JP6775527B2 - Vacuum pump system - Google Patents
Vacuum pump system Download PDFInfo
- Publication number
- JP6775527B2 JP6775527B2 JP2017556800A JP2017556800A JP6775527B2 JP 6775527 B2 JP6775527 B2 JP 6775527B2 JP 2017556800 A JP2017556800 A JP 2017556800A JP 2017556800 A JP2017556800 A JP 2017556800A JP 6775527 B2 JP6775527 B2 JP 6775527B2
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- pump
- vacuum pumps
- pumps
- vacuum pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims 1
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 3
- 230000006266 hibernation Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C25/00—Adaptations of pumps for special use of pumps for elastic fluids
- F04C25/02—Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B37/00—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
- F04B37/10—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
- F04B37/14—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B41/00—Pumping installations or systems specially adapted for elastic fluids
- F04B41/06—Combinations of two or more pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/06—Control using electricity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/001—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/02—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/06—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/06—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
- F04C28/065—Capacity control using a multiplicity of units or pumping capacities, e.g. multiple chambers, individually switchable or controllable
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/24—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
- F04C28/26—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/70—Use of multiplicity of similar components; Modular construction
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Description
本発明は、チャンバ、特に処理チャンバ又はロックチャンバ内の内容物を排出するための真空ポンプシステムに関する。 The present invention relates to a vacuum pump system for discharging the contents in a chamber, particularly a processing chamber or a lock chamber.
大型のチャンバ内の内容物を定期的に排出するための真空ポンプシステムが先行技術で知られている。図1参照。乾式で圧縮するように作動する真空ポンプがこの目的のために使用されることが多い。一般に、真空ポンプは、ねじポンプ、クローポンプ又は多段ルーツポンプのようなバッキングポンプと、並列に連結されているルーツポンプとの組み合わせから構成されている。大型のポンプシステムでは、複数のポンプ及び複数のルーツポンプが並列に連結されている。 Prior art is known for vacuum pump systems for periodically ejecting the contents of large chambers. See FIG. Vacuum pumps that operate dry and compress are often used for this purpose. In general, a vacuum pump is composed of a combination of a backing pump such as a screw pump, a claw pump or a multistage roots pump and a roots pump connected in parallel. In a large pump system, a plurality of pumps and a plurality of roots pumps are connected in parallel.
典型的には、このようなポンプシステムは、ロックチャンバ、例えばロードロック又はアンロードロックで、例えばコーティングプラントで使用される。このようなプラントでは、大気圧から典型的には約0.1 mbar〜10mbarの移送圧力にまで短時間で、例えば20秒〜120 秒の送出時間でチャンバ内の内容物を送出しなければならない。その後、真空ポンプが入口側で、内容物を排出するチャンバからバルブによって分離されて、一定時間、典型的には送出時間の1〜10倍、吐出圧力動作で作動する。 Typically, such pump systems are used in lock chambers, such as load locks or unload locks, such as coating plants. In such plants, the contents in the chamber must be delivered in a short time, from atmospheric pressure to a transfer pressure of typically about 0.1 mbar to 10 mbar, with a delivery time of, for example, 20 to 120 seconds. The vacuum pump is then separated from the chamber for discharging the contents by a valve on the inlet side and operates at a discharge pressure operation for a certain period of time, typically 1 to 10 times the delivery time.
更なる典型的な用途として、金属の熱処理又は精製のための大型の処理チャンバがある。この場合、典型的な送出時間は2〜30分である。その後、低いガス流を送り出し続けなければならないが、このガス流は、送出時間を実現するために必要なガス流よりかなり小さい。この作動圧力のための典型的な保持時間は送出時間の2〜10倍になる。 A more typical application is a large processing chamber for heat treatment or purification of metals. In this case, the typical delivery time is 2 to 30 minutes. After that, a low gas flow must be continued to be delivered, which is much smaller than the gas flow required to achieve the delivery time. The typical holding time for this working pressure is 2-10 times the delivery time.
このような用途では、真空ポンプシステムは、短い送出時間を実現するためにかなり大型にしなければならない。しかしながら、休止時間中及び/又は保持時間中、ポンプシステムの大きな吸引能力は必要ではない。従って、休止時間中及び/又は保持時間中、ポンプの不必要に高いエネルギー消費を要する。 In such applications, the vacuum pump system must be fairly large to achieve short delivery times. However, during pauses and / or retention times, the pump system's large suction capacity is not required. Therefore, unnecessarily high energy consumption of the pump is required during downtime and / or retention time.
休止時間中及び/又は保持時間中にポンプシステムの高い電力消費量を削減するために、様々な手法が知られている。 Various techniques are known to reduce the high power consumption of the pump system during downtime and / or retention time.
バッキングポンプ及び/又はルーツポンプを備えたポンプシステムの一部を一時的に停止する。この場合、ポンプが冷えて、構成要素の耐用年数に悪影響を及ぼすという不利点がある。更に、ライニング同士がくっつき、ロータを妨害する場合がある。短い休止時間及び/又は保持時間中、ポンプを再度頻繁に加速しなければならず、これは、更なる電力及び非常に大型のモータを必要とする。従って、ポンプを停止することは一般的な方法ではない。 Temporarily shut down parts of the pump system with backing pumps and / or roots pumps. In this case, there is a disadvantage that the pump cools and adversely affects the service life of the components. In addition, the linings may stick together and interfere with the rotor. During short pauses and / or holding times, the pump must be accelerated again frequently, which requires additional power and a very large motor. Therefore, stopping the pump is not a common practice.
更に、各バッキングポンプの出口側に、追加の小型の補助ポンプが直列に連結されている構成が先行技術で知られている。図3参照。このようなポンプは、例えばエジェクタポンプ又は別のより小型のバッキングポンプであってもよい。送出時間中、バッキングポンプと補助ポンプとの間の余りにも高い圧力を避けるために、断面が適切な切替弁又は逆止弁が通常、補助ポンプと並列に配置されなければならない。このような解決法は、追加のポンプが多数であるため不利である。更に、例えばエジェクタポンプのような非常に小型の補助ポンプは、短い休止時間及び/又は保持時間中に適切な省電力を得るのに十分急速にバッキングポンプの出口圧力を下げることができない。更に補助ポンプは、作動のためのエネルギーを必要とする。 Further, prior art is known to have an additional small auxiliary pump connected in series on the outlet side of each backing pump. See FIG. Such a pump may be, for example, an ejector pump or another smaller backing pump. To avoid too high pressure between the backing pump and the auxiliary pump during delivery time, a switching valve or check valve with a suitable cross section should usually be placed in parallel with the auxiliary pump. Such a solution is disadvantageous due to the large number of additional pumps. Moreover, very small auxiliary pumps, such as ejector pumps, cannot reduce the outlet pressure of the backing pump quickly enough to obtain adequate power savings during short pauses and / or holding times. In addition, auxiliary pumps require energy to operate.
先行技術で知られている別の解決法では、バッキングポンプの出口側に、少数の更なる大型のバッキングポンプが大型の補助ポンプとして配置されてもよい。図2参照。これらのバッキングポンプはパイプラインシステムを介してバッキングポンプと直列に連結されている。この場合も、送出時間中、バッキングポンプと補助ポンプとの間の高い圧力を避けるために、断面が適切な少なくとも1つのバルブが補助ポンプと並列に通常配置されなければならない。この解決法は、追加の購入コスト及び作動コスト並びに補助ポンプに必要なスペースのため不利である。 In another solution known in the prior art, a small number of larger backing pumps may be arranged as larger auxiliary pumps on the outlet side of the backing pump. See FIG. These backing pumps are connected in series with the backing pumps via a pipeline system. Again, at least one valve with a suitable cross section must normally be placed in parallel with the auxiliary pump to avoid high pressure between the backing pump and the auxiliary pump during delivery time. This solution is disadvantageous due to the additional purchase and operating costs and the space required for the auxiliary pump.
本発明は、特に休止時間及び保持時間中に電力消費量を減らす改良されたポンプシステムを提供することを目的とする。 It is an object of the present invention to provide an improved pump system that reduces power consumption, especially during downtime and retention time.
この目的は、互いに並列に連結されて夫々の入口側でチャンバに夫々連結されている複数の真空ポンプを備えたポンプシステムにより達成される。図4参照。ポンプシステムは、真空ポンプの出口側に連結されている出口ラインを更に備えている。更にポンプシステムは、真空ポンプの少なくとも1つの入口側を出口側に連結する中間ラインを備えている。送出時間中、全ての真空ポンプは並列に連結されており、休止時間及び/又は保持時間中、真空ポンプの少なくとも1つはバッキングポンプとして他の真空ポンプと直列に連結されている。 This objective is achieved by a pump system with multiple vacuum pumps connected in parallel to each other and each connected to a chamber on each inlet side. See FIG. The pump system further comprises an outlet line connected to the outlet side of the vacuum pump. Further, the pump system includes an intermediate line connecting at least one inlet side of the vacuum pump to the outlet side. During the delivery time, all vacuum pumps are connected in parallel, and during the downtime and / or holding time, at least one of the vacuum pumps is connected in series with the other vacuum pump as a backing pump.
送出時間中にポンプシステムの全ての真空ポンプが並列に連結されているため、十分な吸引能力が送出処理に利用可能である。真空ポンプシステムは、チャンバへの入口側の連結部分、及び中間ラインの両方に切替手段を更に備えている。このような切替手段は、例えばバルブを有してもよい。従って、休止時間及び/又は保持時間中、真空ポンプの1つはバッキングポンプとして他の真空ポンプと直列に連結され得る。このような構成は、真空ポンプが様々な方法で互いに直列又は並列に連結されるように、切替手段が連結を固定又は解放すべく切替手段を相応して配置することにより実現されている。そのため、真空ポンプの出口圧力が急速に低下し、電力消費量は大幅に減少する。しかしながら、ポンプは、少しの時間も損失することなく次の送出サイクルに使用され得るように作動し続ける。 Sufficient suction capacity is available for the delivery process because all the vacuum pumps in the pump system are connected in parallel during the delivery time. The vacuum pump system further includes switching means on both the inlet side connection to the chamber and the intermediate line. Such switching means may have, for example, a valve. Thus, during pauses and / or holding times, one of the vacuum pumps may be connected in series with the other vacuum pump as a backing pump. Such a configuration is realized by the switching means correspondingly arranging the switching means to fix or release the connection so that the vacuum pumps are connected in series or in parallel with each other in various ways. Therefore, the outlet pressure of the vacuum pump drops rapidly, and the power consumption is significantly reduced. However, the pump continues to operate for use in the next delivery cycle without any loss of time.
従って、あるポンプの停止が不必要であるため、ポンプは温まったままであり、完全に作動可能であり続ける。駆動部が頻繁な加速のために構成される必要がなく、追加のポンプを必要としないため、別の利点がもたらされる。本発明に係るポンプシステムのための追加の支出が、比較的小型のパイプライン及び切替手段、例えばバルブとポンプ制御部の変更とのみに制限される。 Therefore, because it is not necessary to stop a pump, the pump remains warm and remains fully operational. Another advantage comes from the fact that the drive unit does not need to be configured for frequent acceleration and does not require an additional pump. The additional expenditure for the pump system according to the present invention is limited only to the modification of relatively small pipelines and switching means, such as valves and pump controls.
ポンプシステムのエネルギー消費が減少することにより、通常の摩耗部分、例えばオイル、軸受、密閉部分、駆動部内の電力用電子機器の耐用年数が著しく延びるように、ポンプは比較的冷えた状態で作動する。更に、廃熱の減少に起因するこのエネルギー消費の減少により、設置箇所の空調及びポンプの冷却のためのコストが減少する。動作中に出口の圧力が低下することにより、ポンプ内の蒸気の凝縮も防止されるため、腐食によって生じる損傷が軽減され得る。 The pump operates relatively cold so that the reduced energy consumption of the pump system significantly extends the useful life of power electronics in normal wear areas such as oil, bearings, seals and drives. .. In addition, this reduction in energy consumption due to the reduction in waste heat reduces the cost of air conditioning and pump cooling at the installation site. By reducing the pressure at the outlet during operation, condensation of steam in the pump is also prevented, which can reduce damage caused by corrosion.
少なくとも1つの真空ポンプがバッキングポンプとして直列に連結され得る場合、非常に低い吐出圧力及び/又は作動圧力に達することができる。 Very low discharge and / or working pressures can be reached if at least one vacuum pump can be connected in series as a backing pump.
従って、いかなる追加のポンプも無しで特定の処理工程が可能になり得る。例えば、漏れ検出は通常低い作動圧力を必要とするので、実際の処理動作前のプラント内の漏れ検出がこのようにして可能になる。本発明により実現される休止時間及び/又は保持時間中、ポンプの大部分の雑音放射が、軽減した負荷で更に低下するので、ポンプシステムの騒音レベルが低下する。 Therefore, a particular processing step may be possible without any additional pumps. For example, leak detection usually requires low working pressure, thus enabling leak detection in the plant before the actual processing operation. During the downtime and / or retention time realized by the present invention, most of the noise emission of the pump is further reduced with reduced load, thus reducing the noise level of the pump system.
このような群の個々のポンプが故障しても処理が継続され得るので、本発明に係るポンプシステムは高い冗長性を可能にする。従って、全てのポンプは、いかなる補助ポンプも無しで自身のタスクを完了し得る。更に、複数のポンプが、補助ポンプとして使用され得るように組み込まれてもよい。電力消費量の減少、ひいては作動コストの削減に加えて、本発明に係るこのような用途のためのCO2 排出量が削減される。 The pump system according to the present invention allows for high redundancy, as processing can continue in the event of failure of individual pumps in such a group. Therefore, all pumps can complete their tasks without any auxiliary pumps. In addition, multiple pumps may be incorporated so that they can be used as auxiliary pumps. In addition to reducing power consumption and thus operating costs, CO 2 emissions for such applications according to the present invention are reduced.
本発明に係る作動のために、バッキングポンプとして直列に連結される真空ポンプが一定の技術的要件を満たすことが特に好ましい。これらの真空ポンプが、いかなるガス又はオイルの漏れも無く、大幅に減少した出口圧力で確実に作動可能であるように密閉されていることが特に好ましい。休止動作及び/又は保持動作中のバッキングポンプの出口圧力が10mbar〜500 mbarの範囲内であることが特に好ましい。更に、ポンプの温度特性が大幅に減少した出口圧力での作動を確実に可能にすることが特に好ましい。この態様は、隙間の高さ、オイルの粘度及び軸受の潤滑に特に関連する。 For the operation according to the present invention, it is particularly preferable that a vacuum pump connected in series as a backing pump meets certain technical requirements. It is particularly preferred that these vacuum pumps be hermetically sealed to ensure operation with significantly reduced outlet pressure without any gas or oil leaks. It is particularly preferred that the outlet pressure of the backing pump during the pause and / or hold operation is in the range of 10 mbar to 500 mbar. In addition, it is particularly preferred to ensure operation at outlet pressures where the temperature characteristics of the pump are significantly reduced. This aspect is particularly relevant to clearance height, oil viscosity and bearing lubrication.
更に、非常に速いサイクルでもオイルが激しく拡散しないように、油潤滑しているスペースが作業スペースに対して密閉されていることが特に好ましい。更に、軸の密閉部分が、急速に変わる圧力差により生じる摩耗で早期に損傷しないように好ましくは構成される。この点における1つの可能性として、油潤滑しているスペースと油分離器を備えた作業スペースとの間に補償ラインが使用される。 Furthermore, it is particularly preferred that the oil-lubricated space be sealed to the work space so that the oil does not diffuse violently even in very fast cycles. Further, the sealed portion of the shaft is preferably configured so that it is not prematurely damaged by wear caused by rapidly changing pressure differences. One possibility in this regard is the use of compensation lines between the oil-lubricated space and the work space with the oil separator.
更なる有利な構成及び変更が以下の図面に示されている。しかしながら、夫々もたらされる特徴は個々の図面又は構成に制限されない。更に正確に言えば、上記の記載の一又は複数の特徴が、更なる変更のために図面の個々の特徴又は複数の特徴と組み合わせられ得る。 Further favorable configurations and changes are shown in the drawings below. However, the features provided by each are not limited to individual drawings or configurations. More precisely, one or more of the features described above may be combined with the individual features or features of the drawing for further modification.
図1は、ロックチャンバ10と、並列に連結されているポンプP1〜P5とを備えた真空ポンプシステム1 を示し、ポンプP1〜P5は夫々ロックチャンバ10と入口側で連結されている。更に、真空ポンプシステム1 はバルブV1〜V5を備えており、バルブV1〜V5によって、ポンプP1〜P5のポンプ入口からロックチャンバ10への連結が遮断され得る。図示された真空ポンプシステムは先行技術で知られている。送出時間中、バルブV1〜V5は開いている。ポンプP1〜P5は、送出時間中に多くの電力を消費して最高速度で作動する。ロックチャンバ内の圧力は連続的に減少する。
1, the
休止時間中、バルブV1〜V5は閉じており、ポンプP1〜P5は最高速度で作動し、電力消費量は、吐出圧力で作動する場合の電力消費量に本質的に相当して比較的高いままである。ロックチャンバ内の圧力は移送圧力と等しい。 During the downtime, valves V 1 to V 5 are closed, pumps P 1 to P 5 operate at maximum speed, and power consumption is essentially equivalent to power consumption when operating at discharge pressure. It remains relatively high. The pressure in the lock chamber is equal to the transfer pressure.
保持時間中、バルブV1〜V5は開いており、ポンプP1〜P5は低い作動圧力で作動する。 During the holding time, valves V 1 to V 5 are open and pumps P 1 to P 5 operate at low working pressure.
図2に示されている真空ポンプシステム2 は先行技術で知られている。真空ポンプシステム2 は、比較的大型の補助ポンプP26 と逆止弁CV21〜CV25とによって拡張されている。 The vacuum pump system 2 shown in FIG. 2 is known in the prior art. The vacuum pump system 2 is extended by a relatively large auxiliary pump P 26 and check valves CV 21 to CV 25 .
並列に連結されているポンプP21 〜P25 はチャンバ20と連結されている。送出時間中、バルブV21 〜V25 及び逆止弁CV21〜CV25の両方が開いている。追加の補助ポンプP26 の入口圧力は補助ポンプの出口圧力と略等しい。
Pumps P 21 to P 25 connected in parallel are connected to
休止時間中、バルブV21 〜V25 は閉じている。その後、逆止弁CV21〜CV25も閉じる。この動作中、補助ポンプP26 の入口圧力は、補助ポンプP26 の出口圧力より大幅に低い。 Valves V 21- V 25 are closed during the downtime. After that, the check valves CV 21 to CV 25 are also closed. During this operation, the inlet pressure of the auxiliary pump P 26 is substantially less than the outlet pressure of the auxiliary pump P 26.
図3は、小型の補助ポンプP33, P34を備えた、ロックチャンバ30のための真空ポンプシステム3 の先行技術の構成を示す。例えば、エジェクタポンプが補助ポンプとして選択されてもよい。
FIG. 3 shows the prior art configuration of the vacuum pump system 3 for the
送出時間中、バルブV31, V32及び逆止弁CV31, CV32が開いている。補助ポンプP33, P34の入口圧力は、補助ポンプP33, P34の出口圧力と略等しい。 Valves V 31 , V 32 and check valves C V 31 , CV 32 are open during delivery time. Inlet pressure of the auxiliary pump P 33, P 34 is substantially equal to the outlet pressure of the auxiliary pump P 33, P 34.
真空ポンプシステム3 の休止時間中、バルブV31, V32は閉じている。 Valves V 31 and V 32 are closed during the downtime of vacuum pump system 3.
休止時間中、逆止弁CV31, CV32も閉じている。補助ポンプP33, P34の出口圧力は、休止時間中、補助ポンプP33, P34の入口圧力より実質的に高い。 Check valves CV 31 and CV 32 are also closed during the pause. Outlet pressure of the auxiliary pump P 33, P 34 during downtime, substantially higher than the inlet pressure of the auxiliary pump P 33, P 34.
図4〜6は、本発明に係る真空ポンプシステム4 の構成を示す。 FIGS. 4 to 6 show the configuration of the vacuum pump system 4 according to the present invention.
図4に示されている真空ポンプシステムは、5つの並列に連結されている真空ポンプP41, P42, P43, P44, P45 を備えている。真空ポンプP41, P42, P43, P44, P45 の入口は真空チャンバ40と連結されている。夫々の真空ポンプP41, P42, P43, P44, P45 の間にバルブV41, V42, V43, V44, V45 が設けられている。ポンプP41, P42, P43, P44, P45 の出口側は、逆止弁CV41, CV42, CV43, CV44, CV45を介して共通の出口41と連結されている。
The vacuum pump system shown in FIG. 4 comprises five vacuum pumps P 41 , P 42 , P 43 , P 44 , P 45 connected in parallel. The inlets of the vacuum pumps P 41 , P 42 , P 43 , P 44 , P 45 are connected to the
図4の真空ポンプシステムの例示的な実施形態では、バルブV46 が配置されている連結ライン42で、ポンプP41 はポンプP42, P43, P44, P45と直列に連結され得る。 In an exemplary embodiment of the vacuum pump system of FIG. 4, pump P 41 may be connected in series with pumps P 42 , P 43 , P 44 , P 45 at a connecting line 42 where valve V 46 is located.
バッキングポンプ又は補助ポンプとして使用される真空ポンプP41 は一般に、他の真空ポンプより小型に構成され得る。従って、休止動作中及び/又は保持動作中の電力消費量が更に減少する。図4は、送出時間中バルブV41 〜V45 が開いてバルブV46 が閉じている真空ポンプシステムを示す。更に送出時間中、逆止弁CV41〜CV45は開いている。 The vacuum pump P 41 used as a backing pump or an auxiliary pump can generally be configured smaller than other vacuum pumps. Therefore, the power consumption during the hibernation operation and / or the holding operation is further reduced. FIG. 4 shows a vacuum pump system in which valves V 41- V 45 are open and valves V 46 are closed during delivery time. Furthermore, the check valves CV 41 to CV 45 are open during the delivery time.
休止時間中、バルブV41 〜V45 は閉じてバルブV46 は開いている。ポンプシステム内の内容物がポンプP41 によって排出される限り、この動作中、逆止弁CV41も開いている。その後、逆止弁CV41は閉じられる。逆止弁CV42〜CV45は、休止動作中に閉じている。休止状態の電力消費量の減少は、ある例示的な実施形態では最大40%になる。特に、バッキングポンプとしての真空ポンプの上記の直列連結は、軽いガスの供給を向上させるために更に使用され得る。更に、このポンプ連結は、チャンバの圧力又は処理フローを調整するために更に使用され得る。補助ポンプによって、作動圧力の範囲に確実に達することが保証される。そのため、バッキングポンプは非常に大きな速度範囲内で確実に調整され得る。 During the downtime, valves V 41 through V 45 are closed and valve V 46 is open. The check valve CV 41 is also open during this operation as long as the contents in the pump system are ejected by pump P 41 . After that, the check valve CV 41 is closed. Check valves CV 42 to CV 45 are closed during hibernation. The reduction in power consumption in hibernation can be up to 40% in some exemplary embodiments. In particular, the above-mentioned series connection of a vacuum pump as a backing pump can be further used to improve the supply of light gas. In addition, this pump connection can be further used to regulate chamber pressure or processing flow. The auxiliary pump ensures that the working pressure range is reached. Therefore, the backing pump can be reliably adjusted within a very large speed range.
図5は、ロックチャンバのための最小限の配置を示す。図5の例示的な実施形態では、2つの真空ポンプP51, P52のみを備えている真空ポンプシステム5 が例として選択されている。これらの真空ポンプは、バルブV52 を介して真空チャンバ50と連結されている共通の入口ラインを備えている。真空ポンプP52 の出口のみが逆止弁CV51を介して共通の出口51と連結されている。真空ポンプP51 の出口は共通の出口51と直接連結されている。バルブV51 が配置されてポンプP52 の出口からポンプP51 の入口に延びている追加のライン52を介して、ポンプP51 は、休止時間中に他方のポンプP52 内の内容物を両側から排出することができる。しかしながら、図5の例では、ポンプP51 及びポンプP52 は直列に連結され得ない。
FIG. 5 shows the minimal arrangement for the lock chamber. In the exemplary embodiment of FIG. 5, a vacuum pump system 5 having only two vacuum pumps P 51 and P 52 is selected as an example. These vacuum pumps have a common inlet line connected to the
図5と同様に、図6は、処理チャンバのための最小限の構成を示す。保持時間中、ポンプP62, P61の内容物が両側から排出されるように、バルブV61 は開いている。送出時間中、処理チャンバ内の内容物が短時間で排出され得るように、バルブV61 は閉じている。真空ポンプシステム5 及び真空ポンプシステム6 の両方の構成で、更なるポンプがポンプP52, P62と並列に連結されることができ、それに応じて作動され得る。 Similar to FIG. 5, FIG. 6 shows the minimal configuration for the processing chamber. During the holding time, valve V 61 is open so that the contents of pumps P 62 , P 61 are drained from both sides. Valve V 61 is closed so that the contents in the processing chamber can be expelled in a short time during the delivery time. In both vacuum pump system 5 and vacuum pump system 6 configurations, additional pumps can be connected in parallel with pumps P 52 , P 62 and can be operated accordingly.
本明細書に記載されている解決法は、2以上のバッキングポンプとの組み合わせのために実現され得る。ポンプの夫々の数及び大きさは用途に自由に適合され得る。バッキングポンプと直列に連結されているルーツポンプは一般に解決法に影響を及ぼさない。従って、ルーツポンプは例に図示されていない。 The solutions described herein can be implemented for combinations with two or more backing pumps. The number and size of each pump can be freely adapted to the application. Roots pumps connected in series with the backing pump generally do not affect the solution. Therefore, the roots pump is not shown in the example.
Claims (8)
互いに並列に連結されて、入口側でチャンバと夫々連結されている複数の真空ポンプと、
前記真空ポンプの出口側と連結されている出口ラインと、
少なくとも1つの真空ポンプの入口側を前記出口ラインに連結している中間ラインと
を備えており、
前記複数の真空ポンプの出口側は、前記出口ラインと夫々の逆止弁を介して連結されており、
送出時間中、全ての真空ポンプは並列に連結されており、休止時間中、前記複数の真空ポンプの内の少なくとも1つの入口側は、バッキングポンプとして残りの真空ポンプの出口側に連結されていることを特徴とする真空ポンプシステム。 A vacuum pump system,
Are connected in parallel, a plurality of vacuum pumps that are people connected Chang bar and husband on the inlet side,
An outlet line which is connected to the outlet side of the vacuum pump,
The inlet side of the at least one vacuum pump and an intermediate line which is connected to the outlet line,
The outlet side of the plurality of vacuum pumps is connected to the outlet line via a check valve, respectively.
During transmission time, all of the vacuum pump is connected in parallel, during downtime, at least one inlet side of the plurality of vacuum pumps is connected to the outlet side of the rest of the vacuum pump as a backing pump A vacuum pump system characterized by being.
前記バルブ及び前記別のバルブは、個々の真空ポンプの並列又は直列の相互連結を制御するために配置されていることを特徴とする請求項1又は2に記載の真空ポンプシステム。 Each in a plurality of connecting lines that are a plurality of vacuum pumps and said chamber and each connected, valves for opening and closing the connection line is arranged, separate valves for opening and closing the intermediate line before serial are arranged in the intermediate line,
The vacuum pump system according to claim 1 or 2 , wherein the valve and the other valve are arranged to control the parallel or series interconnection of individual vacuum pumps.
複数の真空ポンプの夫々の入口側を前記チャンバに連結して、前記複数の真空ポンプの夫々の出口側を出口ラインに夫々の逆止弁を介して連結することにより、前記複数の真空ポンプを互いに並列に連結し、By connecting the inlet side of each of the plurality of vacuum pumps to the chamber and connecting the outlet side of each of the plurality of vacuum pumps to the outlet line via each check valve, the plurality of vacuum pumps can be connected. Connected in parallel with each other
前記複数の真空ポンプの少なくとも1つの入口側を前記出口ラインに中間ラインを介して連結し、At least one inlet side of the plurality of vacuum pumps is connected to the outlet line via an intermediate line.
送出時間中、全ての真空ポンプを並列に連結し、During the delivery time, all vacuum pumps are connected in parallel,
休止時間中、前記複数の真空ポンプの内の少なくとも1つの入口側を、バッキングポンプとして残りの真空ポンプの出口側に連結することを特徴とする方法。A method characterized in that at least one inlet side of the plurality of vacuum pumps is connected to the outlet side of the remaining vacuum pumps as a backing pump during a pause time.
前記中間ラインを開閉する別のバルブを前記中間ラインに配置し、Another valve that opens and closes the intermediate line is placed in the intermediate line.
前記バルブ及び前記別のバルブは、個々の真空ポンプの並列又は直列の相互連結を制御するために配置されることを特徴とする請求項5又は6に記載の方法。The method of claim 5 or 6, wherein the valve and the other valve are arranged to control the parallel or series interconnection of individual vacuum pumps.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE202015004596.0U DE202015004596U1 (en) | 2015-06-26 | 2015-06-26 | vacuum pump system |
DE202015004596.0 | 2015-06-26 | ||
PCT/EP2016/064163 WO2016207106A1 (en) | 2015-06-26 | 2016-06-20 | Vacuum pump system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018518623A JP2018518623A (en) | 2018-07-12 |
JP6775527B2 true JP6775527B2 (en) | 2020-10-28 |
Family
ID=54262130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017556800A Expired - Fee Related JP6775527B2 (en) | 2015-06-26 | 2016-06-20 | Vacuum pump system |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180112666A1 (en) |
EP (1) | EP3280915A1 (en) |
JP (1) | JP6775527B2 (en) |
KR (1) | KR20180026369A (en) |
CN (1) | CN107850062A (en) |
DE (1) | DE202015004596U1 (en) |
WO (1) | WO2016207106A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1024411B1 (en) * | 2016-02-23 | 2018-02-12 | Atlas Copco Airpower Naamloze Vennootschap | Method for operating a vacuum pump system and vacuum pump system applying such a method. |
WO2017143410A1 (en) * | 2016-02-23 | 2017-08-31 | Atlas Copco Airpower, Naamloze Vennootschap | Method for operating a vacuum pump system and vacuum pump system applying such method |
GB201620225D0 (en) * | 2016-11-29 | 2017-01-11 | Edwards Ltd | Vacuum pumping arrangement |
EP3489516B1 (en) * | 2017-11-24 | 2021-09-01 | Pfeiffer Vacuum Gmbh | Vacuum pump |
TWI684707B (en) * | 2019-02-27 | 2020-02-11 | 亞台富士精機股份有限公司 | Energy-saving exhaust gas pumping system |
JP7459423B2 (en) * | 2019-07-02 | 2024-04-02 | インパクト コリア カンパニー リミテッド | Drug infusion device with thermoelectric module |
CN110469484A (en) * | 2019-09-15 | 2019-11-19 | 芜湖聚创新材料有限责任公司 | A kind of industrial large-scale vacuum machine system |
US20230003208A1 (en) * | 2019-12-04 | 2023-01-05 | Ateliers Busch Sa | Redundant pumping system and pumping method by means of this pumping system |
CN112696340A (en) * | 2020-12-30 | 2021-04-23 | 广州亚俊氏电器有限公司 | Vacuum pumping system and vacuum packaging machine comprising same |
CN115263719A (en) * | 2022-07-29 | 2022-11-01 | 西安奕斯伟材料科技有限公司 | System and method for adjusting vacuum state in crystal pulling furnace |
KR102497090B1 (en) | 2022-08-18 | 2023-02-07 | 주식회사 세미안 | An osmium coating device having a function to prevent exposure of osmium harmful gas |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3639512A1 (en) * | 1986-11-20 | 1988-06-01 | Alcatel Hochvakuumtechnik Gmbh | Vacuum pump system with a Roots pump |
DE202004001051U1 (en) * | 2004-01-27 | 2004-04-15 | BSW Verfahrenstechnik GmbH Ingenieur- und Beratungsbüro | Multi-headed pump used as a membrane pump for producing a vacuum comprises shut-off and switching devices integrated in the suction and pressure lines between the pump heads |
GB0505500D0 (en) * | 2005-03-17 | 2005-04-27 | Boc Group Plc | Vacuum pumping arrangement |
FR2883934B1 (en) * | 2005-04-05 | 2010-08-20 | Cit Alcatel | QUICK ENCLOSURE PUMPING WITH ENERGY LIMITATION |
KR101327715B1 (en) * | 2009-12-28 | 2013-11-11 | 가부시키가이샤 알박 | Vacuum exhaust device and vacuum exhaust method, and substrate treatment device |
GB201005459D0 (en) * | 2010-03-31 | 2010-05-19 | Edwards Ltd | Vacuum pumping system |
CN201763565U (en) * | 2010-04-06 | 2011-03-16 | 汉钟精机股份有限公司 | Vacuum pump system |
GB201007814D0 (en) * | 2010-05-11 | 2010-06-23 | Edwards Ltd | Vacuum pumping system |
CN102536735A (en) * | 2010-12-20 | 2012-07-04 | 北京卫星环境工程研究所 | Cleaning vacuum air exhaust technology for large-sized space environmental simulator |
DE102012105951A1 (en) * | 2012-03-30 | 2013-10-02 | Pfeiffer Vacuum Gmbh | Pump system for evacuating gas from a plurality of chambers and methods for controlling the pump system |
DE102013108090A1 (en) * | 2013-07-29 | 2015-01-29 | Hella Kgaa Hueck & Co. | pump assembly |
JP6078748B2 (en) * | 2013-11-26 | 2017-02-15 | オリオン機械株式会社 | Suction system and suction method |
-
2015
- 2015-06-26 DE DE202015004596.0U patent/DE202015004596U1/en not_active Expired - Lifetime
-
2016
- 2016-06-20 CN CN201680025077.1A patent/CN107850062A/en active Pending
- 2016-06-20 US US15/568,846 patent/US20180112666A1/en not_active Abandoned
- 2016-06-20 KR KR1020177031400A patent/KR20180026369A/en not_active Application Discontinuation
- 2016-06-20 WO PCT/EP2016/064163 patent/WO2016207106A1/en active Application Filing
- 2016-06-20 EP EP16730389.0A patent/EP3280915A1/en not_active Withdrawn
- 2016-06-20 JP JP2017556800A patent/JP6775527B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN107850062A (en) | 2018-03-27 |
DE202015004596U1 (en) | 2015-09-21 |
WO2016207106A1 (en) | 2016-12-29 |
EP3280915A1 (en) | 2018-02-14 |
JP2018518623A (en) | 2018-07-12 |
US20180112666A1 (en) | 2018-04-26 |
KR20180026369A (en) | 2018-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6775527B2 (en) | Vacuum pump system | |
CN107314566B (en) | Refrigerant cooling and lubricating system | |
CN102762867B (en) | There is dry vacuum pump and the blowing method of purge gas system | |
CN1422367A (en) | Self-contained regulating valve, and compression type refrigerating machine having the same | |
AU2014407987B2 (en) | Pumping system for generating a vacuum and method for pumping by means of this pumping system | |
US20160326963A1 (en) | Gas turbine power generation equipment, and device and method for drying gas turbine cooling air system | |
JP2014145325A (en) | Air compressor | |
AU2019204608A1 (en) | Method of pumping in a system of vacuum pumps and system of vacuum pumps | |
CN109477485A (en) | For reducing the method and related pump unit of the pressure in loadlock | |
CN109209880B (en) | Method for preventing dewing and rusting in water-cooling oil-free lubrication air compressor cylinder | |
AU2014406724B2 (en) | Vacuum-generating pumping system and pumping method using this pumping system | |
JP5054597B2 (en) | Steam expander driven air compressor | |
CN103486028A (en) | Oil-free helical-lobe compressor | |
KR101429363B1 (en) | Oil-cooled two-stage compressor and heat pump | |
JP2010169286A (en) | Refrigerating device | |
RU2277175C1 (en) | Oil system of gas-turbine engine with free turbine | |
JP2011149382A (en) | Water circulation type compressor | |
RU90505U1 (en) | GAS BOILER INSTALLATION OF A GAS COMPRESSOR STATION OF A MAIN GAS PIPELINE | |
US6824350B2 (en) | Hydrodynamic sealing system for centrifugal systems | |
KR102190221B1 (en) | Method for pumping in a system of vacuum pumps and system of vacuum pumps | |
JP2007218507A (en) | Heat pump device and control method thereof | |
KR20100002581U (en) | oilless type vacuum pump for fire engine | |
KR102002066B1 (en) | Improved Pumping Unit And Method For Controlling Such a Pumping Unit | |
JP7225868B2 (en) | steam system | |
WO2023153081A1 (en) | Oil-free air compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200610 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200929 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201006 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6775527 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |