JP2010169286A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2010169286A
JP2010169286A JP2009010296A JP2009010296A JP2010169286A JP 2010169286 A JP2010169286 A JP 2010169286A JP 2009010296 A JP2009010296 A JP 2009010296A JP 2009010296 A JP2009010296 A JP 2009010296A JP 2010169286 A JP2010169286 A JP 2010169286A
Authority
JP
Japan
Prior art keywords
pressure
compressor
oil
discharge
discharge pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009010296A
Other languages
Japanese (ja)
Other versions
JP5274272B2 (en
Inventor
Yoshibumi Ichikawa
義文 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009010296A priority Critical patent/JP5274272B2/en
Publication of JP2010169286A publication Critical patent/JP2010169286A/en
Application granted granted Critical
Publication of JP5274272B2 publication Critical patent/JP5274272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform an operation of high efficiency capable of securing a necessary oil supply amount to a compressor, increasing a refrigerating capacity and reducing power consumption. <P>SOLUTION: This refrigerating device is constituted of a refrigerating cycle is configured by successively connecting the compressor 1, an oil separator 2 for separating refrigerating machine oil from a refrigerant discharged from the compressor, an air cooling-type condenser 3 having an air distribution fan 14, a pressure reducing device 5 and an evaporator 6. In the refrigerating device which supplies oil to the compressor 1, the refrigerating machine oil separated by the oil separator 2 is supplied to the compressor 1 by utilizing a pressure difference between pressure at a high pressure side and pressure at a low pressure side generated by the compressing action of the compressor 1, pressure detecting means 15, 16 are disposed to detect the pressure of a sucking section and a discharging section of the compressor 1, the target discharge pressure of the compressor corresponding to the minimum necessary oil supply amount of the compressor 1 is determined according to the detected pressure of the sucking section, and a rotation speed of the air distribution fan is controlled so that the detected pressure of the discharging section reaches the target discharge pressure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷凍装置に係り、特に圧縮機の圧縮作用により生じる高圧側の圧力と低圧側の圧力の圧力差を利用して給油を行う差圧給油方式の圧縮機を備えた冷凍装置に関する。   The present invention relates to a refrigeration apparatus, and more particularly, to a refrigeration apparatus including a differential pressure oil supply type compressor that supplies oil using a pressure difference between a high pressure side pressure and a low pressure side pressure generated by a compression action of a compressor.

冷凍装置では、圧縮機、凝縮器、膨張弁及び蒸発器を順次冷媒配管で接続して構成される冷凍サイクルが使用されている。この冷凍サイクルにおいて、圧縮機に吸入された低圧の冷媒は、所定の高圧圧力に圧縮された後、凝縮器に導かれ、空気と熱交換して高圧液冷媒となる。この高圧液冷媒は、膨張弁に導かれて膨張された後、蒸発器に送られ、冷却すべき空気や水などの被冷却流体と熱交換して低圧ガス冷媒となる。そして、この低圧ガス冷媒は、圧縮機に吸い込まれて再び圧縮され、上述の冷凍サイクルを循環する。   In the refrigeration apparatus, a refrigeration cycle is used in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected by refrigerant piping. In this refrigeration cycle, the low-pressure refrigerant sucked into the compressor is compressed to a predetermined high-pressure, led to a condenser, and exchanges heat with air to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant is led to the expansion valve and expanded, and then sent to the evaporator to exchange heat with a fluid to be cooled such as air or water to be cooled to become a low-pressure gas refrigerant. The low-pressure gas refrigerant is sucked into the compressor and compressed again, and circulates in the above-described refrigeration cycle.

このような冷凍装置では、圧縮機から吐出された冷媒を凝縮器の上流側に設けられた油分離器に導いて冷媒から冷凍機油を分離し、この分離された冷凍機油の圧力と圧縮機の吸入部の圧力(以下、吸入圧力という。)との差圧を利用することで圧縮機の軸受部などに冷凍機油を給油する差圧給油方式が採用されている。ここで、給油される冷凍機油の圧力は、圧縮機の吐出部の圧力(以下、吐出圧力という。)よりも若干(例えば0.05MPa程度)低い圧力となっている。例えば、冷媒を2段階で圧縮する2段圧縮機の場合、2段目の圧縮機から吐出された冷媒から分離した冷凍機油の圧力と、1段目の圧縮機と2段目の圧縮機の間の中間圧力との差圧を利用することで、圧縮機の中間部位に冷凍機油を給油するようになっている。   In such a refrigeration apparatus, the refrigerant discharged from the compressor is led to an oil separator provided on the upstream side of the condenser to separate the refrigeration oil from the refrigerant, and the pressure of the separated refrigeration oil and the compressor A differential pressure lubrication system is used in which refrigeration oil is supplied to a bearing portion of a compressor by utilizing a differential pressure with respect to the pressure of the suction portion (hereinafter referred to as suction pressure). Here, the pressure of the refrigerating machine oil to be supplied is slightly lower (for example, about 0.05 MPa) than the pressure of the discharge part of the compressor (hereinafter referred to as discharge pressure). For example, in the case of a two-stage compressor that compresses refrigerant in two stages, the pressure of the refrigerating machine oil separated from the refrigerant discharged from the second-stage compressor, the first-stage compressor, and the second-stage compressor Refrigeration oil is supplied to the intermediate part of the compressor by utilizing the differential pressure with the intermediate pressure.

