JP6511321B2 - Refueling displacement compressor - Google Patents

Refueling displacement compressor

Info

Publication number
JP6511321B2
JP6511321B2 JP2015080502A JP2015080502A JP6511321B2 JP 6511321 B2 JP6511321 B2 JP 6511321B2 JP 2015080502 A JP2015080502 A JP 2015080502A JP 2015080502 A JP2015080502 A JP 2015080502A JP 6511321 B2 JP6511321 B2 JP 6511321B2
Authority
JP
Japan
Prior art keywords
lubricating oil
oil
compressor
supply hole
oil supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015080502A
Other languages
Japanese (ja)
Other versions
JP2016200058A (en
Inventor
紘太郎 千葉
紘太郎 千葉
土屋 豪
豪 土屋
西村 仁
仁 西村
正彦 高野
正彦 高野
原島 寿和
寿和 原島
康輔 貞方
康輔 貞方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2015080502A priority Critical patent/JP6511321B2/en
Publication of JP2016200058A publication Critical patent/JP2016200058A/en
Application granted granted Critical
Publication of JP6511321B2 publication Critical patent/JP6511321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、モータケーシングに冷却流路を備え,外部から圧縮室および軸受に液体を注入する機能を有する容積型圧縮機に関する。
The present invention relates to a positive displacement compressor provided with a cooling flow passage in a motor casing and having a function of injecting a liquid from the outside into a compression chamber and a bearing.

図5に、従来の給油式容積型圧縮機における圧縮機本体1の構造を示す。なお、圧縮機本体1の例として,圧縮機構はスクリュー圧縮機とする。圧縮機本体1は、ねじれたローブを持ち互いに噛み合って回転する雄ロータ2と雌ロータ3(図に示さず)、それらを収納するケーシング4、雌雄両ロータをそれぞれ回転自在に支持するための吸込側軸受5と吐出側軸受6,およびオイルシールまたはメカニカルシールなどの軸封部品7によって構成される。一般的には、雄ロータ2は吸込側端部(紙面左方)にロータ軸を介して回転駆動源であるモータ8に接続される。   FIG. 5 shows the structure of the compressor body 1 in a conventional oil-filled displacement-type compressor. As an example of the compressor body 1, the compression mechanism is a screw compressor. The compressor body 1 has a twisted lobe, and a male rotor 2 and a female rotor 3 (not shown) which rotate by meshing with each other, a casing 4 for housing them, and a suction for rotatably supporting both male and female rotors. It comprises a side bearing 5 and a discharge side bearing 6 and a shaft sealing part 7 such as an oil seal or a mechanical seal. Generally, the male rotor 2 is connected to a motor 8 which is a rotational drive source via a rotor shaft at the suction side end (left side in the drawing).

モータ8によって回転駆動された雄ロータ2は、雌ロータ3を回転駆動し、雌雄両ロータの歯溝とそれを囲むケーシング4の内壁面とで形成される作動空間9が膨張および収縮することによって、空気等の流体を吸込口10から吸入し、所定の圧力まで圧縮したのち、吐出流路11から吐出する。また、作動空間9、吸込側軸受5、および吐出側軸受6に対して、圧縮機本体1の外部からそれぞれ給油孔12、吸込側軸受給油孔13、および吐出側軸受給油孔14を介して潤滑油が注入される。   The male rotor 2 rotationally driven by the motor 8 rotationally drives the female rotor 3 to expand and contract an operating space 9 formed by the tooth grooves of the male and female rotors and the inner wall surface of the casing 4 surrounding it. A fluid such as air is sucked from the suction port 10, compressed to a predetermined pressure, and then discharged from the discharge flow path 11. Further, the working space 9, the suction side bearing 5 and the discharge side bearing 6 are lubricated from the outside of the compressor main body 1 through the oil supply hole 12, the suction side bearing oil supply hole 13 and the discharge side bearing oil supply hole 14 respectively. Oil is injected.

