WO2023153081A1 - Oil-free air compressor - Google Patents

Oil-free air compressor Download PDF

Info

Publication number
WO2023153081A1
WO2023153081A1 PCT/JP2022/046606 JP2022046606W WO2023153081A1 WO 2023153081 A1 WO2023153081 A1 WO 2023153081A1 JP 2022046606 W JP2022046606 W JP 2022046606W WO 2023153081 A1 WO2023153081 A1 WO 2023153081A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
oil
air
pressure stage
main body
Prior art date
Application number
PCT/JP2022/046606
Other languages
French (fr)
Japanese (ja)
Inventor
佑貴 石塚
雄二 伊藤
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2023153081A1 publication Critical patent/WO2023153081A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • the present invention relates to an oil-free air compressor such as an oil-free screw compressor.
  • the oil-free screw compressor does not use lubricating oil or has a structure in which lubricating oil does not enter the compression chamber, so clean compressed air containing no oil is obtained, and the rotor rotates without contact. Therefore, it has the advantage of being durable and time-saving.
  • the moisture contained in the compressed air may cause rusting when operation is stopped, and it is necessary to prevent rusting.
  • Patent Document 1 discloses a method for preventing rust of a compressor during outage, which is described as follows.
  • a rust-preventing method for a compressor during stoppage of operation characterized in that the moisture-containing gas sucked into the compressor and remaining in the compressor is replaced with dry gas.” (see claim 1). ing.
  • Patent Document 1 discloses a technique of sucking dry gas into the compressor when the operation is stopped and replacing the gas containing moisture remaining in the compressor with the dry gas as a method for preventing rust of the compressor when the operation is stopped. It is
  • the position to supply the dry gas is preferably the discharge side of the compressor body and the downstream side of the cooler. This is because the air compressed by the main body of the compressor becomes moist air when cooled by the cooler, and direct replacement of the moist air with dry gas is highly effective.
  • the compressor body has an internal gap of several tens of ⁇ m to prevent air leakage during compression. If the male and female rotors do not rotate, air must pass through this minute gap to flow from the intake port of the compressor body to the discharge port. Therefore, even if dry gas is supplied to the suction side, it is difficult for it to flow to the discharge side, and it is not suitable for the purpose of replacing wet air with dry gas.
  • the present invention is an oil-free air compressor that improves reliability by preventing oil from entering the compressor body by preventing reverse rotation of the compressor body when the compressor is out of operation, while increasing the rust prevention effect. intended to provide
  • An oil-free air compressor comprising: an oil-free compressor body for compressing and outputting air; and a cooler connected to the compressor body for cooling the compressed high-temperature air, wherein the compressor It is provided with a dry air supply mechanism for supplying dry air to the output side of the main body and a mechanism for preventing reverse rotation of the compressor main body while the compressor is out of operation.
  • oil-free air compressor of the present invention
  • An oil-free low-pressure stage compressor body and a high-pressure stage compressor body that compress and output air and an intermediate-stage piping that connects the low-pressure stage compressor body and the high-pressure stage compressor body , an intercooler provided in the intermediate stage for cooling the compressed high-temperature air, and an aftercooler provided on the output side of the high-pressure stage compressor main body, wherein the intermediate stage is and a mechanism for preventing reverse rotation of the main body of the low-pressure stage side compressor while the compressor is out of operation.
  • a compressor can be provided.
  • FIG. 1 is a diagram showing an oil-free screw compressor of Example 1 of the present invention
  • Fig. 2 is a diagram showing an oil-free screw compressor of Example 2 of the present invention
  • FIG. 3 is a diagram showing an oil-free screw compressor according to Example 3 of the present invention
  • FIG. 4 is a schematic internal structural diagram showing a state during operation of the trochoid pump
  • FIG. 4 is a schematic internal structural diagram showing a state when the trochoid pump is closed
  • FIG. 4 is a diagram showing an oilless screw compressor according to Embodiment 4 of the present invention
  • FIG. 5 is a diagram showing an oil-free screw compressor according to Embodiment 5 of the present invention
  • FIG. 6 is a diagram showing an oil-free screw compressor of Example 6 of the present invention.
  • Fig. 2 is a cross-sectional plan view showing the internal structure of the compressor body of the oilless screw compressor.
  • FIG. 2 is a front cross-sectional view showing the internal structure of the compressor body of the oilless screw compressor.
  • FIG. 8A and 8B show cross-sectional views of the compressor body 1 of the oil-free screw compressor.
  • 8A is a plan sectional view
  • FIG. 8B is a front sectional view.
  • the compressor main body 1 is a capacity control type air compressor in which the teeth of a pair of screw rotors consisting of a male rotor 50A and a female rotor 50B mesh with each other while maintaining a predetermined gap and rotate at high speed to generate compressed air. machine.
  • the male rotor 50A is integrally or directly connected to the rotor shaft 48A, and the female rotor 50B is connected to the rotor shaft 48B.
  • Bearings 11A and 11B are arranged on the rotor shafts of the male rotor 50A and the female rotor 50B, respectively, in the air suction side end direction, and bearings 12A, 12B are arranged in the air discharge side end direction. Supported.
  • timing gears 9A and 9B are arranged at the outer ends of the rotor shafts 48A and 48B, respectively, beyond the bearings 12A and 12B. The engagement of 9A and 9B allows the male and female rotors to rotate relative to each other. As the male and female rotors rotate, the air sucked from the intake port 41 is compressed in the working chamber 60, and is eventually supplied from the discharge port 42 through a predetermined compressed air path to the user side.
  • shaft seal portions 17 (17A and 17B) and shaft seal portions 18 (18A and 18B) are provided between male and female rotors 50A and 50B and bearings 11A and 11B. are placed.
  • the shaft seal portion 18 is an air seal, and is an annular member for reducing leakage of the air compressed in the working chamber 60 to the side of the bearing 11A and the like.
  • the shaft seal portion 18 is not in contact with the rotor shaft 48A and the like, and the gap therebetween is as small as several tens of micrometers.
  • Air seals 18A (male side) and 18B (female side) are arranged on the rotor shafts 48 of the male and female rotors 50A and 50B, respectively.
  • the shaft seal portion 17 is a screw seal and serves to prevent the lubricating oil supplied to the bearings 11A and 11B via the path 34 from entering the working chamber 60.
  • the screw seals 17A and 17B have helical square grooves on their inner surfaces, and are assembled so as to maintain a minute gap without contact with the rotor shaft 48A or the like.
  • the screw seals 17A and 17B generate seal pressure in the grooves of the inner diameter portion due to the rotation of the rotor shaft 48A and the like, thereby pushing the lubricating oil back toward the bearings 11A and 11B.
  • a groove is formed in the circumferential direction between the shaft seal portions 17 and 18 of the rotor shaft 48A and the like. 43 is formed.
  • the hole portion 43 functions as a gas vent hole or the like for releasing leaked air from the working chamber 60 to the outside of the compressor body 1 .
  • an oil drain port 45 is formed between the screw seals 17A, 17B and the bearings 11A, 11B to collect lubricating oil lubricating the bearings 11A, 11B and return it to the oil reservoir 47 of the gear casing 2. .
  • the shaft seal portions 20 air seals
  • the shaft seal portions 19 screw seals
  • a shaft seal portion 19 and a shaft seal portion 20 are arranged between the rotors 50A, 50B and the bearings 12A, 12B.
  • a hole portion 44 is formed between the shaft seal portion 19 and the shaft seal portion 20 of the compressor body casing, communicating with the outside air and functioning as a vent for compressed air leaking from the working chamber 60 .
  • Three bearings 12A and 12B are arranged on each of the male and female rotor shafts.
  • a path 33 for supplying lubricating oil from above is formed at any position between these three bearings 12 in the compressor body casing.
  • the compressor body casing is formed with a discharge port 46 for recovering lubricating oil from a position between the bearings 12A, 12B and the screw seals 19A, 19B.
  • the lubricating oil supplied from the path 33 lubricates the bearings 12A and 12B, and then is recovered from the oil drain port 46. As shown in FIG.
  • the compressor body casing is formed with a path 35 for supplying lubricating oil above the timing gears 9A and 9B. is recovered in the oil reservoir 47 from the The path 35 is formed to branch off from the path 33 on the compressor casing, and the oil drain port 46 is formed to merge with the oil drain port 45 in the middle.
  • the shaft seal 17 (screw seal) pushes the lubricating oil back toward the bearings 11A and 11B when the compressor body rotates forward, but draws the lubricating oil from the bearings toward the working chamber when the compressor body rotates in the reverse direction. Therefore, it is not preferable for the compressor body to rotate in the opposite direction.
  • the present invention prevents oil from entering the compressor body by preventing reverse rotation of the compressor body when the compressor is out of operation, while increasing the rust prevention effect. It improves reliability.
  • FIG. 1 shows an oil-free screw compressor according to Example 1 of the present invention. It should be noted that FIG. 1 shows a case in which the minimum necessary equipment is installed, and other equipment may be installed.
  • the compressor 100 includes a compressor body 1, a gear casing 2, a motor 3a as a drive source for the compressor body 1, and a motor 3c as a drive source for the oil pump .
  • a speed-increasing drive gear 6 is attached to the output shaft of the motor 3a arranged on the side surface of the gear casing 2. As shown in FIG.
  • the speed-increasing driving gear 6 meshes with a speed-increasing driven gear 7 set to a predetermined gear ratio, and applies a driving force to the male rotor of the compressor body 1 through a rotor shaft connected to the speed-increasing driven gear 7. introduce.
  • the oil pump 24 is attached to the side surface of the gear casing 2 with a flange connection, and supplies driving force via an oil pump driven gear 8B that meshes with an oil pump driving gear 8A attached to the motor 3c at a predetermined gear ratio. transmitted.
  • the oil pump 24 is a pump that circulates lubricating oil to various driving parts of the compressor 100, and circulates lubricating oil to various oil paths arranged in the compressor 100 by driving force transmitted through the oil pump shaft. to pump.
  • the oil pump 24 sucks the lubricating oil from the oil reservoir 47 provided in the lower part of the gear casing 2 through the on-off valve 15, and pumps it through the path 14 to an oil cooler (not shown). .
  • the oil cooler is an air-cooled or water-cooled heat exchanger using a fan (not shown), and cools the lubricating oil to a predetermined temperature or less.
  • the air that has been compressed by the compressor body 1 and has a high temperature becomes moist air when cooled by the aftercooler 5. Therefore, replacing it with dry air is effective for rust prevention.
  • a dry air supply line 23 having a dry air supply port 21 and a supply valve 22 is provided on the downstream side of the aftercooler 5, and dry air stored in an air tank 28 is supplied thereto.
  • the supply valve 22 is opened and closed at predetermined timing by the control panel 32 .
  • a brake device 70 for the compressor main body 1 is provided, which operates when the operation is stopped.
  • the brake device 70 is connected to the male rotor of the compressor main body 1 and controlled by the control panel 32 so that the male rotor does not rotate while dry air is being supplied. By adopting this configuration, it is possible to prevent the compressor body 1 from rotating in the reverse direction while the dry air is being supplied.
  • the operation of the compressor is as follows. During operation of the compressor, air is sucked into the compressor main body 1 from the air suction port 101 through the air suction pipe 103 . Compressed air that has been compressed in the compressor main body 1 and heated to a high temperature is cooled by the aftercooler 5 and is output from the compressed air discharge port 102 via the check valve 25 . When the compressor is out of operation, the motor 3a stops and the compressor body 1 stops. Then, the air release valve 26A connected between the compressor main body 1 and the aftercooler 5 is opened to release the pressure inside the compressor. Then, the dry air stored in the air tank 28 is supplied from the dry air supply line 23 to the output side of the aftercooler 5 .
  • the dry air supplied from the supply port 21 is discharged into the atmosphere from the air release valve 26A. At this time, the pressure on the discharge side of the compressor main body 1 rises due to the dry air supplied from the supply port 21, so that a force is applied to rotate the compressor main body 1 in the reverse direction. Since the brake is applied, reverse rotation of the compressor main body 1 is prevented even if high-pressure dry air is supplied.
  • the brake device is an example of a mechanism that prevents reverse rotation of the compressor body, and any device that can prevent reverse rotation of the compressor body may be used. Another example is a ratchet mechanism.
  • FIG. 2 shows an oil-free screw compressor of Example 2 of the present invention. Note that FIG. 2 shows a case where the minimum required equipment is installed, and other equipment may be installed.