ところで、このような差圧給油方式では、吐出圧力が下がりすぎると分離した冷凍機油の圧力も低下するために、冷凍機油の圧力と吸入圧力、あるいは冷凍機油の圧力と中間圧力との差圧が減少してしまい、圧縮機に必要な最低限の給油量(以下、最低必要給油量という。)を満たさないことがある。最低必要給油量を圧縮機に給油できなければ、圧縮機のロータ面、軸受け部などの損傷や圧縮機の寿命低下を招くおそれがある。   By the way, in such a differential pressure oil supply system, if the discharge pressure is too low, the pressure of the separated refrigeration oil also decreases, so the difference between the pressure of the refrigeration oil and the suction pressure or the pressure of the refrigeration oil and the intermediate pressure is It may decrease and may not satisfy the minimum amount of oil required for the compressor (hereinafter referred to as the minimum required amount of oil). If the minimum required amount of oil cannot be supplied to the compressor, there is a risk of damaging the rotor surface of the compressor, bearings, etc. and reducing the life of the compressor.

これに対し、圧縮機の吐出側と吸入側にそれぞれ圧力センサを設置し、吐出圧力と吸入圧力との差圧が、給油可能な圧力差の下限値に近くなるか、又はそれ以下となる場合、凝縮機用の送風ファンの回転数を減少あるいは停止させるように制御する技術が開示されている(特許文献1参照。)。これによれば、凝縮器内の冷媒圧力が上昇、つまり吐出圧力が上昇するために、差圧が大きくなって十分な給油量を確保することができ、圧縮機の給油不足を解消することができる。   On the other hand, when pressure sensors are installed on the discharge side and suction side of the compressor, respectively, and the differential pressure between the discharge pressure and the suction pressure is close to or less than the lower limit of the pressure difference that can be refueled A technique for controlling to reduce or stop the rotation speed of a blower fan for a condenser is disclosed (see Patent Document 1). According to this, since the refrigerant pressure in the condenser rises, that is, the discharge pressure rises, the differential pressure becomes large and a sufficient oil supply amount can be secured, and the lack of oil supply in the compressor can be solved. it can.

特開平8−28971号公報JP-A-8-28971

しかしながら、上記特許文献1によれば、圧縮機の最低必要給油量を確保することについては考慮がされているが、圧縮機の運転効率を向上させることに関しては考慮がされておらず、さらなる改善の余地がある。   However, according to the above-mentioned Patent Document 1, consideration is given to ensuring the minimum required oil supply amount of the compressor, but consideration is not given to improving the operation efficiency of the compressor, and further improvements are made. There is room for.

すなわち、特許文献1では、圧縮機の吐出圧力と吸入圧力との差圧を、圧縮機に給油可能な差圧の下限値以上に保つものであるため、現在の差圧が給油可能な差圧の下限値よりも大幅に大きいような場合は条件を満たしており、特に制御は行わないことになる。この状態では、吐出圧力を高くしておけば必要差圧を確保できるという考えのもと、必要以上に高い吐出圧力で運転がなされており、必ずしも圧縮機の運転効率がよいとはいえない。   That is, in Patent Document 1, the differential pressure between the discharge pressure and the suction pressure of the compressor is maintained to be equal to or higher than the lower limit value of the differential pressure at which the compressor can be supplied with oil. If the value is much larger than the lower limit value, the condition is satisfied and no control is performed. In this state, the operation is performed at a discharge pressure higher than necessary based on the idea that the required differential pressure can be ensured by increasing the discharge pressure, and the operation efficiency of the compressor is not necessarily good.

本発明は、圧縮機への必要給油量を確保するとともに、冷凍能力を増加させ、かつ消費電力の減少による高効率運転を可能にする冷凍装置を実現することを課題とする。   An object of the present invention is to realize a refrigeration apparatus that secures a required amount of oil supplied to a compressor, increases refrigeration capacity, and enables high-efficiency operation by reducing power consumption.

上記課題を解決するため、本発明の冷凍装置は、圧縮機、圧縮機から吐出された冷媒から冷凍機油を分離する油分離器、送風ファンを有する空冷式凝縮器、減圧装置及び蒸発器を順次接続して冷凍サイクルを構成し、圧縮機の圧縮作用により生じる高圧側の圧力と低圧側の圧力の圧力差を利用して油分離器で分離された冷凍機油を圧縮機に給油する冷凍装置において、圧縮機の吸入部と吐出部の圧力をそれぞれ検出する圧力検出手段を備え、吸入部の検出圧力に応じて圧縮機の最低必要給油量に対応する圧縮機の目標吐出圧力を設定し、吐出部の検出圧力が目標吐出圧力となるように送風ファンの回転数を制御することを特徴とする。   In order to solve the above-described problems, a refrigeration apparatus according to the present invention sequentially includes a compressor, an oil separator that separates refrigeration oil from refrigerant discharged from the compressor, an air-cooled condenser having a blower fan, a decompression device, and an evaporator. In a refrigeration system that connects and configures a refrigeration cycle, and supplies refrigerating machine oil separated by an oil separator to a compressor using a pressure difference between a high-pressure side pressure and a low-pressure side pressure generated by the compression action of the compressor , Equipped with pressure detection means for detecting the pressure of the suction part and the discharge part of the compressor, respectively, and setting the target discharge pressure of the compressor corresponding to the minimum required oil supply amount of the compressor according to the detected pressure of the suction part The number of rotations of the blower fan is controlled so that the detected pressure of the part becomes the target discharge pressure.

この場合において、吐出部の検出圧力が目標吐出圧力よりも高いときは、送風ファンの回転数を増加させるように制御する。   In this case, when the detected pressure of the discharge unit is higher than the target discharge pressure, control is performed to increase the rotational speed of the blower fan.