図6に、圧縮機本体1に供給される潤滑油の外部経路を示す。潤滑油経路は、圧縮機本体1、遠心分離機15、油冷却器16、フィルタや逆支弁などの補機17、およびそれらを接続する油配管18によって構成される。圧縮機本体1から吐出された圧縮気体中には、圧縮機内部に外部から注入された潤滑油が混入している。圧縮気体中に混入した潤滑油は、遠心分離機15によって圧縮気体から分離され、油冷却器16によって冷却された後、補機17を介して分岐し,再度圧縮機本体1内部の作動空間9,吸込側軸受5,および吐出側軸受6に供給される。なお,潤滑油経路の分岐点は,図中に示したように圧縮機本体1外部に限られるものではなく,圧縮機本体1のケーシング4の内部において分岐するものも含まれる。   FIG. 6 shows the external path of the lubricating oil supplied to the compressor body 1. The lubricating oil path is constituted by the compressor body 1, the centrifugal separator 15, the oil cooler 16, accessories 17 such as a filter and a reverse valve, and oil pipes 18 connecting them. In the compressed gas discharged from the compressor main body 1, lubricating oil injected from the outside into the compressor is mixed. The lubricating oil mixed in the compressed gas is separated from the compressed gas by the centrifuge 15 and cooled by the oil cooler 16 and then branched via the accessory 17 to again operate the working space 9 inside the compressor body 1. , And the suction side bearing 5 and the discharge side bearing 6. The branch point of the lubricating oil path is not limited to the outside of the compressor main body 1 as shown in the figure, but includes one that branches inside the casing 4 of the compressor main body 1.

作動空間9に対する給油の目的は,内部すき間の封止,圧縮過程における気体の冷却,または摺動する雌雄両ロータの潤滑など多様である。一方で,吸込側軸受5および吐出側軸受6に対する給油の目的は,それぞれの潤滑である。従って,圧縮効率を向上させるためには,給油温度を下げて圧縮気体の潤滑油に対する放熱を促進したり,すき間に介在する潤滑油の粘度を増大させ油膜切れを防いだりすることが効果的と考えられる。しかし,圧縮効率を向上させるために給油温度を下げると,吸込側軸受5および吐出側軸受6に供給される潤滑油の粘度も増大するため,それぞれにおける潤滑油の撹拌損失動力が増大し,圧縮機本体1の効率向上を妨げる要因となる。そこで,作動空間9に対する給油温度よりも吸込側軸受5または吐出側軸受6に対する給油温度を上げる方法が特許文献1に記載されている。   The purpose of the oil supply to the working space 9 is diverse, such as sealing of the inner space, cooling of the gas in the compression process, or lubrication of the sliding male and female rotors. On the other hand, the purpose of the oil supply to the suction side bearing 5 and the discharge side bearing 6 is their respective lubrication. Therefore, in order to improve the compression efficiency, it is effective to lower the oil supply temperature to promote the heat release of the compressed gas to the lubricating oil, or to increase the viscosity of the lubricating oil interposed in the gap to prevent the oil film breakage. Conceivable. However, if the oil temperature is lowered to improve the compression efficiency, the viscosity of the lubricating oil supplied to the suction side bearing 5 and the discharge side bearing 6 also increases, so the stirring loss motive power of the lubricating oil in each increases. It becomes a factor that hinders the improvement of the efficiency of the machine body 1. Therefore, Patent Document 1 describes a method for raising the oil supply temperature for the suction side bearing 5 or the discharge side bearing 6 more than the oil supply temperature for the working space 9.

また,特許文献2では,油冷却機の下流側において油流路を分岐し,一方は直接作動空間に連通し,他方はモータケーシング内部を介して吸込側または吐出側の軸受室に連通する構造が記載されている。この構造により,モータケーシング内部において発熱するモータから吸熱した潤滑油は温度上昇し,作動空間に供給される潤滑油の温度より高い温度で軸受に給油されることが考えられる。   Further, in Patent Document 2, the oil flow path is branched on the downstream side of the oil cooler, one is directly in communication with the working space, and the other is in communication with the suction side or the discharge side bearing chamber via the inside of the motor casing. Is described. With this structure, it is conceivable that the temperature of the lubricating oil absorbed by the motor, which generates heat inside the motor casing, rises and the oil is fed to the bearing at a temperature higher than the temperature of the lubricating oil supplied to the working space.

