JP5207525B2 - Mold and mold manufacturing method - Google Patents

Mold and mold manufacturing method Download PDF

Info

Publication number
JP5207525B2
JP5207525B2 JP2008122689A JP2008122689A JP5207525B2 JP 5207525 B2 JP5207525 B2 JP 5207525B2 JP 2008122689 A JP2008122689 A JP 2008122689A JP 2008122689 A JP2008122689 A JP 2008122689A JP 5207525 B2 JP5207525 B2 JP 5207525B2
Authority
JP
Japan
Prior art keywords
mold
concavo
convex
particles
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008122689A
Other languages
Japanese (ja)
Other versions
JP2008302430A (en
Inventor
古君  修
正俊 荒牧
芳隆 山下
英人 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EDISON HEAT TREATMENT CO., LTD.
Kyushu University NUC
Original Assignee
EDISON HEAT TREATMENT CO., LTD.
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EDISON HEAT TREATMENT CO., LTD., Kyushu University NUC filed Critical EDISON HEAT TREATMENT CO., LTD.
Priority to JP2008122689A priority Critical patent/JP5207525B2/en
Publication of JP2008302430A publication Critical patent/JP2008302430A/en
Application granted granted Critical
Publication of JP5207525B2 publication Critical patent/JP5207525B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は金型並びに金型の製造方法に関する。詳しくは、被加工物に接触する表面に凹凸が形成された金型並びに金型の製造方法に係るものである。   The present invention relates to a mold and a method for manufacturing the mold. Specifically, the present invention relates to a mold in which irregularities are formed on the surface in contact with the workpiece and a method for manufacturing the mold.

環境保護や地球温暖化防止のために、化石燃料の消費を抑制する傾向が強まっており、移動手段として普段の生活に欠かせない自動車の車体を軽量化することが強く求められている。この軽量化を達成するために、自動車部品の小型軽量化が図られ、部品の剛性及び強度を確保する必要がある。そのため、高強度鋼板の使用と共に部品の形状がより複雑になり、プレス成形する際に既存の成形方法では成形できないような事態を招いていた。   In order to protect the environment and prevent global warming, there is an increasing tendency to reduce fossil fuel consumption, and there is a strong demand for reducing the weight of automobile bodies that are indispensable for everyday life as a means of transportation. In order to achieve this weight reduction, it is necessary to reduce the size and weight of automobile parts and ensure the rigidity and strength of the parts. For this reason, the shape of the parts becomes more complicated with the use of a high-strength steel sheet, which causes a situation that cannot be formed by an existing forming method when press forming.

また、金型の寿命を向上させる技術として、金型の表面近傍に残留圧縮応力を付与して機械的性質及び疲労寿命の向上を図るため、鋼製のショット材を金型の表面に投射するショットピーニング加工が行われている。例えば特許文献1には、部材を窒化処理することにより、部材に形成される窒化物緻密層と、窒化物緻密層に形成される窒化物孔質層とを有する窒化処理部材に、ショット材を投射してショットピーニングする窒化処理部材のショットピーニング方法であって、窒化物孔質層より硬質なショット材を、50m/sec以上200m/sec以下の投射速度で投射する投射工程を有し、窒化物孔質層を除去する方法が記載されており、また、ショット材は、0.005mm以上0.08mm以下の粒径を有するショット材が用いられる旨も記載されている。   In addition, as a technique for improving the life of the mold, a steel shot material is projected onto the surface of the mold in order to impart residual compressive stress near the surface of the mold to improve mechanical properties and fatigue life. Shot peening is performed. For example, Patent Document 1 discloses that a shot material is applied to a nitriding member having a nitride dense layer formed on the member and a nitride porous layer formed on the nitride dense layer by nitriding the member. A shot peening method for a nitriding member for projecting and shot peening, comprising a projecting step of projecting a shot material harder than a nitride porous layer at a projection speed of 50 m / sec or more and 200 m / sec or less, and nitriding A method for removing the porous layer is described, and it is also described that a shot material having a particle size of 0.005 mm to 0.08 mm is used as the shot material.

特開2007−56333号公報JP 2007-56333 A

しかしながら、従来のショットピーニング方法のように投射工程が一段階である場合、この方法を金型の表面に適用すると、金型の表面に形成された凹凸の凸部形状が鋭利になりやすくなり、特に粒径が0.005mm以上0.08mm以下即ち5μm以上80μm以下のように微細なショット材を用いると、金型の表面に形成された凹凸の凸部形状が鋭利になりやすくなり、このような金型の表面の摩擦係数が大きくなって、被加工物との間に焼付きが発生してしまうという問題があった。また、従来のショットピーニング方法は、窒化処理された部材にショット材を投射しているので、窒化物層を破砕して除去してしまい、充分な硬さを有する部材が得られない可能性があった。   However, when the projection process is a single step as in the conventional shot peening method, when this method is applied to the surface of the mold, the uneven shape of the unevenness formed on the surface of the mold tends to be sharp, In particular, when a fine shot material having a particle size of 0.005 mm or more and 0.08 mm or less, that is, 5 μm or more and 80 μm or less is used, the uneven convex shape formed on the surface of the mold is likely to be sharp. There is a problem that the friction coefficient of the surface of the mold becomes large and seizure occurs with the workpiece. Moreover, since the shot peening method projects the shot material on the nitrided member, the nitride layer is crushed and removed, and there is a possibility that a member having sufficient hardness cannot be obtained. there were.

本発明は、以上の点に鑑みて創案されたものであり、被加工物との間の焼付きを抑制する金型、並びにこのような金型を製造できる金型の製造方法を提供することを目的とする。   The present invention was devised in view of the above points, and provides a mold for suppressing seizure between a workpiece and a mold manufacturing method capable of manufacturing such a mold. With the goal.

上記の目的を達成するために、本発明の金型は、被加工物に接触する表面に凹凸が加工形成された金型であって、前記凹凸は、凸部間の距離が互いに異なる第1の凹凸領域と第2の凹凸領域から構成されていると共に、同第1の凹凸領域の深さと同第2の凹凸領域の深さが互いに略同じであり、前記表面から約5μmの深さまでが加工硬化層であり、前記表面から20〜80μmの深さまでが窒化層であることを特徴とする。   In order to achieve the above object, a mold according to the present invention is a mold in which unevenness is processed and formed on a surface in contact with a workpiece, and the unevenness is a first in which distances between convex portions are different from each other. And the depth of the first uneven area is substantially the same as the depth of the second uneven area, and the depth from the surface is about 5 μm. It is a work-hardened layer, and a nitride layer extends from the surface to a depth of 20 to 80 μm.