すなわち、目標吐出圧力は、吸入部の検出圧力と、最低必要給油量を満たす差圧とから求めることができるため、吸入圧力に応じた目標吐出圧力の値を予め用意しておくことにより、吸入部の検出圧力に基づいて目標吐出圧力を設定することができる。ここで、例えば、圧縮機の吐出部の検出圧力が目標吐出圧力よりも高いとき、つまり最低必要給油量を満たしているときは、送風ファンの回転数を増加させ、凝縮量を増やし吐出圧力を下げることにより、吐出部の検出圧力を常に目標吐出圧力に近づけて運転を継続することができる。このように圧縮機の吐出圧力が常に目標吐出圧力となるように制御することで、吐出圧力を必要最小限に抑えた運転が可能となるため、圧縮機の消費電力が低減され、効率の高い運転が可能となる。また、凝縮器出口の冷媒温度が低くなることによりエンタルピ効果が増大するため、冷凍能力を向上させることができる。   In other words, the target discharge pressure can be obtained from the detected pressure of the suction portion and the differential pressure that satisfies the minimum required oil supply amount. Therefore, by preparing the target discharge pressure value corresponding to the suction pressure in advance, The target discharge pressure can be set based on the detected pressure of the part. Here, for example, when the detected pressure of the discharge part of the compressor is higher than the target discharge pressure, that is, when the minimum required amount of oil is satisfied, the rotational speed of the blower fan is increased, the amount of condensation is increased, and the discharge pressure is increased. By lowering the pressure, the operation can be continued with the detected pressure of the discharge section always approaching the target discharge pressure. By controlling the discharge pressure of the compressor to always become the target discharge pressure in this way, it becomes possible to operate the discharge pressure to the minimum necessary, so the power consumption of the compressor is reduced and the efficiency is high. Driving is possible. Moreover, since the enthalpy effect is increased by lowering the refrigerant temperature at the outlet of the condenser, the refrigeration capacity can be improved.

ここで、圧縮機として冷媒を2段で圧縮する2段圧縮機を用いる場合、圧力検出手段は2段目圧縮機の吐出圧力と1段目圧縮機の吸入圧力をそれぞれ検出し、1段目圧縮機と2段目圧縮機との間に冷凍機油を給油するようにする。この場合においても、1段目圧縮機の吸入部の検出圧力と、1段目圧縮機と2段目圧縮機の間に給油するための最低必要給油量を満たす差圧とから目標吐出圧力を設定することにより、上述と同様の制御を行うことができる。   Here, when a two-stage compressor that compresses the refrigerant in two stages is used as the compressor, the pressure detecting means detects the discharge pressure of the second-stage compressor and the suction pressure of the first-stage compressor, respectively. Refrigerating machine oil is supplied between the compressor and the second stage compressor. In this case as well, the target discharge pressure is determined from the detected pressure at the suction portion of the first stage compressor and the differential pressure that satisfies the minimum required amount of oil supplied between the first stage compressor and the second stage compressor. By setting, the same control as described above can be performed.

本発明によれば、圧縮機への必要給油量を確保するとともに、冷凍能力を増加させ、かつ消費電力の減少による高効率運転を可能とする冷凍装置を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, while ensuring the required amount of oil supply to a compressor, the refrigerating apparatus which makes high efficiency driving | operation possible by increasing refrigerating capacity and reducing power consumption is realizable.

本発明を適用してなる冷凍装置の全体構成を示す図である。It is a figure which shows the whole structure of the freezing apparatus formed by applying this invention. 圧力連成計及び圧力センサの接続箇所を模式的に示す図である。It is a figure which shows typically the connection location of a pressure compound meter and a pressure sensor. 吐出圧力と給油量の関係を示す図である。It is a figure which shows the relationship between discharge pressure and the amount of oil supply. 圧縮機の吐出冷媒圧力、吐出冷媒から分離された油の給油圧力、中間圧力及び圧縮機の吸入圧力の各圧力を、蒸発器における冷媒の蒸発温度との関係で示す図である。It is a figure which shows each pressure of the refrigerant | coolant discharge pressure of a compressor, the oil supply pressure of the oil isolate | separated from the discharge refrigerant | coolant, the intermediate pressure, and the suction pressure of a compressor with the evaporation temperature of the refrigerant | coolant in an evaporator. 吸入圧力と目標吐出圧力との関係を示す図である。It is a figure which shows the relationship between suction pressure and target discharge pressure. 制御前の吐出圧力が高い状態と、制御後の吐出圧力を低下させた状態の冷凍サイクルを模式的に示す図である。It is a figure which shows typically the refrigerating cycle of the state where the discharge pressure before control is high, and the state where the discharge pressure after control is reduced.

以下、本発明を適用してなる冷凍装置の実施形態について図面を参照して詳細に説明する。なお、本実施形態では、圧縮機として2段スクリュー圧縮機を用いる例を説明するが、本発明はこの例に限られるものではなく、単段スクリュー圧縮機等の各種圧縮機にも適用することが可能である。   Hereinafter, embodiments of a refrigeration apparatus to which the present invention is applied will be described in detail with reference to the drawings. In this embodiment, an example in which a two-stage screw compressor is used as the compressor will be described. However, the present invention is not limited to this example, and may be applied to various compressors such as a single-stage screw compressor. Is possible.

図1は、本実施形態の冷凍装置の全体構成を示す図である。本実施形態の冷凍装置は、2段スクリュー圧縮機1(以下、圧縮機1と略す。)、空冷式の凝縮器3、主膨張弁5、蒸発器6等を冷媒配管で接続して冷凍サイクルを形成している。凝縮器3の近傍には、凝縮器3に熱交換用の空気を送風する送風ファン14が設けられている。   FIG. 1 is a diagram illustrating the overall configuration of the refrigeration apparatus of the present embodiment. The refrigeration apparatus of the present embodiment is a refrigeration cycle in which a two-stage screw compressor 1 (hereinafter abbreviated as a compressor 1), an air-cooled condenser 3, a main expansion valve 5, an evaporator 6 and the like are connected by refrigerant piping. Is forming. A blower fan 14 that blows air for heat exchange to the condenser 3 is provided in the vicinity of the condenser 3.

圧縮機1の吐出側には、圧縮機1から吐出された冷媒から冷凍機油(以下、油と略す。)を分離する油分離器2が設けられ、この油分離器2で冷媒と分離された油は、油冷却器7を経由して配管経路aを通じて圧縮機1へ戻されるようになっている。凝縮器3と主膨張弁5との間には、凝縮器3で凝縮された冷媒を冷却する過冷却器4が設けられている。   An oil separator 2 that separates refrigeration oil (hereinafter abbreviated as oil) from the refrigerant discharged from the compressor 1 is provided on the discharge side of the compressor 1, and the oil separator 2 separates the refrigerant from the refrigerant. The oil is returned to the compressor 1 through the piping path a via the oil cooler 7. Between the condenser 3 and the main expansion valve 5, a supercooler 4 for cooling the refrigerant condensed in the condenser 3 is provided.

過冷却器4の下流側は、電磁弁8、主膨張弁5を順次配設して蒸発器6と接続される配管系路bと、電磁弁8の上流側で配管系路bから分岐され、電磁弁11、過冷却用膨張弁12、過冷却器4を順次配設して圧縮機1と接続される配管系路cと、配管系路cが配管系路bから分岐される分岐点の上流側で配管系路bから分岐され、電磁弁10、油冷却用膨張弁9、油冷却器7を順次配設して圧縮機1に接続される配管系路dとに分配されている。ここで、配管系路c、配管系路dは、いずれも圧縮機1の低段側と高段側との間に接続されている。   The downstream side of the subcooler 4 is branched from the piping system path b on the upstream side of the electromagnetic valve 8 and the piping system path b connected to the evaporator 6 by sequentially arranging the electromagnetic valve 8 and the main expansion valve 5. , The solenoid valve 11, the supercooling expansion valve 12, and the supercooler 4 are arranged in this order, and the piping system path c connected to the compressor 1 and the branching point where the piping system path c branches from the piping system path b The solenoid valve 10, the oil cooling expansion valve 9, and the oil cooler 7 are sequentially arranged and distributed to the piping system d connected to the compressor 1. . Here, the piping system path c and the piping system path d are both connected between the low stage side and the high stage side of the compressor 1.

圧縮機1の吸入側には、吸入圧力を検出するための圧力センサ15が設けられ、吐出側には、吐出圧力を検出するための圧力センサ16が設けられている。圧力センサ15,16及び送風ファン14は、制御装置17と電気的に接続されており、圧力センサ15,16からの信号に基づいて制御装置17から出力される制御信号が送風ファン14に入力されるようになっている。   A pressure sensor 15 for detecting the suction pressure is provided on the suction side of the compressor 1, and a pressure sensor 16 for detecting the discharge pressure is provided on the discharge side. The pressure sensors 15 and 16 and the blower fan 14 are electrically connected to the control device 17, and a control signal output from the control device 17 based on a signal from the pressure sensors 15 and 16 is input to the blower fan 14. It has become so.

図2は、圧縮機1の圧力センサの接続箇所を模式的に表した図であり、図2(a)は本実施形態の2段圧縮機、図2(b)は単段圧縮機を用いた場合の圧力センサの接続箇所を示している。   FIG. 2 is a diagram schematically showing the connection location of the pressure sensor of the compressor 1. FIG. 2 (a) uses the two-stage compressor of the present embodiment, and FIG. 2 (b) uses the single-stage compressor. The connection part of the pressure sensor in the case of being present is shown.

2段圧縮機1では、図2(a)に示すように、圧縮機1の吸入側の端面に一端が接続された冷媒戻り配管21に配管23を介して低圧側の圧力連成計25が接続され、その配管23を途中で分岐させた先に圧力センサ15が接続されている。また、圧縮機1の吐出側の端面に一端が接続された冷媒吐出配管27に配管29を介して圧力センサ16が接続されている。圧縮機1の長手方向の略中央部、つまり圧縮機1の低段側と高段側との間の部位には、給油配管31が接続されている。圧力センサ15,16の検出信号は制御装置17に入力されるようになっている。   In the two-stage compressor 1, as shown in FIG. 2A, a low-pressure side pressure compound meter 25 is connected to a refrigerant return pipe 21 having one end connected to an end face on the suction side of the compressor 1 via a pipe 23. The pressure sensor 15 is connected to a point where the pipe 23 is branched on the way. The pressure sensor 16 is connected to a refrigerant discharge pipe 27 having one end connected to the discharge-side end face of the compressor 1 via a pipe 29. An oil supply pipe 31 is connected to a substantially central portion in the longitudinal direction of the compressor 1, that is, a portion between the low stage side and the high stage side of the compressor 1. Detection signals from the pressure sensors 15 and 16 are input to the control device 17.

一方、単段圧縮機20を用いる場合は、図2(b)に示すように、圧縮機20の吸入側の端面に一端が接続された冷媒戻り配管21に配管23を介して低圧側の圧力連成計25が接続され、その配管23を途中で分岐させた先に圧力センサ15が接続されている。また、圧縮機20の吐出側の端面に一端が接続された冷媒吐出配管27に配管29を介して圧力センサ16が接続されている。圧縮機20の吐出側には給油配管31が接続されている。なお、本実施の形態では、圧力センサ15,16は、それぞれ冷媒戻り配管21,冷媒吐出配管27に配管を介して接続されているが、圧縮機の吸入ポートと吐出ポートにそれぞれ配管を介して直接接続されていてもよい。   On the other hand, when the single-stage compressor 20 is used, as shown in FIG. 2B, the pressure on the low-pressure side is connected via a pipe 23 to a refrigerant return pipe 21 having one end connected to the suction-side end face of the compressor 20. A compound meter 25 is connected, and a pressure sensor 15 is connected to a point where the pipe 23 is branched. The pressure sensor 16 is connected via a pipe 29 to a refrigerant discharge pipe 27 having one end connected to the discharge-side end face of the compressor 20. An oil supply pipe 31 is connected to the discharge side of the compressor 20. In the present embodiment, the pressure sensors 15 and 16 are connected to the refrigerant return pipe 21 and the refrigerant discharge pipe 27 via pipes, respectively, but are connected to the suction port and the discharge port of the compressor via pipes, respectively. It may be directly connected.

次に、本実施形態の冷凍装置の基本的な動作について図1を用いて説明する。図中の実線矢印は冷媒の流れ方向を示し、破線矢印は冷凍機油の流れ方向を示している。   Next, the basic operation of the refrigeration apparatus of the present embodiment will be described with reference to FIG. The solid line arrow in the figure indicates the flow direction of the refrigerant, and the broken line arrow indicates the flow direction of the refrigerating machine oil.

圧縮機1の低段、高段側にて順次圧縮された冷媒は高温高圧の冷媒ガスとなり、油とともに圧縮機1から吐出された後、油分離器2に導かれ、ここにおいて油が冷媒ガスから分離される。冷媒ガスは凝縮器3に導かれると、空気と熱交換して冷却、凝縮されて液冷媒となる。この液冷媒が過冷却器4に導かれると、過冷却用膨張弁12で減圧された冷媒と熱交換してさらに冷却された後、主膨張弁5の作用により低圧の湿りガスとなる。続いて、蒸発器6に導かれた低温の液冷媒は、被冷却流体を冷却して蒸発した後、圧縮機1へ吸入される。   The refrigerant that is sequentially compressed at the low and high stages of the compressor 1 becomes a high-temperature and high-pressure refrigerant gas, and is discharged from the compressor 1 together with oil, and then led to the oil separator 2 where the oil is refrigerant gas. Separated from. When the refrigerant gas is led to the condenser 3, it is cooled and condensed by exchanging heat with air to become a liquid refrigerant. When this liquid refrigerant is guided to the supercooler 4, it is further cooled by exchanging heat with the refrigerant decompressed by the supercooling expansion valve 12, and then becomes a low-pressure wet gas by the action of the main expansion valve 5. Subsequently, the low-temperature liquid refrigerant guided to the evaporator 6 is sucked into the compressor 1 after the cooled fluid is cooled and evaporated.

一方、油分離器2で分離され、油分離器2の底部に溜まった油は、圧力の作用により、油冷却器7に流れ込む。油冷却器7に導入された油は、油冷却用膨張弁9で減圧された冷媒と熱交換して冷却される。冷却された油は、油ストレーナにて油中の異物が除去された後、油の圧力と圧縮機1の中間圧力部位である各軸受け部の圧力との差圧により圧縮機給油口13へ給油される。   On the other hand, the oil separated by the oil separator 2 and accumulated at the bottom of the oil separator 2 flows into the oil cooler 7 by the action of pressure. The oil introduced into the oil cooler 7 is cooled by exchanging heat with the refrigerant decompressed by the oil cooling expansion valve 9. After the foreign matter in the oil is removed by the oil strainer, the cooled oil is supplied to the compressor oil supply port 13 by the differential pressure between the pressure of the oil and the pressure of each bearing portion that is an intermediate pressure portion of the compressor 1. Is done.

油分離器2から圧縮機1の軸受け部までの給油系統(配管経路aを含む)における圧力の関係は、油分離器2>油冷却器7>圧縮機1の軸受け部となっており、圧縮機1から吐き出され油分離器2にて分離された油は、差圧によって圧縮機1の軸受け部に給油されることになる。   The pressure relationship in the oil supply system (including the piping path a) from the oil separator 2 to the bearing portion of the compressor 1 is oil separator 2> oil cooler 7> bearing portion of the compressor 1, and compression The oil discharged from the machine 1 and separated by the oil separator 2 is supplied to the bearing portion of the compressor 1 by the differential pressure.

図3に、圧縮機1の吐出圧力と圧縮機1に給油される油の給油量との関係を示す。吐出圧力は圧力センサ16で検出することができる。図に示すように、横軸の吐出圧力と縦軸の給油量は略比例関係となり、吸入圧力を一定とした場合、吐出圧力が高いほど給油差圧が大きくなるため、給油量は増加し、吐出圧力が低いほど給油差圧が小さくなるため、給油量は減少する。また、圧縮機ごとに最低必要給油量は予め設定されているため、この最低必要給油量を満たすための最低必要差圧も予め設定することができる。そのため、油の圧力が最低必要差圧となるときの吐出圧力PDが吐出圧力の下限、つまり目標吐出圧力となる。ここで、吸入圧力が変動すれば、最低必要差圧を確保できる吐出圧力も変動するため、吸入圧力に応じて最低必要差圧に対応する目標吐出圧力を予め設定しておく。吐出圧力が目標吐出圧力となるように運転すれば、圧縮機1に必要な給油量、つまり最低必要給油量を確保することができる。   FIG. 3 shows the relationship between the discharge pressure of the compressor 1 and the amount of oil supplied to the compressor 1. The discharge pressure can be detected by the pressure sensor 16. As shown in the figure, the discharge pressure on the horizontal axis and the oil supply amount on the vertical axis are in a substantially proportional relationship, and when the suction pressure is constant, the oil supply differential pressure increases as the discharge pressure increases, so the oil supply amount increases. The lower the discharge pressure, the smaller the oil supply differential pressure, so the oil supply amount decreases. Further, since the minimum required oil supply amount is set in advance for each compressor, the minimum required differential pressure for satisfying the minimum required oil supply amount can also be set in advance. Therefore, the discharge pressure PD when the oil pressure becomes the minimum necessary differential pressure becomes the lower limit of the discharge pressure, that is, the target discharge pressure. Here, if the suction pressure fluctuates, the discharge pressure that can ensure the minimum required differential pressure also fluctuates. Therefore, a target discharge pressure corresponding to the minimum necessary differential pressure is set in advance according to the suction pressure. If the operation is performed so that the discharge pressure becomes the target discharge pressure, it is possible to ensure the amount of oil required for the compressor 1, that is, the minimum required amount of oil.

続いて、図4に、圧縮機1の吐出圧力(細線)、吐出冷媒から分離された油の給油圧力(点線)、軸受け部における中間圧力(一点鎖線)及び圧縮機1の吸入圧力(太線)の各圧力を、蒸発器6における冷媒の蒸発温度との関係で示す。ここで、給油圧力とは、油分離器2で分離された油の圧力であり、例えば、油分離器2の底部に溜まった油にかかる圧力をいう。給油圧力は、吐出圧力に対して所定の圧力損失分(例えば、約0.05MPa)だけ低い圧力であり、吐出圧力に追従して変動する。また、中間圧力は、圧縮機1の1段目と2段目との中間圧力部位である各軸受け部の圧力であり、例えば、圧縮機1の1段目の吐出圧力と略等しい圧力となっている。本実施形態においては、給油圧力と中間圧力を圧力計で検出することはなく、いずれも推定の圧力として扱っている。   Next, FIG. 4 shows the discharge pressure (thin line) of the compressor 1, the oil supply pressure of the oil separated from the discharge refrigerant (dotted line), the intermediate pressure at the bearing (dashed line), and the suction pressure of the compressor 1 (thick line). These pressures are shown in relation to the evaporation temperature of the refrigerant in the evaporator 6. Here, the oil supply pressure is the pressure of the oil separated by the oil separator 2, for example, the pressure applied to the oil accumulated at the bottom of the oil separator 2. The oil supply pressure is a pressure lower than the discharge pressure by a predetermined pressure loss (for example, about 0.05 MPa), and fluctuates following the discharge pressure. Further, the intermediate pressure is a pressure at each bearing portion, which is an intermediate pressure portion between the first stage and the second stage of the compressor 1, and is, for example, a pressure substantially equal to the discharge pressure of the first stage of the compressor 1. ing. In this embodiment, the oil supply pressure and the intermediate pressure are not detected by a pressure gauge, and both are treated as estimated pressures.

実際には、圧縮機1への給油量は給油圧力と中間圧力との差圧(ΔP)により変化するが、本実施形態では、吐出圧力を制御して所定量の差圧を確保することにより、最低必要給油量を確保するようになっている。すなわち、吸入圧力が一定であるとした場合、吐出圧力が高ければ給油圧力も高い状態にあるため、給油圧力と中間圧力との差圧が大きくなり給油量は増加し、逆に吐出圧力が低ければ給油圧力も低い状態にあるため、給油圧力と中間圧力との差圧が小さくなり給油量は減少する。なお、吐出圧力を一定とするならば、吸入圧力が低いほど給油差圧が大きくなり給油量は増加する。   Actually, the amount of oil supplied to the compressor 1 varies depending on the differential pressure (ΔP) between the oil supply pressure and the intermediate pressure, but in this embodiment, the discharge pressure is controlled to ensure a predetermined amount of differential pressure. The minimum required amount of oil is to be secured. In other words, assuming that the suction pressure is constant, the higher the discharge pressure, the higher the oil supply pressure, so the differential pressure between the oil supply pressure and the intermediate pressure increases, the oil supply amount increases, and conversely the discharge pressure decreases. Since the oil supply pressure is also low, the differential pressure between the oil supply pressure and the intermediate pressure becomes small, and the oil supply amount decreases. If the discharge pressure is constant, the lower the suction pressure, the larger the oil supply differential pressure and the oil supply amount.

図5には、任意の吸入圧力に応じた目標吐出圧力の値を示す。任意の吸入圧力をPS1,PS2・・・とし、PS1の目標吐出圧力をPD1,PD2の目標吐出圧力をPD2・・・と設定しておく。このとき目標吐出圧力は、従来の制御で運転させた場合の吐出圧力(点線)よりも低い値で設定(実線)されている。このようにして設定された目標吐出圧力は、吸入圧力と略比例関係となる。   FIG. 5 shows a target discharge pressure value corresponding to an arbitrary suction pressure. An arbitrary suction pressure is set to PS1, PS2,..., And a target discharge pressure for PS1 is set to PD1, a target discharge pressure for PD2, and so on. At this time, the target discharge pressure is set (solid line) at a value lower than the discharge pressure (dotted line) when operated by conventional control. The target discharge pressure set in this way is approximately proportional to the suction pressure.

ここで、任意の吸入圧力(圧力センサ15で検出された圧力)における目標吐出圧力をPDとし、運転中に圧力センサ16で検出された吐出圧力をPD´とした場合、冷凍装置を運転させたときに、PD<PD´であれば、PD´をPDに近づけるように送風ファン14の回転数を増速させて吐出圧力を低下させ、PD>PD´であれば、送風ファン14の回転数を減速させて吐出圧力を上昇させるように制御する。また、PD≒PD´であれば、送風ファン14の回転数を維持し吐出圧力を変化させないように制御する。   Here, when the target discharge pressure at an arbitrary suction pressure (pressure detected by the pressure sensor 15) is PD and the discharge pressure detected by the pressure sensor 16 during operation is PD ', the refrigeration apparatus is operated. Sometimes, if PD <PD ′, the rotational speed of the blower fan 14 is increased so that PD ′ approaches the PD to lower the discharge pressure. If PD> PD ′, the rotational speed of the blower fan 14 Is controlled so as to increase the discharge pressure. If PD≈PD ′, control is performed so that the rotation speed of the blower fan 14 is maintained and the discharge pressure is not changed.

図6に、吐出圧力が目標吐出圧力よりも高い状態(破線)と、吐出圧力が目標吐出圧力に近づけるように送風ファン14の回転数を増速し吐出圧力を低下させた状態(実線)の冷凍サイクルを模式的に示す。図に示すように、吐出圧力をPd2からPd1へ低下させることにより、凝縮器3の出口の液温度及び過冷却器4の出口の液温度が低下し、エンタルピ効果が増加し冷凍能力が向上する。また、吐出圧力が低下することにより、圧縮機1の消費電力も大幅に減少するため、極めて効率の高い運転が可能になる。   FIG. 6 shows a state where the discharge pressure is higher than the target discharge pressure (broken line) and a state where the rotation speed of the blower fan 14 is increased and the discharge pressure is lowered so that the discharge pressure approaches the target discharge pressure (solid line). A refrigerating cycle is shown typically. As shown in the figure, by reducing the discharge pressure from Pd2 to Pd1, the liquid temperature at the outlet of the condenser 3 and the liquid temperature at the outlet of the subcooler 4 are lowered, the enthalpy effect is increased, and the refrigeration capacity is improved. . Moreover, since the power consumption of the compressor 1 is significantly reduced due to a decrease in the discharge pressure, an extremely efficient operation is possible.

また、吐出圧力が低下することにより、圧縮機1の軸受け負荷が減少するため、軸受け長寿命化や小型化が図られ、さらにはオーバーホール時間の延長、メンテナンスコストの低減が可能となる。また、制御装置17では、吸入圧力と吐出圧力を常時監視して吐出圧力が制御されるため、信頼性が向上し、給油に関して不具合が発生した場合にも外部への表示等で迅速に処置、対応をすることが可能となる。   Further, since the bearing load of the compressor 1 is reduced due to the reduction of the discharge pressure, the life of the bearing can be extended and the size can be reduced, and further, the overhaul time can be extended and the maintenance cost can be reduced. In addition, since the control device 17 constantly monitors the suction pressure and the discharge pressure to control the discharge pressure, the reliability is improved. It becomes possible to cope.

本実施形態の制御は、例えば寒冷地などのように外気温度が低いほど凝縮温度を低くさせ易く、送風ファン14を増速させることにより吐出圧力の低下をより容易に行うことができる。外気温度が低いほど吐出圧力を最低限値(目標吐出圧力)で運転できる時間が長くなり長時間にわたり高効率運転が可能になる。また冷凍能力も大幅に増加するため、使用条件によっては機器の容量ダウンも可能になる。また、寒冷地でなくても中間期や夜間など昼間よりも外気温度が下がる条件では、本実施形態のように吐出圧力を最低限値まで下げて運転することができるため、この場合でも大幅な効果を得ることができる。   In the control of this embodiment, the lower the outside air temperature is, for example, in a cold district, the easier it is to lower the condensation temperature, and by increasing the speed of the blower fan 14, the discharge pressure can be reduced more easily. The lower the outside air temperature, the longer the time during which the discharge pressure can be operated at the minimum value (target discharge pressure), and high-efficiency operation becomes possible over a long period of time. Also, since the refrigeration capacity is greatly increased, the capacity of the device can be reduced depending on the use conditions. In addition, even in a cold area, under conditions where the outside air temperature is lower than during the daytime, such as in the middle period or at night, the operation can be performed with the discharge pressure lowered to the minimum value as in this embodiment. An effect can be obtained.

また、本実施形態では、スクリュー式の圧縮機を用いる例を説明したが、本発明はこの例に限られるものではなく、例えば、スクロール式の圧縮機にも適用することが可能である。   In this embodiment, an example using a screw type compressor has been described, but the present invention is not limited to this example, and can be applied to, for example, a scroll type compressor.

なお、本実施形態では、吐出圧力を調整するために送風ファン14の回転数を制御する例について説明したが、その他の参考例として、例えば、凝縮器3に水冷方式を取り入れ、凝縮器3を冷却するための液冷媒の温度や流量を制御することにより吐出圧力を制御することも可能である。   In the present embodiment, the example in which the rotation speed of the blower fan 14 is controlled in order to adjust the discharge pressure has been described. However, as another reference example, for example, a water cooling system is incorporated in the condenser 3 and the condenser 3 is installed. It is also possible to control the discharge pressure by controlling the temperature and flow rate of the liquid refrigerant for cooling.

1 2段スクリュー圧縮機(圧縮機)
2 油分離器
3 空冷式凝縮器
4 過冷却器
5 主膨張弁
6 蒸発器
7 油冷却器
8,10,11 電磁弁
12 過冷却用膨張弁
13 圧縮機給油口
14 送風ファン
15,16 圧力センサ
17 制御装置
1 Two-stage screw compressor (compressor)
2 Oil separator 3 Air-cooled condenser 4 Supercooler 5 Main expansion valve 6 Evaporator 7 Oil cooler 8, 10, 11 Solenoid valve 12 Supercooling expansion valve 13 Compressor oil supply port 14 Blower fan 15, 16 Pressure sensor 17 Control device

Claims (3)

圧縮機、該圧縮機から吐出された冷媒から冷凍機油を分離する油分離器、送風ファンを有する空冷式凝縮器、減圧装置及び蒸発器を順次接続して冷凍サイクルを構成し、前記圧縮機の圧縮作用により生じる高圧側の圧力と低圧側の圧力の圧力差を利用して前記油分離器で分離された前記冷凍機油を前記圧縮機に給油する冷凍装置において、
前記圧縮機の吸入部と吐出部の圧力をそれぞれ検出する圧力検出手段を備え、
前記吸入部の検出圧力に応じて前記圧縮機の最低必要給油量に対応する該圧縮機の目標吐出圧力を設定し、前記吐出部の検出圧力が前記目標吐出圧力となるように前記送風ファンの回転数を制御することを特徴とする冷凍装置。
A compressor, an oil separator that separates refrigeration oil from refrigerant discharged from the compressor, an air-cooled condenser having a blower fan, a decompression device, and an evaporator are sequentially connected to form a refrigeration cycle. In the refrigerating apparatus for supplying the compressor with the refrigerating machine oil separated by the oil separator using the pressure difference between the high-pressure side pressure and the low-pressure side pressure generated by the compression action,
Pressure detecting means for detecting the pressure of the suction portion and the discharge portion of the compressor,
The target discharge pressure of the compressor corresponding to the minimum required oil supply amount of the compressor is set according to the detected pressure of the suction unit, and the blower fan is set so that the detected pressure of the discharge unit becomes the target discharge pressure. A refrigeration apparatus characterized by controlling a rotation speed.
前記吐出部の検出圧力が前記目標吐出圧力よりも高いとき、前記送風ファンの回転数を増加させることを特徴とする請求項1に記載の冷凍装置。   2. The refrigeration apparatus according to claim 1, wherein when the detected pressure of the discharge unit is higher than the target discharge pressure, the rotational speed of the blower fan is increased. 前記圧縮機は冷媒を2段で圧縮する2段圧縮機であり、
前記圧力検出手段は2段目圧縮機の吐出圧力と1段目圧縮機の吸入圧力をそれぞれ検出するものであり、
前記1段目圧縮機と前記2段目圧縮機との間に前記冷凍機油を給油することを特徴とする請求項1又は2に記載の冷凍装置。
The compressor is a two-stage compressor that compresses the refrigerant in two stages,
The pressure detection means detects the discharge pressure of the second stage compressor and the suction pressure of the first stage compressor,
The refrigerating apparatus according to claim 1 or 2, wherein the refrigerating machine oil is supplied between the first stage compressor and the second stage compressor.
JP2009010296A 2009-01-20 2009-01-20 Refrigeration equipment Active JP5274272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009010296A JP5274272B2 (en) 2009-01-20 2009-01-20 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009010296A JP5274272B2 (en) 2009-01-20 2009-01-20 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2010169286A true JP2010169286A (en) 2010-08-05
JP5274272B2 JP5274272B2 (en) 2013-08-28

Family

ID=42701611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009010296A Active JP5274272B2 (en) 2009-01-20 2009-01-20 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5274272B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102865690A (en) * 2012-09-26 2013-01-09 美意(浙江)空调设备有限公司 Novel water cooling unit
WO2015132843A1 (en) * 2014-03-03 2015-09-11 日立アプライアンス株式会社 Air conditioner
CN106225340A (en) * 2016-07-25 2016-12-14 信易电热机械有限公司 A kind of refrigeration system
JP2019132524A (en) * 2018-01-31 2019-08-08 株式会社富士通ゼネラル Air conditioner
WO2020259131A1 (en) * 2019-06-22 2020-12-30 青岛海尔空调电子有限公司 Water cooling unit and control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828971A (en) * 1994-07-14 1996-02-02 Hitachi Ltd Controlling method of air conditioner
JP2004522132A (en) * 2001-04-20 2004-07-22 ヨーク・インターナショナル・コーポレーション Method and apparatus for controlling heat removal from a condenser in a cooling system
JP2008096091A (en) * 2006-09-15 2008-04-24 Sanyo Electric Co Ltd Refrigerating cycle device
JP2008281265A (en) * 2007-05-10 2008-11-20 Hitachi Appliances Inc Refrigerating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828971A (en) * 1994-07-14 1996-02-02 Hitachi Ltd Controlling method of air conditioner
JP2004522132A (en) * 2001-04-20 2004-07-22 ヨーク・インターナショナル・コーポレーション Method and apparatus for controlling heat removal from a condenser in a cooling system
JP2008096091A (en) * 2006-09-15 2008-04-24 Sanyo Electric Co Ltd Refrigerating cycle device
JP2008281265A (en) * 2007-05-10 2008-11-20 Hitachi Appliances Inc Refrigerating device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102865690A (en) * 2012-09-26 2013-01-09 美意(浙江)空调设备有限公司 Novel water cooling unit
CN102865690B (en) * 2012-09-26 2015-09-23 美意(浙江)空调设备有限公司 Water cooling unit
WO2015132843A1 (en) * 2014-03-03 2015-09-11 日立アプライアンス株式会社 Air conditioner
CN106225340A (en) * 2016-07-25 2016-12-14 信易电热机械有限公司 A kind of refrigeration system
JP2019132524A (en) * 2018-01-31 2019-08-08 株式会社富士通ゼネラル Air conditioner
JP7047416B2 (en) 2018-01-31 2022-04-05 株式会社富士通ゼネラル Air conditioner
WO2020259131A1 (en) * 2019-06-22 2020-12-30 青岛海尔空调电子有限公司 Water cooling unit and control method

Also Published As

Publication number Publication date
JP5274272B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
US20060101845A1 (en) Compressor oil recovering apparatus and multi-unit air conditioner equiped with the same
US8683817B2 (en) Low ambient operating procedure for cooling systems with high efficiency condensers
JP5484889B2 (en) Refrigeration equipment
JP5274272B2 (en) Refrigeration equipment
JP5484890B2 (en) Refrigeration equipment
JP2011133209A (en) Refrigerating apparatus
JP5783783B2 (en) Heat source side unit and refrigeration cycle apparatus
JP4898546B2 (en) Refrigeration equipment
KR101220663B1 (en) Freezing device
JP6080031B2 (en) Refrigeration equipment
JP2007218565A (en) Freezer
JP2006250440A (en) Air conditioning system
JP5523817B2 (en) Refrigeration equipment
JP2011133206A (en) Refrigerating apparatus
JP5502460B2 (en) Refrigeration equipment
JP2014190579A (en) Turbo freezer
JP6566705B2 (en) Air conditioner
CN109579332B (en) Refrigeration system
JP2009180429A (en) Refrigerating device
JP2009287844A (en) Refrigeration device
JP4738219B2 (en) Refrigeration equipment
JP2011133208A (en) Refrigerating apparatus
KR100876285B1 (en) Gas heat pump system
JP7411929B2 (en) Refrigeration equipment
JP2007170706A (en) Refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5274272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250