特開2013−241920号公報JP, 2013-241920, A 特開2005−69062号公報JP 2005-69062 A

特許文献1に記載の給油式スクリュー圧縮機では、軸受に連通する潤滑油経路が油冷却器を迂回することにより、油冷却器を介して作動空間に供給される潤滑油の温度に比べて、軸受に供給される潤滑油の温度は高くなる。これによって,圧縮効率の向上を目的として作動空間に供給される潤滑油の温度を下げた場合においても,軸受に供給される潤滑油の温度を高く維持することにより,軸受における撹拌損失動力の増大を防ぎ,高効率な圧縮機を実現可能と考えられる。しかし、軸受に連通する潤滑油経路に弁機構が介在しており、これが給油経路の圧力損失を増大する。例えば圧縮機の起動直後などにおいて,潤滑油の温度が運転中に比べて著しく低く,粘度が高い状況においては,十分な量の潤滑油が軸受に供給されないことが懸念される。また,制御機構が複雑化することにより,弁機構自体や油冷却器の冷却ファンの制御器にハンチングを引き起こす懸念がある。   In the oil type screw compressor described in Patent Document 1, the lubricating oil passage communicating with the bearing bypasses the oil cooler, thereby comparing with the temperature of the lubricating oil supplied to the working space via the oil cooler. The temperature of the lubricating oil supplied to the bearings becomes high. By this, even when the temperature of the lubricating oil supplied to the working space is lowered for the purpose of improving the compression efficiency, the stirring loss power in the bearing is increased by maintaining the temperature of the lubricating oil supplied to the bearing high. It is considered possible to realize a highly efficient compressor. However, a valve mechanism intervenes in the lubricating oil passage communicating with the bearing, which increases the pressure loss in the oil feeding passage. For example, immediately after start-up of the compressor, the temperature of the lubricating oil is significantly lower than that during operation, and there is a concern that a sufficient amount of lubricating oil may not be supplied to the bearing when the viscosity is high. In addition, as the control mechanism becomes complicated, there is a concern that hunting may occur in the valve mechanism itself or the controller of the cooling fan of the oil cooler.

特許文献2に記載の油冷式スクリュー圧縮機においては、潤滑油がモータケーシング内に直接流入するため、モータの回転子が潤滑油を撹拌することによる損失動力が増大する懸念がある。また、運転停止後に圧縮機内部の潤滑油がモータケーシング内に逆流し、モータケーシング内に溜まることにより、モータ内部部品の劣化および起動トルクの著しい増大を招く懸念がある。   In the oil-cooled screw compressor described in Patent Document 2, since the lubricating oil directly flows into the motor casing, there is a concern that the loss power due to the stirring of the lubricating oil by the rotor of the motor may increase. In addition, there is a concern that the lubricating oil inside the compressor flows back into the motor casing after operation is stopped and is accumulated in the motor casing, leading to deterioration of internal parts of the motor and a marked increase in starting torque.

本発明の目的は、従来の潤滑油経路に対して弁機構などの追加により圧力損失を著しく増大させること無く、またモータケーシング内に潤滑油を流入させること無く、圧縮機本体の作動空間に対する給油温度より軸受の給油温度を上げることにより、圧縮効率を向上するために給油温度を下げた場合においても、軸受における撹拌損失を最小に抑えることにより、高効率な圧縮機を実現することにある。
The object of the present invention is to lubricate the working space of the compressor body without significantly increasing the pressure loss due to the addition of a valve mechanism or the like to the conventional lubricating oil path and without flowing the lubricating oil into the motor casing. By raising the oil supply temperature of the bearing from the temperature, even when the oil supply temperature is lowered to improve the compression efficiency, it is possible to realize a highly efficient compressor by minimizing the stirring loss in the bearing.

上記の目的を達成するため、本発明では、モータケーシングに冷却流路を備え,外部から圧縮室および軸受に液体を供給する機能を有する容積型圧縮機において、圧縮機の軸受に潤滑油を供給する給油孔の上流側にモータケーシングの冷却流路が連通することを特徴とする。
In order to achieve the above object, according to the present invention, in a positive displacement compressor provided with a cooling flow passage in a motor casing and having a function of supplying liquid to the compression chamber and bearings from the outside, lubricating oil is supplied to the compressor bearings The cooling passage of the motor casing is in communication with the upstream side of the fueling hole.

