JP6776923B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP6776923B2
JP6776923B2 JP2017019662A JP2017019662A JP6776923B2 JP 6776923 B2 JP6776923 B2 JP 6776923B2 JP 2017019662 A JP2017019662 A JP 2017019662A JP 2017019662 A JP2017019662 A JP 2017019662A JP 6776923 B2 JP6776923 B2 JP 6776923B2
Authority
JP
Japan
Prior art keywords
control module
switching element
semiconductor device
resistance
control modules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017019662A
Other languages
English (en)
Other versions
JP2018129883A (ja
Inventor
雅由 西畑
雅由 西畑
植田 展正
展正 植田
裕貴 清瀬
裕貴 清瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017019662A priority Critical patent/JP6776923B2/ja
Priority to PCT/JP2017/042498 priority patent/WO2018142736A1/ja
Publication of JP2018129883A publication Critical patent/JP2018129883A/ja
Priority to US16/394,473 priority patent/US10797569B2/en
Application granted granted Critical
Publication of JP6776923B2 publication Critical patent/JP6776923B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49524Additional leads the additional leads being a tape carrier or flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/40247Connecting the strap to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/09Machines characterised by wiring elements other than wires, e.g. bus rings, for connecting the winding terminations

Description

この明細書の開示は、制御対象であるアクチュエータに一体的に取り付けられて構成された機電一体型の半導体装置に関する。
近年、オルタネータなどのアクチュエータと、アクチュエータを制御する制御装置とを一体的に構成する機電一体型の回転電機が利用されつつある。機電一体の技術は、アクチュエータと制御装置とでモジュールとして出力を合わせ込むことによって制御の精度を向上できるほか、ワイヤハーネスの削減による軽量化や組付け容易性を実現できる。一方で、制御装置は、駆動により自身が発生する熱とともにアクチュエータの発熱に対しても動作を保証しなければならず、高い熱的信頼性が求められる。
特許文献1には、モータの回転軸まわりに制御装置としての整流器モジュールを環状に配置した車両用回転電機が開示されている。
特開2011−166847号公報
特許文献1のように、制御装置としてのモジュールが回転電機の回転軸まわりに環状に配置される構成は、モジュールへの電流供給のために、略環状に成形された1本のバスバーに各モジュールが接続する態様を採用することがある。この構成では、電流供給源から近い側に接続されるモジュールと、遠い側に接続されるモジュールとが存在することになる。電流供給源から見たとき、バスバーを含めた各モジュールへの電流経路の抵抗値は、電流供給源から近いほど低抵抗となる。
ここで、電流供給のための電源が意図せずに正常の接続に対して逆接続されてしまった状況を考える。この状況では、モジュールに含まれるスイッチング素子、例えばMOSFETの寄生ダイオードを介して電流が流れる。この電流は、各モジュールのうち、抵抗値の低いモジュールほど大きくなる。例えば各モジュールが載置される台座や回転電機の放熱構造などの要素を排除して考えると、電源から近い位置に配置された低抵抗のモジュールに大きな電流が流れることになる。MOSFETの寄生ダイオードは負の抵抗温度係数を有することから、大電流が流れることによる温度上昇に起因してさらに低抵抗化し、電流の増加に対してポジティブフィードバックとなる虞がある。これは機電一体型の半導体装置として好ましくない。
そこで、この明細書の開示は上記問題点に鑑み、万一電源に対して逆接続されてしまった状況下であっても、熱的信頼性を確保することのできる半導体装置を提供することを目的とする。
ここに開示される発明は、上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲およびこの項に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、発明の技術的範囲を限定するものではない。
上記目的を達成するために、この明細書に開示される半導体装置のひとつは、回転電機(10)を制御する複数の制御モジュール(61〜66)が、回転電機の回転軸(11)まわりに環状に配置される半導体装置であって、制御モジュールは、電源に接続されたバスバー(50)から電流の供給を受ける少なくとも1つのスイッチング素子(H1〜H6,L1〜L6)を有し、スイッチング素子は、寄生ダイオードを有し、制御モジュールは、1つの電源が接続されたバスバーに対して複数の制御モジュールが電気的に並列に接続されるとともに、回転軸を囲むようにC字状に成形された金属製の放熱板(60)に環状に配置され、寄生ダイオードを介して流れる電流に対して生じる抵抗は、放熱板において2つの端部に配置された制御モジュールを除く制御モジュールにおける少なくとも1つのスイッチング素子において複数の制御モジュールが有するスイッチング素子のうちの他のスイッチング素子よりも低抵抗とされる。
ところで、この開示に係る放熱板はC字状を成しており、一部が欠けた環状である。換言すれば、この放熱板には周方向において端部が存在する。端部はその先に放熱板がないため、周方向における中央部に較べて放熱効率が低い。
制御モジュールのうち、放熱板において2つの端部に配置された制御モジュールを除く制御モジュールに属するスイッチング素子を低抵抗とすることにより、電源が誤って逆接続された場合には、該当する制御モジュール、すなわち、意図した制御モジュールに大きな電流を流すことができる。該当する制御モジュールは、放熱板のうち比較的放熱効率の高い中央寄りの部分に配置されている。このため、通電による温度上昇を抑制することができる。つまり、万一電源に対して逆接続されてしまった状況下であっても、熱的信頼性を確保することができる。
上記目的の達成のため、この明細書に開示されるもうひとつの半導体装置は、回転電機(10)を制御する複数の制御モジュール(20,30,40)が、回転電機の回転軸(11)まわりに環状に配置される半導体装置であって、制御モジュールは、電源に接続されたバスバー(50)から電流の供給を受ける少なくとも1つのスイッチング素子(H1〜H6,L1〜L6)を有し、スイッチング素子は、寄生ダイオードを有し、寄生ダイオードを介して流れる電流に対して生じる抵抗は、制御モジュールのうち、配置される構造的条件においてシミュレーションまたは実験により予め取得されたもっとも放熱効率が高い位置にある制御モジュールにおける少なくとも1つのスイッチング素子において複数の制御モジュールが有するスイッチング素子のうちの他のスイッチング素子よりも低抵抗とされる。
これによれば、制御モジュールのうち、構造的に放熱効率が高い制御モジュールに属するスイッチング素子を低抵抗とすることにより、電源が誤って逆接続された場合には、該当する制御モジュール、すなわち、意図した制御モジュールに大きな電流を流すことができる。該当する制御モジュールは、その他制御モジュールに較べて放熱効率が高くされているため、通電による温度上昇を抑制することができる。つまり、万一電源に対して逆接続されてしまった状況下であっても、熱的信頼性を確保することができる。
第1実施形態に係る半導体装置の概略構成を示す上面断面図である。 半導体装置の回路構成を示す図である。 制御モジュールの詳細構造を示す図である。 変形例1に係る半導体装置の概略構成を示す上面断面図である。 変形例1に係る半導体装置の概略構成を示す上面断面図である。 第2実施形態に係る半導体装置の概略構成を示す上面図である。 変形例2に係る半導体装置の概略構成を示す上面図である。 低抵抗化に係るMOSトランジスタの有効セル領域面積の関係を示す図である。
以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても形態同士を部分的に組み合せることも可能である。
(第1実施形態)
最初に、図1〜図3を参照して、本実施形態に係る半導体装置の概略構成について説明する。
本実施形態における半導体装置は、回転電機としてのオルタネータと、整流器を構成する制御モジュールとが一体的に構成された機電一体型のオルタネータ装置である。
図1に示すように、半導体装置100は、図示しない回転子および固定子を有するオルタネータ10と、オルタネータ10の回転子の回転軸11を取り囲むように配置された3つの制御モジュール20,30,40と、制御モジュール20,30,40が接続されたバスバー50と、制御モジュール20,30,40が載置される放熱板21,31,41と、を備えている。
図2に示すように、オルタネータ10は、3相巻線を2組備えた固定子と、回転軸シャフトを含む回転子により構成されている。固定子は図示しない固定子鉄心と、固定子巻線M1,M2とにより構成されている。具体的には、固定子巻線M1がX相、Y相、Z相からなる3相巻線であり、固定子巻線M2がU相、V相、W相からなる3相巻線である。固定子巻線M2は固定子巻線M1に対して電気角にして30度ずれた位置に配置されている。制御モジュール20,30,40は、固定子巻線M1,M2への電流の向きを制御する整流器であり、合計で6つのアームがX,Y,ZおよびU,V,Wの各相への電流を制御している。
バスバー50は、その一端が電源に接続されており、制御モジュール20,30,40に電流を供給することができるようになっている。制御モジュール20,30,40は一つのバスバー50に接続されており、図1および図2に示すように、電源に近い側から制御モジュール20、制御モジュール30、制御モジュール40の順に接続されている。制御モジュール20,30,40はそれぞれがインバータとしての機能を有し、図2に示すように、固定子を構成する固定子巻線M1,M2に接続されている。
図1〜図3を参照して、制御モジュール20,30,40の詳しい構造について説明する。なお、図3は断面図ではないが、金属板23の状態をわかりやすく示すためハッチングを施している。
図1に示すように、制御モジュール20は、金属板23と、ブリッジ24と、封止樹脂体25と、を有している。そして、制御モジュール20は、インバータを構成するためのスイッチング素子として、4つのMOSトランジスタH1,L1,H2,L2を有している。図1は断面図であるから、制御モジュール20に属するMOSトランジスタとして、H1とH2のみが図示されている。
同様に、制御モジュール30は、金属板33と、ブリッジ34と、封止樹脂体35と、を有している。そして、制御モジュール30は、インバータを構成するためのスイッチング素子として、4つのMOSトランジスタH3,L3,H4,L4を有している。同様に、制御モジュール40は、金属板43と、ブリッジ44と、封止樹脂体45と、を有している。そして、制御モジュール40は、インバータを構成するためのスイッチング素子として、4つのMOSトランジスタH5,L5,H6,L6を有している。
3つの制御モジュール20,30,40は、その物理的配置や意図的に抵抗値に相違を生じるように設計されたスイッチング素子の構造を除き構成要素は互いに等価であるから、その詳しい構造については、ひとつの制御モジュール20を例に説明する。
図2に示すように、制御モジュール20は、6つのアームのうち2つのアームを担い、X相およびY相への電流の供給を制御している。制御モジュール20は、1つのアームとして、ハイサイド側のMOSトランジスタH1と、ローサイド側のMOSトランジスタL1を有し、これらが電源VBに対して直列に接続されている。MOSトランジスタH1とMOSトランジスタL1との中間点が固定子巻線M1に接続されてX相を成す。同様に、もうひとつのアームとして、ハイサイド側のMOSトランジスタH2と、ローサイド側のMOSトランジスタL2を有し、これらが電源VBに対して直列に接続されている。MOSトランジスタH2とMOSトランジスタL2との中間点が回転子巻線M1に接続されてY相を成す。これらのアームは電源に対して並列に接続されている。
上記の接続を実現するため、制御モジュール20は、図3に示すように実装される。金属板23は、第1金属板23a、第2金属板23b、第3金属板23c、第4金属板23dおよび第5金属板23eを有している。これらは互いに別体として同一平面上に成形されている。また、ブリッジ24は、第1ブリッジ24a、第2ブリッジ24b、第3ブリッジ24cおよび第4ブリッジ24dを有している。
第1金属板23aはハイサイド側のMOSトランジスタH1が載置されてドレイン端子と電気的に接続される。第1金属板23aからは端子TH1が引き出され、バスバー50に接続される。
第2金属板23bはローサイド側のMOSトランジスタL1が載置されてドレイン端子と電気的に接続されるとともに、ハイサイド側のMOSトランジスタH1のソース端子が第1ブリッジ24aを介して接続されている。第2金属板23bからは端子Txが引き出され、固定子巻線M1に接続される。
第3金属板23cはハイサイド側のMOSトランジスタH2が載置されてドレイン端子と電気的に接続される。第3金属板23cからは端子TH2が引き出され、バスバー50に接続される。
第4金属板23dはローサイド側のMOSトランジスタL2が載置されてドレイン端子と電気的に接続されるとともに、ハイサイド側のMOSトランジスタH2のソース端子が第3ブリッジ23cを介して接続されている。第4金属板23dからは端子Tyが引き出され、固定子巻線M1に接続される。
第5金属板23eは、第2ブリッジ24bを介してMOSトランジスタL1のソース端子と接続されるとともに、第4ブリッジ24bを介してMOSトランジスタL2のソース端子と接続される。第5金属板23aからは端子TL1および端子TL2が引き出されており、それらは、GND電位とされたバスバーに接続されている。また、第5金属板23eには、MOSトランジスタH1,H2,L1,L2のスイッチングを制御するための制御IC26が載置されている。制御IC26はボンディングワイヤによって各MOSトランジスタH1,H2,L1,L2に接続されているが、図3では図示を省略している。制御モジュール20における金属板23およびブリッジ24ならびにMOSトランジスタH1,H2,L1,L2はアーム単位で略左右対称に配置されている。
なお、本実施形態における第1金属板23aと第3金属板23cは、連結板23fを介して互いに接続されている。つまり、第1金属板23a、第3金属板23cおよび連結板23fは一体の板として成形されている。連結板23fは、第1金属板23aと第3金属板23cとの間の熱的な接続を担っており、ハイサイド側のMOSトランジスタH1,H2のうち、一方が過剰に発熱した場合に、他方のMOSトランジスタが載置された金属板に伝熱するようになっている。
MOSトランジスタH1,H2,L1,L2および金属板23は、これらを覆い隠すように封止樹脂体25により封止されている。金属板23のうち、MOSトランジスタH1,H2,L1,L2が載置されていない側の面は封止樹脂体25から露出している。制御モジュール20は、封止樹脂体25から露出した金属板23の一面が放熱板21と対向するように配置され、絶縁層22を介して放熱板21に載置される。これにより、MOSトランジスタH1,H2,L1,L2が発した熱は金属板23と絶縁層22を介して放熱板21に伝熱して放熱される。放熱板21における制御モジュール20が載置されない側の面には放熱フィン21aが形成されている。
上記したように、制御モジュール30についても制御モジュール20と同様の構成要素を有している。すなわち、5つに分割された金属板33にハイサイド側のMOSトランジスタH3,H4、ローサイド側のMOSトランジスタL3,L4および制御ICが適宜載置されている。そして、MOSトランジスタH3およびL3により構成されるアームは固定子巻線M1のZ相を提供し、MOSトランジスタH4およびL4により構成されるアームは固定子巻線M2のU相を提供する。放熱板31は放熱フィン31aを有している。
制御モジュール40についても制御モジュール20と同様の構成要素を有している。すなわち、5つに分割された金属板43にハイサイド側のMOSトランジスタH5,H6、ローサイド側のMOSトランジスタL5,L6および制御ICが適宜載置されている。そして、MOSトランジスタH5およびL5により構成されるアームは固定子巻線M2のV相を提供し、MOSトランジスタH6およびL6により構成されるアームは固定子巻線M2のW相を提供する。放熱板41は放熱フィン41aを有している。
図1に示すように、制御モジュール20,30,40は、回転軸11を取り囲むように環状に配置されている。制御モジュール20,30,40は、放熱板21,31,41に対する載置面が回転軸方向に沿うように配置されている。放熱板21と放熱板41は放熱フィン21aと放熱フィン41aが対向するように配置され、放熱板31は放熱板21および放熱板41と直交するように配置されている。つまり、放熱板21,31,41は、放熱フィンが回転軸11側を向くように環状に配置され、放熱フィンが形成されない外側の面に制御モジュール20,30,40が貼り付くように配置されている。このような態様では、金属板23,33,43から延びる端子がU字状に並ぶので、バスバー50もU字状に曲げられている。
ところで、図示はしないが、半導体装置100において、制御モジュール20,30,40は、空冷(あるいは水冷)により冷却される構成になっている。オルタネータ10の構造に起因する発熱状況や温度分布、放熱板21,31,41の配置位置等の構造的条件により、各制御モジュール20,30,40の放熱効率は異なる。放熱効率は、熱抵抗の大小で言い換えることができる。熱抵抗が大きいほど放熱しにくく放熱効率が低い。放熱効率は、所定の構造条件下において熱伝導シミュレーションを行う等によって予測することができる。例えば、半導体装置100が車両に搭載されて通常の駆動をするときの放熱効率をシミュレーションや実験により予め取得しておくことができる。本実施形態においては、例えば、制御モジュール30がもっとも放熱効率が高いと仮定する。
このような構造的条件下において、制御モジュール30に属する4つのMOSトランジスタH3,H4,L3,L4のうちの少なくとも1つのMOSトランジスタの通電にかかる抵抗値が、その他のMOSトランジスタの抵抗値よりも小さくされている。
例えば、MOSトランジスタH3の抵抗値が、H1,H2,H4,H5,H6,L1,L2,L3,L4,L5,L6よりも低抵抗とされている。また、別の例では、MOSトランジスタH3,L4の抵抗値が、H1,H2,H4,H5,H6,L1,L2,L3,L5,L6よりも低抵抗とされている。このようにすれば、制御モジュール30の通電に係る抵抗値が、制御モジュール20および制御モジュール40の抵抗値よりも小さくなる。
MOSトランジスタの低抵抗化は、例えば、ドレイン電流が流れる有効セル領域の面積を大きくすることにより実現することができる。一例としてトレンチ型のMOSトランジスタにおいては、半導体基板の一面であって、ソース領域が露出し、トレンチゲートへの電圧印加によってチャネルを生じてドレイン電流の通電に寄与する領域が有効セル領域である。この有効セル領域が大きくなるほどMOSトランジスタの抵抗値は小さくなる。
例えば、MOSトランジスタH3の抵抗値が、H1,H2,H4,H5,H6,L1,L2,L3,L4,L5,L6よりも低抵抗とされているとは、MOSトランジスタH3の有効セル領域の面積が、H1,H2,H4,H5,H6,L1,L2,L3,L4,L5,L6よりも大きくされている。
次に、本実施形態に係る半導体装置100を採用することによる作用効果について説明する。
例えば、半導体装置100に電源が逆接続された場合を想定する。すなわち、本来GND電位とされるべきバスバーが、本来VB電位とされるべきバスバー50よりも高電位になった場合を想定する。
図2に示すように、MOSトランジスタにはソース端子からドレイン端子に順方向となるように寄生ダイオードが生じる。上記のように、電源が逆接続されると、寄生ダイオードを介して電流が流れる。つまり、ローサイド側のMOSトランジスタからハイサイド側のMOSトランジスタへ電流が流れる。この電流によりMOSトランジスタは発熱する。寄生ダイオードは負の抵抗温度係数をもつので、発熱によりさらに低抵抗化する。このため、より多くの電流が流れて発熱量も増加する。
本実施形態における制御モジュール30は、制御モジュール20および制御モジュール40よりも抵抗値が小さい。このため、逆接続による電流は制御モジュール30に流れる電流がもっとも大きくなる。前述のとおり制御モジュール30は発熱するが、制御モジュール30は、制御モジュール20および制御モジュール40に較べて放熱効率が高い構造的条件下にあるので、制御モジュール30の温度上昇は抑制される。これにより、制御モジュール30の熱暴走を防止でき、例えば逆接に対するフェールセーフが機能するまでの時間を確保することができる。
とくに、例えば、MOSトランジスタH3,L3の抵抗値が、H1,H2,H4,H5,H6,L1,L2,L4,L5,L6よりも低抵抗とされるように構成するなど、同一のアームを構成するハイサイド側およびローサイド側のMOSトランジスタの抵抗値を低くするようにすることによって、積極的に当該アームに逆接続にかかる電流を流すことができる。これにより、当該アーム以外のアームに対して熱的信頼性を向上することができる。
また、本実施形態における制御モジュール30では、MOSトランジスタH3が載置される金属板33とMOSトランジスタH4が載置される金属板33とが連結板によって熱的に連結されているから、MOSトランジスタH3の発熱によりMOSトランジスタH4の温度も上昇して抵抗値が低下する。これにより、MOSトランジスタH3のみならず、MOSトランジスタH4にも電流を担わせることができ、意図的に大きな電流が流れるようにされたMOSトランジスタH3の過剰な発熱を抑制できるようになっている。
(変形例1)
上記例では、制御モジュール20,30,40がそれぞれ4つのMOSトランジスタを含んだ、いわゆる4in1構成のモジュールである例について説明した。しかしながら、同様の効果は、複数の制御モジュールを備えた半導体装置に対して有効である。具体的には、6in1構成の2つの制御モジュールが6相を制御する半導体装置や、2in1構成の6つの制御モジュールが6相を制御する半導体装置についても有効である。6in1構成の制御モジュールは、6つのMOSトランジスタが1つの制御モジュールに内蔵されている態様であり、図4に示すように、2つの制御モジュールC1とC2とが放熱板HSに接着されつつ回転軸11を挟むように配置されている。2in1構成の制御モジュールは、2つのMOSトランジスタが1つの制御モジュールに内蔵されている態様であり、図5に示すように、6つの制御モジュールC3〜C8が放熱板HSに接着されつつ回転軸11を取り囲むように配置されている。このような構成にあっても、制御モジュールのうち、配置される構造的条件においてもっとも放熱効率が高い制御モジュールにおける少なくとも1つのスイッチング素子を、その他のスイッチング素子よりも低抵抗とする。これにより、電源の逆接続時において、所定の制御モジュールに意図的に大きな電流を流しつつ、その制御モジュールは放熱効率が高いので、当該制御モジュールの温度上昇を抑制することができる。
(第2実施形態)
第1実施形態においては、各制御モジュールが、それぞれ別体とされた放熱板に配置される例について説明した。これに対して、本実施形態では、各制御モジュールが、一体的に連結された1つの放熱板に配置される例について説明する。なお、本実施形態では、2つのMOSトランジスタが1つの制御モジュールに内蔵された2in1構成の制御モジュールを6つ有する半導体装置200を例に説明する。
図6に示すように、半導体装置200は、オルタネータ(図6では回転軸11のみ図示する)と、回転軸11を取り囲むようにC字状に成形された放熱板60と、放熱板60上においてその延設方向に沿って回転軸11を取り囲むように配置された制御モジュール61〜66と、制御モジュール61〜66が接続されたバスバー50と、を備えている。
オルタネータは、第1実施形態におけるオルタネータ10と同様である。すなわち、オルタネータは、3相巻線を2組備えた固定子と、回転軸シャフトを含む回転子により構成されている。固定子は図示しない固定子鉄心と、固定子巻線M1,M2とにより構成されている。具体的には、固定子巻線M1がX相、Y相、Z相からなる3相巻線であり、固定子巻線M2がU相、V相、W相からなる3相巻線である。固定子巻線M2は固定子巻線M1に対して電気角にして30度ずれた位置に配置されている。制御モジュール61〜66は、固定子巻線M1,M2への電流の向きを制御する整流器であり、1つの制御モジュールにつき1つのアームを担い、合計で6つのアームがX,Y,ZおよびU,V,Wの各相への電流を制御している。
放熱板60は、回転軸11を取り囲むようにC字状に成形された金属板である。本実施形態における放熱板60は、回転軸11の軸方向においてオルタネータと対向して配置され、放熱板60のオルタネータとの対向面に図示しない放熱フィンが形成されている。
制御モジュール61〜66は、放熱フィンの形成面と反対の面に並んで配置されている。制御モジュール61〜66は、電源に接続されるバスバー50に並列に接続されているのであり、電源に近い側から制御モジュール61,62,63,64,65,66の順で並んで配置されている。制御モジュール61は放熱板60の一方の端部に配置され、制御モジュール66は放熱板60の他方の端部に配置されている。
図2と対応させれば、制御モジュール61は、ハイサイド側のMOSトランジスタH1およびローサイド側のMOSトランジスタL1を含むモジュールである。同様に、制御モジュール62は、ハイサイド側のMOSトランジスタH2およびローサイド側のMOSトランジスタL2を含むモジュールである。制御モジュール63は、ハイサイド側のMOSトランジスタH3およびローサイド側のMOSトランジスタL3を含むモジュールである。制御モジュール64は、ハイサイド側のMOSトランジスタH4およびローサイド側のMOSトランジスタL4を含むモジュールである。制御モジュール65は、ハイサイド側のMOSトランジスタH5およびローサイド側のMOSトランジスタL5を含むモジュールである。制御モジュール66は、ハイサイド側のMOSトランジスタH6およびローサイド側のMOSトランジスタL6を含むモジュールである。
バスバー50は、放熱板60の形状に沿って形成され、とくに本実施形態では、回転軸11と放熱板60の間の領域において放熱板60の内側の面に沿うように配置されている。制御モジュール61〜66は、ハイサイド側の電源端子を回転軸11側に向けて放射状に配置される。
ところで、半導体装置200では、放熱板60の端部に位置する制御モジュール61および66を除く制御モジュール62〜65を構成するMOSトランジスタH2〜H5,L2〜L5のうち少なくとも1つのMOSトランジスタが、その他のMOSトランジスタに較べて低抵抗とされている。
例えば、MOSトランジスタH3の抵抗値が、H1,H2,H4,H5,H6,L1,L2,L3,L4,L5,L6よりも低抵抗とされている。このようにすれば、制御モジュール63の通電に係る抵抗値が、制御モジュール61,62,64,65,66の抵抗値よりも小さくなる。また、別の例では、MOSトランジスタH4,L4の抵抗値が、H1,H2,H3,H5,H6,L1,L2,L3,L5,L6よりも低抵抗とされている。このようにすれば、制御モジュール64の通電に係る抵抗値が、制御モジュール61,62,63,65,66の抵抗値よりも小さくなる。MOSトランジスタの低抵抗化は、例えば、ドレイン電流が流れる有効セル領域の面積を大きくすることにより実現することができる。有効セルの面積に関しては第1実施形態において説明したとおりである。
次に、本実施形態に係る半導体装置200を採用することによる作用効果について説明する。
一体的に構成された放熱板60において、放熱板60の形成に沿って制御モジュール61〜66が一列に並んで配置される本実施形態における半導体装置200にあっては、放熱板60の端部近傍は、熱が逃げる先が無いため、中央部に較べて放熱効率が悪い。換言すれば、放熱板60の中央部近傍は、端部近傍に較べて放熱効率が高い。
よって、半導体装置200のように、放熱板60の端部に位置する制御モジュール61および66を除く制御モジュール62〜65を構成するMOSトランジスタH2〜H5,L2〜L5のうち少なくとも1つのMOSトランジスタを低抵抗とすることにより、そのMOSトランジスタが属する制御モジュールを、その他の制御モジュールに較べて低抵抗にすることができる。
例えば、半導体装置100に電源が逆接続された場合を想定する。すなわち、本来GND電位とされるべきバスバーが、本来VB電位とされるべきバスバー50よりも高電位になった場合を想定する。このとき、第1実施形態と同様に、逆接続に起因した電流が寄生ダイオードを流れる。
例えば、MOSトランジスタH3の抵抗値が、H1,H2,H4,H5,H6,L1,L2,L3,L4,L5,L6よりも低抵抗とされている例では、制御モジュール63の通電に係る抵抗値が、制御モジュール61,62,64,65,66の抵抗値よりも小さくなる。このため、制御モジュール63に積極的に電流が流れるが、制御モジュール63は放熱板60上において放熱効率の高い位置に配置されているから、電流に起因する温度上昇を抑制することができる。
また、MOSトランジスタH4,L4の抵抗値が、H1,H2,H3,H5,H6,L1,L2,L3,L5,L6よりも低抵抗とされている例では、制御モジュール64の通電に係る抵抗値が、制御モジュール61,62,63,65,66の抵抗値よりも小さくなる。このため、制御モジュール64に積極的に電流が流れるが、制御モジュール64は放熱板60上において放熱効率の高い位置に配置されているから、電流に起因する温度上昇を抑制することができる。
低抵抗化する制御モジュールは制御モジュール63や制御モジュール64に限らず、制御モジュール62や制御モジュール65を低抵抗化しても良いが、放熱板60のより中央部に近い制御モジュール63,64を低抵抗化することが好ましい。また、一つの制御モジュールのみを低抵抗化しなければならないことはなく、制御モジュール63,62を低抵抗化するようにしても良い。
また、低抵抗化する制御モジュールの選択にあっては、他の制御モジュールに較べてもっとも放熱効率が高い制御モジュールを低抵抗化することが好ましい。これにより、低抵抗化したことにより意図的に大電流が流される制御モジュールにおいても温度上昇を抑制することができる。よって、該当する制御モジュールの熱暴走を防止でき、例えば逆接に対するフェールセーフが機能するまでの時間を確保することができる。
(変形例2)
上記例では、制御モジュール61〜66がそれぞれ2つのMOSトランジスタを含んだ、いわゆる2in1構成のモジュールである例について説明した。しかしながら、同様の効果は、3つ以上の制御モジュールが一体的に形成された放熱板上で一列に並んで配置された半導体装置に対して有効である。具体的には、4in1構成の3つの制御モジュールが6相を制御する半導体装置についても有効である。例えば、図7に示すように、3つの制御モジュールC9〜C11がC字状に一体的に成形された放熱板HS2に接着されつつ回転軸11を取り囲むように配置されている。このような態様では、放熱板HS2の端部に位置しない制御モジュールC10を低抵抗化する。これにより、電源の逆接続時において、制御モジュールC10に意図的に大きな電流を流しつつ、制御モジュールC10は制御モジュールC9,C11よりも放熱効率が高いので、当該制御モジュールC10の温度上昇を抑制することができる。
(その他の実施形態)
以上、好ましい実施形態について説明したが、上記した実施形態になんら制限されることなく、この明細書に開示する主旨を逸脱しない範囲において、種々変形して実施することが可能である。
上記した各実施形態および変形例においては、制御モジュールに含まれるスイッチング素子としてMOSトランジスタを採用する例について説明したが、スイッチング素子としては絶縁ゲートバイポーラトランジスタ(IGBT)やその他の半導体スイッチング素子を採用することもできる。
また、上記した各実施形態および変形例においては、固定子巻線M1,M2として、3相巻線を採用する例について説明したが、相の数については限定しない。これに伴って、制御モジュールの数についても適宜変更されるべきである。
また、上記した各実施形態および変形例においては、制御モジュールの低抵抗化の手段として、スイッチング素子の有効セル領域の面積を増大することによる低抵抗化について説明した。しかしながら、低抵抗化の手段についてはこれに限定しない。例えば、金属板23,33,43の構成材料を変更して低抵抗化する手段や、電気的接続に用いる導電性接着剤(例えばはんだ)の成分を変更することによる低抵抗化をおこなっても良い。ただし、金属板23,33,43の構成材料の変更や導電性接着剤の変更に較べて、スイッチング素子の有効セル領域の面積の変更は容易であり、低抵抗化の効果も大きい。
有効セル領域の面積について、発明者は、低抵抗化しないMOSトランジスタに対する、低抵抗化するMOSトランジスタの有効セル領域面積の大きさを調べた。図7に示す変形例2において説明した態様において、放熱効率を均一とした条件下でコンピュータシミュレーションを行った結果を図8に示す。隣り合う制御モジュールC9とC10の間のバスバー50に起因する抵抗値を50μΩとし、回路全体の配線抵抗を75mΩとし、電源を逆接続した際に制御モジュールに印加される電位差を14Vとしてシミュレーションを行った。制御モジュールC9を構成するMOSトランジスタの面積に対して、制御モジュールC10の発熱量が制御モジュールC9と同一になる制御モジュールC10のMOSトランジスタの面積を求めた結果が図8である。これによれば、隣接する制御モジュール間では、電源から遠い側のMOSトランジスタの面積を略1.2倍に設定することで、逆接続時の電流値を略同一にすることができる。よって、放熱効率が高くされた制御モジュールに対してMOSトランジスタの面積を決定する際は、1.2倍以上の面積を確保することが好ましい。
10…オルタネータ,20…制御モジュール,30…制御モジュール,40…制御モジュール,50…バスバー,H1〜H6…MOSトランジスタ(ハイサイド側),L1〜L6…MOSトランジスタ(ローサイド側)

Claims (5)

  1. 回転電機(10)を制御する複数の制御モジュール(61〜66)が、前記回転電機の回転軸(11)まわりに環状に配置される半導体装置であって、
    前記制御モジュールは、電源に接続されたバスバー(50)から電流の供給を受ける少なくとも1つのスイッチング素子(H1〜H6,L1〜L6)を有し、
    前記スイッチング素子は、寄生ダイオードを有し、
    前記制御モジュールは、1つの前記電源が接続された前記バスバーに対して複数の前記制御モジュールが電気的に並列に接続されるとともに、前記回転軸を囲むようにC字状に成形された金属製の放熱板(60)に環状に配置され、
    前記寄生ダイオードを介して流れる電流に対して生じる抵抗は、前記放熱板において2つの端部に配置された前記制御モジュールを除く前記制御モジュールにおける少なくとも1つのスイッチング素子において前記複数の制御モジュールが有する前記スイッチング素子のうちの他の前記スイッチング素子よりも低抵抗とされる半導体装置。
  2. 低抵抗とされる前記スイッチング素子が属する前記制御モジュールは、配置される構造的条件においてシミュレーションまたは実験により予め取得されたもっとも放熱効率が高い位置にある制御モジュールである請求項1に記載の半導体装置。
  3. 回転電機(10)を制御する複数の制御モジュール(20,30,40)が、前記回転電機の回転軸(11)まわりに環状に配置される半導体装置であって、
    前記制御モジュールは、電源に接続されたバスバー(50)から電流の供給を受ける少なくとも1つのスイッチング素子(H1〜H6,L1〜L6)を有し、
    前記スイッチング素子は、寄生ダイオードを有し、
    前記寄生ダイオードを介して流れる電流に対して生じる抵抗は、前記制御モジュールのうち、配置される構造的条件においてシミュレーションまたは実験により予め取得されたもっとも放熱効率が高い位置にある前記制御モジュールにおける少なくとも1つのスイッチング素子において前記複数の制御モジュールが有する前記スイッチング素子のうちの他の前記スイッチング素子よりも低抵抗とされる半導体装置。
  4. 前記制御モジュールはインバータであり、低抵抗とされる前記スイッチング素子が属する前記制御モジュールは、ハイサイド側の前記スイッチング素子とローサイド側の前記スイッチング素子とがともに低抵抗とされる請求項1〜3のいずれか1項に記載の半導体装置。
  5. 低抵抗とされる前記スイッチング素子はMOSFETであり、ドレイン電流が流れる有効セル領域の面積がその他のスイッチング素子よりも大きくされることにより、その他のスイッチング素子よりも低抵抗とされる請求項1〜4のいずれか1項に記載の半導体装置。
JP2017019662A 2017-02-06 2017-02-06 半導体装置 Active JP6776923B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017019662A JP6776923B2 (ja) 2017-02-06 2017-02-06 半導体装置
PCT/JP2017/042498 WO2018142736A1 (ja) 2017-02-06 2017-11-28 半導体装置
US16/394,473 US10797569B2 (en) 2017-02-06 2019-04-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017019662A JP6776923B2 (ja) 2017-02-06 2017-02-06 半導体装置

Publications (2)

Publication Number Publication Date
JP2018129883A JP2018129883A (ja) 2018-08-16
JP6776923B2 true JP6776923B2 (ja) 2020-10-28

Family

ID=63039516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017019662A Active JP6776923B2 (ja) 2017-02-06 2017-02-06 半導体装置

Country Status (3)

Country Link
US (1) US10797569B2 (ja)
JP (1) JP6776923B2 (ja)
WO (1) WO2018142736A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6673246B2 (ja) 2017-02-06 2020-03-25 株式会社デンソー 半導体装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3949370B2 (ja) * 2000-11-08 2007-07-25 三菱電機株式会社 車両用交流発電機
JP2003079162A (ja) * 2001-09-03 2003-03-14 Toshiba Transport Eng Inc 電力変換装置
JP4147987B2 (ja) * 2003-03-17 2008-09-10 株式会社日立製作所 多相式交流回転電機
JP4015634B2 (ja) 2004-03-09 2007-11-28 株式会社日立製作所 半導体装置
JP4600159B2 (ja) * 2005-06-01 2010-12-15 三菱電機株式会社 3レベル電力変換装置
JP5532984B2 (ja) * 2010-02-04 2014-06-25 株式会社デンソー 車両用回転電機
JP5516187B2 (ja) * 2010-07-27 2014-06-11 日産自動車株式会社 電力変換機
JP5970668B2 (ja) * 2010-11-02 2016-08-17 三菱電機株式会社 電動式パワーステアリング用パワーモジュールおよびこれを用いた電動式パワーステアリング駆動制御装置
JP6044215B2 (ja) * 2012-09-13 2016-12-14 富士電機株式会社 半導体装置
JP6072667B2 (ja) * 2013-11-12 2017-02-01 三菱電機株式会社 半導体モジュールとその製造方法
JP6361396B2 (ja) * 2014-09-16 2018-07-25 株式会社デンソー 電子制御ユニット及びこれを用いた回転電機
JP6326038B2 (ja) * 2015-12-24 2018-05-16 太陽誘電株式会社 電気回路装置
JP6673246B2 (ja) 2017-02-06 2020-03-25 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
US10797569B2 (en) 2020-10-06
WO2018142736A1 (ja) 2018-08-09
US20190260274A1 (en) 2019-08-22
JP2018129883A (ja) 2018-08-16

Similar Documents

Publication Publication Date Title
JP4583191B2 (ja) 回転電機
JP7208966B2 (ja) 半導体装置
US7423342B2 (en) Method for assembling semiconductor switching elements and heat sink in rotary electric machine and rotary electric machine
KR101375502B1 (ko) 전력용 반도체 모듈
JP2007189865A (ja) 制御装置一体型回転電機
JP6053858B2 (ja) パワー半導体装置および車載用回転電機の駆動装置
JP6371001B2 (ja) 電力変換装置
JP2012105419A (ja) 電力変換装置
JP2007166857A (ja) 車両用電動発電機
JP2007067084A (ja) 電力用半導体素子及び半導体電力変換装置
JP6776923B2 (ja) 半導体装置
US10985636B2 (en) Semiconductor device
JP5218307B2 (ja) 冷却装置付きパワーモジュール
JP6515836B2 (ja) インバータ装置
JP2005252090A (ja) 半導体素子の温度検出方法及び電力変換装置
CN111293087A (zh) 半导体装置以及电力变换装置
JP4121093B2 (ja) 車両用電動発電機
JP3972855B2 (ja) インバータモジュール
JP6123722B2 (ja) 半導体装置
JP2007059536A (ja) 半導体装置
JP7166408B1 (ja) 回転電機
JP6413396B2 (ja) 電力変換装置及び電動モータ
JP2018183001A (ja) モータユニット
JP2023110166A (ja) 半導体モジュール
KR20190032792A (ko) 모터

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200921

R151 Written notification of patent or utility model registration

Ref document number: 6776923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250