting

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278224A (en) * 1986-05-28 1987-12-03 Fuji Seisakusho:Kk Surface thermomechanical treatment for metal product
JPH0332573A (en) * 1989-06-29 1991-02-13 Mitsubishi Motors Corp Shot peening method
JPH1148036A (en) * 1997-08-01 1999-02-23 Sumitomo Heavy Ind Ltd Manufacture for gear of super high quality
JP3730015B2 (en) * 1998-06-02 2005-12-21 株式会社不二機販 Surface treatment method for metal products

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2957492B2 (en) * 1996-03-26 1999-10-04 合資会社亀井鉄工所 Work surface grinding method
WO2000049186A1 (en) * 1999-02-19 2000-08-24 Suncall Corporation Spring of excellent fatigue resisting characteristics and surface treatment method for manufacturing the same
JP2001207160A (en) * 1999-11-19 2001-07-31 Yamashita Works:Kk Abrasive and method of abrasion using the abrasive
JP2002363643A (en) * 2001-06-11 2002-12-18 Shinji Kanda Method for heat-treating metal surface by powder blasting

Also Published As

Publication number Publication date
JP2005034990A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
WO2017169303A1 (en) Structure of cutting edge of machining tool, and surface treatment method for same
JP5341971B2 (en) Instant heat treatment of metal products
US20100024218A1 (en) Method of making bearing using ultrasonic nano crystal surface modification technology
JP2003184883A (en) Bearing sliding member
JP5920221B2 (en) Actuator manufacturing method
JPH07188738A (en) Method for preventing wear on sliding part of metallic formed article
Jahanmir et al. Water lubrication of silicon nitride in sliding
Krasnyy et al. INCREASE OF WEAR AND FRETTING RESISTANCE OF MINING MACHINERY PARTS WITH REGULAR ROUGHNESS PATTERNS.
CN107110208B (en) Bearing components and manufacturing method
JP4541062B2 (en) Functional member and manufacturing method thereof
CN101233335B (en) Process for producing motion guide apparatus and motion guide apparatus produced by the process
JPH05157146A (en) Belt type continuously variable transmission for vehicle
CN114250464A (en) Composite reinforced cladding layer with antifriction and wear-resistant performances and preparation method and application thereof
WO2020044585A1 (en) Metal product surface member and method for burnishing same
GB2391274A (en) Production of lubricant reservoirs in a slide surface
CN103056764A (en) Belt wheel pulley surface processing method and belt wheel pulley surface processing grinding device
CN112639307B (en) Crankshaft and method for manufacturing same
KR100989596B1 (en) STS Cold mill long service life wiper roll by using an ultrasonic nano crystal surface modification technology
Cho Effect of contact configuration on the tribological performance of micro-textured AISI 1045 steel under oscillating conditions
Sagbas Surface texture properties and tribological behavior of additive manufactured parts
WO2015050183A1 (en) Sliding component and manufacturing method therefor
JP2004011793A (en) Linear guide
US20020079602A1 (en) Method of increasing the boundary layer strength on surfaces of workpieces made of brittle hard materials
TWI814418B (en) Machining method of high precision gear
JP7176349B2 (en) Linear motion device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

R150 Certificate of patent or registration of utility model

Ref document number: 4541062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250