本発明によれば、軸受に供給する潤滑油がその上流側においてモータと熱交換することにより、作動空間に対する給油温度に比べて軸受に対する給油温度が高くなる。従って、圧縮効率の向上を目的として作動空間に対する給油温度を下げた場合においても、軸受に対する給油温度は比較的高く、つまり低粘度が維持され、軸受における潤滑油の撹拌損失を最小限に抑えることが可能となる。これにより給油式容積型圧縮機の高効率化が可能となる。
According to the present invention, the lubricating oil supplied to the bearing exchanges heat with the motor on the upstream side, whereby the oiling temperature to the bearing becomes higher than the oiling temperature to the working space. Therefore, even when the oil supply temperature to the working space is lowered for the purpose of improving the compression efficiency, the oil supply temperature to the bearing is relatively high, that is, the low viscosity is maintained, and the lubricating oil agitation loss in the bearing is minimized. Is possible. This makes it possible to increase the efficiency of the oil type displacement compressor.

本発明の第1実施例におけるスクリュー圧縮機の垂直断面図である。It is a vertical sectional view of a screw compressor in a 1st example of the present invention. 本発明の第1実施例における潤滑油経路である。It is a lubricating oil path in 1st Example of this invention. 本発明の第2実施例におけるスクリュー圧縮機の垂直断面図である。It is a vertical sectional view of a screw compressor in a 2nd example of the present invention. 本発明の第3実施例におけるスクリュー圧縮機の垂直断面図である。It is a vertical sectional view of a screw compressor in a 3rd example of the present invention. 一般的なスクリュー圧縮機の垂直断面図である。It is a vertical sectional view of a common screw compressor. 一般的なスクリュー圧縮機の潤滑油経路である。It is a lubricating oil path of a common screw compressor.

以下、図面を用いて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail using the drawings.

以下、本発明の第1の実施例を図1および図2により説明する。なお、本実施例は空気を圧縮するスクリュー型空気圧縮機に関するものである。また、構成は図5および図6に示される構成と同一であることから、同一の符号を付して説明を省略する。なお,軸封部品7はメカニカルシールである。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. The present embodiment relates to a screw type air compressor which compresses air. Further, since the configuration is the same as the configuration shown in FIGS. 5 and 6, the same reference numerals are given and the description is omitted. The shaft seal part 7 is a mechanical seal.

本実施例において、図5と異なる点は、モータ8のケーシングに潤滑の油流路となる油冷ジャケット19を設けたこと,油冷ジャケット19と油配管18の接続配管20を設けたこと,および油冷ジャケット19と吸込側軸受5および吐出側軸受6それぞれの給油孔13および14を接続したことにある。   The present embodiment differs from the embodiment in FIG. 5 in that the casing of the motor 8 is provided with an oil cooling jacket 19 serving as an oil passage for lubrication, and the connection piping 20 for the oil cooling jacket 19 and the oil piping 18 is provided. And, the oil cooling jacket 19 is connected to the oil supply holes 13 and 14 of the suction side bearing 5 and the discharge side bearing 6 respectively.

本実施例における潤滑油経路を図2により説明する。補機17の下流側において油配管は分岐し、一方は給油孔12に接続する。他方は、モータ8の油冷ジャケット19を介して吸込側軸受給油孔13および吐出側軸受給油孔14に連通する。従って、吸込側軸受5および吐出側軸受6に供給される潤滑油は,その上流側においてモータ8から吸熱するため,その給油温度は作動空間9に供給される潤滑油の温度に比べて高くなる。つまり、圧縮効率の向上を目的として、冷却器の冷却能力を増大し、作動空間に供給される潤滑油の温度を下げた場合においても、軸受に供給される潤滑油は、モータとの熱交換により温度上昇するため、必要以上に粘度が増加することはない。以上により、軸受における撹拌損失動力を最小限に抑えることにより、圧縮機の省エネ化に効果的なスクリュー圧縮機の実現が可能となる。   The lubricating oil path in the present embodiment will be described with reference to FIG. On the downstream side of the auxiliary machine 17, the oil pipe branches, and one is connected to the oil supply hole 12. The other communicates with the suction side bearing oil supply hole 13 and the discharge side bearing oil supply hole 14 via the oil cooling jacket 19 of the motor 8. Therefore, since the lubricating oil supplied to the suction side bearing 5 and the discharge side bearing 6 absorbs heat from the motor 8 on the upstream side, the oiling temperature thereof is higher than the temperature of the lubricating oil supplied to the working space 9 . That is, even if the cooling capacity of the cooler is increased and the temperature of the lubricating oil supplied to the working space is lowered for the purpose of improving the compression efficiency, the lubricating oil supplied to the bearing exchanges heat with the motor Because the temperature rises due to the viscosity, the viscosity does not increase more than necessary. As described above, by minimizing the stirring loss power in the bearing, it is possible to realize a screw compressor that is effective for energy saving of the compressor.