ここで、金型表面の凹凸が、凸部間の距離が互いに異なる第1の凹凸領域と第2の凹凸領域から構成されていることによって、加工形成されて加工硬化した凹凸領域が細かく存在し、被加工物によって押しつぶされにくくなると共に潤滑油が保持される凹部も多数存在して摺動性が向上する。
また、第1の凹凸領域の深さと第2の凹凸領域の深さが互いに略同じであることによって、潤滑油が保持される凹部を均等に確保でき、摺動性を向上する。
Here, the unevenness on the mold surface is composed of the first unevenness region and the second unevenness region where the distance between the protrusions is different from each other, so that there are fine unevenness regions that are formed and processed and hardened. In addition, it becomes difficult to be crushed by the workpiece, and there are a large number of recesses in which the lubricating oil is held, so that the slidability is improved.
In addition, since the depth of the first uneven area and the depth of the second uneven area are substantially the same, the recesses in which the lubricating oil is held can be evenly secured, and the slidability is improved.

また、上記の目的を達成するために、本発明の金型の製造方法は、被加工物に接触する表面に凹凸が形成された金型を製造する金型の製造方法であって、被加工物に接触する表面を加工して、凸部間の距離が互いに異なる第1の凹凸領域と第2の凹凸領域から構成されていると共に、同第1の凹凸領域の深さと同第2の凹凸領域の深さが互いに略同じ凹凸を、被加工物に接触する表面に形成する凹凸加工形成工程と、該凹凸加工形成工程によって形成された凹凸を窒化処理して窒化層を形成する窒化処理工程とを有することを特徴とする。   In order to achieve the above object, the mold manufacturing method of the present invention is a mold manufacturing method for manufacturing a mold in which irregularities are formed on the surface in contact with the workpiece, The surface that contacts the object is processed, and is composed of a first uneven region and a second uneven region in which the distance between the convex portions is different from each other, and the depth of the first uneven region and the second uneven surface. Concavity and convexity forming step for forming concavities and convexities having substantially the same depth in the region on the surface in contact with the workpiece, and a nitriding treatment step for forming a nitrided layer by nitriding the concavities and convexities formed by the concavity and convexity forming step It is characterized by having.

ここで、被加工物に接触する表面を加工して、凸部間の距離が互いに異なる第1の凹凸領域と第2の凹凸領域から構成されていると共に、第1の凹凸領域の深さと第2の凹凸領域の深さが互いに略同じ凹凸を、被加工物に接触する表面に形成する凹凸加工形成工程によって、加工形成されて加工硬化した凹凸領域を細かく存在させ、被加工物によって押しつぶされにくくなると共に潤滑油が保持される凹部も多数存在し、また、潤滑油が保持される凹部を均等に確保でき、摺動性が向上する金型を製造できる。
また、凹凸加工形成工程によって形成された凹凸を窒化処理することによって、加工されて転位が凹凸に導入されているので比較的低温でも窒素が金型内部にまで入りやすくなり、金型内部まで硬くなる。
なお、本発明において、凹凸加工形成工程や窒化処理工程は、金型用材料を用いて成型された金型に対して行う工程である。
Here, the surface in contact with the workpiece is processed, and the first uneven region and the second uneven region having different distances between the protrusions are formed. The unevenness area formed by the unevenness forming process for forming the unevenness having substantially the same depth of the unevenness area 2 on the surface in contact with the work piece is finely formed and is crushed by the work piece. There are a large number of recesses in which the lubricating oil is held and the recesses in which the lubricating oil is held can be ensured uniformly, and a mold with improved slidability can be manufactured.
In addition, by nitriding the unevenness formed in the unevenness forming process, dislocations are introduced into the unevenness by being processed, so that nitrogen can easily enter the mold even at a relatively low temperature, and harden into the mold. Become.
In the present invention, the concavo-convex process forming step and the nitriding step are steps performed on a mold molded using a mold material.

また、本発明の金型の製造方法において、凹凸加工形成工程は、第1の粒子を被加工物に接触する表面に投射する第1の投射工程と、第1の投射工程の後に、第1の粒子よりも粒径が小さい第2の粒子を被加工物に接触する表面に投射する第2の投射工程からなる場合、第1の投射工程で形成された凸部に、第2の投射工程によって投射された第2の粒子が衝突して凹凸を形成するので、潤滑油が保持される凹部を万遍なく形成できる。   Moreover, in the manufacturing method of the metal mold | die of this invention, an uneven | corrugated process formation process is a 1st projection process which projects 1st particle | grains on the surface which contacts a workpiece, and a 1st projection process, after a 1st projection process, In the case of the second projecting step of projecting the second particle having a particle size smaller than the particle on the surface in contact with the workpiece, the second projecting step is performed on the convex portion formed in the first projecting step. Since the second particles projected by the collision collide to form irregularities, the concave portions in which the lubricating oil is held can be formed uniformly.

また、本発明の金型の製造方法において、窒化処理工程は、300〜460℃の窒素ガス含有雰囲気において行われる場合、比較的低温で窒化処理を行なうので、金型の熱歪みを抑制できる。ここで、300℃未満だと、充分な窒化層が得られない可能性があり、また、460℃を超えると、熱歪みが問題となる可能性がある。   Further, in the mold manufacturing method of the present invention, when the nitriding process is performed in a nitrogen gas-containing atmosphere at 300 to 460 ° C., the nitriding process is performed at a relatively low temperature, so that thermal distortion of the mold can be suppressed. Here, if it is less than 300 ° C., a sufficient nitride layer may not be obtained, and if it exceeds 460 ° C., thermal distortion may be a problem.

また、本発明の金型の製造方法において、第1の粒子の粒径は、150μm以上の場合、少ない粒子数で、加工硬化された領域を広範囲に形成できる。ここで、150μm未満だと、充分な凹凸形成能力がないと考えられる。   In the mold manufacturing method of the present invention, when the particle size of the first particles is 150 μm or more, the work-cured region can be formed in a wide range with a small number of particles. Here, when it is less than 150 μm, it is considered that there is not sufficient unevenness forming ability.

本発明に係る金型は、被加工物との間の焼付きを抑制することができる。   The metal mold | die which concerns on this invention can suppress the seizure between workpieces.

本発明に係る金型の製造方法によって、被加工物との間の焼付きを抑制することができる金型を製造できる。   With the mold manufacturing method according to the present invention, a mold capable of suppressing seizure between the workpiece and the workpiece can be manufactured.