  • the compressor 100 includes a low-pressure stage compressor body 1a, a high-pressure stage compressor body 1b, a gear casing 2, and motors 3a and 3b as drive sources.
  • the low-pressure stage side compressor main body 1a and the high-pressure stage side compressor main body 1b are attached near the upper side surface of the gear casing 2 by flange connection.
  • Speed increasing drive gears 6A and 6B are attached to the output shafts of the motors 3a and 3b arranged on the side surface of the gear casing 2, respectively.
  • the speed-increasing drive gears 6A, 6B mesh with the speed-increasing driven gears 7A, 7B set to a predetermined gear ratio, and are connected to the low-pressure stage side compressor via rotor shafts connected to the speed-increasing driven gears 7A, 7B.
  • a driving force is transmitted to the male rotor of the main body 1a and the male rotor of the high pressure stage compressor main body 1b.
  • An intercooler 4 is provided on the discharge side of the low-pressure stage compressor main body 1a to cool the air that has been compressed and heated to a high temperature.
  • An intermediate stage pipe 13 is provided to connect the intercooler 4 and the high-pressure stage compressor main body 1b, and supplies the compressed air cooled by the intercooler 4 to the high-pressure stage compressor main body 1b.
  • An aftercooler 5 is provided on the discharge side of the high-pressure stage compressor main body 1b to cool the compressed air that has reached a high temperature and output it via a check valve 25. As shown in FIG.
  • a dry air supply line 23 having a dry air supply port 21 and a supply valve 22 is provided in the intermediate stage piping 13 between the intercooler 4 and the high pressure stage side compressor main body 1b, and an air tank 28 is connected to the dry air supply line 23.
  • supply dry air stored in The supply valve 22 is opened and closed at predetermined timing by the control panel 32 .
  • a brake device 70 for the low-pressure stage compressor main body 1a is provided, which operates when the operation is stopped.
  • the brake device 70 is connected to the male rotor of the low-pressure stage compressor main body 1a, and is controlled by the control panel 32 so that the male rotor does not rotate while dry air is being supplied. With this configuration, it is possible to prevent the main body of the low-pressure stage compressor from rotating in the reverse direction during the supply of dry air.
  • the operation of the compressor is as follows. During operation of the compressor, air is sucked from the air suction port 101 through the air suction pipe 103 into the low-pressure stage side compressor main body 1a. Compressed air that has been compressed in the low-pressure stage compressor main body 1a and heated to a high temperature is cooled by the intercooler 4 and supplied to the high-pressure stage compressor main body 1b. Compressed air that has been further compressed in the high-pressure stage compressor main body 1 b and heated to a high temperature is cooled by the aftercooler 5 and is output from the compressed air discharge port 102 via the check valve 25 .
  • the motors 3a and 3b are stopped, and the low-pressure stage compressor body 1a and the high-pressure stage compressor body 1b are stopped.
  • the release valve 26A connected between the low-pressure stage compressor main body 1a and the intercooler 4 and the release valve 26B connected between the high-pressure stage compressor main body 1b and the aftercooler 5 are opened. Release the pressure inside the compressor.
  • the dry air stored in the air tank 28 is supplied from the dry air supply line 23 having the dry air supply port 21 and the supply valve 22 to the piping 13 of the intermediate stage.
  • the dry air supplied from the supply port 21 to the intermediate-stage pipe 13 is released into the atmosphere from the air release valves 26A and 26B.
  • Fig. 3 shows an oil-free screw compressor according to Embodiment 3 of the present invention.
  • motors are provided for the low-pressure stage compressor main body, the high-pressure stage compressor main body, and the oil pump that supplies the lubricating oil. be.
  • the compressor 100 includes a low-pressure stage compressor main body 1a, a high-pressure stage compressor main body 1b, a gear casing 2, and one motor 3 as a drive source.
  • a speed increasing drive gear 6 and an oil pump drive gear 8A are attached to the output shaft of the motor 3 arranged on the side surface of the gear casing 2 .
  • the speed-increasing driving gear 6 meshes with speed-increasing driven gears 7A and 7B set to a predetermined gear ratio, and is connected to the male of the low-pressure stage side compressor main body 1a via a rotor shaft connected to the speed-increasing driven gear 7A.
  • a driving force is transmitted to the rotor and to the male rotor of the high-pressure stage compressor main body 1b via a rotor shaft connected to the speed-increasing driven gear 7B.
  • the pump drive gear 8A meshes with the oil pump driven gear 8B set to a predetermined gear ratio.
  • the pump driven gear 8B is connected to an oil pump shaft passing through the outside of the gear casing 2 and transmits driving force to the oil pump 24. As shown in FIG.
  • the opening/closing valve 15 is provided on the suction side of the oil pump 24, that is, between the oil reservoir 47 and the oil pump 24.
  • Figures 4A and 4B show a trochoid pump used as an oil pump, with Figure 4A showing the operating state and Figure 4B showing the closed state.
  • a working chamber formed by an inner rotor 51 and an outer rotor 52 expands and contracts from a suction port 53 to a discharge port 54, thereby pumping lubricating oil from a suction flow path 55 to a discharge flow path 56.
  • the working chamber expands and contracts from the discharge port 54 to the suction port 53, so the lubricating oil flows back from the discharge port 54 to the suction port 53.
  • the suction flow path 55 is blocked, the lubricating oil cannot be sent to the suction side, and the working space cannot be contracted, so that the pump is locked.
  • the suction side 55 of the oil pump 24 is filled with lubricating oil as shown in FIG. Reverse rotation of the oil pump 24 can be prevented. Since the oil pump 24 and the compressor main bodies 1a, 1b are connected via the drive gear 6, if the oil pump 24 cannot rotate, the compressor main bodies 1a, 1b cannot rotate either. Therefore, reverse rotation of the compressor main body can be prevented while the compressor is stopped.
  • a trochoid pump is mentioned as an example, any gear pump that transports fluid by meshing gear teeth can be used.
  • a single motor drives the compressor bodies on the low-pressure stage side and the high-pressure stage side and the oil pump through gears, and the oil pump is connected to the oil pump suction side of the compressor.
  • FIG. 5 shows an oil-free screw compressor according to Embodiment 4 of the present invention.
  • Embodiment 3 is a multi-stage compressor comprising a low-pressure stage side compressor main body 1a and a high-pressure stage side compressor main body 1b, but this embodiment is a single-stage compressor composed of one compressor main body. .
  • the compressor 100 includes a compressor body 1, a gear casing 2, and a single motor 3 as a drive source.
  • a speed increasing drive gear 6 and an oil pump drive gear 8A are attached to the output shaft of the motor 3 arranged on the side surface of the gear casing 2 .
  • the speed-increasing driving gear 6 meshes with a speed-increasing driven gear 7 set to a predetermined gear ratio, and applies a driving force to the male rotor of the compressor body 1 through a rotor shaft connected to the speed-increasing driven gear 7. introduce.
  • the pump drive gear 8A meshes with the oil pump driven gear 8B set to a predetermined gear ratio.
  • the pump driven gear 8B is connected to an oil pump shaft passing through the outside of the gear casing 2 and transmits driving force to the oil pump 24.
  • An on-off valve 15 is provided on the suction side of the oil pump 24 , that is, on the oil pump suction path 14 between the oil reservoir 47 and the oil pump 24 .
  • the air that has been compressed by the compressor body 1 and has a high temperature becomes moist air when cooled by the aftercooler 5 . Therefore, replacing it with dry air is effective for rust prevention.
  • a supply line 23 having a dry air supply port 21 and a supply valve 22 is provided on the downstream side of the aftercooler 5, to which dry air stored in an air tank 28 is supplied.
  • the supply valve 22 is opened and closed at predetermined timing by the control panel 32 .
  • the check valve 25 in the oil pump suction path 14 is normally closed, so the supplied dry air passes through the air release valve 26A or the compressor main body 1 to the suction port 101. It goes out of the compressor, but at this time, a force acts to reversely rotate the compressor main body 1 .
  • the compressor body 1 is connected to the oil pump 24 via the drive gears 6 and 8A. Rotation can be prevented.
  • a single motor drives the compressor body and the oil pump through a gear, and the suction side of the oil pump is open during operation of the compressor and stops.
  • FIG. 6 shows an oil-free screw compressor of Example 5 of the present invention. Since the basic configuration is the same as that of the third embodiment shown in FIG. 3, differences will be explained here.
  • This embodiment is characterized in that a dry air supply port is also provided on the suction side of the low-pressure stage compressor.
  • the suction pipe 103 is provided with a dry air supply port 21A, a supply valve 22, and a dry air supply line 23A having an orifice 33A.
  • a dry air supply line 23B having a dry air supply port 21B, a supply valve 22, and an orifice 33B is provided in the intermediate stage.
  • an air release valve 26A connected between the low-pressure stage compressor body 1a and the inner cooler 4, and an air release valve 26A connected between the high-pressure stage compressor body 1b and the aftercooler 5 Valve 26B is opened to release the pressure inside the compressor. Thereafter, by controlling the control panel 32 to open the supply valve 22, the dry air stored in the air tank 28 is supplied into the compressor through the dry air supply lines 23A and 23B. The dry air supplied from the supply port 21B to the intermediate-stage pipe 13 is released into the atmosphere from the air release valves 26A and 26B. The dry air supplied from the supply port 21A is discharged from the suction port 101 into the atmosphere.
  • the dry air supplied from the supply port 21B increases the pressure of the intermediate stage pipe 13, so that a force is exerted to reversely rotate the low-pressure stage compressor body 1a, while the dry air supplied from the supply port 21A is
  • the pressure in the suction pipe 103 is increased to generate a force to rotate the low-pressure stage compressor main body 1a forward.
  • a multi-stage compressor has been described as an example, but the single-stage compressor shown in FIG. 1 can also be used.
  • dry air is supplied by connecting the dry air supply port 21 of the dry air supply line 23 to the outlet side of the aftercooler 5 provided on the discharge side of the compressor body 1, and the suction side of the compressor body 1 is connected.
  • a dry air supply port is connected to the suction pipe 103 to supply dry air.
  • FIG. 7 shows an oil-free screw compressor of Example 6 of the present invention.
  • This embodiment is characterized in that an unloader 105 is provided between the air suction port 101 and the low-pressure stage suction pipe 103, and a dry air supply port 21A is provided between the unloader 105 and the low-pressure stage compressor main body 1a.
  • Other configurations are the same as those of the fifth embodiment.
  • the unloader 105 has a valve inside that throttles the path of the compressed air, and it is a device that reduces the power during the unloading operation of the compressor by controlling it so that it opens during loading operation and closes during unloading operation. be. Since the stop of the compressor is usually an unloading stop, the unloader is closed during stoppage.
  • the dry air supplied from the dry air supply port 21A while the compressor is out of operation stays between the unloader 105 and the compressor body 1a, increasing the pressure inside the suction pipe 103.
  • Example 5 the side of the air suction port 101 of the suction pipe 103 is open to the atmosphere. Although it must be larger than that supplied from 21B, in this embodiment, it is possible to reduce the amount supplied from the dry air supply port 21A.
  • the unloader is provided between the air suction port and the suction pipe of the low pressure stage
  • the dry air supply port is provided between the unloader and the main body of the low pressure stage compressor. Also, it is possible to reduce the amount of dry air supplied from the dry air supply port to the suction side of the main body of the low-pressure stage compressor.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • 1...Compressor body 1a Main body of low-pressure stage compressor 1b...High-pressure stage side compressor main body 2...Gear casing 3,3a,3b,3c...Motor 4...Intercooler 5...Aftercooler 6,6A,6B...drive gear 7...Driven gear 7A...Driven gear on the low pressure side 7B...High pressure side driven gear 8A...Oil pump drive gear 8B...Oil pump driven gear 13...Piping (middle stage) 14...Oil pump intake path 15...On-off valve 21,21A,21B...Dry air supply port 22...Supply valve 23...Dry air supply line 24...Oil pump 25...Check valve 26A, 26B...Air release valve 28...Air tank 32...Control panel 33A, 33B... Orifice 47...Oil reservoir 70...Brake device 100 Compressor 101 ... Air inlet 102 Compressed air outlet 103...Air intake pipe 105 Unloader

Abstract

Provided is an oil-free air compressor that prevents reverse rotation of a compressor body while the compressor is out of service, thereby preventing oil from entering the compressor body, and improving the reliability, as well as exhibiting a rust preventive effect. An oil-free air compressor 100 comprising: an oil-free compressor body 1 that compresses air and outputs the compressed air; a cooler 5 that is connected to the compressor body, and cools the compressed high-temperature air; a dry air supply mechanism that supplies dry air to an output side of the compressor body; and a mechanism that prevents reverse rotation of the compressor body while the compressor is out of service.