なお,本実施例は,油冷却機16の上流側と吸込側軸受給油孔13および吐出側軸受給油孔14を連通するバイパス流路21,およびバイパス流路21と油配管18の分岐点に位置する弁機構22を備えている。圧縮機本体1の軌道直後など,潤滑油の温度が運転中のそれに比べて著しく低い場合には,弁機構22によってバイパス流路21か開通し,潤滑油は油冷却機16,補機17,および油冷ジャケット19などの流動抵抗の多い流路を迂回して吸込側軸受給油孔13および吐出側軸受給油孔14に流入する。これにより,運転状態を問わず,吸込側軸受5および吐出側軸受6に安定して給油することが可能となる。   In this embodiment, the bypass channel 21 connecting the upstream side of the oil cooler 16 with the suction side bearing oil supply hole 13 and the discharge side bearing oil supply hole 14 and the branch point of the bypass flow path 21 and the oil pipe 18 are located. The valve mechanism 22 is provided. If the temperature of the lubricating oil is significantly lower than that during operation, such as immediately after the orbit of the compressor body 1, the valve mechanism 22 opens the bypass passage 21 and the lubricating oil is oil cooler 16, auxiliary machine 17, And it bypasses a flow path with a large flow resistance such as the oil cooling jacket 19 and flows into the suction side bearing oil supply hole 13 and the discharge side bearing oil supply hole 14. As a result, regardless of the operating state, it is possible to stably lubricate the suction side bearing 5 and the discharge side bearing 6.

また,本実施例に記載のスクリュー圧縮機の設置状態は,図1に記載のような水平設置に限らず,雄ロータ2の軸を鉛直に配置した場合においても有効である。
Further, the installation state of the screw compressor described in the present embodiment is effective not only in the horizontal installation as shown in FIG. 1 but also in the case where the axis of the male rotor 2 is vertically arranged.

以下、本発明の第2の実施例を図3により説明する。なお、本実施例は実施例1と同様にスクリュー型空気圧縮機に関するものであり、実施例1と同じ箇所については、同じ記号を付して説明する。   Hereinafter, a second embodiment of the present invention will be described with reference to FIG. The present embodiment relates to a screw type air compressor as in the first embodiment, and the same parts as the first embodiment will be described with the same symbols.

本実施例において、図1と異なる点は、吸込側軸受5および吐出側軸受6を潤滑した後の潤滑油を、潤滑油回収孔23を介して吸込完了後の作動空間9に連通したことにある。図中の波線は,雄ロータ2の外周面における吸込ポート24である。吸込ポートより圧縮側(紙面右側)にある作動空間9は,すでに吸込過程を完了し圧縮過程にあるため空間は閉じている。従って,作動空間9に供給された潤滑油が吸込口10近傍に飛散することはない。これにより、モータ8の冷却および吸込側軸受5および吐出側軸受6の潤滑によって温度上昇した潤滑油が吸込ポート10近傍に飛散し、吸込口から流入した空気と熱交換することによる吸気加熱現象を抑制することが可能となる。以上により、吸気加熱現象を抑制し、空気流量の増大に効果的なスクリュー圧縮機の実現が可能となる。
The present embodiment differs from FIG. 1 in that the lubricating oil after lubricating the suction side bearing 5 and the discharge side bearing 6 is communicated with the working space 9 after the suction is completed via the lubricating oil recovery hole 23. is there. The dashed line in the figure is the suction port 24 on the outer peripheral surface of the male rotor 2. The working space 9 located on the compression side (right side of the drawing) from the suction port has already closed the suction process and is in the compression process, so the space is closed. Therefore, the lubricating oil supplied to the working space 9 does not scatter in the vicinity of the suction port 10. As a result, the lubricating oil whose temperature has risen by the cooling of the motor 8 and the lubrication of the suction side bearing 5 and the discharge side bearing 6 scatters in the vicinity of the suction port 10 and heats up the intake air by heat exchange with the air flowing from the suction port. It becomes possible to suppress. As described above, it is possible to suppress the intake air heating phenomenon and realize a screw compressor that is effective for increasing the air flow rate.

