JP6783257B2 - 軸流回転機械 - Google Patents

軸流回転機械 Download PDF

Info

Publication number
JP6783257B2
JP6783257B2 JP2018014884A JP2018014884A JP6783257B2 JP 6783257 B2 JP6783257 B2 JP 6783257B2 JP 2018014884 A JP2018014884 A JP 2018014884A JP 2018014884 A JP2018014884 A JP 2018014884A JP 6783257 B2 JP6783257 B2 JP 6783257B2
Authority
JP
Japan
Prior art keywords
rotor
plate
shaped member
upstream side
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018014884A
Other languages
English (en)
Other versions
JP2019132183A (ja
Inventor
倫平 川下
倫平 川下
真人 岩▲崎▼
真人 岩▲崎▼
理 神下
理 神下
松本 和幸
和幸 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2018014884A priority Critical patent/JP6783257B2/ja
Priority to CN201980003823.0A priority patent/CN111051650B/zh
Priority to US16/634,430 priority patent/US11078803B2/en
Priority to PCT/JP2019/002908 priority patent/WO2019151221A1/ja
Priority to EP19747591.6A priority patent/EP3748130B1/en
Publication of JP2019132183A publication Critical patent/JP2019132183A/ja
Application granted granted Critical
Publication of JP6783257B2 publication Critical patent/JP6783257B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/447Labyrinth packings
    • F16J15/4472Labyrinth packings with axial path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/447Labyrinth packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/126Baffles or ribs