Description

無給油式空気圧縮機Oil-free air compressor
 本発明は、無給油式スクリュー圧縮機などの無給油式空気圧縮機に関する。 The present invention relates to an oil-free air compressor such as an oil-free screw compressor.
 空気圧縮機として、無給油式(オイルフリー)と給油式がある。無給油式スクリュー圧縮機は、潤滑油を用いない、若しくは、圧縮室内に潤滑油が入らない構造のもので、油分を含まないクリーンな圧縮空気が得られ、また、ロータが接触しないで回転するので、耐久性に優れ、手間がからないという特長がある。 There are oil-free and oil-lubricated air compressors. The oil-free screw compressor does not use lubricating oil or has a structure in which lubricating oil does not enter the compression chamber, so clean compressed air containing no oil is obtained, and the rotor rotates without contact. Therefore, it has the advantage of being durable and time-saving.
 また、空気圧縮機においては、圧縮空気中に含まれていた水分により、運転休止時に錆が発生する恐れがあり、錆の発生を防止する必要がある。 In addition, in air compressors, the moisture contained in the compressed air may cause rusting when operation is stopped, and it is necessary to prevent rusting.
 この課題に対して、特許文献1には、「運転休止時の圧縮機の防錆方法」として、「圧縮機を運転休止するとき、水分を全く含まないか、もしくは少量しか含まない乾燥気体を該圧縮機内に吸入して該圧縮機内を残留する水分を含む気体から乾燥気体に置換封入することを特徴とする運転休止時の圧縮機の防錆方法。」(請求項1参照)が開示されている。 In response to this problem, Patent Document 1 discloses a method for preventing rust of a compressor during outage, which is described as follows. A rust-preventing method for a compressor during stoppage of operation, characterized in that the moisture-containing gas sucked into the compressor and remaining in the compressor is replaced with dry gas.” (see claim 1). ing.
特開平5-141350号公報JP-A-5-141350
 特許文献1には、運転休止時の圧縮機の防錆方法として、運転休止時に乾燥気体を圧縮機内に吸入して、圧縮機内を残留する水分を含む気体から乾燥気体に置換封入する技術が開示されている。 Patent Document 1 discloses a technique of sucking dry gas into the compressor when the operation is stopped and replacing the gas containing moisture remaining in the compressor with the dry gas as a method for preventing rust of the compressor when the operation is stopped. It is
 乾燥気体を供給する位置は、圧縮機本体の吐出側であって、かつクーラの下流側が望ましい。これは、圧縮機本体で圧縮された空気はクーラによって冷却される際に湿った空気となり、この湿り空気を直接乾燥気体と入れ替えると効果が大きいからである。 The position to supply the dry gas is preferably the discharge side of the compressor body and the downstream side of the cooler. This is because the air compressed by the main body of the compressor becomes moist air when cooled by the cooler, and direct replacement of the moist air with dry gas is highly effective.
 圧縮機本体は、圧縮中の空気の漏れを防ぐために内部の隙間は数十μmに保たれている。雌雄ロータが回転しない場合、圧縮機本体の吸気口から吐出口へ空気が流れるにはこの微小な隙間を通らなければならない。そのため、乾燥気体を吸込み側へ供給しても吐出側へは流れにくく、湿った空気を乾燥気体に置き換えるという目的には適さない。 The compressor body has an internal gap of several tens of μm to prevent air leakage during compression. If the male and female rotors do not rotate, air must pass through this minute gap to flow from the intake port of the compressor body to the discharge port. Therefore, even if dry gas is supplied to the suction side, it is difficult for it to flow to the discharge side, and it is not suitable for the purpose of replacing wet air with dry gas.
 これに対して、圧縮機本体の吐出側に外部から空気を入れる場合、防錆効果を大きく上げるために多量の乾燥空気を入れてしまうと、圧縮機本体を逆回転させる力が働く。圧縮機本体が逆回転した場合には、潤滑油を軸受から作動室方向へ引き込むように作用してしまう。作動室に潤滑油が混入してしまうと、油分を含まないクリーンな圧縮空気を得るという無給油式圧縮機のメリットが損なわれてしまう。 On the other hand, when air is introduced from the outside into the discharge side of the compressor body, if a large amount of dry air is introduced in order to significantly increase the anti-corrosion effect, a force will act to rotate the compressor body in the opposite direction. When the compressor main body rotates in the reverse direction, the lubricating oil acts to be pulled in from the bearing toward the working chamber. If the working chamber is mixed with lubricating oil, the advantage of the oilless compressor of obtaining clean compressed air containing no oil is lost.
 本発明は、防錆効果を上げながら、圧縮機の運転休止時に圧縮機本体の逆回転を防止することで圧縮機本体への油の侵入を防ぎ、信頼性が向上した無給油式空気圧縮機を提供することを目的とする。 The present invention is an oil-free air compressor that improves reliability by preventing oil from entering the compressor body by preventing reverse rotation of the compressor body when the compressor is out of operation, while increasing the rust prevention effect. intended to provide
 上記課題を解決するための、本発明の「無給油式空気圧縮機」の一例を挙げるならば、
空気を圧縮して出力する無給油式の圧縮機本体と、前記圧縮機本体に接続され、圧縮された高温の空気を冷却するクーラとを備える無給油式空気圧縮機であって、前記圧縮機本体の出力側に乾燥空気を供給する乾燥空気供給機構と、圧縮機の運転休止中に、前記圧縮機本体の逆回転を防止する機構を備えたものである。
To give an example of the "oil-free air compressor" of the present invention for solving the above problems,
An oil-free air compressor comprising: an oil-free compressor body for compressing and outputting air; and a cooler connected to the compressor body for cooling the compressed high-temperature air, wherein the compressor It is provided with a dry air supply mechanism for supplying dry air to the output side of the main body and a mechanism for preventing reverse rotation of the compressor main body while the compressor is out of operation.
 また、本発明の「無給油式空気圧縮機」の他の一例を挙げるならば、
空気を圧縮して出力する無給油式の低圧段側圧縮機本体および高圧段側圧縮機本体と、前記低圧段側圧縮機本体と前記高圧段側圧縮機本体とを接続する中間段の配管と、圧縮された高温の空気を冷却する、中間段に設けたインタークーラ、および高圧段側圧縮機本体の出力側に設けたアフタークーラとを備える無給油式空気圧縮機であって、前記中間段の配管に乾燥空気を供給する乾燥空気供給機構と、圧縮機の運転休止中に、前記低圧段側圧縮機本体の逆回転を防止する機構を備えたものである。
Also, if another example of the "oil-free air compressor" of the present invention is given,
An oil-free low-pressure stage compressor body and a high-pressure stage compressor body that compress and output air, and an intermediate-stage piping that connects the low-pressure stage compressor body and the high-pressure stage compressor body , an intercooler provided in the intermediate stage for cooling the compressed high-temperature air, and an aftercooler provided on the output side of the high-pressure stage compressor main body, wherein the intermediate stage is and a mechanism for preventing reverse rotation of the main body of the low-pressure stage side compressor while the compressor is out of operation.
 本発明によれば、防錆効果を上げながら、圧縮機の運転休止時に圧縮機本体の逆回転を防止することで圧縮機本体への油の侵入を防ぎ、信頼性が向上した無給油式空気圧縮機を提供することができる。 According to the present invention, while increasing the rust prevention effect, the reverse rotation of the compressor body is prevented when the compressor is out of operation, thereby preventing oil from entering the compressor body and improving reliability. A compressor can be provided.
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の実施例1の無給油式スクリュー圧縮機を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a diagram showing an oil-free screw compressor of Example 1 of the present invention; 本発明の実施例2の無給油式スクリュー圧縮機を示す図である。Fig. 2 is a diagram showing an oil-free screw compressor of Example 2 of the present invention; 本発明の実施例3の無給油式スクリュー圧縮機を示す図である。FIG. 3 is a diagram showing an oil-free screw compressor according to Example 3 of the present invention; トロコイドポンプの動作時の状態を示す概略内部構造図である。FIG. 4 is a schematic internal structural diagram showing a state during operation of the trochoid pump; トロコイドポンプの閉塞時の状態を示す概略内部構造図である。FIG. 4 is a schematic internal structural diagram showing a state when the trochoid pump is closed; 本発明の実施例4の無給油式スクリュー圧縮機を示す図である。FIG. 4 is a diagram showing an oilless screw compressor according to Embodiment 4 of the present invention; 本発明の実施例5の無給油式スクリュー圧縮機を示す図である。FIG. 5 is a diagram showing an oil-free screw compressor according to Embodiment 5 of the present invention; 本発明の実施例6の無給油式スクリュー圧縮機を示す図である。FIG. 6 is a diagram showing an oil-free screw compressor of Example 6 of the present invention. 無給油式スクリュー圧縮機の圧縮機本体の内部構造を示す平面断面図である。Fig. 2 is a cross-sectional plan view showing the internal structure of the compressor body of the oilless screw compressor. 無給油式スクリュー圧縮機の圧縮機本体の内部構造を示す正面断面図である。FIG. 2 is a front cross-sectional view showing the internal structure of the compressor body of the oilless screw compressor.
 本発明の実施例を説明する前に、無給油式空気圧縮機の一例である無給油式スクリュー圧縮機について説明する。 Before describing embodiments of the present invention, an oil-free screw compressor, which is an example of an oil-free air compressor, will be described.
 図8Aおよび図8Bに、無給油式スクリュー圧縮機の圧縮機本体1の断面図を示す。図8Aは平面断面図、図8Bは正面断面図である。圧縮機本体1は、雄ロータ50A及び雌ロータ50Bからなる一対のスクリューロータの歯が、所定のギヤップを保った状態で噛み合い、高速回転することで、圧縮空気を生成する容量制御型の空気圧縮機である。  Figures 8A and 8B show cross-sectional views of the compressor body 1 of the oil-free screw compressor. 8A is a plan sectional view, and FIG. 8B is a front sectional view. The compressor main body 1 is a capacity control type air compressor in which the teeth of a pair of screw rotors consisting of a male rotor 50A and a female rotor 50B mesh with each other while maintaining a predetermined gap and rotate at high speed to generate compressed air. machine.
 雄ロータ50Aはロータシャフト48Aと、雌ロータ50Bはロータシャフト48Bと一体又は直結構成される。雄ロータ50A及び雌ロータ50Bの夫々のロータシャフトには、空気の吸込み側端部方向に夫々軸受11A,11B、吐出し側端部方向に軸受12A,12Bが夫々配置され、これらに回転可能に支持される。また、ロータシャフト48A,48Bの夫々には、軸受12A及び12Bよりも更に外端部に、タイミングギヤ9A,9Bが配置され、ロータシャフト48Aに接続された雄ロータ50Aの回転に伴い、タイミングギヤ9Aと9Bの噛み合いによって雌雄ロータが互いに回転するようになっている。雌雄ロータの回転に伴い、吸気口41から吸い込まれた空気が作動室60で圧縮され、やがて吐出口42から所定の圧縮空気経路を経て、ユーザ側へと供給されるようになっている。 The male rotor 50A is integrally or directly connected to the rotor shaft 48A, and the female rotor 50B is connected to the rotor shaft 48B. Bearings 11A and 11B are arranged on the rotor shafts of the male rotor 50A and the female rotor 50B, respectively, in the air suction side end direction, and bearings 12A, 12B are arranged in the air discharge side end direction. Supported. Further, timing gears 9A and 9B are arranged at the outer ends of the rotor shafts 48A and 48B, respectively, beyond the bearings 12A and 12B. The engagement of 9A and 9B allows the male and female rotors to rotate relative to each other. As the male and female rotors rotate, the air sucked from the intake port 41 is compressed in the working chamber 60, and is eventually supplied from the discharge port 42 through a predetermined compressed air path to the user side.
 ロータシャフト48A,48Bの吸込み側において、雌雄のロータ50A,50Bと、軸受11A,11Bとの間には、軸封部17(17A,17B)と、軸封部18(18A,18B)とが配設される。軸封部18は、エアシールであり、作動室60で圧縮された空気が、軸受11A等の側に漏れ出すのを低減するための環状の部材である。軸封部18は、ロータシャフト48A等と非接触であり、その隙間は数十μm程度の微小なものである。雌雄ロータ50A,50B夫々のロータシャフト48に、エアシール18A(雄側),18B(雌側)が配置される。 On the suction side of rotor shafts 48A and 48B, shaft seal portions 17 (17A and 17B) and shaft seal portions 18 (18A and 18B) are provided between male and female rotors 50A and 50B and bearings 11A and 11B. are placed. The shaft seal portion 18 is an air seal, and is an annular member for reducing leakage of the air compressed in the working chamber 60 to the side of the bearing 11A and the like. The shaft seal portion 18 is not in contact with the rotor shaft 48A and the like, and the gap therebetween is as small as several tens of micrometers. Air seals 18A (male side) and 18B (female side) are arranged on the rotor shafts 48 of the male and female rotors 50A and 50B, respectively.
 軸封部17は、ネジシールであり、経路34を介して軸受11A,11Bに供給された潤滑油が作動室60に侵入するのを防止するためのものである。ネジシール17A,17Bの内面には角溝が螺旋状に施され、ロータシャフト48A等と非接触で、微小な隙間を保つように組付けられる。ネジシール17A,17Bは、ロータシャフト48A等の回転により、内径部の溝部にシール圧を発生させることで、潤滑油を軸受11A,11B側に押し戻すように作用する。
  また、ロータシャフト48A等は、軸封部17と18の間において、周方向に溝が形成されており、この溝と周方向で対向する位置に、圧縮機本体ケーシングから外気に連通する穴部43が形成される。穴部43は、作動室60からの漏れ空気を圧縮機本体1の外部に逃がすためのガス抜き穴等として機能する。
  また、ネジシール17A,17Bと、軸受11A,11Bとの間に、軸受11A,11Bを潤滑した潤滑油を回収し、ギヤケーシング2のオイル溜り47に還流させるための排油口45が形成される。
The shaft seal portion 17 is a screw seal and serves to prevent the lubricating oil supplied to the bearings 11A and 11B via the path 34 from entering the working chamber 60. As shown in FIG. The screw seals 17A and 17B have helical square grooves on their inner surfaces, and are assembled so as to maintain a minute gap without contact with the rotor shaft 48A or the like. The screw seals 17A and 17B generate seal pressure in the grooves of the inner diameter portion due to the rotation of the rotor shaft 48A and the like, thereby pushing the lubricating oil back toward the bearings 11A and 11B.
A groove is formed in the circumferential direction between the shaft seal portions 17 and 18 of the rotor shaft 48A and the like. 43 is formed. The hole portion 43 functions as a gas vent hole or the like for releasing leaked air from the working chamber 60 to the outside of the compressor body 1 .