以下、本発明の第3の実施例を図4により説明する。なお、本実施例は実施例2と同様にスクリュー型空気圧縮機に関するものであり、実施例2と同じ箇所については、同じ記号を付して説明する。   Hereinafter, a third embodiment of the present invention will be described with reference to FIG. The present embodiment relates to a screw-type air compressor as in the second embodiment, and the same parts as the second embodiment will be described with the same symbols.

本実施例において、図3と異なる点は、吸込側軸受5と雄ロータ2および雌ロータ3との間に第二のメカニカルシール25を設けたことにある。これにより,吸込側軸受5に供給した潤滑油が圧縮機本体1のケーシング4と雄ロータ2および雌ロータ3の軸との間のすき間から圧縮機本体1内部に流入し,吸込口10近傍に飛散する現象が抑制される。従って,実施例2に記載のスクリュー圧縮機に比べて,さらに吸気加熱現象を抑制し,空気流量の増大に効果的なスクリュー圧縮機の実現が可能となる。   The present embodiment differs from FIG. 3 in that a second mechanical seal 25 is provided between the suction side bearing 5 and the male rotor 2 and the female rotor 3. As a result, the lubricating oil supplied to the suction side bearing 5 flows into the inside of the compressor body 1 from the gap between the casing 4 of the compressor body 1 and the shafts of the male rotor 2 and the female rotor 3 and in the vicinity of the suction port 10 The scattering phenomenon is suppressed. Therefore, compared with the screw compressor described in the second embodiment, it is possible to further suppress the intake air heating phenomenon and realize a screw compressor that is more effective to increase the air flow rate.

なお,本実施例の効果は,メカニカルシール7および第二のメカニカルシール25が,オイルシール,磁性流体シール,またはラビリンスシールなどの他の軸封部品に置き換えても同様である。
The effect of the present embodiment is the same even if the mechanical seal 7 and the second mechanical seal 25 are replaced with other shaft seal parts such as an oil seal, a magnetic fluid seal, or a labyrinth seal.

1…圧縮機本体 2…雄ロータ 3…雌ロータ 4…ケーシング 5…吸込側軸受 6…吐出側軸受 7…軸封部品 8…モータ 9…作動空間 10…吸込口 11…吐出流路 12…給油孔 13…吸込側軸受給油孔 14…吐出側軸受給油孔 15…遠心分離機 16…油冷却器 17…補機 18…油配管 19…油冷ジャケット 20…接続配管 21…バイパス流路 22…弁機構 23…潤滑油回収孔 24…吸込ポート 25…第二のメカニカルシール Reference Signs List 1 compressor body 2 male rotor 3 female rotor 4 casing 5 suction side bearing 6 discharge side bearing 7 shaft sealing part 8 motor 9 operation space 10 suction port 11 discharge flow path 12 oiling Hole 13 ... Suction side bearing oiling hole 14 ... Discharge side bearing oiling hole 15 ... Centrifuge 16 ... Oil cooler 17 ... Auxiliary machine 18 ... Oil piping 19 ... Oil cold jacket 20 ... Connection piping 21 ... Bypass flow path 22 ... Valve Mechanism 23 ... lubricating oil recovery hole 24 ... suction port 25 ... second mechanical seal

Claims (3)