以下、本発明の実施の形態について図面を参照しながら説明し、本発明の理解に供する。
図1は、金型の表面が加工処理されて本発明を適用した金型が得られる様子を説明する概略図である。先ず、被加工物が接触する金型表面1に、粒径が100〜500μmの第1の粒子例えばアルミナ粒子、ステンレス鋼粒子を、投射圧力0.20〜0.35MPaで投射して、図1(a)に示すように、深さH1を有する第1の凹凸領域2を形成する(第1の投射工程)。
次に、第1の凹凸領域2が形成された、被加工物が接触する金型表面1に、第1の粒子よりも粒径が小さい第2の粒子例えばアルミナ粒子、ステンレス鋼粒子を、投射圧力0.20〜0.35MPaで投射して、図1(b)に示すように、深さH2を有する第2の凹凸領域3を形成する(第2の投射工程)。ここで、粒子が衝突して深さH1から変わった深さH1´と深さH2は略同じであるが、第1の凹凸領域2の凸部間の距離は、第2の凹凸領域3の凸部間の距離よりも長い。
Hereinafter, embodiments of the present invention will be described with reference to the drawings to facilitate understanding of the present invention.
FIG. 1 is a schematic diagram for explaining how the surface of a mold is processed to obtain a mold to which the present invention is applied. First, first particles having a particle size of 100 to 500 μm, for example, alumina particles and stainless steel particles are projected onto a mold surface 1 with which a workpiece comes into contact at a projection pressure of 0.20 to 0.35 MPa. As shown to (a), the 1st uneven | corrugated area | region 2 which has the depth H1 is formed (1st projection process).
Next, second particles having a particle diameter smaller than the first particles, such as alumina particles and stainless steel particles, are projected onto the mold surface 1 on which the workpiece is in contact, in which the first uneven region 2 is formed. By projecting at a pressure of 0.20 to 0.35 MPa, as shown in FIG. 1B, a second uneven region 3 having a depth H2 is formed (second projecting step). Here, the depth H1 ′ and the depth H2 which are changed from the depth H1 due to the collision of the particles are substantially the same, but the distance between the convex portions of the first concave-convex region 2 is the same as that of the second concave-convex region 3. It is longer than the distance between the convex parts.

また、第2の凹凸領域3は、第1の凹凸領域2の凸部に形成されるが、これは、第1の凹凸領域2の凹部は第1の粒子による衝突によって加工硬化されているため第2の粒子が凹部に衝突しても変形し難く、一方、凸部は充分に加工硬化されていないため比較的軟らかく、第2の粒子が衝突して凹みが形成されやすいからだと考えられる。
なお、図1では、判り易いように第1の凹凸領域を1つと、第2の凹凸領域を2つ示しているだけであるが、本発明でいう第1の凹凸領域は、凸部間の距離が異なる様々な凹凸領域の集合であって、最も短い凸部間の距離が、同じく凸部間の距離が異なる様々な凹凸領域の集合である第2の凹凸領域の最も長い凸部間の距離よりも長い領域をいう。
In addition, the second uneven region 3 is formed on the convex portion of the first uneven region 2 because the concave portion of the first uneven region 2 is work-hardened by collision with the first particles. The second particles are unlikely to be deformed even when they collide with the recesses. On the other hand, it is considered that the projections are relatively soft because they are not sufficiently work-hardened, and the second particles collide with each other to easily form dents.
In FIG. 1, only one first concavo-convex area and two second concavo-convex areas are shown for easy understanding, but the first concavo-convex area referred to in the present invention is defined between the convex parts. It is a set of various uneven areas with different distances, and the distance between the shortest protrusions is the set of various uneven areas with the same distance between the protrusions. An area longer than the distance.

このような2段階の投射工程により、金型を構成する金属に歪みが与えられ、塑性変形によって硬さが増し、金型表面1から約5μmの深さまで加工硬化層4が形成される。
次に、第1の投射工程と第2の投射工程によって、表面に第1の凹凸領域2と第2の凹凸領域3が形成された金型は、300〜460℃の温度においてアンモニアガス及び窒素ガスの雰囲気、または窒素ガスの雰囲気内に晒されて窒化処理され、図1(c)に示すように、金型表面から20〜80μmの深さまで窒化層5が形成され、加工硬化層は窒化された加工硬化層4Aとなる。なお、窒化層の深さは80μmまであれば充分であり、これよりも深くまで窒化層を形成しようとすると、経済的負担が生じる。
また、金型を構成する材料としては、ダクタイル鋳鉄(FCD450)やダイス鋼(SKD11)を使用できる。
By such a two-stage projection process, the metal constituting the mold is distorted, the hardness is increased by plastic deformation, and the work hardened layer 4 is formed from the mold surface 1 to a depth of about 5 μm.
Next, the mold in which the first concavo-convex region 2 and the second concavo-convex region 3 are formed on the surface by the first projecting step and the second projecting step is ammonia gas and nitrogen at a temperature of 300 to 460 ° C. Nitrided by exposure to a gas atmosphere or nitrogen gas atmosphere to form a nitrided layer 5 from the mold surface to a depth of 20 to 80 μm as shown in FIG. 1C, and the work hardened layer is nitrided The work hardening layer 4A thus obtained is obtained. It is sufficient that the depth of the nitride layer is up to 80 μm. If an attempt is made to form the nitride layer deeper than this, an economic burden arises.
Moreover, as a material which comprises a metal mold | die, ductile cast iron (FCD450) and die steel (SKD11) can be used.

以下、実施例に基づいて本発明を更に詳しく説明する。なお、ここで使用したダイス鋼(SKD11)は、実際に被加工物に接触する金型の面を構成するものである。   Hereinafter, the present invention will be described in more detail based on examples. The die steel (SKD11) used here constitutes the surface of the mold that actually contacts the workpiece.

<実施例1>
ダイス鋼(SKD11)に対して、粒径200μm(0.2mm)のアルミナ粒子を投射圧力0.25MPaで投射した後に、粒径100μm(0.1mm)のステンレス鋼(SUS304)粒子を投射圧力0.35MPaで投射した。そして、粒子が投射されたダイス鋼(SKD11)を、充填した粒状固体中に埋設し、その粒状固体中に窒化ガスを流通させて、粒状固体の表面に一旦窒化ガスを吸着させ、その窒化ガスを徐々に吐き出させながら原子状の窒素を380〜520℃のうち例えば460℃の加熱下で持続的に接触させて窒化処理を行なった。
また、図3に、実施例1における2段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)の表面形状をフーリエ変換したグラフを示す。図3において、横軸は周波数を示し、縦軸はスペクトル振幅(凹凸の深さ)を示す。ここで、横軸の中央より右側の領域が高周波領域即ち第2の凹凸領域であり、横軸の中央より左側の領域が低周波領域即ち第1の凹凸領域を示す。
また、図4に、実施例1における2段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)の表面粗さを示す図を示す。
次に、このように2段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)を試料として、図2に示すように、摺動試験を行なった。即ち、試料6を冷延鋼板(SPFC440)9に対して押付方向7に押付荷重を200kgずつ増加させながら押付けると共に、冷延鋼板9を1m/分の速度で引抜方向8へ引き抜き、試料6が冷延鋼板9に焼付く荷重(耐ゴーリング荷重)を調べた。結果を表1に示す。
<Example 1>
After projecting alumina particles having a particle size of 200 μm (0.2 mm) onto a die steel (SKD11) at a projection pressure of 0.25 MPa, stainless steel (SUS304) particles having a particle size of 100 μm (0.1 mm) are projected at a projection pressure of 0. Projected at 35 MPa. Then, the die steel (SKD11) on which the particles are projected is embedded in the filled granular solid, a nitriding gas is circulated in the granular solid, and the nitriding gas is once adsorbed on the surface of the granular solid. Nitrogen treatment was performed by bringing atomic nitrogen into continuous contact under heating at 460 ° C, for example, at 380-520 ° C.
Moreover, the graph which carried out the Fourier transformation of the surface shape of the die steel (SKD11) obtained through the two-step projection process and nitriding treatment in Example 1 is shown in FIG. In FIG. 3, the horizontal axis indicates the frequency, and the vertical axis indicates the spectrum amplitude (the depth of the unevenness). Here, a region on the right side of the center of the horizontal axis is a high frequency region, that is, a second uneven region, and a region on the left side of the center of the horizontal axis is a low frequency region, that is, a first uneven region.
Moreover, the figure which shows the surface roughness of the die steel (SKD11) obtained through the two-step projection process and nitriding process in Example 1 in FIG. 4 is shown.
Next, using the die steel (SKD11) obtained through the two-stage projection process and the nitriding treatment as described above, a sliding test was performed as shown in FIG. That is, while pressing the sample 6 against the cold-rolled steel plate (SPFC440) 9 in the pressing direction 7 while increasing the pressing load by 200 kg, the cold-rolled steel plate 9 is pulled out in the drawing direction 8 at a speed of 1 m / min. The load (galling resistance) seized on the cold rolled steel sheet 9 was examined. The results are shown in Table 1.