Further, an oil drain port 45 is formed between the screw seals 17A, 17B and the bearings 11A, 11B to collect lubricating oil lubricating the bearings 11A, 11B and return it to the oil reservoir 47 of the gear casing 2. .
 このようなロータシャフト48A,48Bの吸込み側の構成と同様に、ロータシャフト48A,48Bの吐出側も軸封部20(エアシール)や軸封部19(ネジシール)が配置される。ロータ50A,50Bと、軸受12A,12Bとの間には、軸封部19と軸封部20が配置される。また、圧縮機本体ケーシングの軸封部19と軸封部20の間には、外気と連通し、作動室60から漏れ出る圧縮空気のガス抜きとして機能する穴部44が形成されている。 Similar to the configuration of the suction sides of the rotor shafts 48A and 48B, the shaft seal portions 20 (air seals) and the shaft seal portions 19 (screw seals) are arranged on the discharge sides of the rotor shafts 48A and 48B. A shaft seal portion 19 and a shaft seal portion 20 are arranged between the rotors 50A, 50B and the bearings 12A, 12B. A hole portion 44 is formed between the shaft seal portion 19 and the shaft seal portion 20 of the compressor body casing, communicating with the outside air and functioning as a vent for compressed air leaking from the working chamber 60 .
 軸受12A,12Bは、雌雄ロータシャフトの夫々に3つずつ配置される。そして、圧縮機本体ケーシングには、これら3つの軸受12の間の何れかの位置に、上方から潤滑油を供給するための経路33が形成される。また、圧縮機本体ケーシングには、軸受12A,12Bと、ネジシール19A,19Bとの間の位置から潤滑油を回収する排出口46が形成される。経路33から供給された潤滑油は、軸受12A,12Bを潤滑した後、排油口46から回収されるようになっている。 Three bearings 12A and 12B are arranged on each of the male and female rotor shafts. A path 33 for supplying lubricating oil from above is formed at any position between these three bearings 12 in the compressor body casing. Further, the compressor body casing is formed with a discharge port 46 for recovering lubricating oil from a position between the bearings 12A, 12B and the screw seals 19A, 19B. The lubricating oil supplied from the path 33 lubricates the bearings 12A and 12B, and then is recovered from the oil drain port 46. As shown in FIG.
 圧縮機本体ケーシングには、タイミングギヤ9A,9Bの上方に潤滑油を供給するための経路35が形成され、潤滑油は、タイミングギヤ9A,9Bを潤滑後に、下方に形成された排油口45からオイル溜り47に回収されるようになっている。なお、経路35は、圧縮機ケーシング上で経路33から途中分岐するように形成され、排油口46は途中から排油口45と合流するように形成されている。 The compressor body casing is formed with a path 35 for supplying lubricating oil above the timing gears 9A and 9B. is recovered in the oil reservoir 47 from the The path 35 is formed to branch off from the path 33 on the compressor casing, and the oil drain port 46 is formed to merge with the oil drain port 45 in the middle.
 軸封部17(ネジシール)は圧縮機本体が正回転する場合には潤滑油を軸受11A,11B側に押し戻すように作用するが、逆回転した場合には潤滑油を軸受から作動室方向へ引き込むように作用してしまうため、圧縮機本体が逆回転してしまうことは好ましくない。 The shaft seal 17 (screw seal) pushes the lubricating oil back toward the bearings 11A and 11B when the compressor body rotates forward, but draws the lubricating oil from the bearings toward the working chamber when the compressor body rotates in the reverse direction. Therefore, it is not preferable for the compressor body to rotate in the opposite direction.
 本発明は、このような無給油式空気圧縮機において、防錆効果を上げながら、圧縮機の運転休止時に圧縮機本体の逆回転を防止することで圧縮機本体への油の侵入を防ぎ、信頼性を向上させるものである。 In such an oil-free air compressor, the present invention prevents oil from entering the compressor body by preventing reverse rotation of the compressor body when the compressor is out of operation, while increasing the rust prevention effect. It improves reliability.
 以下、本発明の実施例について図面を用いて説明する。ただし、本発明は以下に示す実施例の記載内容に限定して解釈されるものではない。本発明の思想ないし主旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。
  また、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、重複する説明は省略することがある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention should not be construed as being limited to the contents of the examples described below. Those skilled in the art will easily understand that the specific configuration can be changed without departing from the idea or gist of the present invention.
In addition, in the configuration of the invention described below, the same reference numerals may be used in common for the same parts or parts having similar functions in different drawings, and redundant description may be omitted.
 図1に、本発明の実施例1の無給油式スクリュー圧縮機を示す。なお、図1は必要最小限の機器を設置した場合であり、これ以外の機器が設置されていても差し支えない。 Fig. 1 shows an oil-free screw compressor according to Example 1 of the present invention. It should be noted that FIG. 1 shows a case in which the minimum necessary equipment is installed, and other equipment may be installed.
 圧縮機100は、圧縮機本体1、ギヤケーシング2、圧縮機本体1の駆動源としてのモータ3a、オイルポンプ24の駆動源としてのモータ3cを備える。ギヤケーシング2の側面に配置されたモータ3aの出力軸には増速駆動ギヤ6が取り付けられている。増速駆動ギヤ6は、所定のギヤ比に設定された増速従動ギヤ7と歯合し、増速従動ギヤ7に接続されたロータシャフトを介して圧縮機本体1の雄ロータに駆動力を伝達する。 The compressor 100 includes a compressor body 1, a gear casing 2, a motor 3a as a drive source for the compressor body 1, and a motor 3c as a drive source for the oil pump . A speed-increasing drive gear 6 is attached to the output shaft of the motor 3a arranged on the side surface of the gear casing 2. As shown in FIG. The speed-increasing driving gear 6 meshes with a speed-increasing driven gear 7 set to a predetermined gear ratio, and applies a driving force to the male rotor of the compressor body 1 through a rotor shaft connected to the speed-increasing driven gear 7. introduce.
 オイルポンプ24は、ギヤケーシング2の側面にフランジ取合いで取り付けられ、モータ3cに取り付けられたオイルポンプ駆動ギヤ8Aと所定のギヤ比にて噛合いする、オイルポンプ従動ギヤ8Bを介して駆動力を伝達される。
  オイルポンプ24は、圧縮機100の各種駆動部に潤滑油を循環させるポンプであり、オイルポンプシャフトを介して伝達された駆動力により、圧縮機100に配置された種々のオイル経路に潤滑油を圧送する。オイルポンプ24は、ギヤケーシング2の下部に設けられたオイル溜り47から、開閉弁15を介して潤滑油を吸い込み、経路14を介して、オイルクーラ(不図示)に圧送するようになっている。オイルクーラは、ファン(不図示)による空冷又は水冷式の熱交換器であり、所定の温度以下となるように潤滑油を冷却する。
The oil pump 24 is attached to the side surface of the gear casing 2 with a flange connection, and supplies driving force via an oil pump driven gear 8B that meshes with an oil pump driving gear 8A attached to the motor 3c at a predetermined gear ratio. transmitted.
The oil pump 24 is a pump that circulates lubricating oil to various driving parts of the compressor 100, and circulates lubricating oil to various oil paths arranged in the compressor 100 by driving force transmitted through the oil pump shaft. to pump. The oil pump 24 sucks the lubricating oil from the oil reservoir 47 provided in the lower part of the gear casing 2 through the on-off valve 15, and pumps it through the path 14 to an oil cooler (not shown). . The oil cooler is an air-cooled or water-cooled heat exchanger using a fan (not shown), and cools the lubricating oil to a predetermined temperature or less.
 圧縮機本体1で圧縮され高温となった空気は、アフタークーラ5にて冷却される際に湿り空気となる。そのため、これを乾燥空気と入れ替えることが、防錆に対し有効である。 The air that has been compressed by the compressor body 1 and has a high temperature becomes moist air when cooled by the aftercooler 5. Therefore, replacing it with dry air is effective for rust prevention.
 本実施例では、アフタークーラ5の下流側に乾燥空気の供給口21と供給弁22を有した乾燥空気供給ライン23を設け、そこへ空気槽28に蓄えられた乾燥空気を供給する。供給弁22は制御盤32によって所定のタイミングで開閉動作を行う。 In this embodiment, a dry air supply line 23 having a dry air supply port 21 and a supply valve 22 is provided on the downstream side of the aftercooler 5, and dry air stored in an air tank 28 is supplied thereto. The supply valve 22 is opened and closed at predetermined timing by the control panel 32 .
 圧縮機の運転休止時に、圧縮機本体1の吐出側に高圧の乾燥空気を供給すると、圧縮機本体1の吐出側の圧力が高くなり、圧縮機本体1が逆回転する恐れがある。そこで、本実施例では、運転休止時に動作する、圧縮機本体1のブレーキ装置70を設ける。 If high-pressure dry air is supplied to the discharge side of the compressor body 1 while the compressor is out of operation, the pressure on the discharge side of the compressor body 1 will increase, and the compressor body 1 may rotate in the reverse direction. Therefore, in this embodiment, a brake device 70 for the compressor main body 1 is provided, which operates when the operation is stopped.
 ブレーキ装置70は、圧縮機本体1の雄ロータに接続され、乾燥空気供給中に雄ロータが回転しないように制御盤32によって制御される。この構成とすることで、乾燥空気供給中に圧縮機本体1が逆回転することを防止することができる。 The brake device 70 is connected to the male rotor of the compressor main body 1 and controlled by the control panel 32 so that the male rotor does not rotate while dry air is being supplied. By adopting this configuration, it is possible to prevent the compressor body 1 from rotating in the reverse direction while the dry air is being supplied.
 圧縮機の動作は次のとおりである。
  圧縮機の運転時には、空気吸込み口101から空気吸込み配管103を通して圧縮機本体1に空気を吸い込む。圧縮機本体1で圧縮され高温となった圧縮空気はアフタークーラ5で冷却され、逆止弁25を介して圧縮空気吐出口102から出力される。
  圧縮機の運転休止時には、モータ3aが停止し、圧縮機本体1が停止する。そして、圧縮機本体1とアフタークーラ5との間に接続した放気弁26Aを開いて圧縮機内部の圧力を抜く。そして、アフタークーラ5の出力側に、乾燥空気供給ライン23から空気槽28に蓄えられた乾燥空気を供給する。供給口21から供給された乾燥空気は、放気弁26Aから大気中に放出される。この時、供給口21から供給される乾燥空気によって圧縮機本体1の吐出側の圧力が上昇するため、圧縮機本体1を逆回転させる力が働くが、圧縮機本体1にはブレーキ装置70によりブレーキが掛けられているので、高圧の乾燥空気を供給しても圧縮機本体1が逆回転することが防止される。
The operation of the compressor is as follows.
During operation of the compressor, air is sucked into the compressor main body 1 from the air suction port 101 through the air suction pipe 103 . Compressed air that has been compressed in the compressor main body 1 and heated to a high temperature is cooled by the aftercooler 5 and is output from the compressed air discharge port 102 via the check valve 25 .
When the compressor is out of operation, the motor 3a stops and the compressor body 1 stops. Then, the air release valve 26A connected between the compressor main body 1 and the aftercooler 5 is opened to release the pressure inside the compressor. Then, the dry air stored in the air tank 28 is supplied from the dry air supply line 23 to the output side of the aftercooler 5 . The dry air supplied from the supply port 21 is discharged into the atmosphere from the air release valve 26A. At this time, the pressure on the discharge side of the compressor main body 1 rises due to the dry air supplied from the supply port 21, so that a force is applied to rotate the compressor main body 1 in the reverse direction. Since the brake is applied, reverse rotation of the compressor main body 1 is prevented even if high-pressure dry air is supplied.
 ブレーキ装置は、圧縮機本体の逆回転を防止する機構の一例であって、圧縮機本体の逆回転が防止できるものであればよく、他の例としてラチェット機構などでもよい。 The brake device is an example of a mechanism that prevents reverse rotation of the compressor body, and any device that can prevent reverse rotation of the compressor body may be used. Another example is a ratchet mechanism.
 本実施例によれば、単段式の圧縮機において、圧縮機の運転休止時に、アフタークーラの出力側の配管に高圧の乾燥空気を供給することにより防錆効果を上げながら、運転休止時に動作する圧縮機本体のブレーキ装置を設けたので、圧縮機本体の逆回転を防止することができる。そして、圧縮機本体への油の侵入を防ぎ、信頼性が向上した無給油式空気圧縮機を提供することができる。 According to this embodiment, in a single-stage compressor, when the compressor is out of operation, high-pressure dry air is supplied to the piping on the output side of the aftercooler to increase the rust prevention effect, and to operate during the outage. Since the brake device for the compressor main body is provided, the reverse rotation of the compressor main body can be prevented. In addition, it is possible to provide an oil-free air compressor with improved reliability by preventing oil from entering the compressor body.
 図2に、本発明の実施例2の無給油式スクリュー圧縮機を示す。なお、図2は必要最小限の機器を設置した場合であり、これ以外の機器が設置されていても差し支えない。 FIG. 2 shows an oil-free screw compressor of Example 2 of the present invention. Note that FIG. 2 shows a case where the minimum required equipment is installed, and other equipment may be installed.
 圧縮機100は、低圧段側圧縮機本体1a、高圧段側圧縮機本体1b、ギヤケーシング2、駆動源としてのモータ3a,3bを備える。低圧段側圧縮機本体1a及び高圧段側圧縮機本体1bは、ギヤケーシング2の側面上方付近にフランジ取合いで取り付けられる。ギヤケーシング2の側面に配置されたモータ3a,3bの出力軸には、増速駆動ギヤ6A,6Bが取り付けられている。増速駆動ギヤ6A,6Bは、所定のギヤ比に設定された増速従動ギヤ7A,7Bと歯合し、増速従動ギヤ7A,7Bに接続されたロータシャフトを介して低圧段側圧縮機本体1aの雄ロータと高圧段側圧縮機本体1bの雄ロータに駆動力を伝達するようになっている。 The compressor 100 includes a low-pressure stage compressor body 1a, a high-pressure stage compressor body 1b, a gear casing 2, and motors 3a and 3b as drive sources. The low-pressure stage side compressor main body 1a and the high-pressure stage side compressor main body 1b are attached near the upper side surface of the gear casing 2 by flange connection. Speed increasing drive gears 6A and 6B are attached to the output shafts of the motors 3a and 3b arranged on the side surface of the gear casing 2, respectively. The speed-increasing drive gears 6A, 6B mesh with the speed-increasing driven gears 7A, 7B set to a predetermined gear ratio, and are connected to the low-pressure stage side compressor via rotor shafts connected to the speed-increasing driven gears 7A, 7B. A driving force is transmitted to the male rotor of the main body 1a and the male rotor of the high pressure stage compressor main body 1b.