モータケーシングに冷却流路を備え外部から圧縮機本体の作動空間および軸受に潤滑油を供給する機能を有する容積型圧縮機であって
潤滑油流路が、前記作動空間に潤滑油を供給する第一の給油孔、および前記軸受に潤滑油を供給する第二の給油孔のそれぞれに接続する流路に分岐し、
前記第二の給油孔に接続する流路は、前記分岐の下流側であって前記第二の給油孔の上流側に前記モータケーシングの冷却流路が連通し、
前記第一の給油孔に接続する流路は、前記分岐の下流側において前記モータケーシングの冷却流路とは連通しないことを特徴とする容積型圧縮機。
A cooling flow path to the motor casing, a positive displacement compressor having a function of supplying a lubricating oil from outside the working space and the bearings of the compressor body,
The lubricating oil passage branches into a passage connecting to a first oil supply hole for supplying the lubricating oil to the working space and a second oil supply hole for supplying the lubricating oil to the bearing.
Passage to be connected to the second oil supply hole, the cooling passages of the motor casing a downstream side of the branch upstream of the second oil supply hole is communicated,
A flow path connected to the first oil supply hole does not communicate with a cooling flow path of the motor casing on the downstream side of the branch .
請求項1に記載の容積型圧縮機であって、
前記潤滑油流路はバイパス流路に切り替え可能な弁機構を備え、
前記潤滑油の温度が低い場合は、前記第二の給油孔に接続する流路に代わり、前記モータケーシングの冷却流路と連通していない前記バイパス流路が前記第二の給油孔に接続されて、前記軸受に潤滑油が供給されることを特徴とする容積型圧縮機。
The displacement compressor according to claim 1 , wherein
The lubricating oil channel is provided with a valve mechanism that can be switched to the bypass channel,
When the temperature of the lubricating oil is low, the bypass flow passage not in communication with the cooling flow passage of the motor casing is connected to the second oil supply hole instead of the flow passage connected to the second oil supply hole And a lubricating oil is supplied to the bearing .
請求項1または請求項2に記載の容積型圧縮機であって、モータと前記圧縮機本体の間にある軸受の両側にそれぞれに対する潤滑油の侵入を防ぐ軸封部品を備えたことを特徴とする容積型圧縮機。 A displacement type compressor according to claim 1 or claim 2, characterized in that on either side of the bearing located between the compressor body and motor, comprising a shaft seal part to prevent the lubricating oil entering for each With a positive displacement compressor.
JP2015080502A 2015-04-10 2015-04-10 Refueling displacement compressor Active JP6511321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015080502A JP6511321B2 (en) 2015-04-10 2015-04-10 Refueling displacement compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015080502A JP6511321B2 (en) 2015-04-10 2015-04-10 Refueling displacement compressor

Publications (2)

Publication Number Publication Date
JP2016200058A JP2016200058A (en) 2016-12-01
JP6511321B2 true JP6511321B2 (en) 2019-05-15

Family

ID=57423970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015080502A Active JP6511321B2 (en) 2015-04-10 2015-04-10 Refueling displacement compressor

Country Status (1)

Country Link
JP (1) JP6511321B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003211A1 (en) * 2016-06-28 2018-01-04 株式会社日立製作所 Air compressor
CN108343610A (en) * 2017-12-29 2018-07-31 上海辛渐新能源科技有限公司 Double-screw compressor
JP2022107253A (en) 2021-01-08 2022-07-21 コベルコ・コンプレッサ株式会社 Oil cooling type compressor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2597016B2 (en) * 1989-10-09 1997-04-02 株式会社神戸製鋼所 Hermetic oil-cooled compressor
JP2003322093A (en) * 2002-04-26 2003-11-14 Mitsubishi Heavy Ind Ltd Screw type fluid machine and refrigerating device provided with the same
JP2005069062A (en) * 2003-08-21 2005-03-17 Kobe Steel Ltd Oil injection type screw compressor
JP5197141B2 (en) * 2008-05-12 2013-05-15 株式会社神戸製鋼所 Two-stage screw compressor and refrigeration system
JP5827172B2 (en) * 2012-05-22 2015-12-02 株式会社日立産機システム Screw compressor
EP3263903B1 (en) * 2015-02-25 2020-11-04 Hitachi Industrial Equipment Systems Co., Ltd. Oilless compressor

Also Published As

Publication number Publication date
JP2016200058A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
KR101693952B1 (en) Compressor deviceas well as the use of such a compressor device
JP6137757B2 (en) Screw compressor
JP6428434B2 (en) Compressor
WO2016136482A1 (en) Oilless compressor
US11085448B2 (en) Oil circuit, oil-free compressor provided with such oil circuit and a method to control lubrication and/or cooling of such oil-free compressor via such oil circuit
JP6511321B2 (en) Refueling displacement compressor
EP3392478B1 (en) Oil circuit, oil-free compressor provided with such oil circuit and a method to control lubrication and/or cooling of such oil-free compressor via such oil circuit
CN204783685U (en) Horizontal slide vane compressor and air conditioner
JP2015042847A (en) Screw compressor
TW201825785A (en) Oil-free screw compressor
JP2018003720A (en) Compressor
RU2718090C1 (en) Oil circuit and an oil-free compressor equipped with such oil circuit, and a method of controlling lubrication and/or cooling of such oil-free compressor by means of such oil circuit
JP7185683B2 (en) Machine with oil pump and method of starting such machine
JP6518447B2 (en) Oilless compressor
NZ627526B2 (en) Compressor device as well as the use of such a compressor device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6511321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150