Description

本発明は、軸流回転機械に関する。
従来、発電プラント等に用いられる蒸気タービンやガスタービン等の軸流回転機械が知られている。この軸流回転機械は、ケーシングに支持されたノズル構造体と、ノズル構造体の下流側に設けられ、ケーシングに対して回転自在なタービンロータ(以下、単にロータとする)に支持された動翼構造体と、動翼構造体の下流側に設けられ、ケーシングに支持された静翼構造体とを有し、ロータの軸線方向の上流から下流へと流れる作動流体のエネルギーをロータの回転エネルギーに変換するようになっている。
上記軸流回転機械では、ロータ又は動翼構造体とケーシングとの間をシールするシール部において、主流路から逸れた作動流体がノズルを通過した際に与えられた旋回流成分を有したまま流入することにより、ロータの周方向に旋回流(所謂スワール流)が生ずることが知られている。スワール流により、ロータに偏心が発生した場合にロータの周方向にはロータの偏心方向と異なる方向にピークを有する正弦波状の圧力分布が生じ、例えば高出力の運転に伴ってスワール流が増加した際にはロータの自励振動の原因になることがある。このため、シール部におけるスワール流を抑制又は防止するための構造が種々考案されており、例えば、特許文献1には、ラビリンスシールの入口側に周方向のスワール流の向きを反転させるような角度を有したスワールブレーカを取り付けた構成が開示されている。
米国特許第4420161号明細書
ここで、主流から半径方向外側のキャビティ部(シール入口部)におけるスワール流の動きは複雑であり、本発明者らの鋭意研究によれば、スワール流は単にロータの周方向に向かうだけではなく、周方向に向かいつつさらに3次元的に螺旋を描く螺旋流であることが判明した。すなわち、スワール流は、ロータの半径方向及び軸線方向への3次元的な螺旋移動を伴いながらロータの周方向(回転方向)に向かって流れる。このため、単にラビリンスシールの入口側に周方向のスワール流の向きを反転させるような角度を有したスワールブレーカを配置しても、必ずしも効果的にスワール流を抑制しているといえず、さらに改善の必要があった。
本発明の少なくとも幾つかの実施形態は、軸流回転機械においてスワール流を防止乃至抑制することを目的とする。
(1)本開示の少なくとも一実施形態に係る軸流回転機械は、
軸線周りに回転するロータと、
前記ロータを回転可能に収容するケーシングと、
前記ケーシングに対して周方向に間隔を空けて固定される複数の静翼、及び前記複数の静翼の各々の内周側端に連なる内周側静翼環、を含む静翼段と、
前記ロータに対して周方向に間隔を空けて固定される複数の動翼、及び前記複数の動翼の各々の外周側端に連なる外周側動翼環、を含む動翼段と、
前記外周側動翼環と前記ケーシングとの間をシールする動翼側シール装置と、を備え、
前記動翼側シール装置は、
前記ケーシングから前記外周側動翼環の外周面に向かって延在する環状のシールフィンと、
前記シールフィンの上流側に形成されるキャビティにおいて前記ケーシングに固定されるスワールブレーカと、を含み、
前記スワールブレーカは、
前記ロータの半径方向に沿った面を有する第1板状部材であって、前記第1板状部材の上流縁が下流縁よりも前記ロータの回転方向の上流側に位置するように前記軸線に対して交差する方向に延在する第1板状部材を含む。
軸流回転機械の運転の際、主流路から逸れた作動流体がロータの回転に伴って周方向に流れる所謂スワール流が発生し、軸周りにロータの偏心方向と異なる方向にピークを有する正弦波状の圧力分布が生じ得る。この圧力分布に基づくシール励振力に起因して、動翼段とケーシングとの間のシール部では偏心方向と垂直な方向(振れ回りを助長する方向)へのロータに流体力が作用しロータの自励振動が生じ得る。このような振動を抑制するべくスワールブレーカが用いられるが、キャビティ内のスワール流は複雑であり、適切な配置でなければスワールブレーカの効果が十分に得られない。
この点、上記(1)の構成によれば、シールフィンの上流側でケーシングに固定されるスワールブレーカの第1板状部材は、ロータの半径方向に沿った面を有するとともに、上流縁が下流縁よりもロータの回転方向の上流側に位置するようにして配置される。つまり、シールフィンの上流側をロータの周方向に流れるスワール流であって、さらにロータの周方向を中心として螺旋状に旋回するスワール流の少なくとも一部に直交するようにして第1板状部材が配置され得るから、スワール流を効果的に抑制することができるのである。
(2)幾つかの実施形態では、上記(1)に記載の構成において、
前記スワールブレーカは、
前記ロータの半径方向に対して傾斜した面を有する第2板状部材および第3板状部材であって前記第1板状部材の内側端から前記ロータの回転方向の下流側に向かって延在する第2板状部材、および前記第2板状部材よりも上流側において前記第1板状部材の内側端から前記ロータの回転方向の上流側に向かって延在する第3板状部材、をさらに含む。
上記(2)の構成によれば、第1板状部材を介して該第1板状部材の内側端からロータの回転方向の下流側に向けて延在する第2板状部材と、同内側端からロータの回転方向の上流側に向けて延在する第3板状部材とにより、ロータの周方向に対して螺旋を描きつつ流れるスワール流に、周方向の異なる位置で直交し得るようにしてスワールブレーカを配置することができる。従って、より効果的にスワール流を抑制し、不安定振動の発生を防止することができる。
(3)幾つかの実施形態では、上記(1)及び(2)の何れか一方に記載の構成において、
前記第1板状部材の延在方向と前記軸線との交差角は30°以上60°以下である。
本発明者らの鋭意研究の結果、ロータの軸線に対して第1板状部材を30〜60°の傾斜角で配置することで、上記シールフィンにおけるスワール流の速度を大幅に抑制できることが判明した。つまり、ロータの半径方向視にて、第1板状部材の上記上流縁及び下流縁を結ぶ線とロータの軸線とのなす鋭角側の交差角が30°以上60°以下の場合にスワール流を効果的に抑制できる。よって、上記(3)の構成によれば、軸線に対して30〜60°の傾斜角で第1板状部材が配置されるから、スワール流を適切に抑制できる軸流回転機械を得ることができる。
(4)本開示の少なくとも一実施形態に係る軸流回転機械は、
軸線周りに回転するロータと、
前記ロータを回転可能に収容するケーシングと、
前記ケーシングに対して周方向に間隔を空けて固定される複数の静翼、及び前記複数の静翼の各々の内周側端に連なる内周側静翼環、を含む静翼段と、
前記ロータに対して周方向に間隔を空けて固定される複数の動翼、及び前記複数の動翼の各々の外周側端に連なる外周側動翼環、を含む動翼段と、
前記外周側動翼環と前記ケーシングとの間をシールする動翼側シール装置と、を備え、
前記動翼側シール装置は、
前記ケーシングから前記外周側動翼環の外周面に向かって延在する環状のシールフィンと、
前記シールフィンの上流側に形成されるキャビティにおいて前記ケーシングに固定されるスワールブレーカと、を含み、
前記スワールブレーカは、
前記ロータの半径方向に沿った面を有する第1板状部材であって、前記軸線に沿って延在する第1板状部材、並びに、
前記ロータの半径方向に対して傾斜した面を有する第2板状部材又は第3板状部材であって、前記第1板状部材の内側端から前記ロータの回転方向の下流側に向かって延在する第2板状部材、又は前記第2板状部材よりも上流側において前記第1板状部材の内側端から前記ロータの回転方向の上流側に向かって延在する第3板状部材、を含む。
上記(4)の構成によれば、シールフィンの上流側でケーシングに固定されるスワールブレーカは、第1板状部材がロータの半径方向に沿った面を有するとともに軸線方向に沿って配置され、この第1板状部材を介して該第1板状部材の内側端からロータの回転方向の下流側に向けて第2板状部材が延在する。又は、第1板状部材の内側端からロータの回転方向の上流側に向けて第3板状部材が延在する。即ち、ロータの周方向に対して螺旋を描きつつ流れるスワール流に、軸線方向及び周方向において異なる何れかの位置で直交し得るようにしてスワールブレーカを配置することができるので、スワール流を効果的に抑制して不安定振動の発生を防止することができる。
(5)幾つかの実施形態では、上記(4)に記載の構成において、
前記スワールブレーカは、
前記第1板状部材、前記第2板状部材及び前記第3板状部材を含む。
上記(5)の構成によれば、ロータの周方向に対して螺旋を描きつつ流れるスワール流に、ロータの軸線方向及び周方向において異なる複数の位置で直交し得るようにしてスワールブレーカを配置することができるので、スワール流をより効果的に抑制して不安定振動の発生を防止することができる。
(6)幾つかの実施形態では、上記(3)及び(5)の何れか一方に記載の構成において、
前記スワールブレーカは、1枚のプレート部材からなり、
前記第2板状部材および前記第3板状部材は、互いに独立して前記第1板状部材に対して屈曲可能に構成されるとともに、
前記第1板状部材の前記内側端には、前記第2板状部材を前記ロータの回転方向の下流側に向かって延在せしめる第1屈曲部と、前記第3板状部材を前記ロータの回転方向の上流側に向かって延在せしめる第2屈曲部とが形成される。
上記(6)の構成によれば、第1板状部材、第2板状部材及び第3板状部材を含むスワールブレーカを、一枚のプレート部材により一体的に形成することができる。第2板状部材は第3板状部材に影響を与えることなく、第1屈曲部を介してロータの回転方向の下流側に向けて延在する。他方の第3板状部材は第2板状部材に影響を与えることなく第2屈曲部を介してロータの回転方向の上流側に向けて延在する。よって、上記(3)及び(5)の何れか一つで述べた効果を奏する軸流回転機械を、簡易な構成で容易に実現することができる。このようなスワールブレーカは、例えば、1枚のプレート部材を用意し、第1屈曲部を介して第2板状部材をロータの回転方向の一方である下流側に屈曲させ、第3板状部材をロータの回転方向の他方である上流側に屈曲させることで形成され得る。よって、施工性が向上し、組み立て容易な軸流回転機械を得ることができる。
(7)幾つかの実施形態では、上記(2)〜(6)の何れか一つに記載の構成において、
前記第2板状部材は、前記軸線の下流側ほど前記第1板状部材の内側端から前記ロータの回転方向の下流側への距離が長くなるように延在し、
前記第3板状部材は、前記軸線の上流側ほど前記第1板状部材の内側端から前記ロータの回転方向の上流側への距離が長くなるように延在するように形成される。
第3板状部材よりもロータの軸線方向及び回転方向においてそれぞれ下流側に位置する第2板状部材には、同上流側且つ半径方向の内側から外側に向けてスワール流が衝突する。したがって、第2板状部材に衝突したスワール流の多くは、軸線方向の下流側且つ回転方向の下流側に流れると考えられる。一方、第3板状部材には、ロータの軸線方向の下流側、回転方向の上流側且つ半径方向の外側から同内側に向けてスワール流が衝突する。したがって、第3板状部材に衝突したスワール流の多くは、軸線方向の上流側に流れ、且つ第1板状部材の存在等により回転方向の上流側に向かう流れ成分が生じると考えられる。
この点、上記(7)の構成によれば、ロータの軸線方向の下流側ほど第2板状部材がロータの回転方向のより下流側まで延在し、軸線の上流側ほど第3板状部材がロータの回転方向のより上流側まで延在する構成により、ロータの周方向を中心として旋回するスワール流に対して、少ない面積でも適切に直交し得るようにしてスワールブレーカを構成することができ、スワール流を阻止することができる。
(8)幾つかの実施形態では、上記(1)〜(7)の何れか一つに記載の構成において、
前記シールフィンの上流側において、前記ケーシングから前記ロータの半径方向の内側に向かって延在する環状の下流側ガイド部材をさらに備え、
前記下流側ガイド部材の上流側面は、前記下流側ガイド部材の前記ロータの半径方向に沿った長さが前記軸線方向の上流側に向かうにつれて次第に小さく、且つ、前記キャビティに向けて凹となる湾曲状に形成される。