 低圧段側圧縮機本体1aの吐出側にはインタークーラ4が設けられ、圧縮され高温となった空気を冷却する。インタークーラ4と高圧段側圧縮機本体1bを接続する中間段の配管13が設けられており、インタークーラ4で冷却された圧縮空気を高圧段側圧縮機本体1bに供給する。
  高圧段側圧縮機本体1bの吐出側にはアフタークーラ5が設けられ、圧縮され高温となった空気を冷却し、逆止弁25を介して、出力する。
An intercooler 4 is provided on the discharge side of the low-pressure stage compressor main body 1a to cool the air that has been compressed and heated to a high temperature. An intermediate stage pipe 13 is provided to connect the intercooler 4 and the high-pressure stage compressor main body 1b, and supplies the compressed air cooled by the intercooler 4 to the high-pressure stage compressor main body 1b.
An aftercooler 5 is provided on the discharge side of the high-pressure stage compressor main body 1b to cool the compressed air that has reached a high temperature and output it via a check valve 25. As shown in FIG.
 低圧段側圧縮機本体1aで圧縮された空気はインタークーラ4にて冷却される際に湿り空気となるため、圧縮機の運転休止時には、これを乾燥空気と入れ替えることが防錆に対し有効である。そのため、インタークーラ4と高圧段側圧縮機本体1bの間の中間段の配管13に、乾燥空気の供給口21と供給弁22を有した乾燥空気供給ライン23を設け、そこへ、空気槽28に蓄えられた乾燥空気を供給する。供給弁22は、制御盤32によって所定のタイミングで開閉動作を行う。 Since the air compressed by the low-pressure stage side compressor main body 1a becomes moist air when cooled by the intercooler 4, it is effective for rust prevention to replace it with dry air when the compressor is out of operation. be. Therefore, a dry air supply line 23 having a dry air supply port 21 and a supply valve 22 is provided in the intermediate stage piping 13 between the intercooler 4 and the high pressure stage side compressor main body 1b, and an air tank 28 is connected to the dry air supply line 23. supply dry air stored in The supply valve 22 is opened and closed at predetermined timing by the control panel 32 .
 圧縮機の運転休止時に、中間段の配管13に高圧の乾燥空気を供給すると、低圧段側圧縮機本体1aの吐出側の圧力が高くなり、低圧段側圧縮機本体1aが逆回転する恐れがある。そこで、本実施例では、運転休止時に動作する、低圧段側圧縮機本体1aのブレーキ装置70を設ける。
  ブレーキ装置70は、低圧段側圧縮機本体1aの雄ロータに接続され、制御盤32によって乾燥空気供給中に雄ロータが回転しないように制御される。この構成とすることで、乾燥空気供給中に低圧段側圧縮機本体が逆回転することを防止することができる。
If high-pressure dry air is supplied to the intermediate-stage pipe 13 while the compressor is out of operation, the pressure on the discharge side of the low-pressure stage-side compressor body 1a increases, and the low-pressure stage-side compressor body 1a may rotate in the reverse direction. be. Therefore, in this embodiment, a brake device 70 for the low-pressure stage compressor main body 1a is provided, which operates when the operation is stopped.
The brake device 70 is connected to the male rotor of the low-pressure stage compressor main body 1a, and is controlled by the control panel 32 so that the male rotor does not rotate while dry air is being supplied. With this configuration, it is possible to prevent the main body of the low-pressure stage compressor from rotating in the reverse direction during the supply of dry air.
 圧縮機の動作は次のとおりである。
  圧縮機の運転時には、空気吸込み口101から空気吸込み配管103を通して低圧段側圧縮機本体1aに空気を吸い込む。低圧段側圧縮機本体1aで圧縮され高温となった圧縮空気はインタークーラ4で冷却され、高圧段側圧縮機本体1bに供給される。高圧段側圧縮機本体1bで更に圧縮され高温となった圧縮空気はアフタークーラ5で冷却され、逆止弁25を介して圧縮空気吐出口102から出力される。
  圧縮機の運転休止時には、モータ3a,3bが停止し、低圧段側圧縮機本体1aおよび高圧段側圧縮機本体1bが停止する。そして、低圧段側圧縮機本体1aとインタークーラ4との間に接続した放気弁26A、および、高圧段側圧縮機本体1bとアフタークーラ5との間に接続した放気弁26Bを開いて圧縮機内部の圧力を抜く。そして、そして、中間段の配管13に、乾燥空気の供給口21と供給弁22を有した乾燥空気供給ライン23から、空気槽28に蓄えられた乾燥空気を供給する。供給口21から中間段の配管13へ供給された乾燥空気は、放気弁26Aおよび放気弁26Bから大気中に放出されるが、供給口21から供給される乾燥空気によって中間段配管13の圧力が上昇するため低圧段側圧縮機本体1aを逆回転させる力が働く。この時、低圧段側圧縮機本体1aにはブレーキ機構70によりブレーキが掛けられているので、高圧の乾燥空気を供給しても低圧段側圧縮機本体1aが逆回転することが防止される。
The operation of the compressor is as follows.
During operation of the compressor, air is sucked from the air suction port 101 through the air suction pipe 103 into the low-pressure stage side compressor main body 1a. Compressed air that has been compressed in the low-pressure stage compressor main body 1a and heated to a high temperature is cooled by the intercooler 4 and supplied to the high-pressure stage compressor main body 1b. Compressed air that has been further compressed in the high-pressure stage compressor main body 1 b and heated to a high temperature is cooled by the aftercooler 5 and is output from the compressed air discharge port 102 via the check valve 25 .
When the compressor is out of operation, the motors 3a and 3b are stopped, and the low-pressure stage compressor body 1a and the high-pressure stage compressor body 1b are stopped. Then, the release valve 26A connected between the low-pressure stage compressor main body 1a and the intercooler 4 and the release valve 26B connected between the high-pressure stage compressor main body 1b and the aftercooler 5 are opened. Release the pressure inside the compressor. Then, the dry air stored in the air tank 28 is supplied from the dry air supply line 23 having the dry air supply port 21 and the supply valve 22 to the piping 13 of the intermediate stage. The dry air supplied from the supply port 21 to the intermediate-stage pipe 13 is released into the atmosphere from the air release valves 26A and 26B. Since the pressure rises, a force acts to reversely rotate the low-pressure stage side compressor main body 1a. At this time, since the low-pressure stage side compressor body 1a is braked by the brake mechanism 70, the low-pressure stage side compressor body 1a is prevented from rotating in the reverse direction even if high-pressure dry air is supplied.
 本実施例によれば、圧縮機の運転休止時に、中間段の配管に高圧の乾燥空気を供給することにより防錆効果を上げながら、運転休止時に動作する低圧段側圧縮機のブレーキ装置を設けたので、圧縮機本体の逆回転を防止することができる。そして、圧縮機本体への油の侵入を防ぎ、信頼性が向上した多段式の無給油式空気圧縮機を提供することができる。 According to this embodiment, when the compressor is out of operation, high-pressure dry air is supplied to the intermediate stage piping to increase the rust prevention effect, and a brake device for the low-pressure stage side compressor that operates when the operation is out of operation is provided. Therefore, reverse rotation of the compressor body can be prevented. Further, it is possible to provide a multi-stage oil-free air compressor with improved reliability by preventing oil from entering the compressor body.
 図3に、本発明の実施例3の無給油式スクリュー圧縮機を示す。実施例2では、低圧段側圧縮機本体、高圧段側圧縮機本体、および潤滑油を供給するオイルポンプのそれぞれにモータを設けたが、実施例3はこれらを1つのモータで駆動するものである。  Fig. 3 shows an oil-free screw compressor according to Embodiment 3 of the present invention. In the second embodiment, motors are provided for the low-pressure stage compressor main body, the high-pressure stage compressor main body, and the oil pump that supplies the lubricating oil. be.
 圧縮機100は、低圧段側圧縮機本体1a、高圧段側圧縮機本体1b、ギヤケーシング2、駆動源としての1つのモータ3を備える。ギヤケーシング2の側面に配置されたモータ3の出力軸には増速駆動ギヤ6及びオイルポンプ駆動ギヤ8Aが取り付けられている。増速駆動ギヤ6は、所定のギヤ比に設定された増速従動ギヤ7A,7Bと歯合し、増速従動ギヤ7Aに接続されたロータシャフトを介して低圧段側圧縮機本体1aの雄ロータに、また、増速従動ギヤ7Bに接続されたロータシャフトを介して高圧段側圧縮機本体1bの雄ロータに駆動力を伝達する。
  また、ポンプ駆動ギヤ8Aは、所定のギヤ比に設定されたオイルポンプ従動ギヤ8Bと歯合する。ポンプ従動ギヤ8Bは、ギヤケーシング2の外部に貫通するオイルポンプシャフトと接続され、オイルポンプ24に駆動力を伝達する。
The compressor 100 includes a low-pressure stage compressor main body 1a, a high-pressure stage compressor main body 1b, a gear casing 2, and one motor 3 as a drive source. A speed increasing drive gear 6 and an oil pump drive gear 8A are attached to the output shaft of the motor 3 arranged on the side surface of the gear casing 2 . The speed-increasing driving gear 6 meshes with speed-increasing driven gears 7A and 7B set to a predetermined gear ratio, and is connected to the male of the low-pressure stage side compressor main body 1a via a rotor shaft connected to the speed-increasing driven gear 7A. A driving force is transmitted to the rotor and to the male rotor of the high-pressure stage compressor main body 1b via a rotor shaft connected to the speed-increasing driven gear 7B.
Further, the pump drive gear 8A meshes with the oil pump driven gear 8B set to a predetermined gear ratio. The pump driven gear 8B is connected to an oil pump shaft passing through the outside of the gear casing 2 and transmits driving force to the oil pump 24. As shown in FIG.
 本実施例の圧縮機100においては、オイルポンプ24の吸入側、すなわちオイル溜り47とオイルポンプ24の間に開閉弁15が設けられている。 In the compressor 100 of this embodiment, the opening/closing valve 15 is provided on the suction side of the oil pump 24, that is, between the oil reservoir 47 and the oil pump 24.
 図4Aおよび図4Bに、オイルポンプとして使われるトロコイドポンプを示し、図4Aは動作時の状態を、図4Bは閉塞時の状態を示す。  Figures 4A and 4B show a trochoid pump used as an oil pump, with Figure 4A showing the operating state and Figure 4B showing the closed state.
 トロコイドポンプは、インナーロータ51とアウターロータ52で形成される作動室が吸込ポート53から吐出ポート54にかけて膨張、収縮することにより潤滑油を吸込流路55から吐出流路56へ圧送する。 In the trochoid pump, a working chamber formed by an inner rotor 51 and an outer rotor 52 expands and contracts from a suction port 53 to a discharge port 54, thereby pumping lubricating oil from a suction flow path 55 to a discharge flow path 56.
 ここで、トロコイドポンプに逆回転させる力がかかった場合、吐出ポート54から吸込ポート53にかけて作動室が膨張、収縮するため、潤滑油は吐出ポート54から吸込ポート53に逆流する。この時、吸込流路55が閉塞していた場合には、潤滑油を吸込み側へ送ることが出来ず、作動空間が収縮することが出来ないためポンプがロックされる。 Here, when a force to reversely rotate the trochoid pump is applied, the working chamber expands and contracts from the discharge port 54 to the suction port 53, so the lubricating oil flows back from the discharge port 54 to the suction port 53. At this time, if the suction flow path 55 is blocked, the lubricating oil cannot be sent to the suction side, and the working space cannot be contracted, so that the pump is locked.
 圧縮機100の運転中に開、停止中に閉となるように開閉弁15を制御することで、図4Bに示すように、オイルポンプ24の吸入側55が潤滑油で満たされた状態となり、オイルポンプ24の逆回転を防止することが可能となる。オイルポンプ24と圧縮機本体1a,1bは駆動ギヤ6を介してつながっているため、オイルポンプ24が回転できなければ圧縮機本体1a,1bも回転することができなくなる。したがって、圧縮機停止中に圧縮機本体の逆回転を防止することができる。 By controlling the on-off valve 15 so that it is open while the compressor 100 is in operation and closed while it is stopped, the suction side 55 of the oil pump 24 is filled with lubricating oil as shown in FIG. Reverse rotation of the oil pump 24 can be prevented. Since the oil pump 24 and the compressor main bodies 1a, 1b are connected via the drive gear 6, if the oil pump 24 cannot rotate, the compressor main bodies 1a, 1b cannot rotate either. Therefore, reverse rotation of the compressor main body can be prevented while the compressor is stopped.
 なお、一例としてトロコイドポンプを挙げたが、歯車の歯の噛み合わせにより流体を輸送するギヤポンプであれば用いることができる。 Although a trochoid pump is mentioned as an example, any gear pump that transports fluid by meshing gear teeth can be used.
 本実施例によれば、多段式の圧縮機において、1つのモータでギヤを介して低圧段側および高圧段側の圧縮機本体とオイルポンプを駆動し、オイルポンプの吸込み側に、圧縮機の運転中に開となり、休止中に閉となる開閉弁を設けることで、圧縮機の運転休止時に、圧縮機本体の逆回転を防止することができる。そして、圧縮機本体への油の侵入を防ぎ、信頼性が向上した無給油式空気圧縮機を提供することができる。 According to this embodiment, in a multi-stage compressor, a single motor drives the compressor bodies on the low-pressure stage side and the high-pressure stage side and the oil pump through gears, and the oil pump is connected to the oil pump suction side of the compressor. By providing an on-off valve that opens during operation and closes during rest, reverse rotation of the compressor body can be prevented when the compressor is out of operation. In addition, it is possible to provide an oil-free air compressor with improved reliability by preventing oil from entering the compressor body.
 図5に、本発明の実施例4の無給油式スクリュー圧縮機を示す。実施例3は低圧段側圧縮機本体1aと高圧段側圧縮機本体1bとを備える多段の圧縮機であるが、本実施例は1つの圧縮機本体から構成される単段の圧縮機である。 FIG. 5 shows an oil-free screw compressor according to Embodiment 4 of the present invention. Embodiment 3 is a multi-stage compressor comprising a low-pressure stage side compressor main body 1a and a high-pressure stage side compressor main body 1b, but this embodiment is a single-stage compressor composed of one compressor main body. .
 圧縮機100は、圧縮機本体1、ギヤケーシング2、駆動源としての1つのモータ3を備える。ギヤケーシング2の側面に配置されたモータ3の出力軸には増速駆動ギヤ6及びオイルポンプ駆動ギヤ8Aが取り付けられている。増速駆動ギヤ6は、所定のギヤ比に設定された増速従動ギヤ7と歯合し、増速従動ギヤ7に接続されたロータシャフトを介して圧縮機本体1の雄ロータに駆動力を伝達する。また、ポンプ駆動ギヤ8Aは、所定のギヤ比に設定されたオイルポンプ従動ギヤ8Bと歯合する。ポンプ従動ギヤ8Bは、ギヤケーシング2の外部に貫通するオイルポンプシャフトと接続され、オイルポンプ24に駆動力を伝達する。オイルポンプ24の吸入側、すなわちオイル溜り47とオイルポンプ24の間のオイルポンプ吸入経路14には開閉弁15が設けられている。 The compressor 100 includes a compressor body 1, a gear casing 2, and a single motor 3 as a drive source. A speed increasing drive gear 6 and an oil pump drive gear 8A are attached to the output shaft of the motor 3 arranged on the side surface of the gear casing 2 . The speed-increasing driving gear 6 meshes with a speed-increasing driven gear 7 set to a predetermined gear ratio, and applies a driving force to the male rotor of the compressor body 1 through a rotor shaft connected to the speed-increasing driven gear 7. introduce. Further, the pump drive gear 8A meshes with the oil pump driven gear 8B set to a predetermined gear ratio. The pump driven gear 8B is connected to an oil pump shaft passing through the outside of the gear casing 2 and transmits driving force to the oil pump 24. As shown in FIG. An on-off valve 15 is provided on the suction side of the oil pump 24 , that is, on the oil pump suction path 14 between the oil reservoir 47 and the oil pump 24 .
 実施例1に記載したとおり、圧縮機本体1で圧縮され高温となった空気はアフタークーラ5にて冷却される際に湿り空気となる。そのため、これを乾燥空気と入れ替えることが、防錆に対し有効である。 As described in Embodiment 1, the air that has been compressed by the compressor body 1 and has a high temperature becomes moist air when cooled by the aftercooler 5 . Therefore, replacing it with dry air is effective for rust prevention.
 本実施例では、アフタークーラ5の下流側に乾燥空気の供給口21と供給弁22を有した供給ライン23を設け、そこへ、空気槽28に蓄えられた乾燥空気を供給する。供給弁22は制御盤32によって所定のタイミングで開閉動作を行う。 In this embodiment, a supply line 23 having a dry air supply port 21 and a supply valve 22 is provided on the downstream side of the aftercooler 5, to which dry air stored in an air tank 28 is supplied. The supply valve 22 is opened and closed at predetermined timing by the control panel 32 .
 圧縮機の運転休止時には、オイルポンプ吸入経路14に逆止弁25は通常は閉となっているため、供給された乾燥空気は放気弁26Aもしくは、圧縮機本体1を通って吸込み口101から圧縮機外に出ていくが、この時、圧縮機本体1を逆回転させる力が働く。 When the compressor is out of operation, the check valve 25 in the oil pump suction path 14 is normally closed, so the supplied dry air passes through the air release valve 26A or the compressor main body 1 to the suction port 101. It goes out of the compressor, but at this time, a force acts to reversely rotate the compressor main body 1 .
 本実施例では、圧縮機本体1はオイルポンプ24と駆動ギヤ6,8Aを介してつながっているため、実施例3のようにオイルポンプ24の回転をロックすることで、圧縮機本体1の逆回転を防止することができる。 In this embodiment, the compressor body 1 is connected to the oil pump 24 via the drive gears 6 and 8A. Rotation can be prevented.
 本実施例によれば、単段式の圧縮機において、1つのモータでギヤを介して圧縮機本体とオイルポンプを駆動し、オイルポンプの吸込み側に、圧縮機の運転中に開となり、休止中に閉となる開閉弁を設けることで、圧縮機の運転休止時に、圧縮機本体の逆回転を防止することができる。そして、圧縮機本体への油の侵入を防ぎ、信頼性が向上した無給油式空気圧縮機を提供することができる。 According to this embodiment, in a single-stage compressor, a single motor drives the compressor body and the oil pump through a gear, and the suction side of the oil pump is open during operation of the compressor and stops. By providing an on-off valve that closes inside, it is possible to prevent reverse rotation of the compressor main body when the compressor is out of operation. In addition, it is possible to provide an oil-free air compressor with improved reliability by preventing oil from entering the compressor body.
 図6に、本発明の実施例5の無給油式スクリュー圧縮機を示す。なお、基本的な構成は図3の実施例3と同様のため、ここでは差異について説明する。本実施例は、乾燥空気の供給口を低圧段側圧縮機の吸込み側にも設けることを特徴としている。 FIG. 6 shows an oil-free screw compressor of Example 5 of the present invention. Since the basic configuration is the same as that of the third embodiment shown in FIG. 3, differences will be explained here. This embodiment is characterized in that a dry air supply port is also provided on the suction side of the low-pressure stage compressor.
 本実施例では、吸込み配管103に乾燥空気の供給口21A、供給弁22、オリフィス33Aを有した乾燥空気供給ライン23Aを設ける。また、中間段に乾燥空気の供給口21B、供給弁22、オリフィス33Bを有した乾燥空気供給ライン23Bを設ける。 In this embodiment, the suction pipe 103 is provided with a dry air supply port 21A, a supply valve 22, and a dry air supply line 23A having an orifice 33A. A dry air supply line 23B having a dry air supply port 21B, a supply valve 22, and an orifice 33B is provided in the intermediate stage.
 動作について説明をする。
  圧縮機の運転時には、空気吸込み口101から空気吸込み配管103を通して低圧段側圧縮機本体1aに空気を吸い込む。低圧段側圧縮機本体1aで圧縮され高温となった圧縮空気はインタークーラ4で冷却され、高圧段側圧縮機本体1bに供給される。高圧段側圧縮機本体1bで圧縮され高温となった圧縮空気はアフタークーラ5で冷却され、逆止弁25を介して圧縮空気吐出口102から出力される。
  圧縮機の運転休止時には、低圧段側圧縮機本体1aとインナークーラ4との間に接続した放気弁26A、および、高圧段側圧縮機本体1bとアフタークーラ5との間に接続した放気弁26Bを開いて圧縮機内部の圧力を抜く。しかる後、供給弁22を開くように制御盤32にて制御することで、空気槽28に蓄えられた乾燥空気が乾燥空気供給ライン23A,23Bを通り、圧縮機内に供給される。供給口21Bから中間段の配管13へ供給された乾燥空気は、放気弁26Aおよび放気弁26Bから大気中に放出される。供給口21Aから供給された乾燥空気は、吸込み口101から大気中に放出される。
Explain how it works.
During operation of the compressor, air is sucked from the air suction port 101 through the air suction pipe 103 into the low-pressure stage side compressor main body 1a. Compressed air that has been compressed in the low-pressure stage compressor main body 1a and heated to a high temperature is cooled by the intercooler 4 and supplied to the high-pressure stage compressor main body 1b. Compressed air that has been compressed in the high-pressure stage compressor main body 1 b and heated to a high temperature is cooled by the aftercooler 5 and is output from the compressed air discharge port 102 via the check valve 25 .
When the compressor is out of operation, an air release valve 26A connected between the low-pressure stage compressor body 1a and the inner cooler 4, and an air release valve 26A connected between the high-pressure stage compressor body 1b and the aftercooler 5 Valve 26B is opened to release the pressure inside the compressor. Thereafter, by controlling the control panel 32 to open the supply valve 22, the dry air stored in the air tank 28 is supplied into the compressor through the dry air supply lines 23A and 23B. The dry air supplied from the supply port 21B to the intermediate-stage pipe 13 is released into the atmosphere from the air release valves 26A and 26B. The dry air supplied from the supply port 21A is discharged from the suction port 101 into the atmosphere.
 この時、供給口21Bから供給される乾燥空気によって中間段配管13の圧力が上昇するため低圧段側圧縮機本体1aを逆回転させる力が働く一方で、供給口21Aから供給される乾燥空気は吸込み配管103内の圧力を上昇させ、低圧段側圧縮機本体1aを正回転させる力を発生させる。あらかじめ低圧段側圧縮機本体1aを正回転させる力と逆回転させる力が釣り合うようにオリフィス33Aと33Bの径を設定することで、圧縮機を正回転させる力と逆回転させる力が打ち消し合うことになるため、圧縮機の逆回転を防止することが可能となる。 At this time, the dry air supplied from the supply port 21B increases the pressure of the intermediate stage pipe 13, so that a force is exerted to reversely rotate the low-pressure stage compressor body 1a, while the dry air supplied from the supply port 21A is The pressure in the suction pipe 103 is increased to generate a force to rotate the low-pressure stage compressor main body 1a forward. By setting the diameters of the orifices 33A and 33B in advance so that the force for forward rotation and the force for reverse rotation of the low-pressure stage side compressor main body 1a are balanced, the force for rotating the compressor in the forward direction and the force for rotating the compressor in the reverse direction cancel each other out. Therefore, reverse rotation of the compressor can be prevented.
 なお、本実施例では、多段式の圧縮機を例に説明したが、図1に示される単段式の圧縮機に用いることもできる。その場合は、圧縮機本体1の吐出側に設けたアフタークーラ5の出口側に乾燥空気供給ライン23の乾燥空気供給口21を接続して乾燥空気を供給するとともに、圧縮機本体1の吸込み側である吸込み配管103に乾燥空気供給口を接続して乾燥空気を供給すればよい。 In this embodiment, a multi-stage compressor has been described as an example, but the single-stage compressor shown in FIG. 1 can also be used. In that case, dry air is supplied by connecting the dry air supply port 21 of the dry air supply line 23 to the outlet side of the aftercooler 5 provided on the discharge side of the compressor body 1, and the suction side of the compressor body 1 is connected. A dry air supply port is connected to the suction pipe 103 to supply dry air.
 本実施例によれば、圧縮機の運転休止時に、圧縮機本体の吐出側に設けたインタークーラまたはアフタークーラに乾燥空気を供給するとともに、圧縮機本体の吸込み側にも乾燥空気を供給することで、圧縮機本体の逆回転を防止することができる。そして、圧縮機本体への油の侵入を防ぎ、信頼性が向上した無給油式空気圧縮機を提供することができる。 According to this embodiment, when the compressor is out of operation, dry air is supplied to the intercooler or aftercooler provided on the discharge side of the compressor body, and dry air is also supplied to the suction side of the compressor body. , the reverse rotation of the compressor body can be prevented. In addition, it is possible to provide an oil-free air compressor with improved reliability by preventing oil from entering the compressor body.
 図7に、本発明の実施例6の無給油式スクリュー圧縮機を示す。本実施例は、空気吸込み口101と低圧段の吸込み配管103の間にアンローダ105を設け、アンローダ105と低圧段側圧縮機本体1aの間に乾燥空気供給口21Aを設けることを特徴とする。その他の構成は、実施例5と同様である。 FIG. 7 shows an oil-free screw compressor of Example 6 of the present invention. This embodiment is characterized in that an unloader 105 is provided between the air suction port 101 and the low-pressure stage suction pipe 103, and a dry air supply port 21A is provided between the unloader 105 and the low-pressure stage compressor main body 1a. Other configurations are the same as those of the fifth embodiment.
 アンローダ105は内部に圧縮空気の経路を絞る弁を持ち、ロード運転中に開、アンロード運転中に閉となるように制御することで、圧縮機のアンロード運転中に動力を低減させる装置である。圧縮機の停止は通常アンロード停止となるため、休止時のアンローダは閉となっている。 The unloader 105 has a valve inside that throttles the path of the compressed air, and it is a device that reduces the power during the unloading operation of the compressor by controlling it so that it opens during loading operation and closes during unloading operation. be. Since the stop of the compressor is usually an unloading stop, the unloader is closed during stoppage.
 圧縮機の運転休止中に乾燥空気供給口21Aから供給された乾燥空気は、アンローダ105と圧縮機本体1aの間でとどまることとなり、吸い込み配管103内の圧力を上昇させる。 The dry air supplied from the dry air supply port 21A while the compressor is out of operation stays between the unloader 105 and the compressor body 1a, increasing the pressure inside the suction pipe 103.
 実施例5では吸い込み配管103の空気吸込み口101側は大気開放となっており、吸い込み配管103内の圧力を上昇させるためには乾燥空気供給口21Aから供給する乾燥空気の流量を乾燥空気供給口21Bから供給するものに比べて多くしなければならないが、本実施例では乾燥空気供給口21Aから供給する量をより少量とすることが可能となる。 In Example 5, the side of the air suction port 101 of the suction pipe 103 is open to the atmosphere. Although it must be larger than that supplied from 21B, in this embodiment, it is possible to reduce the amount supplied from the dry air supply port 21A.
 本実施例によれば、空気吸込み口と低圧段の吸込み配管の間にアンローダを設け、アンローダと低圧段圧縮機本体の間に乾燥空気供給口を設けたので、実施例5の効果に加えて、乾燥空気供給口から低圧段側圧縮機本体の吸込み側に供給する乾燥空気の量を少量とすることが可能となる。 According to this embodiment, the unloader is provided between the air suction port and the suction pipe of the low pressure stage, and the dry air supply port is provided between the unloader and the main body of the low pressure stage compressor. Also, it is possible to reduce the amount of dry air supplied from the dry air supply port to the suction side of the main body of the low-pressure stage compressor.
 なお、本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. In addition, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
1…圧縮機本体
1a…低圧段側圧縮機本体
1b…高圧段側圧縮機本体
2…ギヤケーシング
3,3a,3b,3c…モータ
4…インタークーラ
5…アフタークーラ
6,6A,6B…駆動ギヤ
7…従動ギヤ
7A…低圧段側従動ギヤ
7B…高圧段側従動ギヤ
8A…オイルポンプ駆動ギヤ
8B…オイルポンプ従動ギヤ
13…配管(中間段)
14…オイルポンプ吸入経路
15…開閉弁
21,21A,21B…乾燥空気供給口
22…供給弁
23…乾燥空気供給ライン
24…オイルポンプ
25…逆止弁
26A,26B…放気弁
28…空気槽
32…制御盤
33A,33B…オリフィス
47…オイル溜り
70…ブレーキ装置
100…圧縮機
101…空気吸込み口
102…圧縮空気吐出口
103…空気吸込み配管
105…アンローダ
1…Compressor body
1a: Main body of low-pressure stage compressor
1b…High-pressure stage side compressor main body
2…Gear casing
3,3a,3b,3c...Motor
4…Intercooler
5…Aftercooler
6,6A,6B…drive gear
7…Driven gear
7A…Driven gear on the low pressure side
7B...High pressure side driven gear
8A…Oil pump drive gear
8B…Oil pump driven gear
13…Piping (middle stage)
14…Oil pump intake path
15…On-off valve
21,21A,21B…Dry air supply port
22…Supply valve
23…Dry air supply line
24…Oil pump
25…Check valve
26A, 26B...Air release valve
28…Air tank
32…Control panel
33A, 33B... Orifice
47…Oil reservoir
70…Brake device
100 Compressor
101 ... Air inlet
102 Compressed air outlet
103…Air intake pipe
105 Unloader

Claims (15)

  1.  空気を圧縮して出力する無給油式の圧縮機本体と、前記圧縮機本体に接続され、圧縮された高温の空気を冷却するクーラとを備える無給油式空気圧縮機であって、
     前記圧縮機本体の出力側に乾燥空気を供給する乾燥空気供給機構と、
     圧縮機の運転休止中に、前記圧縮機本体の逆回転を防止する機構を備えた無給油式空気圧縮機。
    An oil-free air compressor comprising: an oil-free compressor body for compressing and outputting air; and a cooler connected to the compressor body for cooling the compressed high-temperature air,
    a dry air supply mechanism that supplies dry air to the output side of the compressor body;
    An oil-free air compressor provided with a mechanism for preventing reverse rotation of the compressor main body while the compressor is out of operation.
  2.  請求項1に記載の無給油式空気圧縮機において、
     前記圧縮機本体は、無給油式スクリュー圧縮機であることを特徴とする無給油式空気圧縮機。
    In the oilless air compressor according to claim 1,
    An oil-free air compressor, wherein the compressor main body is an oil-free screw compressor.
  3.  請求項1に記載の無給油式空気圧縮機において、
     前記圧縮機本体の逆回転を防止する機構は、ブレーキ装置であることを特徴とする無給油式空気圧縮機。
    In the oilless air compressor according to claim 1,
    An oil-free air compressor, wherein the mechanism for preventing reverse rotation of the compressor body is a brake device.
  4.  請求項1に記載の無給油式空気圧縮機において、
     前記圧縮機本体の逆回転を防止する機構は、ラチェット機構であることを特徴とする無給油式空気圧縮機。
    In the oilless air compressor according to claim 1,
    An oil-free air compressor, wherein the mechanism for preventing reverse rotation of the compressor body is a ratchet mechanism.
  5.  請求項1に記載の無給油式空気圧縮機において、
     各軸受に潤滑油を供給するためのオイルポンプと、
     オイルポンプの吸入側に設けた開閉弁と、
     前記圧縮機本体および前記オイルポンプを駆動する単一のモータと、
    を有し、
     前記オイルポンプは、ギヤポンプであり、
     前記モータ、前記圧縮機本体、および前記オイルポンプはギヤで連結されており、
     圧縮機の運転休止中に、前記開閉弁が閉じられることを特徴とする無給油式空気圧縮機。
    In the oilless air compressor according to claim 1,
    an oil pump for supplying lubricating oil to each bearing;
    an on-off valve provided on the suction side of the oil pump;
    a single motor that drives the compressor body and the oil pump;
    has
    the oil pump is a gear pump,
    The motor, the compressor body, and the oil pump are connected by gears,
    An oil-free air compressor, wherein the on-off valve is closed while the compressor is out of operation.
  6.  請求項5に記載の無給油式空気圧縮機において、
     前記ギヤポンプは、トロコイドポンプであることを特徴とする無給油式空気圧縮機。
    In the oilless air compressor according to claim 5,
    An oil-free air compressor, wherein the gear pump is a trochoid pump.
  7.  請求項1に記載の無給油式空気圧縮機において、更に、
     前記乾燥空気供給機構は、前記圧縮機本体の吸込み側に乾燥空気を供給することを特徴とする無給油式空気圧縮機。
    The oilless air compressor according to claim 1, further comprising:
    An oil-free air compressor, wherein the dry air supply mechanism supplies dry air to the suction side of the compressor body.
  8.  請求項7に記載の無給油式空気圧縮機において、
     前記圧縮機本体の吸込み側に、内部に圧縮空気の経路を絞る弁を有するアンローダを備え、
     前記乾燥空気供給機構は、前記アンローダと前記圧縮機本体との間の配管に乾燥空気を供給することを特徴とする無給油式空気圧縮機。
    In the oilless air compressor according to claim 7,
    An unloader provided on the suction side of the main body of the compressor and having a valve for throttling the path of the compressed air therein,
    An oil-free air compressor, wherein the dry air supply mechanism supplies dry air to a pipe between the unloader and the compressor body.
  9.  空気を圧縮して出力する無給油式の低圧段側圧縮機本体および高圧段側圧縮機本体と、
     前記低圧段側圧縮機本体と前記高圧段側圧縮機本体とを接続する中間段の配管と、圧縮された高温の空気を冷却する、中間段に設けたインタークーラ、および高圧段側圧縮機本体の出力側に設けたアフタークーラとを備える無給油式空気圧縮機であって、
     前記中間段の配管に乾燥空気を供給する乾燥空気供給機構と、
     圧縮機の運転休止中に、前記低圧段側圧縮機本体の逆回転を防止する機構を備えた無給油式空気圧縮機。
    an oil-free low-pressure stage compressor body and a high-pressure stage compressor body that compress and output air;
    An intermediate stage pipe that connects the low-pressure stage compressor body and the high-pressure stage compressor body, an intercooler provided in the intermediate stage that cools the compressed high-temperature air, and a high-pressure stage compressor body An oil-free air compressor comprising an aftercooler provided on the output side of
    a dry air supply mechanism that supplies dry air to the intermediate stage piping;
    An oil-free air compressor provided with a mechanism for preventing reverse rotation of the low-pressure stage side compressor main body while the compressor is out of operation.
  10.  請求項9に記載の無給油式空気圧縮機において、
     前記低圧段側圧縮機本体および前記高圧段側圧縮機本体は、無給油式スクリュー圧縮機であることを特徴とする無給油式空気圧縮機。
    In the oilless air compressor according to claim 9,
    An oil-free air compressor, wherein the low-pressure stage compressor main body and the high-pressure stage compressor main body are oil-free screw compressors.
  11.  請求項9に記載の無給油式空気圧縮機において、
     前記低圧段側圧縮機本体の逆回転を防止する機構は、ブレーキ装置であることを特徴とする無給油式空気圧縮機。
    In the oilless air compressor according to claim 9,
    An oil-free air compressor, wherein the mechanism for preventing reverse rotation of the low-pressure stage compressor main body is a brake device.
  12.  請求項9に記載の無給油式空気圧縮機において、
     前記低圧段側圧縮機本体の逆回転を防止する機構は、ラチェット機構であることを特徴とする無給油式空気圧縮機。
    In the oilless air compressor according to claim 9,
    An oil-free air compressor, wherein the mechanism for preventing reverse rotation of the low-pressure stage compressor main body is a ratchet mechanism.
  13.  請求項9に記載の無給油式空気圧縮機において、
     各軸受に潤滑油を供給するためのオイルポンプと、
     オイルポンプの吸入側に設けた開閉弁と、
     前記低圧段側圧縮機本体、前記高圧段側圧縮機本体および前記オイルポンプを駆動する単一のモータと、
    を有し、
     前記オイルポンプは、ギヤポンプであり、
     前記モータ、前記低圧段側圧縮機本体、前記高圧段側圧縮機本体、およびオイルポンプはギヤで連結されており、
     圧縮機の運転休止中に、前記開閉弁が閉じられることを特徴とする無給油式空気圧縮機。
    In the oilless air compressor according to claim 9,
    an oil pump for supplying lubricating oil to each bearing;
    an on-off valve provided on the suction side of the oil pump;
    a single motor that drives the low-pressure stage compressor main body, the high-pressure stage compressor main body, and the oil pump;
    has
    the oil pump is a gear pump,
    The motor, the low-pressure stage compressor main body, the high-pressure stage compressor main body, and the oil pump are connected by gears,
    An oil-free air compressor, wherein the on-off valve is closed while the compressor is out of operation.
  14.  請求項9に記載の無給油式空気圧縮機において、更に、
     前記乾燥空気供給機構は、前記低圧段側圧縮機本体の吸込み側に乾燥空気を供給することを特徴とする無給油式空気圧縮機。
    The oilless air compressor according to claim 9, further comprising:
    An oil-free air compressor, wherein the dry air supply mechanism supplies dry air to the suction side of the low pressure stage compressor main body.
  15.  請求項14に記載の無給油式空気圧縮機において、
     前記低圧段側圧縮機本体の吸込み側に、内部に圧縮空気の経路を絞る弁を有するアンローダを備え、
     前記乾燥空気供給機構は、前記アンローダと前記低圧段側圧縮機本体との間の配管に乾燥空気を供給することを特徴とする無給油式空気圧縮機。
    In the oilless air compressor according to claim 14,
    An unloader is provided on the suction side of the low-pressure stage compressor main body and has a valve inside for narrowing a path of compressed air,
    An oil-free air compressor, wherein the dry air supply mechanism supplies dry air to a pipe between the unloader and the low-pressure stage compressor main body.
PCT/JP2022/046606 2022-02-09 2022-12-19 Oil-free air compressor WO2023153081A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022019133A JP2023116366A (en) 2022-02-09 2022-02-09 Oil-free air compressor
JP2022-019133 2022-02-09

Publications (1)

Publication Number Publication Date
WO2023153081A1 true WO2023153081A1 (en) 2023-08-17

Family

ID=87564262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046606 WO2023153081A1 (en) 2022-02-09 2022-12-19 Oil-free air compressor

Country Status (2)

Country Link
JP (1) JP2023116366A (en)
WO (1) WO2023153081A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460712U (en) * 1977-10-07 1979-04-26
JPS61234291A (en) * 1986-04-14 1986-10-18 Hitachi Ltd Oil feeding amount controller of oil-free screw hydraulic machine
JPH04128595A (en) * 1990-09-19 1992-04-30 Hitachi Ltd Oilless screw compressor
JPH05141350A (en) * 1991-11-15 1993-06-08 Hitachi Ltd Method and device for preventing rusting of compressor during rest of operation
JP2013199891A (en) * 2012-03-26 2013-10-03 Mitsubishi Heavy Ind Ltd Operation stopping method for air blower, and air blower

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460712U (en) * 1977-10-07 1979-04-26
JPS61234291A (en) * 1986-04-14 1986-10-18 Hitachi Ltd Oil feeding amount controller of oil-free screw hydraulic machine
JPH04128595A (en) * 1990-09-19 1992-04-30 Hitachi Ltd Oilless screw compressor
JPH05141350A (en) * 1991-11-15 1993-06-08 Hitachi Ltd Method and device for preventing rusting of compressor during rest of operation
JP2013199891A (en) * 2012-03-26 2013-10-03 Mitsubishi Heavy Ind Ltd Operation stopping method for air blower, and air blower

Also Published As

Publication number Publication date
JP2023116366A (en) 2023-08-22

Similar Documents

Publication Publication Date Title
CN101581304B (en) Two-stage screw compressor and refrigerating device
CN105952639B (en) Compressor device and use of such a compressor device
JP5046379B2 (en) Rotor shaft seal device for oil-free rotary compressor
JPWO2007000815A1 (en) Lubricating method for two-stage screw compressor, device and operating method for refrigerating device
US3260444A (en) Compressor control system
WO2002066872A1 (en) Self-contained regulating valve, and compression type refrigerating machine having the same
JP2018518623A (en) Vacuum pump system
US2654532A (en) Rotary compressor
WO2023153081A1 (en) Oil-free air compressor
US5341658A (en) Fail safe mechanical oil shutoff arrangement for screw compressor
US20110016914A1 (en) Turbo compressor and refrigerator
JP7350876B2 (en) Compressor body and compressor
JP5714479B2 (en) Oil-cooled two-stage compressor and heat pump
JP5054597B2 (en) Steam expander driven air compressor
CN101963160B (en) Turbo compressor and refrigerator
JP6511321B2 (en) Refueling displacement compressor
JP2008501891A (en) Compressor lubrication
WO2022088813A1 (en) Compressor, dual-compressor series heat pump unit and control method therefor
CN213578184U (en) Compressor and double-compressor series heat pump unit
CN107401509A (en) Oil supply device for compressor and compressor
JP2018003720A (en) Compressor
JP2020007982A (en) Two-stage screw fluid machine
WO2014106233A1 (en) Compressor control for reverse rotation failure
JP4062443B2 (en) Screw compression device
GB2269424A (en) Preventing oil supply to screw compressor on shutdown

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926095

Country of ref document: EP

Kind code of ref document: A1