<実施例2>
ダイス鋼(SKD11)に対して、粒径500μm(0.5mm)のステンレス鋼(SUS304)粒子を投射圧力0.35MPaで投射した後に、粒径100μm(0.1mm)のステンレス鋼(SUS304)粒子を投射圧力0.35MPaで投射した。そして、粒子が投射されたダイス鋼(SKD11)を、充填した粒状固体中に埋設し、その粒状固体中に窒化ガスを流通させて、粒状固体の表面に一旦窒化ガスを吸着させ、その窒化ガスを徐々に吐き出させながら原子状の窒素を460℃の加熱下で持続的に接触させて窒化処理を行なった。
また、図5に、実施例2における2段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)の表面形状をフーリエ変換したグラフを示す。また、図6に、実施例2における2段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)の表面粗さを示す図を示す。
次に、このように2段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)を試料として、実施例1と同様に摺動試験を行なった。結果を表1に示す。
<Example 2>
A stainless steel (SUS304) particle having a particle size of 100 μm (0.1 mm) is applied to a die steel (SKD11) after projecting a stainless steel (SUS304) particle having a particle size of 500 μm (0.5 mm) at a projection pressure of 0.35 MPa. Was projected at a projection pressure of 0.35 MPa. Then, the die steel (SKD11) on which the particles are projected is embedded in the filled granular solid, a nitriding gas is circulated in the granular solid, and the nitriding gas is once adsorbed on the surface of the granular solid. Nitriding was carried out by continuously contacting atomic nitrogen under heating at 460 ° C.
FIG. 5 shows a graph obtained by Fourier transforming the surface shape of the die steel (SKD11) obtained through the two-stage projection process and nitriding treatment in Example 2. Moreover, the figure which shows the surface roughness of the die steel (SKD11) obtained through the two-step projection process and nitriding process in Example 2 in FIG. 6 is shown.
Next, a sliding test was performed in the same manner as in Example 1 using the die steel (SKD11) obtained through the two-stage projection process and the nitriding treatment as described above. The results are shown in Table 1.

<実施例3>
ダイス鋼(SKD11)に対して、粒径200μm(0.2mm)のステンレス鋼(SUS304)粒子を投射圧力0.35MPaで投射した後に、粒径100μm(0.1mm)のステンレス鋼(SUS304)粒子を投射圧力0.35MPaで投射した。そして、粒子が投射されたダイス鋼(SKD11)を、充填した粒状固体中に埋設し、その粒状固体中に窒化ガスを流通させて、粒状固体の表面に一旦窒化ガスを吸着させ、その窒化ガスを徐々に吐き出させながら原子状の窒素を460℃の加熱下で持続的に接触させて窒化処理を行なった。
また、図7に、実施例3における2段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)の表面形状をフーリエ変換したグラフを示す。また、図8に、実施例3における2段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)の表面粗さを示す図を示す。
次に、このように2段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)を試料として、実施例1と同様に摺動試験を行なった。結果を表1に示す。
<Example 3>
A stainless steel (SUS304) particle having a particle size of 100 μm (0.1 mm) is applied to a die steel (SKD11) after projecting a stainless steel (SUS304) particle having a particle size of 200 μm (0.2 mm) at a projection pressure of 0.35 MPa. Was projected at a projection pressure of 0.35 MPa. Then, the die steel (SKD11) on which the particles are projected is embedded in the filled granular solid, a nitriding gas is circulated in the granular solid, and the nitriding gas is once adsorbed on the surface of the granular solid. Nitriding was carried out by continuously contacting atomic nitrogen under heating at 460 ° C.
Moreover, the graph which carried out the Fourier transformation of the surface shape of the die steel (SKD11) obtained through the two-step projection process and nitriding treatment in Example 3 is shown in FIG. Moreover, the figure which shows the surface roughness of the die steel (SKD11) obtained through the two-step projection process and nitriding process in Example 3 in FIG. 8 is shown.
Next, a sliding test was performed in the same manner as in Example 1 using the die steel (SKD11) obtained through the two-stage projection process and the nitriding treatment as described above. The results are shown in Table 1.

<実施例4>
ダイス鋼(SKD11)に対して、粒径300μm(0.3mm)のアルミナ(アランダム)粒子を投射圧力0.2MPaで投射した後に、粒径50μm(0.05mm)のアモルファス合金粒子(アモビーズ(登録商標))を投射圧力0.2MPaで投射した。そして、粒子が投射されたダイス鋼(SKD11)を、充填した粒状固体中に埋設し、その粒状固体中に窒化ガスを流通させて、粒状固体の表面に一旦窒化ガスを吸着させ、その窒化ガスを徐々に吐き出させながら原子状の窒素を460℃の加熱下で持続的に接触させて窒化処理を行なった。
次に、このように2段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)を試料として、実施例1と同様に摺動試験を行なった。結果を表1に示す。
<Example 4>
After projecting alumina (alundum) particles having a particle size of 300 μm (0.3 mm) on a die steel (SKD11) at a projection pressure of 0.2 MPa, amorphous alloy particles having a particle size of 50 μm (0.05 mm) (Amo beads ( (Registered trademark)) was projected at a projection pressure of 0.2 MPa. Then, the die steel (SKD11) on which the particles are projected is embedded in the filled granular solid, a nitriding gas is circulated in the granular solid, and the nitriding gas is once adsorbed on the surface of the granular solid. Nitriding was carried out by continuously contacting atomic nitrogen under heating at 460 ° C.
Next, a sliding test was performed in the same manner as in Example 1 using the die steel (SKD11) obtained through the two-stage projection process and the nitriding treatment as described above. The results are shown in Table 1.

<実施例5>
ダイス鋼(SKD11)に対して、粒径300μm(0.3mm)のアルミナ(アランダム)粒子を投射圧力0.2MPaで投射した後に、粒径50μm(0.05mm)のジルコニア粒子を投射圧力0.2MPaで投射した。そして、粒子が投射されたダイス鋼(SKD11)を、充填した粒状固体中に埋設し、その粒状固体中に窒化ガスを流通させて、粒状固体の表面に一旦窒化ガスを吸着させ、その窒化ガスを徐々に吐き出させながら原子状の窒素を460℃の加熱下で持続的に接触させて窒化処理を行なった。
次に、このように2段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)を試料として、実施例1と同様に摺動試験を行なった。結果を表1に示す。
<Example 5>
After projecting alumina (alundum) particles having a particle size of 300 μm (0.3 mm) on a die steel (SKD11) at a projection pressure of 0.2 MPa, zirconia particles having a particle size of 50 μm (0.05 mm) are projected at a projection pressure of 0. Projected at 2 MPa. Then, the die steel (SKD11) on which the particles are projected is embedded in the filled granular solid, a nitriding gas is circulated in the granular solid, and the nitriding gas is once adsorbed on the surface of the granular solid. Nitriding was carried out by continuously contacting atomic nitrogen under heating at 460 ° C.
Next, a sliding test was performed in the same manner as in Example 1 using the die steel (SKD11) obtained through the two-stage projection process and the nitriding treatment as described above. The results are shown in Table 1.

<比較例1>
ダイス鋼(SKD11)に対して、粒径100μm(0.1mm)のステンレス鋼(SUS304)粒子を投射圧力0.35MPaで投射した。そして、粒子が投射されたダイス鋼(SKD11)に対して、460℃のアンモニアガス及び窒素ガス雰囲気に晒して窒化処理を行なった。
次に、このように1段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)を試料として、実施例1と同様に摺動試験を行なった。結果を表1に示す。
<Comparative Example 1>
Stainless steel (SUS304) particles having a particle size of 100 μm (0.1 mm) were projected at a projection pressure of 0.35 MPa on die steel (SKD11). The die steel (SKD11) on which the particles were projected was subjected to nitriding treatment by exposure to an atmosphere of ammonia gas and nitrogen gas at 460 ° C.
Next, a sliding test was conducted in the same manner as in Example 1 using the die steel (SKD11) obtained through the one-step projection process and nitriding as described above. The results are shown in Table 1.

<比較例2>
ダイス鋼(SKD11)に対して、粒径200μm(0.2mm)のアルミナ粒子を投射圧力0.35MPaで投射した。そして、粒子が投射されたダイス鋼(SKD11)に対して、460℃のアンモニアガス及び窒素ガス雰囲気に晒して窒化処理を行なった。
次に、このように1段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)を試料として、実施例1と同様に摺動試験を行なった。結果を表1に示す。
<Comparative example 2>
Alumina particles having a particle size of 200 μm (0.2 mm) were projected onto a die steel (SKD11) at a projection pressure of 0.35 MPa. The die steel (SKD11) on which the particles were projected was subjected to nitriding treatment by exposure to an atmosphere of ammonia gas and nitrogen gas at 460 ° C.
Next, a sliding test was conducted in the same manner as in Example 1 using the die steel (SKD11) obtained through the one-step projection process and nitriding as described above. The results are shown in Table 1.

<比較例3>
ダイス鋼(SKD11)に対して、粒径300μm(0.3mm)のアルミナ(アランダム)粒子を投射圧力0.2MPaで投射した。そして、粒子が投射されたダイス鋼(SKD11)に対して、460℃のアンモニアガス及び窒素ガス雰囲気に晒して窒化処理を行なった。
次に、このように1段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)を試料として、実施例1と同様に摺動試験を行なった。結果を表1に示す。
<Comparative Example 3>
To die steel (SKD11), alumina (alundum) particles having a particle size of 300 μm (0.3 mm) were projected at a projection pressure of 0.2 MPa. The die steel (SKD11) on which the particles were projected was subjected to nitriding treatment by exposure to an atmosphere of ammonia gas and nitrogen gas at 460 ° C.
Next, a sliding test was conducted in the same manner as in Example 1 using the die steel (SKD11) obtained through the one-step projection process and nitriding as described above. The results are shown in Table 1.

<比較例4>
ダイス鋼(SKD11)に対して、粒径500μm(0.5mm)のアルミナ粒子を投射圧力0.35MPaで投射した。そして、粒子が投射されたダイス鋼(SKD11)に対して、460℃のアンモニアガス及び窒素ガス雰囲気に晒して窒化処理を行なった。
次に、このように1段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)を試料として、実施例1と同様に摺動試験を行なった。結果を表1に示す。
<Comparative example 4>
Alumina particles having a particle size of 500 μm (0.5 mm) were projected onto a die steel (SKD11) at a projection pressure of 0.35 MPa. The die steel (SKD11) on which the particles were projected was subjected to nitriding treatment by exposure to an atmosphere of ammonia gas and nitrogen gas at 460 ° C.
Next, a sliding test was conducted in the same manner as in Example 1 using the die steel (SKD11) obtained through the one-step projection process and nitriding as described above. The results are shown in Table 1.

Figure 0005207525
Figure 0005207525

また、図9に、粒径100μm(0.1mm)の金属粒子(SS20)が1段階で投射された後、窒化処理を経て得られたダクタイル鋳鉄(FCD450)の表面形状をフーリエ変換したグラフを示し、図10に、このダクタイル鋳鉄(FCD450)の表面粗さを示す図を示す。
また、図11に、粒径200μm(0.2mm)のアモルファス粒子が1段階で投射された後、窒化処理を経て得られたダクタイル鋳鉄(FCD450)の表面形状をフーリエ変換したグラフを示し、図12に、このダクタイル鋳鉄(FCD450)の表面粗さを示す図を示す。
また、図13に、粒径100μm(0.1mm)のステンレス鋼(SUS304)粒子が1段階で投射された後、窒化処理を経て得られたダクタイル鋳鉄(FCD450)の表面形状をフーリエ変換したグラフを示し、図14に、このダクタイル鋳鉄(FCD450)の表面粗さを示す図を示す。
FIG. 9 is a graph obtained by Fourier transforming the surface shape of ductile cast iron (FCD450) obtained through nitriding after metal particles (SS20) having a particle size of 100 μm (0.1 mm) are projected in one stage. FIG. 10 is a diagram showing the surface roughness of this ductile cast iron (FCD450).
FIG. 11 shows a graph obtained by Fourier transforming the surface shape of ductile cast iron (FCD450) obtained by nitriding after amorphous particles having a particle size of 200 μm (0.2 mm) are projected in one stage. 12 shows a diagram showing the surface roughness of this ductile cast iron (FCD450).
FIG. 13 is a graph obtained by performing Fourier transform on the surface shape of ductile cast iron (FCD450) obtained by nitriding after a stainless steel (SUS304) particle having a particle size of 100 μm (0.1 mm) is projected in one stage. FIG. 14 is a diagram showing the surface roughness of this ductile cast iron (FCD450).

図3、図5及び図7から明らかなように、実施例1〜3のように、粒子が投射された後、更に粒径の小さい粒子が投射された2段階の投射工程を経て、そして窒化処理を施された金型の表面は、ほとんど全ての周波数帯域即ち凸部間の距離が互いに異なる第1の凹凸領域と第2の凹凸領域において、スペクトル振幅即ち凹凸の深さが互いに略同じであった。
また、実施例1〜3で得られた金型材料をSEM(走査型電子顕微鏡)で見たところ、金型の表面から約5μmの深さまでが加工硬化層であり、金型の表面から20〜80μmの深さまでが窒化層であった。
また、図4、図6及び図8から明らかなように、実施例1〜3のように、粒子が投射された後、更に粒径の小さい粒子が投射された2段階の投射工程を経て、そして窒化処理を施された金型の表面は、図10、図12及び図14に示されるような、1段階の投射工程と窒化処理を経て得られた金型の表面に比べて、粗くなく、平坦であった。即ち、図10、図12及び図14に示されるような、1段階の投射工程と窒化処理を経て得られた金型の表面は、凸部間の距離が互いに異なる第1の凹凸領域と第2の凹凸領域において、凹凸の深さが互いに異なっていた。
As apparent from FIGS. 3, 5 and 7, as in Examples 1 to 3, after the particles are projected, a two-stage projecting process in which particles having a smaller particle size are projected is performed, followed by nitriding. The surface of the processed mold has substantially the same spectral amplitude, that is, the depth of the unevenness, in the first unevenness region and the second unevenness region in which almost all the frequency bands, that is, the distance between the protrusions are different from each other. there were.
Further, when the mold materials obtained in Examples 1 to 3 were viewed with an SEM (scanning electron microscope), a work hardened layer was formed from the surface of the mold to a depth of about 5 μm. The nitride layer was up to a depth of ˜80 μm.
Further, as apparent from FIGS. 4, 6 and 8, as in Examples 1 to 3, after the particles were projected, after a two-stage projecting process in which particles with a smaller particle size were projected, The surface of the mold subjected to the nitriding treatment is not rough compared to the surface of the mold obtained through the one-step projection process and the nitriding treatment as shown in FIG. 10, FIG. 12 and FIG. It was flat. That is, the surface of the mold obtained through the one-step projection process and nitriding treatment as shown in FIGS. In the two uneven regions, the depth of the unevenness was different from each other.

また、表1に示す実施例1〜5と比較例1〜4の摺動試験結果から明らかなように、粒子が投射された後、更に粒径の小さい粒子が投射された2段階の投射工程を経て、そして窒化処理を施された金型は、粒子が1段階で投射された投射工程を経て、そして窒化処理を施された金型よりも大きい耐ゴーリング荷重を示した。これにより、本発明の金型は、従来の金型よりも焼付きが生じにくいことが判った。
また、このことから、凸部間の距離が互いに異なる第1の凹凸領域と第2の凹凸領域において凹凸の深さが互いに異なる表面を有する、1段階の投射工程と窒化処理を経て得られた金型は、粒子が投射された後、更に粒径の小さい粒子が投射された2段階の投射工程を経て、そして窒化処理を施された金型よりも小さい耐ゴーリング荷重を示すと考えられ、よって、焼付きが生じやすいと考えられる。
図15は、実施例1〜5及び比較例1〜4についての耐ゴーリング荷重と第1の投射粒径の関係を示すグラフである。図15において、「○」は各実施例(2段階投射+窒化処理)を示し、「□」は各比較例(1段階投射+窒化処理)を示す。
Further, as apparent from the sliding test results of Examples 1 to 5 and Comparative Examples 1 to 4 shown in Table 1, after the particles are projected, a two-stage projecting process in which particles having a smaller particle size are projected. The mold subjected to nitriding treatment was subjected to a projecting process in which particles were projected in one stage, and exhibited a larger galling resistance than the mold subjected to nitriding treatment. Thereby, it turned out that the metal mold | die of this invention is hard to produce seizure compared with the conventional metal mold | die.
In addition, from this, the first uneven region and the second uneven region having different distances between the protrusions were obtained through a one-step projection process and a nitriding process having surfaces with different uneven depths. The mold is considered to exhibit a galling resistance smaller than that of the mold subjected to the nitriding treatment after passing through a two-stage projecting process in which particles having a smaller particle diameter are projected after the particles are projected, Therefore, it is considered that seizure is likely to occur.
FIG. 15 is a graph showing the relationship between the galling resistance and the first projected particle size for Examples 1 to 5 and Comparative Examples 1 to 4. In FIG. 15, “◯” indicates each example (two-stage projection + nitriding process), and “□” indicates each comparative example (one-stage projection + nitriding process).

また、凹凸を加工形成する手段として、粒子を金型に投射する例を説明したが、被加工物に接触する表面を加工して、凸部間の距離が互いに異なる第1の凹凸領域と第2の凹凸領域から構成されていると共に、第1の凹凸領域の深さと第2の凹凸領域の深さが互いに略同じ凹凸を、被加工物に接触する表面に形成することができれば、必ずしも粒子を投射しなくてもよく、機械的な加工を施してもよいし、また、粒子を投射する場合、必ずしも2段階の投射工程でなくてもよく、3段階以上の投射工程を行なってもよい。   Moreover, although the example which projects a particle | grain on a metal mold | die was demonstrated as a means to process and form an unevenness | corrugation, the surface which contacts a to-be-processed object is processed, and the 1st uneven | corrugated area | region where the distance between convex parts differs from the 1st If the surface is formed of two uneven regions and the unevenness in which the depth of the first uneven region and the depth of the second uneven region are substantially the same as each other can be formed on the surface in contact with the workpiece, the particles May not be projected, may be mechanically processed, and when projecting particles, it may not necessarily be a two-stage projection process, and may be a three-stage or more projection process .

このように、本発明は、第1の粒子を被加工物に接触する表面に投射する第1の投射工程と、第1の投射工程の後に、第1の粒子よりも粒径が小さい第2の粒子を被加工物に接触する表面に投射する第2の投射工程とによって、被加工物に接触する表面を加工して、凸部間の距離が互いに異なる第1の凹凸領域と第2の凹凸領域から構成されていると共に、第1の凹凸領域の深さと第2の凹凸領域の深さが互いに略同じ凹凸を、被加工物に接触する表面に形成するので、加工形成されて加工硬化した凹凸領域を細かく存在させ、被加工物によって押しつぶされにくくなると共に潤滑油が保持される凹部も多数存在し、また、潤滑油が保持される凹部を均等に確保でき、摺動性が向上する金型を製造でき、また、加工形成された凹凸を窒化処理するので、加工されて転位が凹凸に導入され、比較的低温でも窒素が金型内部にまで入りやすくなって(パイプ拡散)、金型内部まで硬くなり、よって、押しつぶされにくくなると共に、滑りがよくて磨耗が減り、摩擦熱が減少して焼付きを抑制する金型を製造できる。
第1の投射工程で形成された凸部に、第2の投射工程によって投射された第2の粒子が衝突して凹凸を形成するので、潤滑油が保持される凹部を万遍なく形成できる。
Thus, in the present invention, after the first projecting step of projecting the first particles onto the surface in contact with the workpiece and the first projecting step, the second particle size is smaller than the first particles. A second projecting step of projecting the particles on the surface in contact with the workpiece, the surface in contact with the workpiece is processed, and the first uneven region and the second in which the distance between the convex portions is different from each other Consists of concavo-convex areas, and the first concavo-convex area and the second concavo-convex area have substantially the same concavo-convex depth on the surface in contact with the workpiece. The concave and convex regions are made to exist finely, are not easily crushed by the work piece, and there are many concave portions where the lubricating oil is retained, and the concave portions where the lubricating oil is retained can be secured evenly, improving the slidability. Dies can be manufactured, and processed irregularities are nitrided Therefore, dislocations are introduced into the irregularities after being processed, and nitrogen becomes easy to enter the mold even at a relatively low temperature (pipe diffusion), and hardens to the inside of the mold. It is possible to manufacture a mold that reduces wear and reduces frictional heat and suppresses seizure.
Since the 2nd particle projected by the 2nd projection process collides with the convex part formed at the 1st projection process, and forms unevenness, the concave part where lubricating oil is held can be formed uniformly.

また、窒化処理工程は、300〜460℃の窒素ガス含有雰囲気において行われるので、比較的低温で窒化処理を行なうことができ、金型の熱歪みを抑制できる。   Further, since the nitriding process is performed in an atmosphere containing nitrogen gas at 300 to 460 ° C., the nitriding process can be performed at a relatively low temperature, and thermal distortion of the mold can be suppressed.

また、第1の粒子の粒径は、150μm以上なので、少ない粒子数で、加工硬化された領域を広範囲に形成できる。   Moreover, since the particle diameter of the first particles is 150 μm or more, the work-cured region can be formed in a wide range with a small number of particles.

金型の表面が加工処理されて本発明を適用した金型が得られる様子を説明する概略図である。It is the schematic explaining a mode that the surface of a metal mold | die is processed and the metal mold | die which applied this invention is obtained. 摺動試験の概略を説明する概略図である。It is the schematic explaining the outline of a sliding test. 実施例1における2段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)の表面形状をフーリエ変換したグラフである。It is the graph which carried out the Fourier transformation of the surface shape of the die steel (SKD11) obtained through the two-step projection process in Example 1, and nitriding treatment. 実施例1における2段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)の表面粗さを示す図である。It is a figure which shows the surface roughness of the die steel (SKD11) obtained through the two-step projection process and nitriding treatment in Example 1. 実施例2における2段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)の表面形状をフーリエ変換したグラフである。It is the graph which carried out the Fourier transformation of the surface shape of the die steel (SKD11) obtained through the two-step projection process in Example 2, and nitriding treatment. 実施例2における2段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)の表面粗さを示す図である。It is a figure which shows the surface roughness of the die steel (SKD11) obtained through the two-step projection process and nitriding treatment in Example 2. 実施例3における2段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)の表面形状をフーリエ変換したグラフである。It is the graph which carried out the Fourier transformation of the surface shape of the die steel (SKD11) obtained through the two-step projection process in Example 3, and nitriding treatment. 実施例3における2段階の投射工程と窒化処理を経て得られたダイス鋼(SKD11)の表面粗さを示す図である。It is a figure which shows the surface roughness of the die steel (SKD11) obtained through the two-step projection process and nitriding treatment in Example 3. 粒径100μm(0.1mm)の金属粒子(SS20)が1段階で投射された後、窒化処理を経て得られたダクタイル鋳鉄(FCD450)の表面形状をフーリエ変換したグラフである。It is the graph which carried out the Fourier-transform of the surface shape of the ductile cast iron (FCD450) obtained through the nitriding process after the metal particle (SS20) with a particle size of 100 micrometers (0.1mm) was projected in one step. 図9のダクタイル鋳鉄(FCD450)の表面粗さを示す図である。It is a figure which shows the surface roughness of the ductile cast iron (FCD450) of FIG. 粒径200μm(0.2mm)のアモルファス粒子が1段階で投射された後、窒化処理を経て得られたダクタイル鋳鉄(FCD450)の表面形状をフーリエ変換したグラフである。It is the graph which carried out the Fourier-transform of the surface shape of the ductile cast iron (FCD450) obtained through the nitriding process after the amorphous particle of a particle size of 200 micrometers (0.2 mm) was projected in one step. 図11のダクタイル鋳鉄(FCD450)の表面粗さを示す図である。It is a figure which shows the surface roughness of the ductile cast iron (FCD450) of FIG. 粒径100μm(0.1mm)のステンレス鋼(SUS304)粒子が1段階で投射された後、窒化処理を経て得られたダクタイル鋳鉄(FCD450)の表面形状をフーリエ変換したグラフである。It is the graph which carried out the Fourier transform of the surface shape of the ductile cast iron (FCD450) obtained through the nitriding process after the stainless steel (SUS304) particle | grains with a particle size of 100 micrometers (0.1mm) were projected in one step. 図13のダクタイル鋳鉄(FCD450)の表面粗さを示す図である。It is a figure which shows the surface roughness of the ductile cast iron (FCD450) of FIG. 実施例1〜5及び比較例1〜4についての耐ゴーリング荷重と第1の投射粒径の関係を示すグラフである。It is a graph which shows the relationship between the galling-proof load about Examples 1-5 and Comparative Examples 1-4 and the 1st projection particle size.