上記(8)の構成によれば、下流側ガイド部材の上流側面により、主流路から逸れた作動流体を、半径方向の外側に向かうにつれて軸線の上流側に案内することができる。つまり、スワール流がロータの周方向を中心に旋回するように導くことができるから、本開示のスワールブレーカがスワール流の少なくとも一部に直交し得るように配置されることを補助し、スワール流を効果的に抑制することができる。
(9)幾つかの実施形態では、上記(8)の何れか一つに記載の構成において、
前記下流側ガイド部材の上流側において、前記ケーシングから前記ロータの半径方向の内側に向かって延在する環状の上流側ガイド部材をさらに備え、
前記上流側ガイド部の下流側面は、前記上流側ガイド部材の前記ロータの半径方向に沿った長さが前記軸線方向の下流側に向かうにつれて次第に小さく、且つ、前記キャビティに向けて凹となる湾曲状に形成される。
上記(9)の構成によれば、上流側ガイド部材の下流側面により、主流路から逸れてシールフィンの上流側面及びケーシングの内周に案内されて軸線の上流側に導かれた作動流体を、軸線の上流側に向かうにつれて半径方向の内側に案内することができる。つまり、スワール流がロータの周方向を中心に旋回するように導くことができるから、本開示のスワールブレーカがスワール流の少なくとも一部に直交し得るように配置されることを補助し、スワール流を効果的に抑制することができる。
(10)幾つかの実施形態では、上記(1)〜(9)の何れか一つに記載の構成において、
前記シールフィンの上流側において、前記ケーシングから前記ロータの半径方向の内側に向かって延在する環状のステータ側ガイド部材をさらに備え、
前記ステータ側ガイド部材の上流側面は、
前記ロータの半径方向に沿って延在する基端側面と、
前記基端側面における前記半径方向の内側に接続される先端側面であって、前記ステータ側ガイド部の前記ロータの半径方向に沿った長さが前記軸線方向の上流側に向かうにつれて次第に小さく、且つ、前記キャビティに向けて凹となる湾曲状になる先端側面と、を有するように形成される。
上記(10)の構成によれば、ステータ側ガイド部材に設けられた湾曲状の先端側面により、主流路から逸れて外周側動翼環の外周より半径方向外側に達した作動流体を、シールフィンの上流側で外周側動翼環の外周に向かうように旋回させて効率的に渦を発生させることができる。これにより、シールフィンと外周側動翼環との隙間を通って軸線の下流側に向かう作動流体の漏れを低減することができるから、シール機能の維持又は向上を図ることができる。
(11)幾つかの実施形態では、上記(10)に記載の構成において、
前記ステータ側ガイド部材の上流側において、前記外周側動翼環の前記外周面から前記ロータの半径方向の外側に向かって延在する環状のロータ側ガイド部材をさらに備え、
前記ロータ側ガイド部材の下流側面は、前記ロータ側ガイド部の前記ロータの半径方向に沿った長さが前記軸線方向の下流側に向かうにつれて次第に小さく、且つ、前記ステータ側ガイド部材の前記先端側面に向けて凹となる湾曲状に形成される。
上記(11)の構成によれば、ロータ側ガイド部材により、主流路から逸れて外周側動翼環の上流側面に沿って半径方向外側に達した作動流体が、シールフィンの上流側で外周側動翼環の外周に向かうように旋回させて効率的に渦を発生させることができる。これにより、シールフィンと外周側動翼環との隙間を通って軸線の下流側に向かう作動流体の漏れを低減することができるから、シール機能の維持又は向上を図ることができる。
(12)本開示の少なくとも一実施形態に係る軸流回転機械は、
軸線周りに回転するロータと、
前記ロータを回転可能に収容するケーシングと、
前記ケーシングに対して周方向に間隔を空けて固定される複数の静翼、及び前記複数の静翼の各々の内周側端に連なる内周側静翼環、を含む静翼段と、
前記ロータに対して周方向に間隔を空けて固定される複数の動翼、及び前記複数の動翼の各々の外周側端に連なる外周側動翼環、を含む動翼段と、
前記内周側静翼環と前記ロータとの間をシールする静翼側シール装置と、を備え、
前記静翼側シール装置は、
前記内周側静翼環の内周面から前記ロータに向かって延在する環状のシールフィンと、
前記シールフィンの上流側において前記内周側静翼環に対して固定されるスワールブレーカと、を含み、
前記スワールブレーカは、
前記ロータの半径方向に沿った面を有する第1板状部材であって、前記第1板状部材の上流縁が下流縁よりも前記ロータの回転方向の上流側に位置するように前記軸線に対して交差する方向に延在する第1板状部材を含む。
上記(12)の構成によれば、上記(1)で述べた動翼段でのスワール流抑制効果を静翼段においても享受することができる。即ち、シールフィンの上流側で内周側静翼環に固定されるスワールブレーカの第1板状部材は、ロータの半径方向に沿った面を有するとともに、上流縁が下流縁よりもロータの回転方向の上流側に位置するようにして配置される。つまり、シールフィンの上流側をロータの周方向に流れるスワール流であって、さらにロータの周方向を中心として旋回するスワール流の少なくとも一部に直交するようにして第1板状部材が配置され得るから、スワール流を効果的に抑制することができるのである。
本発明の幾つかの実施形態によれば、軸流回転機械においてスワール流を防止乃至抑制することができる。
一実施形態に係る軸流回転機械の構成例を示す概略図である。 一実施形態に係る軸流回転機械のキャビティ内に生じるスワール流を概略的に示す模式図である。 動翼とケーシングとのシール部を流れる作動流体の流れを示す側断面図である。 一実施形態におけるスワールブレーカの配置を示す模式図である。 軸線に対するスワールブレーカの第1板状部材の取付角度とシールフィンにおけるスワール速度との関係を示す図である。 (a)は一実施形態におけるキャビティ内の作動流体の流れを示す側断面図、(b)は一実施形態におけるスワールブレーカの配置を示す斜視図であり、(c)は(b)におけるA方向視およびB方向視を示す図である。 (a)は一実施形態におけるキャビティ内の作動流体の流れを示す側断面図、(b)は一実施形態におけるスワールブレーカの配置を示す斜視図であり、(c)は(b)におけるA方向視およびB方向視を示す図である。 (a)は一実施形態におけるキャビティ内の作動流体の流れを示す側断面図、(b)は一実施形態におけるスワールブレーカの配置を示す斜視図であり、(c)は(b)におけるA方向視およびB方向視を示す図である。 (a)は一実施形態におけるキャビティ内の作動流体の流れを示す側断面図、(b)は一実施形態におけるスワールブレーカの配置を示す斜視図であり、(c)は(b)におけるA方向視およびB方向視を示す図である。 (a)は一実施形態におけるキャビティ内の作動流体の流れを示す側断面図であり、(b)は一実施形態におけるスワールブレーカの配置を示す側面図である。 (a)は一実施形態におけるキャビティ内の作動流体の流れを示す側断面図であり、(b)は一実施形態におけるスワールブレーカの配置を示す側面図である。
以下、添付図面に従って本発明の例示的な実施形態について説明する。ただし、以下に示す幾つかの実施形態に記載された構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
また例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
図1は、一実施形態に係る軸流回転機械の構成例を示す概略図である。図2は、一実施形態に係る軸流回転機械のキャビティ内に生じるスワール流を概略的に示す模式図である。図3は、動翼とケーシングとのシール部を流れる作動流体の流れを示す側断面図である。
図1〜3に示すように、本開示の少なくとも一実施形態に係る軸流回転機械1は、軸線X周りに回転するロータ2と、ロータ2を回転可能に収容するケーシング3と、ケーシング3に対して周方向Pに間隔を空けて固定される複数の静翼11、及び複数の静翼11の各々の内周側端11Aに連なる内周側静翼環12、を含む静翼段10と、ロータ2に対して周方向Pに間隔を空けて固定される複数の動翼21、及び複数の動翼21の各々の外周側端21Aに連なる外周側動翼環22、を含む動翼段20と、外周側動翼環22とケーシング3との間をシールする動翼側シール装置23と、少なくとも一つのノズル4Aを含むノズル構造体4と、を備えている。
幾つかの実施形態に係る軸流回転機械1は、例えば、発電プラントや船舶等の動力系に用いられる蒸気タービンやガスタービン等の軸流タービンとして適用され得る。
ロータ2は、図示しない発電機または船舶等の動力伝達系に連結されていてもよい。ロータ2は、当該ロータ2の回転力を発電機で電気エネルギーに変換したり船舶等の推進力として利用したりするべく、駆動力を伝達する。幾つかの実施形態において、ロータ2には、複数の動翼21が固定されていてもよい。これらの動翼21は、ロータ2の外周面において、該ロータ2の周方向に沿って間隔をあけて放射状に配置されていてもよい。
ケーシング3には、ガス又は蒸気の供給管(不図示)が連結されており、燃焼器(不図示)において生成された燃焼ガス、又は、ボイラ(不図示)で生成された蒸気が、作動流体として、軸流回転機械1に供給されるようになっている。軸流回転機械1に供給された作動流体は、複数のタービン段落のうちの最も上流側のタービン段落に案内されるようになっている。
ケーシング3には、複数のノズル構造体4が支持されている。これらのノズル構造体4と動翼21とは、ロータ2の軸方向に交互に配置される。そして、一のノズル構造体4と、当該一のノズル構造体4の下流側に隣り合って配置された一の動翼21とにより、一のタービン段落が構成される。軸流回転機械1は、このようなタービン段落が、ロータ2の軸方向に複数設けられている。このようにして、ガス又は蒸気の供給管を介して供給された作動流体が複数のタービン段落を通過して、動翼21に対して仕事を行い、ロータ2が回転駆動される。そして、最終段落の動翼21を通過した作動流体は、排気流路を通って軸流回転機械1の外部へと排出されるようになっている。
幾つかの実施形態において、ケーシング3は、ケーシング本体3Aに加えて、動翼側シール装置23を構成するシールフィン24(後述)を支持する支持体3Bを含み得る(図1参照)。
動翼側シール装置23は、ケーシング3から外周側動翼環22の外周面22Aに向かって延在する環状のシールフィン24と、シールフィン24の上流側に形成されるキャビティ6においてケーシング3に固定されるスワールブレーカ30と、を含む。
シールフィン24は、動翼側シール装置23における一以上のラビリンスシールの最上流側に配置されており、軸線X周りに環状に配置されている。なお、本開示に示す幾つかの実施形態では、シールフィン24を含む一以上のラビリンスシールにより、動翼段20又は静翼段10それぞれの上流側と下流側との間における作動流体の漏れを防止するための部分をシール部8と称する。
スワールブレーカ30は、ロータ2の周方向Pに沿って形成されるスワール流Sを阻止するためのものであり、キャビティ6内でケーシング3又はロータ2に支持されている。幾つかの実施形態では、ケーシング3の内周に沿って間隔をあけて放射状に配置されていてもよい。
そして、本開示の一実施形態におけるスワールブレーカ30は、ロータ2の半径方向Dに沿った面を有する第1板状部材31であって、第1板状部材31の上流縁31Aが下流縁31Bよりもロータ2の回転方向Rの上流側に位置するように軸線Xに対して交差する方向に延在する第1板状部材31を含む(図4〜図7参照)。
ここで、軸流回転機械1における作動流体の流れについて説明する。
図1〜4に示すように、図示しない燃焼器で生成された燃焼ガスや、図示しないボイラで生成された蒸気等の作動流体が軸流回転機械1に供給されると、この作動流体は、隣接する動翼21同士の隙間と、ノズル4Aとにより、ロータ2の軸方向に沿って形成される主流路Mを通って上流側から下流側へと案内される。そして、この作動流体の運動エネルギーを動翼21経由で受けたロータ2が回転方向R(図2参照)に向けて回転する。また、上流側の作動流体は下流側の作動流体よりも高圧である。このため、ケーシング3と外周側動翼環22との隙間においては、作動流体がシールフィン24を含む少なくとも一のラビリンスシールと外周側動翼環22との隙間を通って下流側へと案内され、主流路Mへと戻される。
軸流回転機械1の運転の際、作動流体がノズルを通過した際に与えられた旋回流成分を有したまま流入することにより、回転方向Rに向かう作動流体の流れすなわちスワール流S(図2〜4参照)が形成される。ロータ2の外周に形成される環状の凹部と、該凹部に収容されるノズル構造体4の内輪部との隙間をなす所謂キャビティ6内においても同様に、主流路Mから逸れた作動流体にスワール流Sが発生し、軸周りにロータの偏心方向と異なる方向にピークを有する正弦波状の圧力分布が生じ得る。この圧力分布に基づくシール励振力に起因して、動翼段20とケーシング3との間のシール部8では偏心方向と垂直な方向への流体力によってロータ2の自励振動が生じ得る。このような振動を抑制するべくスワールブレーカ30が用いられるが、キャビティ6内のスワール流Sは複雑であり、適切な配置でなければスワールブレーカ30の効果が十分に得られない。
ここで、本発明者らの鋭意研究によれば、スワール流Sは単にロータの周方向に向かうだけではなく、周方向に向かいつつさらに3次元的に螺旋を描く螺旋流であることが判明した(図2〜4及び図6(a)参照)。すなわち、スワール流Sは、ロータの半径方向及び軸線方向への3次元的な螺旋移動を伴いながらロータの周方向(回転方向)に向かって流れる。
図5に、軸線Xに対するスワールブレーカ30の第1板状部材31の取付角度とシールフィン24におけるスワール速度との関係を示す。スワールブレーカ(SB)30のヨー角は、第1板状部材31の上流縁31Aを下流縁31Bよりもロータ2の回転方向Rの上流側に位置するように配置した際に、上流縁31Aと下流縁31Bとを結ぶ線が軸線Xとなす鋭角側の角度である。図5からわかるように、上流縁31Aを下流縁31Bよりも回転方向Rの上流側に配置するようにして、軸線Xに対して適切なヨー角をつけて第1板状部材31を配置することで、シールフィン24におけるスワール速度を抑制することができることが判明したものである。
すなわち、上記の構成によれば、シールフィン24の上流側でケーシング3に固定されるスワールブレーカ30の第1板状部材31は、ロータ2の半径方向Dに沿った面を有するとともに、上流縁31Aが下流縁31Bよりもロータ2の回転方向Rの上流側に位置するようにして配置されから、シールフィン24の上流側をロータ2の周方向Pに流れ、さらにロータ2の周方向Pを中心として螺旋状に旋回するスワール流Sの少なくとも一部に直交するようにして第1板状部材31が配置され得るから、スワール流Sを効果的に抑制することができるのである。
幾つかの実施形態では、第1板状部材31の延在方向と軸線Xとの交差角が30°以上60°以下となるようにしてスワールブレーカ30を配置してもよい。上記第1板状部材31と軸線Xとの交差角は、例えば、45°であってもよい。
本発明者らの鋭意研究の結果、ロータ2の軸線Xに対して第1板状部材31を30〜60°の傾斜角で配置することで、上記シールフィン24におけるスワール流Sの速度を大幅に抑制できることが判明した(図5参照)。つまり、ロータ2の半径方向D視にて、第1板状部材31の上記上流縁31A及び下流縁31Bを結ぶ線とロータ2の軸線Xとのなす鋭角側の交差角が30°以上60°以下の場合にスワール流Sを効果的に抑制できる。よって、上記構成によれば、軸線Xに対して30〜60°の傾斜角で第1板状部材31が配置されるから、スワール流Sを適切に抑制できる軸流回転機械1を得ることができる。
図7、図8及び図9において、それぞれ(a)は一実施形態におけるキャビティ6内の作動流体の流れを示す側断面図、(b)は一実施形態におけるスワールブレーカの配置を示す斜視図であり、(c)は(b)におけるA方向視およびB方向視を示す図である。
幾つかの実施形態において、スワールブレーカ30は、ロータ2の半径方向Dに対して傾斜した面を有する第2板状部材32および第3板状部材33であって第1板状部材31の内側端からロータ2の回転方向Rの下流側に向かって延在する第2板状部材32、および第2板状部材32よりも上流側において第1板状部材31の内側端からロータ2の回転方向Rの上流側に向かって延在する第3板状部材33、をさらに含んでもよい。
上記の構成によれば、第1板状部材31を介して該第1板状部材31の内側端31Cからロータ2の回転方向Rの下流側に向けて延在する第2板状部材32と、同内側端31Cからロータ2の回転方向Rの上流側に向けて延在する第3板状部材33とにより、ロータ2の周方向Pに対して螺旋を描きつつ流れるスワール流Sに、周方向Pの異なる位置で直交し得るようにしてスワールブレーカ30を配置することができる。従って、より効果的にスワール流Sを抑制し、不安定振動の発生を防止することができる。
図8及び図9に示すように、幾つかの実施形態において、スワールブレーカ30は、ロータ2の半径方向Dに沿った面を有する第1板状部材31であって、軸線Xに沿って延在する第1板状部材31、並びに、ロータ2の半径方向Dに対して傾斜した面を有する第2板状部材32又は第3板状部材33であって、第1板状部材31の内側端31Cからロータ2の回転方向Rの下流側に向かって延在する第2板状部材32、又は第2板状部材32よりも上流側において第1板状部材31の内側端31Cからロータ2の回転方向Rの上流側に向かって延在する第3板状部材33、を含んでもよい。
上記の構成によれば、シールフィン24の上流側でケーシング3に固定されるスワールブレーカ30は、第1板状部材31がロータ2の半径方向Dに沿った面を有するとともに軸線X方向に沿って配置され、この第1板状部材31を介して該第1板状部材31の内側端31Cからロータ2の回転方向Rの下流側に向けて第2板状部材32が延在する。又は、第1板状部材31の内側端31Cからロータ2の回転方向の上流側に向けて第3板状部材33が延在する。即ち、ロータ2の周方向Pに対して螺旋を描きつつ流れるスワール流Sに、軸線X方向及び周方向Pにおいて異なる何れかの位置で直交し得るようにしてスワールブレーカ30を配置することができるので、スワール流Sを効果的に抑制して不安定振動の発生を防止することができる。
幾つかの実施形態において、スワールブレーカ30は、第1板状部材31、第2板状部材32及び第3板状部材33を含んでもよい。このようにすれば、ロータ2の周方向Pに対して螺旋を描きつつ流れるスワール流Sに、ロータ2の軸線X方向及び周方向Pにおいて異なる複数の位置で直交し得るようにしてスワールブレーカ30を配置することができるので、スワール流Sをより効果的に抑制して不安定振動の発生を防止することができる。
図9に非限定的に例示するように、幾つかの実施形態において、スワールブレーカ30は、1枚のプレート部材30Aからなり、第2板状部材32および第3板状部材33は、互いに独立して第1板状部材31に対して屈曲可能に構成されるとともに、第1板状部材31の内側端31Cには、第2板状部材32をロータ2の回転方向Rの下流側に向かって延在せしめる第1屈曲部32Aと、第3板状部材33をロータ2の回転方向Rの上流側に向かって延在せしめる第2屈曲部33Aとが形成されてもよい。
上記の構成によれば、第1板状部材31、第2板状部材32及び第3板状部材33を含むスワールブレーカ30を、一枚のプレート部材30Aにより一体的に形成することができる。第2板状部材32は第3板状部材33に影響を与えることなく、第1屈曲部32Aを介してロータ2の回転方向Rの下流側に向けて延在する。他方の第3板状部材33は第2板状部材32に影響を与えることなく第2屈曲部33Aを介してロータ2の回転方向Rの上流側に向けて延在する。よって、上記の何れか一つの実施形態で述べた効果を奏する軸流回転機械1を、簡易な構成で容易に実現することができる。
このようなスワールブレーカ30は、例えば、1枚のプレート部材30Aを用意し、第2板状部材32と第3板状部材33との間に切れ目又は隙間を形成し、第1屈曲部32Aを介して第2板状部材32をロータ2の回転方向Rの一方である下流側に屈曲させ、第3板状部材33をロータ2の回転方向Rの他方である上流側に屈曲させることで形成され得る。こうすることで、施工性が向上し、組み立て容易な軸流回転機械1を得ることができる。
図9に非限定的に例示するように、幾つかの実施形態において、第2板状部材32は、軸線Xの下流側ほど第1板状部材31の内側端31Cからロータ2の回転方向Rの下流側への距離が長くなるように延在し、第3板状部材33は、軸線Xの上流側ほど第1板状部材31の内側端31Cからロータ2の回転方向Rの上流側への距離が長くなるように延在するように形成されてもよい。
第3板状部材33よりもロータ2の軸線X方向及び回転方向Rにおいてそれぞれ下流側に位置する第2板状部材32には、同上流側且つ半径方向Dの内側から外側に向けてスワール流Sが衝突する。したがって、第2板状部材32に衝突したスワール流Sの多くは、軸線X方向の下流側且つ回転方向Rの下流側に流れると考えられる。一方、第3板状部材33には、ロータ2の軸線X方向の下流側、回転方向Rの上流側且つ半径方向Dの外側から同内側に向けてスワール流Sが衝突する。したがって、第3板状部材33に衝突したスワール流Sの多くは、軸線X方向の上流側に流れ、且つ第1板状部材31の存在等により回転方向Rの上流側に向かう流れ成分が生じると考えられる。
この点、上記の構成によれば、ロータ2の軸線X方向の下流側ほど第2板状部材32がロータ2の回転方向Rのより下流側まで延在し、軸線の上流側ほど第3板状部材33がロータ2の回転方向Rのより上流側まで延在する構成により、ロータ2の周方向Pを中心として旋回するスワール流Sに対して、少ない面積でも適切に直交し得るようにしてスワールブレーカ30を構成することができ、スワール流Sを阻止することができる。
図10(a)は一実施形態におけるキャビティ内の作動流体の流れを示す側断面図であり、図10(b)は一実施形態におけるスワールブレーカの配置を示す側面図である。
幾つかの実施形態では、シールフィン24の上流側において、ケーシング3からロータ2の半径方向Dの内側に向かって延在する環状の下流側ガイド部材40をさらに備えていてもよい(図10(b)参照)。
下流側ガイド部材40の上流側面41は、下流側ガイド部材40のロータ2の半径方向Dに沿った長さが軸線X方向の上流側に向かうにつれて次第に小さく、且つ、キャビティ6に向けて凹となる湾曲状に形成されてもよい。
上記の構成によれば、下流側ガイド部材40の上流側面41により、主流路Mから逸れた作動流体を、半径方向Dの外側に向かうにつれて軸線Xの上流側に案内することができる。つまり、スワール流Sがロータ2の周方向Pを中心に旋回するように導くことができるから、本開示のスワールブレーカ30がスワール流Sの少なくとも一部に直交し得るように配置されることを補助し、スワール流Sを効果的に抑制することができる。
幾つかの実施形態では、下流側ガイド部材40の上流側において、ケーシング3からロータ2の半径方向Dの内側に向かって延在する環状の上流側ガイド部材50をさらに備えていてもよい(図10(b)参照)。
上流側ガイド部材50の下流側面51は、上流側ガイド部材50のロータ2の半径方向Dに沿った長さが軸線X方向の下流側に向かうにつれて次第に小さく、且つ、キャビティ6に向けて凹となる湾曲状に形成されてもよい。
上記の構成によれば、上流側ガイド部材50の下流側面51により、主流路Mから逸れてシールフィン24の上流側面及びケーシング3の内周に案内されて軸線Xの上流側に導かれた作動流体を、軸線Xの上流側に向かうにつれて半径方向Dの内側に案内することができる。つまり、スワール流Sがロータ2の周方向Pを中心に旋回するように導くことができるから、本開示のスワールブレーカ30がスワール流Sの少なくとも一部に直交し得るように配置されることを補助し、スワール流Sを効果的に抑制することができる。
図11(a)は一実施形態におけるキャビティ内の作動流体の流れを示す側断面図であり、図11(b)は一実施形態におけるスワールブレーカの配置を示す側面図である。
幾つかの実施形態では、シールフィン24の上流側において、ケーシング3からロータの半径方向Dの内側に向かって延在する環状のステータ側ガイド部材60をさらに備えていてもよい(図11(b)参照)。
ステータ側ガイド部材60の上流側面41は、ロータ2の半径方向Dに沿って延在する基端側面61と、基端側面61における半径方向Dの内側に接続される先端側面62であって、ステータ側ガイド部材60のロータ2の半径方向Dに沿った長さが軸線X方向の上流側に向かうにつれて次第に小さく、且つ、キャビティ6に向けて凹となる湾曲状になる先端側面62と、を有するように形成されてもよい。
上記の構成によれば、ステータ側ガイド部材60に設けられた湾曲状の先端側面62により、主流路Mから逸れて外周側動翼環22の外周より半径方向Dの外側に達した作動流体を、シールフィン24の上流側で外周側動翼環22の外周に向かうように旋回させて効率的にシールクリアランス直前に小渦を発生させることができる。これにより、シールフィン24と外周側動翼環22との隙間を通って軸線Xの下流側に向かう作動流体の流れに縮流効果を与えることで、漏れを低減することができるから、シール機能の維持又は向上を図ることができる。
幾つかの実施形態では、ステータ側ガイド部材60の上流側において、外周側動翼環22の外周面22Aからロータ2の半径方向Dの外側に向かって延在する環状のロータ側ガイド部材70をさらに備えていてもよい(図11(b)参照)。
ロータ側ガイド部材70の下流側面71は、ロータ側ガイド部材のロータ2の半径方向Dに沿った長さが軸線X方向の下流側に向かうにつれて次第に小さく、且つ、ステータ側ガイド部材60の先端側面62に向けて凹となる湾曲状に形成されていてもよい。
上記の構成によれば、ロータ側ガイド部材70により、主流路Mから逸れて外周側動翼環22の上流側面41に沿って半径方向D外側に達した作動流体が、シールフィン24の上流側で外周側動翼環22の外周に向かうように旋回させて効率的に渦を発生させることができる。これにより、シールフィン24と外周側動翼環22との隙間を通って軸線Xの下流側に向かう作動流体の漏れを低減することができるから、シール機能の維持又は向上を図ることができる。
なお、幾つかの実施形態において、スワールブレーカ30は、軸線Xを含む断面視にて該スワールブレーカ30の内周側端30Bから該スワールブレーカ30の下流側端30Cにかけて外周側動翼環22に向けて凹状の湾曲面を有する切欠部30D、を含んでもよい(図11(b)参照)。切欠部30Dは、スワールブレーカ30と共に周方向Pに沿って間隔をあけて配置されていてもよいし、周方向Pに沿って環状に設けられていてもよい。このようにすれば、シールフィン24の上流側で外周側動翼環22の外周に向かうように旋回させて効率的に渦を発生させることができ、上記のようにシール機能の維持又は向上を図ることができる。
本開示の少なくとも一実施形態に係る軸流回転機械1は、軸線周りに回転するロータ2と、ロータ2を回転可能に収容するケーシング3と、ケーシング3に対して周方向Pに間隔を空けて固定される複数の静翼11、及び複数の静翼11の各々の内周側端11Aに連なる内周側静翼環12、を含む静翼段10と、ロータ2に対して周方向Pに間隔を空けて固定される複数の動翼21、及び複数の動翼21の各々の外周側端21Aに連なる外周側動翼環22、を含む動翼段20と内周側静翼環12とロータ2との間をシールする静翼側シール装置13と、を備えていてもよい。また、軸流回転機械1は、少なくとも一つのノズル4Aを含むノズル構造体4を備えている。
図1〜3に示すように、本開示の少なくとも一実施形態に係る軸流回転機械1は、軸線X周りに回転するロータ2と、ロータ2を回転可能に収容するケーシング3と、ケーシング3に対して周方向Pに間隔を空けて固定される複数の静翼11、及び複数の静翼11の各々の内周側端11Aに連なる内周側静翼環12、を含む静翼段10と、ロータ2に対して周方向Pに間隔を空けて固定される複数の動翼21、及び複数の動翼21の各々の外周側端21Aに連なる外周側動翼環22、を含む動翼段20と、外周側動翼環22とケーシング3との間をシールする動翼側シール装置23と、を備えている。
幾つかの実施形態に係る軸流回転機械1は、例えば、発電プラントや船舶等の動力系に用いられる蒸気タービンやガスタービン等の軸流タービンとして適用され得る。
ロータ2は、図示しない発電機または船舶等の動力伝達系に連結されていてもよい。ロータ2は、当該ロータ2の回転力を発電機で電気エネルギーに変換したり船舶等の推進力として利用したりするべく、駆動力を伝達する。幾つかの実施形態において、ロータ2には、複数の動翼21が固定されていてもよい。これらの動翼21は、ロータ2の外周面において、該ロータ2の周方向に沿って間隔をあけて放射状に配置されていてもよい。
ケーシング3には、ガス又は蒸気の供給管(不図示)が連結されており、燃焼器(不図示)において生成された燃焼ガス、又は、ボイラ(不図示)で生成された蒸気が、作動流体として、軸流回転機械1に供給されるようになっている。軸流回転機械1に供給された作動流体は、複数のタービン段落のうちの最も上流側のタービン段落に案内されるようになっている。
ケーシング3には、複数のノズル構造体4が支持されている。これらのノズル構造体4と動翼21とは、ロータ2の軸方向に交互に配置される。そして、一のノズル構造体4と、当該一のノズル構造体4の下流側に隣り合って配置された一の動翼21とにより、一のタービン段落が構成される。軸流回転機械1は、このようなタービン段落が、ロータ2の軸方向に複数設けられている。このようにして、ガス又は蒸気の供給管を介して供給された作動流体が複数のタービン段落を通過して、動翼21に対して仕事を行い、ロータ2が回転駆動される。そして、最終段落の動翼21を通過した作動流体は、排気流路を通って軸流回転機械1の外部へと排出されるようになっている。
幾つかの実施形態において、ケーシング3は、ケーシング本体3Aに加えて、動翼側シール装置23を構成するシールフィン14(後述)を支持する支持体3Bを含み得る(図1参照)。
静翼側シール装置13は、内周側静翼環12の内周面からロータ2に向かって延在する環状のシールフィン14と、シールフィン14の上流側において内周側静翼環12に対して固定されるスワールブレーカ30と、を含んでもよい。
シールフィン14は、静翼側シール装置13における一以上のラビリンスシールの最上流側に配置されており、軸線X周りに環状に配置されている。
スワールブレーカ30は、ロータ2の周方向Pに沿って形成されるスワール流Sを阻止するためのものであり、例えば内周側静翼環12の上流側面に支持されている。幾つかの実施形態では、内周側静翼環12の上流側面に沿って間隔をあけて放射状に配置されていてもよい。
そして、本開示の一実施形態におけるスワールブレーカ30は、ロータ2の半径方向Dに沿った面を有する第1板状部材31であって、第1板状部材31の上流縁31Aが下流縁31Bよりもロータ2の回転方向Rの上流側に位置するように軸線Xに対して交差する方向に延在する第1板状部材31を含む。
上記の構成によれば、上述した幾つかの実施形態で述べた動翼段20でのスワール流抑制効果を静翼段10においても享受することができる。即ち、シールフィン14の上流側で内周側静翼環12に固定されるスワールブレーカ30の第1板状部材31は、ロータ2の半径方向Dに沿った面を有するとともに、上流縁31Aが下流縁31Bよりもロータ2の回転方向Rの上流側に位置するようにして配置される。つまり、シールフィン14の上流側をロータ2の周方向Pに流れるスワール流Sであって、さらにロータ2の周方向Pを中心として旋回するスワール流Sの少なくとも一部に直交するようにして第1板状部材31が配置され得るから、スワール流Sを効果的に抑制することができるのである。
ここで、軸流回転機械1における作動流体の流れについて説明する。
図1〜4に示すように、図示しない燃焼器で生成された燃焼ガスや、図示しないボイラで生成された蒸気等の作動流体が軸流回転機械1に供給されると、この作動流体は、隣接する動翼21同士の隙間と、ノズル4Aとにより、ロータ2の軸方向に沿って形成される主流路Mを通って上流側から下流側へと案内される。そして、この作動流体の運動エネルギーを動翼21経由で受けたロータ2が回転方向R(図2参照)に向けて回転する。また、上流側の作動流体は下流側の作動流体よりも高圧である。このため、内周側静翼環12とロータ2との隙間においては、作動流体がシールフィン14を含む少なくとも一のラビリンスシールとロータ2の外周面との隙間を通って下流側へと案内され、主流路Mへと戻される。
軸流回転機械1の運転の際、作動流体がノズルを通過した際に与えられた旋回流成分を有したまま流入することにより、回転方向Rに向かう作動流体の流れすなわちスワール流S(図2〜4参照)が形成される。動翼段20と内周側静翼環12との隙間のキャビティ7内においても同様に、主流路Mから逸れた作動流体にスワール流Sが発生し、軸周りにロータの偏心方向と異なる方向にピークを有する正弦波状の圧力分布が生じ得る。この圧力分布に基づくシール励振力に起因して、静翼側シール装置13では偏心方向と垂直な方向への流体力によってロータ2の自励振動が生じ得る。このような振動を抑制するべくスワールブレーカ30が用いられるが、キャビティ6内のスワール流Sは複雑であり、適切な配置でなければスワールブレーカ30の効果が十分に得られない。
ここで、本発明者らの鋭意研究によれば、スワール流Sは単にロータの周方向に向かうだけではなく、周方向に向かいつつさらに3次元的に螺旋を描く螺旋流であることが判明した(図2〜4及び図6(a)参照)。すなわち、スワール流Sは、ロータの半径方向及び軸線方向への3次元的な螺旋移動を伴いながらロータの周方向(回転方向)に向かって流れる。
図5に、軸線Xに対するスワールブレーカ30の第1板状部材31の取付角度とシールフィン14におけるスワール速度との関係を示す。スワールブレーカ(SB)30のヨー角は、第1板状部材31の上流縁31Aを下流縁31Bよりもロータ2の回転方向Rの上流側に位置するように配置した際に、上流縁31Aと下流縁31Bとを結ぶ線が軸線Xとなす鋭角側の角度である。図5からわかるように、上流縁31Aを下流縁31Bよりも回転方向Rの上流側に配置するようにして、軸線Xに対して適切なヨー角をつけて第1板状部材31を配置することで、シールフィン14におけるスワール速度を抑制することができることが判明したものである。
すなわち、上記の構成によれば、シールフィン14の上流側でケーシング3に固定されるスワールブレーカ30の第1板状部材31は、ロータ2の半径方向Dに沿った面を有するとともに、上流縁31Aが下流縁31Bよりもロータ2の回転方向Rの上流側に位置するようにして配置されから、シールフィン14の上流側をロータ2の周方向Pに流れ、さらにロータ2の周方向Pを中心として螺旋状に旋回するスワール流Sの少なくとも一部に直交するようにして第1板状部材31が配置され得るから、スワール流Sを効果的に抑制することができるのである。
幾つかの実施形態では、第1板状部材31の延在方向と軸線Xとの交差角が30°以上60°以下となるようにしてスワールブレーカ30を配置してもよい。上記第1板状部材31と軸線Xとの交差角は、例えば、45°であってもよい。
本発明者らの鋭意研究の結果、ロータ2の軸線Xに対して第1板状部材31を30〜60°の傾斜角で配置することで、上記シールフィン14におけるスワール流Sの速度を大幅に抑制できることが判明した(図5参照)。つまり、ロータ2の半径方向D視にて、第1板状部材31の上記上流縁31A及び下流縁31Bを結ぶ線とロータ2の軸線Xとのなす鋭角側の交差角が30°以上60°以下の場合にスワール流Sを効果的に抑制できる。よって、上記構成によれば、軸線Xに対して30〜60°の傾斜角で第1板状部材31が配置されるから、スワール流Sを適切に抑制できる軸流回転機械1を得ることができる。
図7、図8及び図9において、それぞれ(a)は一実施形態におけるキャビティ内の作動流体の流れを示す側断面図、(b)は一実施形態におけるスワールブレーカの配置を示す斜視図であり、(c)は(b)におけるA方向視およびB方向視を示す図である。
幾つかの実施形態において、スワールブレーカ30は、ロータ2の半径方向Dに対して傾斜した面を有する第2板状部材32および第3板状部材33であって第1板状部材31の内側端からロータ2の回転方向Rの下流側に向かって延在する第2板状部材32、および第2板状部材32よりも上流側において第1板状部材31の内側端からロータ2の回転方向Rの上流側に向かって延在する第3板状部材33、をさらに含んでもよい。
上記の構成によれば、第1板状部材31を介して該第1板状部材31の内側端31Cからロータ2の回転方向Rの下流側に向けて延在する第2板状部材32と、同内側端31Cからロータ2の回転方向Rの上流側に向けて延在する第3板状部材33とにより、ロータ2の周方向Pに対して螺旋を描きつつ流れるスワール流Sに、周方向Pの異なる位置で直交し得るようにしてスワールブレーカ30を配置することができる。従って、より効果的にスワール流Sを抑制し、不安定振動の発生を防止することができる。
図8及び図9に示すように、幾つかの実施形態において、スワールブレーカ30は、ロータ2の半径方向Dに沿った面を有する第1板状部材31であって、軸線Xに沿って延在する第1板状部材31、並びに、ロータ2の半径方向Dに対して傾斜した面を有する第2板状部材32又は第3板状部材33であって、第1板状部材31の内側端31Cからロータ2の回転方向Rの下流側に向かって延在する第2板状部材32、又は第2板状部材32よりも上流側において第1板状部材31の内側端31Cからロータ2の回転方向Rの上流側に向かって延在する第3板状部材33、を含んでもよい。
上記の構成によれば、シールフィン14の上流側でケーシング3に固定されるスワールブレーカ30は、第1板状部材31がロータ2の半径方向Dに沿った面を有するとともに軸線X方向に沿って配置され、この第1板状部材31を介して該第1板状部材31の内側端31Cからロータ2の回転方向Rの下流側に向けて第2板状部材32が延在する。又は、第1板状部材31の内側端31Cからロータ2の回転方向の上流側に向けて第3板状部材33が延在する。即ち、ロータ2の周方向Pに対して螺旋を描きつつ流れるスワール流Sに、軸線X方向及び周方向Pにおいて異なる何れかの位置で直交し得るようにしてスワールブレーカ30を配置することができるので、スワール流Sを効果的に抑制して不安定振動の発生を防止することができる。
幾つかの実施形態において、スワールブレーカ30は、第1板状部材31、第2板状部材32及び第3板状部材33を含んでもよい。このようにすれば、ロータ2の周方向Pに対して螺旋を描きつつ流れるスワール流Sに、ロータ2の軸線X方向及び周方向Pにおいて異なる複数の位置で直交し得るようにしてスワールブレーカ30を配置することができるので、スワール流Sをより効果的に抑制して不安定振動の発生を防止することができる。
図9に非限定的に例示するように、幾つかの実施形態において、スワールブレーカ30は、1枚のプレート部材30Aからなり、第2板状部材32および第3板状部材33は、互いに独立して第1板状部材31に対して屈曲可能に構成されるとともに、第1板状部材31の内側端31Cには、第2板状部材32をロータ2の回転方向Rの下流側に向かって延在せしめる第1屈曲部32Aと、第3板状部材33をロータ2の回転方向Rの上流側に向かって延在せしめる第2屈曲部33Aとが形成されてもよい。
上記の構成によれば、第1板状部材31、第2板状部材32及び第3板状部材33を含むスワールブレーカ30を、一枚のプレート部材30Aにより一体的に形成することができる。第2板状部材32は第3板状部材33に影響を与えることなく、第1屈曲部32Aを介してロータ2の回転方向Rの下流側に向けて延在する。他方の第3板状部材33は第2板状部材32に影響を与えることなく第2屈曲部33Aを介してロータ2の回転方向Rの上流側に向けて延在する。よって、上記の何れか一つの実施形態で述べた効果を奏する軸流回転機械1を、簡易な構成で容易に実現することができる。
このようなスワールブレーカ30は、例えば、1枚のプレート部材30Aを用意し、第2板状部材32と第3板状部材33との間に切れ目又は隙間を形成し、第1屈曲部32Aを介して第2板状部材32をロータ2の回転方向Rの一方である下流側に屈曲させ、第3板状部材33をロータ2の回転方向Rの他方である上流側に屈曲させることで形成され得る。こうすることで、施工性が向上し、組み立て容易な軸流回転機械1を得ることができる。
図9に非限定的に例示するように、幾つかの実施形態において、第2板状部材32は、軸線Xの下流側ほど第1板状部材31の内側端31Cからロータ2の回転方向Rの下流側への距離が長くなるように延在し、第3板状部材33は、軸線Xの上流側ほど第1板状部材31の内側端31Cからロータ2の回転方向Rの上流側への距離が長くなるように延在するように形成されてもよい。
第3板状部材33よりもロータ2の軸線X方向及び回転方向Rにおいてそれぞれ下流側に位置する第2板状部材32には、同上流側且つ半径方向Dの内側から外側に向けてスワール流Sが衝突する。したがって、第2板状部材32に衝突したスワール流Sの多くは、軸線X方向の下流側且つ回転方向Rの下流側に流れると考えられる。一方、第3板状部材33には、ロータ2の軸線X方向の下流側、回転方向Rの上流側且つ半径方向Dの外側から同内側に向けてスワール流Sが衝突する。したがって、第3板状部材33に衝突したスワール流Sの多くは、軸線X方向の上流側に流れ、且つ第1板状部材31の存在等により回転方向Rの上流側に向かう流れ成分が生じると考えられる。
この点、上記の構成によれば、ロータ2の軸線X方向の下流側ほど第2板状部材32がロータ2の回転方向Rのより下流側まで延在し、軸線の上流側ほど第3板状部材33がロータ2の回転方向Rのより上流側まで延在する構成により、ロータ2の周方向Pを中心として旋回するスワール流Sに対して、少ない面積でも適切に直交し得るようにしてスワールブレーカ30を構成することができ、スワール流Sを阻止することができる。
図10(a)は一実施形態におけるキャビティ内の作動流体の流れを示す側断面図であり、図10(b)は一実施形態におけるスワールブレーカの配置を示す側面図である。
幾つかの実施形態では、シールフィン14の上流側において、ロータ2の外周面からロータ2の半径方向Dの外側に向かって延在する環状の下流側ガイド部材40をさらに備えていてもよい(図10(b)参照)。
下流側ガイド部材40の上流側面41は、下流側ガイド部材40のロータ2の半径方向Dに沿った長さが軸線X方向の上流側に向かうにつれて次第に小さく、且つ、キャビティ6に向けて凹となる湾曲状に形成されてもよい。
上記の構成によれば、下流側ガイド部材40の上流側面41により、主流路Mから逸れた作動流体を、半径方向Dの外側に向かうにつれて軸線Xの上流側に案内することができる。つまり、スワール流Sがロータ2の周方向Pを中心に旋回するように導くことができるから、本開示のスワールブレーカ30がスワール流Sの少なくとも一部に直交し得るように配置されることを補助し、スワール流Sを効果的に抑制することができる。
幾つかの実施形態では、下流側ガイド部材40の上流側において、ロータ2からロータ2の半径方向Dの外側に向かって延在する環状の上流側ガイド部材50をさらに備えていてもよい(図10(b)参照)。
上流側ガイド部材50の下流側面51は、上流側ガイド部材50のロータ2の半径方向Dに沿った長さが軸線X方向の下流側に向かうにつれて次第に小さく、且つ、キャビティ7に向けて凹となる湾曲状に形成されてもよい。
上記の構成によれば、上流側ガイド部材50の下流側面51により、主流路Mから逸れてシールフィン14の上流側面及びロータ2の外周に案内されて軸線Xの上流側に導かれた作動流体を、軸線Xの上流側に向かうにつれて半径方向Dの外側に案内することができる。つまり、スワール流Sがロータ2の周方向Pを中心に旋回するように導くことができるから、本開示のスワールブレーカ30がスワール流Sの少なくとも一部に直交し得るように配置されることを補助し、スワール流Sを効果的に抑制することができる。
図11(a)は一実施形態におけるキャビティ内の作動流体の流れを示す側断面図であり、図11(b)は一実施形態におけるスワールブレーカの配置を示す側面図である。
幾つかの実施形態では、シールフィン14の上流側において、内周側静翼環12からロータ2の半径方向Dの内側に向かって延在する環状のステータ側ガイド部材60をさらに備えていてもよい(図11(b)参照)。
ステータ側ガイド部材60の上流側面41は、ロータ2の半径方向Dに沿って延在する基端側面61と、基端側面61における半径方向Dの内側に接続される先端側面62であって、ステータ側ガイド部材60のロータ2の半径方向Dに沿った長さが軸線X方向の上流側に向かうにつれて次第に小さく、且つ、キャビティ7に向けて凹となる湾曲状になる先端側面62と、を有するように形成されてもよい。
上記の構成によれば、ステータ側ガイド部材60に設けられた湾曲状の先端側面62により、主流路Mから逸れて内周側静翼環12の内周より半径方向Dの内側に達した作動流体を、シールフィン14の上流側で内周側静翼環12の内周に向かうように旋回させて効率的に渦を発生させることができる。これにより、シールフィン14と内周側静翼環12との隙間を通って軸線Xの下流側に向かう作動流体の漏れを低減することができるから、シール機能の維持又は向上を図ることができる。
幾つかの実施形態では、ステータ側ガイド部材60の上流側において、ロータ2の外周面2Aからロータ2の半径方向Dの外側に向かって延在する環状のロータ側ガイド部材70をさらに備えていてもよい(図11(b)参照)。
ロータ側ガイド部材70の下流側面71は、ロータ側ガイド部材のロータ2の半径方向Dに沿った長さが軸線X方向の下流側に向かうにつれて次第に小さく、且つ、ステータ側ガイド部材60の先端側面62に向けて凹となる湾曲状に形成されていてもよい。
上記の構成によれば、ロータ側ガイド部材70により、主流路Mから逸れて内周側静翼環12の上流側面に沿って半径方向Dの内側に達した作動流体が、シールフィン14の上流側で内周側静翼環12の内周に向かうように旋回させて効率的にシールクリアランス直前に小渦を発生させることができる。これにより、シールフィン14とロータ2との隙間を通って軸線Xの下流側に向かう作動流体の流れに縮流効果を与えることで、漏れを低減することができるから、シール機能の維持又は向上を図ることができる。
なお、幾つかの実施形態において、スワールブレーカ30は、軸線Xを含む断面視にて該スワールブレーカ30の外周側端30Bから該スワールブレーカ30の下流側端30Cにかけて内周側静翼環12に向けて凹状の湾曲面を有する切欠部30D、を含んでもよい(図11(b)参照)。切欠部30Dは、スワールブレーカ30と共に周方向Pに沿って間隔をあけて配置されていてもよいし、周方向Pに沿って環状に設けられていてもよい。このようにすれば、シールフィン14の上流側で内周側静翼環12の内周に向かうように旋回させて効率的に渦を発生させることができ、上記のようにシール機能の維持又は向上を図ることができる。
以上述べた本開示の幾つかの実施形態によれば、軸流回転機械1においてスワール流Sを防止乃至抑制することができる。
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変更を加えた形態や、これらの形態を組み合わせた形態も含む。
1 軸流回転機械(軸流タービン)
2 ロータ
3 ケーシング
3A ケーシング本体
3B ケーシング支持体
4 ノズル構造体
6,7 キャビティ
8 シール部
10 静翼段
11 静翼
11A 内周側端
12 内周側静翼環
13 静翼側シール装置
14 シールフィン
20 動翼段
21 動翼
21A 外周側端
22 外周側動翼環
22A 外周面
23 動翼側シール装置
24 シールフィン
30 スワールブレーカ
30A プレート部材
31 第1板状部材
31A 上流縁
31B 下流縁
31C 内側端
32 第2板状部材
32A 第1屈曲部
33 第3板状部材
33A 第2屈曲部
40 下流側ガイド部材
41 上流側面
50 上流側ガイド部材
51 下流側面
60 ステータ側ガイド部材
61 基端側面
62 先端側面
70 ロータ側ガイド部材
71 下流側面
M 主流路
S スワール流
X 軸線方向
R 回転方向
D 半径方向
P 周方向

Claims (10)

  1. 軸線周りに回転するロータと、
    前記ロータを回転可能に収容するケーシングと、
    前記ケーシングに対して周方向に間隔を空けて固定される複数の静翼、及び前記複数の静翼の各々の内周側端に連なる内周側静翼環、を含む静翼段と、
    前記ロータに対して周方向に間隔を空けて固定される複数の動翼、及び前記複数の動翼の各々の外周側端に連なる外周側動翼環、を含む動翼段と、
    前記外周側動翼環と前記ケーシングとの間をシールする動翼側シール装置と、を備え、
    前記動翼側シール装置は、
    前記ケーシングから前記外周側動翼環の外周面に向かって延在する環状のシールフィンと、
    前記シールフィンの上流側に形成されるキャビティにおいて前記ケーシングに固定されるスワールブレーカと、を含み、
    前記スワールブレーカは、
    前記ロータの半径方向に沿った面を有する第1板状部材であって、前記軸線に沿って延在するか、又は、前記第1板状部材の上流縁が下流縁よりも前記ロータの回転方向の上流側に位置するように前記軸線に対して交差する方向に延在する第1板状部材、並びに、前記ロータの半径方向に対して傾斜した面を有する第2板状部材及び第3板状部材であって、前記第1板状部材の内側端から前記ロータの回転方向の下流側に向かって延在する第2板状部材、及び前記第1板状部材の内側端から前記ロータの回転方向の上流側に向かって延在する第3板状部材であって前記第2板状部材よりも上流側に配置される第3板状部材、を含む
    軸流回転機械。
  2. 前記第1板状部材の延在方向と前記軸線との交差角は30°以上60°以下である
    請求項1に記載の軸流回転機械。
  3. 前記第1板状部材は、前記軸線に沿って延在する
    請求項1に記載の軸流回転機械。
  4. 前記スワールブレーカは、1枚のプレート部材からなり、
    前記第2板状部材および前記第3板状部材は、互いに独立して前記第1板状部材に対して屈曲可能に構成されるとともに、
    前記第1板状部材の前記内側端には、前記第2板状部材を前記ロータの回転方向の下流側に向かって延在せしめる第1屈曲部と、前記第3板状部材を前記ロータの回転方向の上流側に向かって延在せしめる第2屈曲部とが形成される
    請求項1〜3の何れか一項に記載の軸流回転機械。
  5. 前記第2板状部材は、前記軸線の下流側ほど前記第1板状部材の内側端から前記ロータの回転方向の下流側への距離が長くなるように延在し、
    前記第3板状部材は、前記軸線の上流側ほど前記第1板状部材の内側端から前記ロータの回転方向の上流側への距離が長くなるように延在するように形成される
    請求項1〜4の何れか一項に記載の軸流回転機械。
  6. 軸線周りに回転するロータと、
    前記ロータを回転可能に収容するケーシングと、
    前記ケーシングに対して周方向に間隔を空けて固定される複数の静翼、及び前記複数の静翼の各々の内周側端に連なる内周側静翼環、を含む静翼段と、
    前記ロータに対して周方向に間隔を空けて固定される複数の動翼、及び前記複数の動翼の各々の外周側端に連なる外周側動翼環、を含む動翼段と、
    前記外周側動翼環と前記ケーシングとの間をシールする動翼側シール装置と、を備え、
    前記動翼側シール装置は、
    前記ケーシングから前記外周側動翼環の外周面に向かって延在する環状のシールフィンと、
    前記シールフィンの上流側に形成されるキャビティにおいて前記ケーシングに固定されるスワールブレーカと、を含み、
    前記スワールブレーカは、
    前記ロータの半径方向に沿った面を有する第1板状部材であって、前記軸線に沿って延在するか、又は、前記第1板状部材の上流縁が下流縁よりも前記ロータの回転方向の上流側に位置するように前記軸線に対して交差する方向に延在する第1板状部材、並びに、前記ロータの半径方向に対して傾斜した面を有する第2板状部材又は第3板状部材であって、前記第1板状部材の内側端から前記ロータの回転方向の下流側に向かって延在する第2板状部材、又は前記第1板状部材の内側端から前記ロータの回転方向の上流側に向かって延在する第3板状部材、を含み、
    前記シールフィンの上流側において、前記ケーシングから前記ロータの半径方向の内側に向かって延在する環状の下流側ガイド部材をさらに備え、
    前記下流側ガイド部材の上流側面は、前記下流側ガイド部材の前記ロータの半径方向に沿った長さが前記軸線方向の上流側に向かうにつれて次第に小さく、且つ、前記キャビティに向けて凹となる湾曲状に形成される
    軸流回転機械。
  7. 前記下流側ガイド部材の上流側において、前記ケーシングから前記ロータの半径方向の内側に向かって延在する環状の上流側ガイド部材をさらに備え、
    前記上流側ガイド部材の下流側面は、前記上流側ガイド部材の前記ロータの半径方向に沿った長さが前記軸線方向の下流側に向かうにつれて次第に小さく、且つ、前記キャビティに向けて凹となる湾曲状に形成される
    請求項6に記載の軸流回転機械。
  8. 前記シールフィンの上流側において、前記ケーシングから前記ロータの半径方向の内側に向かって延在する環状のステータ側ガイド部材をさらに備え、
    前記ステータ側ガイド部材の上流側面は、
    前記ロータの半径方向に沿って延在する基端側面と、
    前記基端側面における前記半径方向の内側に接続される先端側面であって、前記ステータ側ガイド部の前記ロータの半径方向に沿った長さが前記軸線方向の上流側に向かうにつれて次第に小さく、且つ、前記キャビティに向けて凹となる湾曲状になる先端側面と、を有するように形成される
    請求項1〜の何れか一項に記載の軸流回転機械。
  9. 前記ステータ側ガイド部材の上流側において、前記外周側動翼環の前記外周面から前記ロータの半径方向の外側に向かって延在する環状のロータ側ガイド部材をさらに備え、
    前記ロータ側ガイド部材の下流側面は、前記ロータ側ガイド部の前記ロータの半径方向に沿った長さが前記軸線方向の下流側に向かうにつれて次第に小さく、且つ、前記ステータ側ガイド部材の前記先端側面に向けて凹となる湾曲状に形成される
    請求項8に記載の軸流回転機械。
  10. 軸線周りに回転するロータと、
    前記ロータを回転可能に収容するケーシングと、
    前記ケーシングに対して周方向に間隔を空けて固定される複数の静翼、及び前記複数の静翼の各々の内周側端に連なる内周側静翼環、を含む静翼段と、
    前記ロータに対して周方向に間隔を空けて固定される複数の動翼、及び前記複数の動翼の各々の外周側端に連なる外周側動翼環、を含む動翼段と、
    前記内周側静翼環と前記ロータとの間をシールする静翼側シール装置と、を備え、
    前記静翼側シール装置は、
    前記内周側静翼環の内周面から前記ロータに向かって延在する環状のシールフィンと、
    前記シールフィンの上流側において前記内周側静翼環に対して固定されるスワールブレーカと、を含み、
    前記スワールブレーカは、
    前記ロータの半径方向に沿った面を有する第1板状部材であって、前記軸線に沿って延在するか、又は、前記第1板状部材の上流縁が下流縁よりも前記ロータの回転方向の上流側に位置するように前記軸線に対して交差する方向に延在する第1板状部材、並びに、前記ロータの半径方向に対して傾斜した面を有する第2板状部材及び第3板状部材であって、前記第1板状部材の内側端から前記ロータの回転方向の下流側に向かって延在する第2板状部材、及び前記第1板状部材の内側端から前記ロータの回転方向の上流側に向かって延在する第3板状部材であって前記第2板状部材よりも上流側に配置される第3板状部材、を含む
    軸流回転機械。
JP2018014884A 2018-01-31 2018-01-31 軸流回転機械 Active JP6783257B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018014884A JP6783257B2 (ja) 2018-01-31 2018-01-31 軸流回転機械
CN201980003823.0A CN111051650B (zh) 2018-01-31 2019-01-29 轴流旋转机械
US16/634,430 US11078803B2 (en) 2018-01-31 2019-01-29 Axial flow rotating machinery
PCT/JP2019/002908 WO2019151221A1 (ja) 2018-01-31 2019-01-29 軸流回転機械
EP19747591.6A EP3748130B1 (en) 2018-01-31 2019-01-29 Axial flow rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018014884A JP6783257B2 (ja) 2018-01-31 2018-01-31 軸流回転機械

Publications (2)

Publication Number Publication Date
JP2019132183A JP2019132183A (ja) 2019-08-08
JP6783257B2 true JP6783257B2 (ja) 2020-11-11

Family

ID=67479224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018014884A Active JP6783257B2 (ja) 2018-01-31 2018-01-31 軸流回転機械

Country Status (5)

Country Link
US (1) US11078803B2 (ja)
EP (1) EP3748130B1 (ja)
JP (1) JP6783257B2 (ja)
CN (1) CN111051650B (ja)
WO (1) WO2019151221A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7145775B2 (ja) * 2019-01-31 2022-10-03 三菱重工業株式会社 回転機械

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4273510A (en) * 1974-03-21 1981-06-16 Maschinenfabrik Augsburg-Nunberg Aktiengesellschaft Method of and device for avoiding rotor instability to enhance dynamic power limit of turbines and compressors
US4420161A (en) 1982-05-10 1983-12-13 General Electric Company Rotor stabilizing labyrinth seals for steam turbines
US5190440A (en) * 1991-03-11 1993-03-02 Dresser-Rand Company Swirl control labyrinth seal
US5439347A (en) * 1994-08-31 1995-08-08 Brandon; Ronald E. Turbine tip seal damage protection means
US20060237914A1 (en) * 2003-06-20 2006-10-26 Elliott Company Swirl-reversal abradable labyrinth seal
JP2007120476A (ja) * 2005-10-31 2007-05-17 Toshiba Corp 流体機械の旋回流防止装置
US8074998B2 (en) * 2006-05-05 2011-12-13 The Texas A&M University System Annular seals for non-contact sealing of fluids in turbomachinery
US7731476B2 (en) * 2007-01-30 2010-06-08 Technology Commercialization Corp. Method and device for reducing axial thrust and radial oscillations and rotary machines using same
JP2011141015A (ja) 2010-01-08 2011-07-21 Mitsubishi Heavy Ind Ltd シール装置及びこれを備えた流体機械
US20130017072A1 (en) * 2011-07-14 2013-01-17 General Electric Company Pattern-abradable/abrasive coatings for steam turbine stationary component surfaces
ITCO20110058A1 (it) * 2011-12-05 2013-06-06 Nuovo Pignone Spa Turbomacchina
ITCO20120019A1 (it) * 2012-04-27 2013-10-28 Nuovo Pignone Srl Tenute a labirinto ad alto smorzamento con sagoma elicoidale e mista elicoidale-cilindrica
US9200528B2 (en) * 2012-09-11 2015-12-01 General Electric Company Swirl interruption seal teeth for seal assembly
JP5936515B2 (ja) * 2012-10-18 2016-06-22 三菱日立パワーシステムズ株式会社 回転機械
US9394800B2 (en) * 2013-01-21 2016-07-19 General Electric Company Turbomachine having swirl-inhibiting seal
WO2014115706A1 (ja) * 2013-01-23 2014-07-31 三菱重工業株式会社 シール機構及びシール機構を備える回転機械
WO2014162767A1 (ja) * 2013-04-03 2014-10-09 三菱重工業株式会社 回転機械
JP6204757B2 (ja) * 2013-09-02 2017-09-27 三菱日立パワーシステムズ株式会社 流体機械
JP2017145813A (ja) * 2016-02-19 2017-08-24 三菱日立パワーシステムズ株式会社 回転機械

Also Published As

Publication number Publication date
EP3748130A1 (en) 2020-12-09
EP3748130B1 (en) 2023-11-29
CN111051650B (zh) 2022-04-26
US20200165927A1 (en) 2020-05-28
JP2019132183A (ja) 2019-08-08
EP3748130A4 (en) 2021-03-31
WO2019151221A1 (ja) 2019-08-08
US11078803B2 (en) 2021-08-03
CN111051650A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
JP6131177B2 (ja) シール構造、及び回転機械
EP2096262A1 (en) Axial flow turbine with low shroud leakage losses
KR101305575B1 (ko) 터빈 동익 및 터보 기계
WO2015115558A1 (ja) シール構造、及び回転機械
KR101506379B1 (ko) 시일 구조, 이것을 구비한 터빈 기계 및 이것을 구비한 발전 플랜트
JP5592326B2 (ja) 蒸気タービンの静翼、及びそれを用いた蒸気タービン
KR20130114165A (ko) 터빈
WO2017098932A1 (ja) シール構造及びタービン
JP6846374B2 (ja) 動翼側シール装置、静翼側シール装置及び回転機械
US20150260042A1 (en) Axial Flow Machine
JP6858032B2 (ja) 軸流回転機械
JP6783257B2 (ja) 軸流回転機械
US10041368B2 (en) Turbine assembly
WO2017098944A1 (ja) シールフィン,シール構造及びターボ機械
JP6689105B2 (ja) 多段軸流圧縮機及びガスタービン
JP6924233B2 (ja) 回転機械
WO2021220950A1 (ja) シール装置及び回転機械
JP5852191B2 (ja) 端壁部材及びガスタービン
JP6485658B2 (ja) 回転体の冷却構造とこれを含むロータおよびターボマシン
JP6790582B2 (ja) 軸流圧縮機の静翼構造
JP6986426B2 (ja) タービン
JP6930896B2 (ja) タービン及び動翼
JP5852190B2 (ja) 端壁部材及びガスタービン
JP2022168953A (ja) 回転力発生機構

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201021

R150 Certificate of patent or registration of utility model

Ref document number: 6783257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150