符号の説明Explanation of symbols

1 金型表面
2 第1の凹凸領域
3 第2の凹凸領域
4 加工硬化層
4A 窒化された加工硬化層
5 窒化層
6 試料
7 押付方向
8 引抜方向
9 冷延鋼板
DESCRIPTION OF SYMBOLS 1 Mold surface 2 1st uneven | corrugated area | region 3 2nd uneven | corrugated area | region 4 Work hardening layer 4A Nitrided work hardening layer 5 Nitride layer 6 Sample 7 Pushing direction 8 Pull-out direction 9 Cold-rolled steel plate

Claims (5)

被加工物に接触する表面に凹凸が加工形成された金型であって、
前記凹凸は、凸部間の距離が互いに異なる第1の凹凸領域と第2の凹凸領域から構成されていると共に、同第1の凹凸領域の深さと同第2の凹凸領域の深さが互いに略同じであり、
前記第2の凹凸領域は、前記第1の凹凸領域の凸部に形成されており、
前記表面から約5μmの深さまでが加工硬化層であり、
前記表面から20〜80μmの深さまでが窒化層である
ことを特徴とする金型。
A mold in which irregularities are processed and formed on the surface in contact with the workpiece,
The concavo-convex is composed of a first concavo-convex area and a second concavo-convex area where the distance between the ridges is different from each other, and the depth of the first concavo-convex area is the same as the depth of the second concavo-convex area. Almost the same,
The second concavo-convex region is formed on a convex portion of the first concavo-convex region,
Up to a depth of about 5 μm from the surface is a work hardened layer,
A mold from the surface to a depth of 20 to 80 μm is a nitride layer.
被加工物に接触する表面に凹凸が形成された金型を製造する金型の製造方法であって、
被加工物に接触する表面を加工して、凸部間の距離が互いに異なる第1の凹凸領域と第2の凹凸領域から構成されていると共に、同第1の凹凸領域の深さと同第2の凹凸領域の深さが互いに略同じであり、さらに同第1の凹凸領域の凸部に同第2の凹凸領域が形成された凹凸を、被加工物に接触する表面に形成する凹凸加工形成工程と、
該凹凸加工形成工程によって形成された凹凸を窒化処理して窒化層を形成する窒化処理工程とを有する
ことを特徴とする金型の製造方法。
A mold manufacturing method for manufacturing a mold in which irregularities are formed on a surface in contact with a workpiece,
The surface that contacts the workpiece is processed, and is composed of a first concavo-convex area and a second concavo-convex area in which the distance between the convex portions is different from each other, and the depth of the first concavo-convex area is the same as the second. Concavity and convexity forming that forms the concavities and convexities in which the depths of the concavity and convexity regions are substantially the same with each other and the second concavity and convexity are formed on the convex portions of the first concavity and convexity regions on the surface that contacts the workpiece Process,
And a nitriding treatment step of forming a nitride layer by nitriding the irregularities formed in the irregularity forming step.
前記凹凸加工形成工程は、第1の粒子を被加工物に接触する表面に投射する第1の投射工程と、
該第1の投射工程の後に、前記第1の粒子よりも粒径が小さい第2の粒子を被加工物に接触する表面に投射する第2の投射工程からなる
ことを特徴とする請求項2に記載の金型の製造方法。
The concavo-convex process forming step includes a first projecting step of projecting the first particles onto the surface in contact with the workpiece,
The second projecting step of projecting, after the first projecting step, second particles having a smaller particle size than the first particles onto a surface in contact with the workpiece. The manufacturing method of the metal mold | die as described in.
前記窒化処理工程は、300〜460℃の窒素ガス含有雰囲気において行われる
ことを特徴とする請求項2に記載の金型の製造方法。
The said nitriding process process is performed in 300-460 degreeC nitrogen gas containing atmosphere. The manufacturing method of the metal mold | die of Claim 2 characterized by the above-mentioned.
前記第1の粒子の粒径は、150μm以上である
ことを特徴とする請求項3に記載の金型の製造方法。
The method for producing a mold according to claim 3, wherein the particle diameter of the first particles is 150 µm or more.
JP2008122689A 2007-05-09 2008-05-08 Mold and mold manufacturing method Expired - Fee Related JP5207525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008122689A JP5207525B2 (en) 2007-05-09 2008-05-08 Mold and mold manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007124234 2007-05-09
JP2007124234 2007-05-09
JP2008122689A JP5207525B2 (en) 2007-05-09 2008-05-08 Mold and mold manufacturing method

Publications (2)

Publication Number Publication Date
JP2008302430A JP2008302430A (en) 2008-12-18
JP5207525B2 true JP5207525B2 (en) 2013-06-12

Family

ID=40231594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008122689A Expired - Fee Related JP5207525B2 (en) 2007-05-09 2008-05-08 Mold and mold manufacturing method

Country Status (1)

Country Link
JP (1) JP5207525B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015009335A (en) * 2013-06-28 2015-01-19 オーエスジー株式会社 Surface modification method of rolling flat die
JP2016141150A (en) * 2015-02-05 2016-08-08 株式会社トーヨプロセス Metal mold used for extrusion molding machine for building material, and production method of metal mold

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253422A (en) * 2002-03-04 2003-09-10 Sanyo Special Steel Co Ltd Method for prolonging service life of tool such as mandrel and forming die, and tool of prolonged service life such as mandrel and forming die
JP4541062B2 (en) * 2003-07-02 2010-09-08 株式会社アリック.ティ.シー Functional member and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008302430A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
CA2752855C (en) Method for producing a press-hardened metal component
JP4304245B2 (en) Powder metallurgy object with a molded surface
KR102007106B1 (en) Burring method
JP2009061465A (en) Metallic mold for cold forging and its manufacturing method
CN104981308B (en) As continuous press forging platelet-like metal plate manufacture nut method and obtained by nut
JP2008207279A (en) Surface refining method of metal mold and metal mold
JP5207525B2 (en) Mold and mold manufacturing method
JP2007297651A (en) Method for refining crystal grain in surface of hard metal
US8434340B2 (en) Method for forming a stamped metal part
Hezam et al. Development of a new process for producing deep square cups through conical dies
WO2016158316A1 (en) Sizing die for densifying surface of sintered body, method for manufacturing same, and manufacturing product therefrom
JP2009061464A (en) Die for warm and hot forging, and its manufacturing method
WO2011135676A1 (en) Spring retainer for internal combustion engine and method for manufacturing the same
KR20180103995A (en) Titanium plate
JP2015151586A (en) Method for producing sintered metal component
JP2010105026A (en) Method for press-forming trb material
JP2005095980A (en) Steel plate punching tool, and method for punching the same
JP2005138130A (en) Method for press-forming of steel sheet
JP2017202519A (en) Hot stamping processing of age hardening type aluminum alloy plate
KR20120059891A (en) Processing method of cold rolled carbon steel sheet for vehicle and cold rolled carbon steel sheet manufactured by using the same
JP2005095960A (en) Method for preventing stress corrosion cracking of metal
EP2987568A1 (en) Hot press forming device for coated steel and hot press forming method using same
JP5276491B2 (en) Surface densification method of sintered body
Hamedon et al. Improvement of formability of high strength steel sheets in shrink flanging
JPH1190534A (en) Formation of arched press forming product excellent in shape-freezability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5207525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees