JP6762767B2 - 撮像素子、撮像装置、および撮像信号処理方法 - Google Patents

撮像素子、撮像装置、および撮像信号処理方法 Download PDF

Info

Publication number
JP6762767B2
JP6762767B2 JP2016110503A JP2016110503A JP6762767B2 JP 6762767 B2 JP6762767 B2 JP 6762767B2 JP 2016110503 A JP2016110503 A JP 2016110503A JP 2016110503 A JP2016110503 A JP 2016110503A JP 6762767 B2 JP6762767 B2 JP 6762767B2
Authority
JP
Japan
Prior art keywords
pixel
signal
photoelectric conversion
signal processing
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016110503A
Other languages
English (en)
Other versions
JP2017216649A (ja
Inventor
陽平 神田
陽平 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016110503A priority Critical patent/JP6762767B2/ja
Publication of JP2017216649A publication Critical patent/JP2017216649A/ja
Application granted granted Critical
Publication of JP6762767B2 publication Critical patent/JP6762767B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure Control For Cameras (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Description

本発明は、複数の画素部から信号を取得して、画像生成および焦点検出を行うことが可能な撮像素子および撮像装置に関するものである。
撮像装置において、1回の撮影で取得可能な画像のダイナミックレンジよりも見かけ上、広ダイナミックレンジな画像(以下、HDR画像ともいう)を生成する処理がある。撮像素子を構成する、開口率の異なる画素を規則的に配置してHDR画像を生成する技術が開示されている(特許文献1)。また、1つのマイクロレンズに複数の画素が割り当てられた瞳分割画素部を有する撮像素子を用いて、HDR画像を生成する技術が開示されている(特許文献2)。
他方、1回の撮影で異なる視点の画像を取得可能な撮像装置の構成では、異なる瞳領域を通過した光束により形成された一対の被写体像を取得可能である。取得された一対の被写体像から相関演算により焦点検出を行う技術が開示されている(特許文献3)。
特開2003−179819号公報 特開2015−144416号公報 特開2013−072906号公報
特許文献1に開示の装置では、複数の撮影フレームで取得される撮像取りこみ期間が異なる画像から1枚のHDR画像を生成する。したがって、例えば、適正露光、短秒露光、長秒露光という3つの異なる露光条件のHDR合成画像を得ようとすると、3枚を撮影する必要があり、撮影枚数が多くなり、被写体ブレが起きやすくなる。また、特許文献2に開示の装置では、マイクロレンズに対する画素の開口率がそれぞれ異なる画素の組み合わせによりHDR画像が生成される。この方式の場合、入射光が遮られ画素信号が大幅に低下した画素や、飽和した画素からの信号も用いて位相差検出を行うことになる。そのため、十分な位相差検出の精度が得られない場合がある。また、特許文献3に開示の装置は、1つのマイクロレンズに複数の画素が割り当てられた瞳分割画素部を有する撮像素子を利用して焦点検出を行うが、HDR画像を生成する処理については言及されていない。
本発明の目的は、必要最小限の回数の撮影で、3種類以上の出力条件で得られる信号に基づく画像生成と、焦点検出を行うことが可能な撮像素子および撮像装置を提供することである。
本発明の一実施形態の撮像素子は、複数の画素部から信号を取得して、焦点検出および画像生成の信号処理を行うことが可能な撮像素子であって、第1および第2の画素部がそれぞれ有する第1および第2の光電変換部に対して、信号の出力条件を設定する設定手段と、第1および第2の撮影について前記第1および第2の画素部から得られる、第1ないし第3の出力条件の画素信号に基づいて、前記画像生成の信号処理を行い、前記第1および第2の画素部がそれぞれ有する前記第1および第2の光電変換部のうち、出力条件の設定が同じである光電変換部から得られる複数の信号を用いて、前記焦点検出の信号処理を行う信号処理手段と、を備え、前記画像生成の信号処理において、前記出力条件の設定が同じである光電変換部から前記第1および第2の撮影で得られる複数の信号を加算平均して用い、前記設定手段は、前記第1の撮影については、前記第1の画素部が有する前記第1の光電変換部を前記第2の出力条件に設定し、前記第2の光電変換部を前記第2の出力条件での前記第1の光電変換部の出力レベルよりも出力レベルが低い前記第1の出力条件に設定し、前記第2の撮影については、前記第1の画素部が有する前記第1の光電変換部を前記第2の出力条件に設定し、前記第2の光電変換部を前記第2の出力条件での前記第1の光電変換部の出力レベルよりも出力レベルが高い前記第3の出力条件に設定し、前記画素信号の出力条件は、前記光電変換部の感度、露光時間、信号の増幅度および絞り値のうちの1つ以上の条件である。
本発明によれば、必要最小限の回数の撮影で、3種類以上の出力条件で得られる信号に基づく画像生成と、焦点検出を行うことができる。
本発明に係る撮像装置のシステム構成を示すブロック図である。 本発明に係る撮像素子の構成を示すブロック図である。 本発明の第1の実施例に係る撮像素子の画素構成と配列を示す図である。 射出瞳と撮像素子の受光との関係を示す模式図である。 撮像素子の回路構成図である。 画素の露光条件のパターンを示す図である。 画素の露光条件のパターンを示す図である。 ダイナミックレンジ拡大処理について説明する図である。 本実施例における動作処理を説明するフローチャートである。 実施例2における画素の露光条件のパターンを示す図である。
以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。本実施形態の撮像装置は、動画機能付き電子スチルカメラやビデオカメラ等に適用可能である。
(実施形態の概要)
まず、本発明の実施形態に係る撮像素子および撮像装置、撮像信号処理方法の概要を説明してから、各実施例を詳細に説明する。本発明は、画素部が複数の光電変換部を有する撮像素子と、該撮像素子を備える撮像装置に適用可能である。複数の画素部はそれぞれ第1および第2の光電変換部を有し、画素信号の出力条件が独立に設定される。画素信号の出力条件とは、例えば画素のISO感度、露光時間、光学絞り値、ゲインアンプの増幅度等の各条件や、複数の条件を組合せた条件であり、露出設定値については任意に変更可能である。撮像素子内または撮像装置の信号処理部は、以下に示す第1および第2の信号処理を行う。
第1の信号処理は、第1ないし第3の出力条件に設定された第1および第2の光電変換部の信号を用いて行われる。以下の実施形態では、画像生成の信号処理の具体例として画像信号のダイナミックレンジ拡大処理(HDR処理)を説明する。例えば、出力条件の異なる複数の信号を合成して広ダイナミックレンジな画像信号を生成することができる。また第2の信号処理では、第1ないし第3の出力条件のいずれかに設定された第1および第2の光電変換部の信号が処理される。以下の実施形態では、具体例として撮像光学系の焦点検出処理を説明する。第2の信号処理によって焦点検出用信号が生成され、焦点調節制御が可能となる。第1の信号処理は、第1および第2の撮影に係る複数の撮影フレームで得られる複数の出力条件の信号に基づいて実行される。また、第2の信号処理は、単一フレーム内で得られる同一の出力条件の信号に基づいて実行される。
また、撮像素子の制御モードについては、焦点検出演算のみを行う第1の制御モードと、焦点検出演算およびHDR処理を行う第2の制御モードがある。制御部は制御モードの切り替えによって、撮像部から取得される信号に対する信号処理の内容を変更する。例えば、第1の制御モードで位相差検出方式の焦点検出演算が行われる場合、画素部内の複数の光電変換部がそれぞれ出力する視差を有する画像(視差画像)から位相差が検出される。第1の光電変換部の出力からA像信号が取得され、第2の光電変換部の出力からB像信号が取得される場合、A像信号およびB像信号に対する相関演算が行われ、演算結果から焦点ずれ量が算出される。また第2の制御モードでは、撮像動作で取得される画像信号に対する位相差検出方式の演算およびHDR処理が実行される。なお、本発明の実施形態としては位相差検出方式に限定されない。シフト加算によるリフォーカス処理に基づく焦点検出処理やコントラスト検出処理、あるいは複数の検出方式を組合せた併用方式への適用が可能である。
画素部の構成に関して、瞳分割方向である水平方向に2分割された光電変換部を例示する。もちろん、本発明は、水平方向および垂直方向にそれぞれ2分割された光電変換部に適用可能である。本発明の実施形態としては、さらに分割数を増やして6、9等とする実施例がある。また光電変換部の形状が矩形に限定されることはなく、六角形等の多角形に設計する実施例にも適用可能である。
(第1の実施例)
本実施例の撮像装置は、第1、第2の撮影で取得された画像から位相差検出を行いつつ、2段分以上のHDR画像を生成することが可能である。本実施例の撮像装置は、複数の画素部が2次元アレイ状に配列された撮像素子を用いる。各画素部は、撮像光学系における異なる瞳部分領域を通過する光をそれぞれ受光する2つの光電変換部を備える。
図1を参照して、撮像装置の構成を説明する。光学鏡筒101は、複数のレンズと、フォーカス機構部1011、ズーム機構部1012、絞り機構部1013、シャッタ機構部1014等から構成される。光学鏡筒101内のレンズを通過する被写体からの光は、絞り機構部1013により適切な光量に調整され、撮像素子102上の撮像面に結像される。フォーカス機構部1011は、制御部107からの制御信号に基づいて駆動され、焦点調節用のフォーカスレンズの移動制御により、焦点調節を行う。ズーム機構部1012は、制御部107からの制御信号に基づいて駆動され、ユーザのズーム操作に応じて変倍用レンズの移動制御により、画角変更を行う。絞り機構部1013、シャッタ機構部1014は、制御部107からの制御信号に基づいて駆動され、絞り値やシャッタ時間をそれぞれ変更する。
撮像素子102では、制御部107からの制御信号に応じて、露光や信号読み出しやリセット等の撮像動作が実施され、対応する画像信号を出力する。その詳細については後述する。映像信号処理部104は、撮像素子102から画像信号を取得して、撮像素子102に起因する画素の欠陥や信号のばらつき等を補正する補正処理、HDR処理やホワイトバランス調整処理、ガンマ処理、色補正処理等の各種信号処理を施して映像信号を出力する。また、映像信号処理部104は撮像素子102の露出制御のために各領域の明るさを検出し、適正な露出を算出するAE(自動露出)処理も行う。
圧縮伸長部105は、制御部107の制御下で動作し、映像信号処理部104からの映像信号に対して、所定の方式の静止画像データフォーマットで圧縮符号化処理を行う。例えば、JPEG(Joint Photographic Coding Experts Group)方式等がある。また圧縮伸長部105は、画像記録部111から制御部107を介して供給された静止画像の符号化データを伸長復号化処理する。さらに、MPEG(Moving Picture Experts Group)方式等により動画像の圧縮符号化/伸長復号化処理が実行可能である。
位相差信号処理部106は、制御部107からの制御信号に従い、撮像素子102からの異なる瞳面に対応する画素信号である位相差信号に基づいて、位相差検出処理を行う。位相差検出信号を算出する際には、異なる瞳面に対応する画素信号の間で瞳面が異なること以外の要因により出力レベルに差がある信号を用いる場合に、出力レベル補正を行った上で位相差信号処理部106が位相差検出処理を行う。位相差検出信号の生成処理は公知であるため、その説明を省略し、出力レベル補正処理について後述する。位相差信号処理部106が算出した位相差検出信号(像ずれ量)は、制御部107へ送られる。
制御部107は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等から構成されるマイクロコントローラである。制御部107は、ROM等に記憶されたプログラムを実行して、撮像装置の各部を統括的に制御する。例えば、制御部107は、取得した位相差検出信号に基づいて撮像光学系の焦点状態を示すデフォーカス量を算出する。制御部107は、算出したデフォーカス量から、合焦状態を得るために必要なフォーカスレンズの駆動量を算出し、フォーカス機構部1011へ駆動制御信号を送る。フォーカス機構部1011は制御部107からの駆動制御信号に従って、AF(自動焦点調節)機構を駆動させて目標位置までフォーカスレンズを移動させる。
発光部108は、映像信号処理部104のAE処理によって被写体の露出値が低いと判断された場合に、被写体に対して光を照射する装置である。発光部108はキセノン管を用いたストロボ装置やLED発光装置等である。
操作部109は、例えばシャッタレリーズボタン等の各種操作キーやレバー、ダイヤル、タッチパネル等から構成される。操作部109は、ユーザによる入力操作に応じた制御信号を制御部107に出力する。画像表示部110は、LCD(Liquid Crystal Display)等の表示デバイスおよび該デバイスに対するインタフェース回路等を備える。画像表示部110は制御部107から供給された映像信号から表示デバイスに表示させるための信号を生成して表示デバイスに供給し、画面に画像を表示する。
画像記録部111は、例えば、可搬型の半導体メモリや、光ディスク、HDD(Hard Disk Drive)、磁気テープ等の記録媒体を備える。画像記録部111は、圧縮伸長部105により符号化された画像データファイルを制御部107から取得して記録媒体に記録する。また画像記録部111は、制御部107からの制御信号に基づき、指定されたデータを記録媒体から読み出して制御部107に出力する。
次に図2を参照して、本実施例における撮像素子102の構成を説明する。図2は撮像素子102の構成例を説明する図である。撮像素子102は、例えばシリコン(Si)を用いた半導体基板に、画素部201が行列状に複数配列された画素アレイ部202と、その周辺回路部から構成される。周辺回路部は、垂直駆動回路203、カラム信号処理回路204、水平駆動回路205、タイミング制御回路206等を含む。
画素部201は、光電変換部としてのフォトダイオードと、複数の画素トランジスタを備える。複数の画素トランジスタは、例えば、転送トランジスタ、増幅トランジスタ、選択トランジスタ、リセットトランジスタ等のМOS(金属酸化膜半導体)トランジスタである。
垂直駆動回路203は、例えばシフトレジスタによって構成される。垂直駆動回路203は画素駆動配線208を選択し、選択された画素駆動配線208に画素部201を駆動するためのパルスを供給し、行単位で画素部201を駆動する。垂直駆動回路203は、画素アレイ部202上の各画素部201を行単位で順次垂直方向に選択走査する。各画素部201の光電変換部において入射光量に応じて生成された信号電荷に基づく画素信号は、垂直信号線207を通してカラム信号処理回路204に供給される。
カラム信号処理回路204は、画素部201の列ごとに配置されており、1行分の画素部201から出力される画素信号に対し、画素列ごとにノイズ除去等の信号処理を行う。例えば、カラム信号処理回路204は、画素固有の固定パターンノイズを除去するためのCDS処理および垂直信号線207を通して出力された画素部201の画素信号の増幅処理とAD変換等の信号処理を行う。CDSは、“Correlated Double Sampling”(相関2重サンプリング) の略号である。
水平駆動回路205は、例えばシフトレジスタによって構成され、水平走査パルスを順次出力することによって、カラム信号処理回路204の各々を順番に選択する。カラム信号処理回路204の各々から画素信号は水平信号線209に出力される。タイミング制御回路206は、入力クロック信号と動作モード等を指令するデータを、制御部107から受け取る。タイミング制御回路206は垂直同期信号、水平同期信号およびマスタクロック信号に基づいて、垂直駆動回路203、カラム信号処理回路204および水平駆動回路205等の動作の基準となるクロック信号や制御信号を生成する。
図3を参照して、撮像素子102の画素部201の構成および画素配列について説明する。図3(A)は、撮像光学系の異なる瞳部分領域をそれぞれ通過した光を受光する光電変換部201L、201Rの構成例を示す概略図である。光電変換部201L、201Rは、フォトダイオード211、212をそれぞれ備える。Lは正面から見て左側に配置されることを意味し、Rは正面から見て右側に配置されることを意味する。以下、フォトダイオードを「PD」と略記する。
光電変換部201Lは撮像光学系の瞳領域の一部(第1の瞳部分領域)を通過した光を受光する。光電変換部201Rは第1の瞳部分領域とは異なる瞳領域の一部(第2の瞳部分領域)を通過した光を受光する。光電変換部201Lと光電変換部201Rは、1つのマイクロレンズ210下に構成され、それぞれPD211、PD212を1つずつ有する。転送トランジスタ213、214は、PD211とPD212の各々の画素信号を読み出す。PD211、PD212は、画素信号を一時的に蓄積するフローティングディフュージョン(FD)部215、216を有している。撮像光学系の異なる瞳部分領域を通過した光から光電変換される信号をPD211とPD212がそれぞれ読み出すこと以外、2つの光電変換部の構成は同じである。
光電変換部201Lと光電変換部201Rから取得される画素信号は、それぞれ垂直信号線207、カラム信号処理回路204を通り(図2)、水平駆動回路205によって行単位で随時水平信号線209へ読み出される。各画素部は、図示した構成要素以外にも後述する複数の構成要素を備えるが、それらは本発明の説明において重要でないので省略する。
図3(B)は撮像素子102内における画素配列を概略的に示す平面図である。2次元の画像を提供するために、図3(A)に示す構成をもつ複数の画素部201は、所定の方向に沿って2次元アレイ状に配列される。所定の方向とは水平および垂直方向である。画素部301内のPD301L、301Rは、瞳分割方向(本例では水平方向)にて2つに分割された光電変換部を構成している。また、行305は画素301、302、303、304が含まれる行を示している。行305を例にとって説明すると、301L、302L、303L、304Lは、図3(A)のPD211に対応し、301R、302R、303R、304Rは、図3(B)のPD212に対応している。
図4は、撮影レンズの射出瞳から出た光束(被写体光)が撮像素子102に入射する様子を示す概念図である。画素部の断面部401には、マイクロレンズ210、カラーフィルタ403、およびPD211、PD212を示す。射出瞳406には、撮影レンズの射出瞳の一部領域407、408を示しており、これらの領域は、受光する各PDから見たときの瞳部分領域である。中央のマイクロレンズ210を有する画素に対して、射出瞳406から出た光束の中心である光軸409を、一点鎖線で示す。光線410、411は、瞳部分領域407を通過する光の最外周の光線であり、光線412、413は瞳部分領域408を通過する光の最外周の光線である。
射出瞳406から出射した光は、光軸409を中心として撮像素子102に入射される。図4(A)からわかるように、射出瞳406から出る光束のうち、光軸409を境にして上側の光束はマイクロレンズ210、カラーフィルタ403を通過してPD212に入射する。また、光軸409を境にして下側の光束はマイクロレンズ210、カラーフィルタ403を通過してPD211に入射する。つまり、PD211とPD212はそれぞれ、撮影レンズの射出瞳406の異なる瞳部分領域408、407を通過した光を受光する。
図3を参照すると、例えば行305に含まれる画素部301の場合、PD301Lは、光軸409を挟んで一方の射出瞳(部分領域)から出る光束を受光するPD211に対応する。PD301Lから得られる像をA像とし、その画像信号をA像信号と呼ぶ。また、PD301Rは、光軸409を挟んで他方の射出瞳(部分領域)から出る光束を受光するPD212に対応する。PD301Rから得られる像をB像とし、その画像信号をB像信号と呼ぶ。
このように射出瞳406に対して光軸409を中心に等分に瞳部分領域407、408に分割して、PD211、PD212の受光が行われることにより、PD211とPD212とで出力信号に位相差が生じる。この位相差により瞳部分領域407、408に対応するA像信号とB像信号とで、同一の被写体像に由来する画素信号が現れる画素部201のアドレスに変化が現れ、アドレス間隔として検出される。このアドレス間隔を検出(位相差検出)することで、デフォーカス量が算出される。PD211、PD212は光軸409に対して等分に分割された配置である。つまり、射出瞳406に対して偏芯していないため、光学鏡筒101内の構成部品等によって一部光線が遮られたとしても、A像もしくはB像の信号欠損(シェーディング)に対して対処しやすいという利点がある。
図5は、撮像素子の回路構成と基本的動作の例を説明する図である。
図5では、画素201Lにおける回路構成を例にとって説明するが、画素201Rにおいても同様の回路構成となる。
図5に示すように、画素201Lには、PD211、転送トランジスタ213、増幅トランジスタ510、選択トランジスタ511、およびリセットトランジスタ512が設けられている。なお、この例では、各トランジスタは、nチャネルMOSFET(MOS Field-Effect Transistor)である。
また、転送トランジスタ213、選択トランジスタ511およびリセットトランジスタ512の各ゲートには、転送信号線513L、行選択信号線514L、リセット制御信号線515Lが接続されている。なお、画素201Rにも、同様に転送信号線513R、行選択信号線514R、リセット制御信号線515Rが接続されている。図2では、これらと転送信号線513L、行選択信号線514L、リセット制御信号線515Lを画素駆動配線208にてまとめて図示している。これらの信号線は、水平方向に延在して、同一行に含まれる画素を同時に駆動するようになっており、これによりライン順次動作型のローリングシャッタや、全行同時動作型のグローバルシャッタの動作を制御することが可能になっている。また、転送信号線513は、画素201L、201Rで別々に構成することで、画素201Lと画素201Rとで別々に露光時間を設定することが可能になる。さらに、選択トランジスタ511のソースには、垂直信号線207Lが接続され、垂直信号線207Lの一方の端部は、定電流源516を介して接地されている。なお、図2では、画素201L、201Rにそれぞれ接続される垂直信号線207L、207Rを垂直信号線207にてまとめて図示している。
PD211は、光電変換により生成された電荷を蓄積する。PD211は、P側が接地され、N側が転送トランジスタ213のソースに接続されている。転送トランジスタ213がONすると、PD211の電荷がFD部分である215に転送されるが、FD215には寄生容量C51があるので、この部分に電荷が蓄積される。増幅トランジスタ510のドレインは、電源電圧Vddとされ、ゲートは、FD215に接続されている。この増幅トランジスタ510は、FD215の電圧を電気信号に変換する。選択トランジスタ511は、信号を読み出す画素を行単位で選択する。選択トランジスタ511のドレインは増幅トランジスタ510のソースに、ソースは垂直信号線207に接続されている。この選択トランジスタ511がONしたときには、増幅トランジスタ510と定電流源516とがソースフォロアを構成するので、FD215の電圧に対応する電圧が垂直信号線207に出力される。リセットトランジスタ512のドレインは、電源電圧Vddとされ、ソースは、FD215に接続されている。このリセットトランジスタ512は、FD215の電圧を電源電圧Vddにリセットする。
図6および図7は、画素201L、201Rの露光条件のパターンを示す図である。本実施例においては、2枚のフレーム撮影が生じ、偶奇フレーム毎に露光条件のパターンが異なる。図6は、第1枚目のフレーム(第1のフレーム)における露光条件のパターンを示す。図7は、第2枚目のフレーム(第2のフレーム)における露光条件のパターンを示す。
図6および図7に示す各画素には、それぞれ、赤・青・緑のカラーフィルタが配置されている。赤の色成分カラーフィルタに対応した画素201L、201RR画素をR(以後、R画素)、青の色成分カラーフィルタに対応した画素201L、201RB画素をBL(以後、BL画素)とする。緑の色成分カラーフィルタに対応した画素201L、201RG画素を、GrあるいはGb(以後、それぞれGr画素あるいはGb画素)とする。なお、Gr画素とはR画素のある行にあるG画素を示しており、Gb画素とは、BL画素のある行にあるG画素を示している。また、n行目においてm列目の画素は、R画素、m+1列目はGr画素、m+2列目はR画素と繰り返し構成される。n+1行目においては、m列目の画素はGb画素、m+1列目はBL画素、m+2列目はGb画素と繰り返し構成される。
本実施例においては、適正露光秒時で撮影された画素を中出力画素、適正露光に対して露光時間を長くして撮影した画素を高出力画素、短くして撮影した画素を低出力画素とする。図6、図7において、3種類の異なるハッチング線を付して示す各部分は、以下のとおりである。
・横線で示す光電変換部:中出力レベル(適正出力レベル)の画素(中出力画素)である。
・粗い斜線で示す光電変換部:低出力レベルの画素(低出力画素)である。
・縦線で示す光電変換部:高出力レベルの画素(高出力画素)である。
低出力画素、中出力画素、高出力画素は、それぞれ画素201Lもしくは画素201Rと同様の構成である。したがって、上述のR画素、Gb画素、Gr画素、BL画素は、図6、図7に示すように、中出力画素と低出力画素、もしくは中出力画素と高出力画素とで構成される。1つの画素部内では、複数の画素は、複数の画素部の配置方向(第1の方向)とは異なる第2の方向に配置されている。
また、本実施例では、低出力画素の露光時間は、中出力画素の露光時間の半分に設定し、高露光画素の露光時間は適正露光に対して倍に設定することで、HDR処理後のダイナミックレンジは±1段拡張することができるが、他の設定にしても良い。
図6に示す第1のフレームは、低出力画素と中出力画素で構成される。n行目とn+1行目において、画素201Lにあたる画素が、中出力画素、画素201Rにあたる画素が、低出力画素である。n+2行目、n+3行目においては、R、Gr、Gb、B画素が、n行目、n+1行目と同様に繰り返し構成されるが、露光条件のパターンが異なる。n+2行目とn+3行目において、画素201Lにあたる画素が、低出力画素、画素201Rにあたる画素が、中出力画素である。n+4行目以降は、n行目、n+1行目、n+2行目、n+3行目と同様の露光条件とカラーフィルタのパターンで繰り返し構成される。
図7に示す第2のフレームは、高出力画素と中出力画素で構成される。n行目とn+1行目において、画素201Lにあたる画素が、中出力画素、画素201Rにあたる画素が、高出力画素である。n+2行目、n+3行目においては、R、Gr、Gb、B画素はn行目、n+1行目と同様に繰り返し構成されるが、露光条件のパターンが異なる。n+2行目とn+3行目において、画素201Lにあたる画素が、高出力画素、画素201Rにあたる画素が、中出力画素である。n+4行目以降はn行目、n+1行目、n+2行目、n+3行目と同様のパターンで繰り返し構成される。なお、第1のフレームを高出力画素と中出力画素、第2のフレームを低出力画素と中出力画素で構成してもかまわない。
本発明においては、HDR信号処理をするために、A像信号とB像信号の露光差が出るように撮影を実行する。A像信号とB像信号において露光差を発生させる場合は、例えば、露光時間をA像とB像とで別々の設定にしてもよいし、A像とB像の出力にそれぞれに対してカラム信号処理回路204内で増幅処理を別々の増倍度設定にして露光差を発生させても構わない。
図6において、位相差検出に用いる画素は、例えば、n行目、n+4行目、n+8行目のA像画素とn+2行目、n+6行目、n+10行目のB像画素である。HDR信号処理には全画素を用いる。A像信号とB像信号に露光差をつけて読み出された撮像信号は、撮像素子102から出力された後に、信号選択部103を通じて、映像信号処理部104と位相差信号処理部106へと送出され、HDR信号処理と位相差検出処理が実行される。映像信号処理部104は、例えば、図6に示す第1のフレームについての中出力画素の信号と、低出力画素の信号と、図7に示す第2のフレームについての高出力画素の信号とに基づいて、HDR信号処理を実行する。なお、制御部107(図1)が、HDR信号処理を行うかを判定し、HDR信号処理を行うと判定された場合に、映像信号処理部104が、HDR信号処理を実行するようにしてもよい。
映像信号処理部104による前フレームのAE算出結果から、制御部107が、位相差検出をする際に適切な露光条件を決定する。制御部107が、決定した条件に基づき、第1、第2のフレームについて、位相差検出に用いる画素が同一の出力条件(露光)になるように撮像設定されて複数の信号が読み出される。具体的には、n行目、n+4行目、n+8行目のR画素のA像信号と、n+2行目、n+6行目、n+10行目のR画素のB像信号とに対して、位相差信号処理部106が、公知の位相差検出処理を実行することで、位相差検出信号を生成する。つまり位相差信号処理部106は、A像信号、B像信号を用いて2像を相対的にシフトしながら相関演算を行い、相関演算結果から像ずれ量を検出する公知の位相差検出を行う。本実施例では、図6と図7とを参照するとわかるように、位相差検出処理に用いる複数の画素(例えば、中出力画素)の配置関係は、第1および第2の撮影で同じである。
信号選択部103は、映像信号の中から、R画素のA像信号と、B像信号とを選択して位相差信号処理部106へ送る。なお、本実施例では、位相差検出処理はR画素の信号に対して行っているが、RGB各色の画素信号および各色の画素信号を演算した信号に対して行っても良い。上記のような画素201の信号読み出しを、上から下の行へと順次読みだすことで1フレーム分のデータを撮像素子102から出力する。そして、信号選択部103にてHDR処理用の映像信号と位相差検出用の信号とを振り分けて、それぞれ映像信号処理部104と、位相差信号処理部106へと同時に出力する。このように、位相差検出に用いる画素において、映像信号処理部104内に含まれる映像信号処理部104の情報を用いて位相差検出に適切な露光条件を決めることで、信号の白飛びやSNが劣る露光条件を回避しやすくすることができる。
次に、図8を参照して、ダイナミックレンジ拡大処理について説明する。図8は、ダイナミックレンジ拡大処理における入射光量(横軸X)と画素信号量(縦軸Y)との関係を示す図である。横軸XにはX* 1〜3、X1〜3を示し、縦軸YにはY1〜3を示す。Y1はノイズレベルを表し、Y2は飽和信号量を表す。X* 1〜3は、高出力画素、中出力画素、低出力画素の各画素信号レベルが、ノイズレベルY1にそれぞれ到達するときの入射光量を表す。X1〜3は、高出力画素、中出力画素、低出力画素の各画素信号レベルが、飽和信号量Y2にそれぞれ到達するときの入射光量を表す。
高出力画素では、入射光量がX1となった時点で飽和信号量Y2に到達する。中出力画素では、入射光量がX2となった時点で飽和信号量Y2に到達する。低出力画素では、入射光量がX3となった時点で飽和信号量Y2に到達する。一方、受光により得られる画素信号量がY1以下である場合にはノイズレベルに相当するため、その画素信号は利用することができない。よって、高出力画素のダイナミックレンジは、入射光量がX* 1からX1までの範囲である。中出力画素のダイナミックレンジは、入射光量がX* 2からX2までの範囲である。低出力画素のダイナミックレンジは、入射光量がX* 3からX3までの範囲である。
一例として低出力画素、中出力画素、高出力画素の出力レベルの比が1:2:4である場合を説明する。映像信号処理部104は、画素部201について、入射光量に応じて下記式(1)〜式(5)により、HDR処理後の画素信号HDRを求める。
・X* 1<(入射光量)≦X* 2のとき
画素信号HDR=(高出力画素信号) (1)
・X* 2<(入射光量)≦X* 3のとき
画素信号HDR=(高出力画素信号)×(1−α)+(中出力画素信号)×α×2
(2)
・X* 3<(入射光量)≦X1のとき
画素信号HDR= (高出力画素信号)×β+(中出力画素信号)×γ×2+(低出力画素信号)×(1−β−γ)×4 (3)
・X1<(入射光量)≦X2のとき
画素信号HDR=(中出力画素信号)×(1−δ)×2+(低出力画素信号)×δ×4
(4)
・X2<(入射光量)≦X3のとき
画素信号HDR=(低出力画素信号)×4 (5)
上式中のα、β、γ、δ、β+γは合成用の係数であり、それらの値はいずれも1以下の正の実数とする。入射光量に応じて、低出力画素信号、中出力画素信号、高出力画素信号からHDR処理後の信号が生成される。映像信号処理部104は、画素アレイ部202の各画素部201の信号量(入射光量)に応じて、式(1)〜式(5)を用いて、ダイナミックレンジ拡大処理後の画素信号を算出する。これにより、撮影した異なる3種類の出力レベルの信号を取得して合成することで信号量がY1からY3までに拡大され、入射光量としてX* 1からX3まで対応できる広ダイナミックレンジな画像を生成できる。本実施例においては、図6、図7の露光条件パターンで撮影した2枚のフレームにおいて、R、Gr、Gb、BLのそれぞれの画素から低出力画素信号、中出力画素信号、高出力画素信号を得ることができ、これらの信号から先述のHDR信号処理を行う。
図9は、本実施例における動作処理を説明するフローチャートである。
撮影が開始されると、S801において、制御部107が、撮影条件を設定する。この撮影条件は初期であれば初期条件が適用されるが、後述するステップS807からのフィードバックにより、撮影条件は更新される。
次にS802において、制御部107が、S801で設定した撮影条件で撮像素子102を駆動させて、図6に示すセンサ配列における画素毎の露光条件のパターンで、第1のフレームの撮影を行う。続いて、S803において、制御部107が、図7に示すセンサ配列における画素毎の露光条件のパターンで、第2のフレームの撮影を行う。
S804において、映像信号処理部104が、撮影された第1のフレームと第2のフレームの信号から、AE値を算出する。続いて、S805において、映像信号処理部104が、HDR信号処理を実行する。HDR信号処理は、図6、図7に示す第1のフレームと第2のフレームでの、3種類(中出力画素、低出力画素、高出力画素)の画素の信号に基づいて実行される。また、この例では、図6または図7で横線のハッチで示される中出力画素を位相差検出に用いる画素(位相差画素)とする。位相差画素の信号(位相差画素信号)については、第1、第2のフレームでの信号値を加算平均することでランダムノイズを低減させてHDR信号処理を行う。
S806において、位相差信号処理部106が、S803で撮影された第2のフレームにおける位相差画素信号から位相差検出を実行する。位相差検出処理部106が、第1のフレームにおける位相差画素信号から位相差検出を実行してもよい。また、位相差検出処理部106が、第1、第2のフレームの信号値を加算平均することでランダムノイズを低減させた位相差画素信号から位相差検出を実行しても構わない。なお、S804とS805とS806の処理は、並行もしくは順不同に実行しても構わない。
次に、S807において、制御部107が、撮影を終了するか否かを判断する。撮影を終了する場合は、待機状態へと遷移する。撮影を続ける場合は、処理がS801に戻り、制御部107が、S804で得られたAE値から露光条件を更新する。また、フォーカス機構部1011が、S806で得られた位相差検出結果からオートフォーカス制御を実行する。以上のように、撮影条件が再設定されて撮影が繰り返される。
以上のような本実施例の動作をさせることで、HDR処理をした映像信号データと位相差検出動作を同時に両立させ、かつ撮影枚数より多い露光条件で、ランダムノイズを低減したHDR撮影を行うことができる。また、位相差検出用画素において、映像信号処理部104のAE情報を用いて位相差検出に適切な露光条件を決めることで、信号の白飛びやSNが劣る露光条件を回避しやすくすることができる。
(実施例2)
次に、実施例2について説明する。実施例2の撮像装置は、その構成が実施例1の撮像装置と同じである。したがって、実施例1と同様の部分については、同一の符号を用いてその説明を省略する。
図10は、実施例2における画素の露光条件のパターンを示す図である。図10では、第1のフレームに係るセンサ配列を示す。低出力画素については、図6に示すセンサ配列と同様であるが、実施例2では、画素信号を読み出さない画素201Rおよび画素201Lを設ける。図10に示す例では、画素信号を読み出さない画素201Rおよび画素201Lは、白抜きになっており(ハッチが掛かっていない)、R画素、Gr画素、Gb画素、BL画素の文字に対しては取り消し線を施している。
実施例2では、図10に示すパターンのように、第1のフレームの位相差検出に用いる画素の画素信号を読み出さず、HDR撮像に用いる画素のみを読み出す。これにより、読みださない画素のカラム信号処理回路204をスリープさせたり、垂直駆動回路203や水平駆動回路205を余計に動作させたりする必要が無くなるので、省電力効果を得ることができる。すなわち、撮像素子は、第2の撮影については、複数の画素部が有する全ての画素から信号を読み出し、第1の撮影については、位相差検出処理に用いられる画素のみから信号を読み出す。以上のことから、実施例2によれば、HDR撮像と位相差検出を両立させ、かつ撮影枚数より多い露光条件でHDR撮影ができ、かつ省電力効果を狙うことができる。もちろん、撮像素子が、第1の撮影については、複数の画素部が有する全ての画素から信号を読み出し、第2の撮影については、位相差検出処理に用いられる画素のみから信号を読み出すようにしてもよい。
第1および第2の実施例では、撮像素子102に対して映像信号処理部104、位相差信号処理部106が撮像装置内に設けられた構成例を説明したが、これらの信号処理部の機能の少なくとも一部を撮像素子内に設けた構成でもよい。この場合、例えば撮像素子には多数の画素部を行列状に配列した画素アレイ部(撮像部)と、各画素部の信号を処理する信号処理部が集積回路チップ上に実装される。例えば、積層型撮像素子の場合、撮像素子は信号処理部を構成する第1の集積回路チップ上に撮像部を構成する第2の集積回路チップが積層された構成である。このとき、第1の集積回路チップ上に構成される信号処理部として、焦点検出用には2像の相関演算を行う相関演算部と相関演算結果から像ずれ量を算出する算出部を備えるとよい。これにより、撮像素子102からの出力としては像ずれ量(あるいはデフォーカス量)やその分布を出力すればよいので、センサの製造コストを下げたり、後段の画像処理部の帯域を確保することができる。またこのとき、HDR処理用には撮像素子102に起因する画素の欠陥や信号のばらつき等を補正する補正処理部とHDR合成を行う合成処理部を備えるとよい。これにより、撮像素子102からの出力としては合成後の1フレーム分の画像信号が出力されるので、上記と同様の効果がある上に、画質を決める重要な処理を、より高精度な解析や処理が可能であろう後段の画像処理部に任せることができる。もちろん上記に限らず、焦点検出用、HDR処理用に他の処理の一部あるいは全部を撮像素子102内の信号処理部に設けてもよい。また、信号処理部の具体的な構成例としては、HDR処理にてビットレンジ伸長処理を行う第1の信号処理と、位相差検出を行う第2の信号処理を並列に実行する1つの信号処理部を設けてもよい。
(その他の実施形態)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
102 撮像素子
104 映像信号処理部
106 位相差信号処理部
107 制御部

Claims (7)

  1. 複数の画素部から信号を取得して、焦点検出および画像生成の信号処理を行うことが可能な撮像素子であって、
    第1および第2の画素部がそれぞれ有する第1および第2の光電変換部に対して、信号の出力条件を設定する設定手段と、
    第1および第2の撮影について前記第1および第2の画素部から得られる、第1ないし第3の出力条件の画素信号に基づいて、前記画像生成の信号処理を行い、前記第1および第2の画素部がそれぞれ有する前記第1および第2の光電変換部のうち、出力条件の設定が同じである光電変換部から得られる複数の信号を用いて、前記焦点検出の信号処理を行う信号処理手段と、を備え、
    前記画像生成の信号処理において、前記出力条件の設定が同じである光電変換部から前記第1および第2の撮影で得られる複数の信号を加算平均して用い、
    前記設定手段は、
    前記第1の撮影については、前記第1の画素部が有する前記第1の光電変換部を前記第2の出力条件に設定し、前記第2の光電変換部を前記第2の出力条件での前記第1の光電変換部の出力レベルよりも出力レベルが低い前記第1の出力条件に設定し、
    前記第2の撮影については、前記第1の画素部が有する前記第1の光電変換部を前記第2の出力条件に設定し、前記第2の光電変換部を前記第2の出力条件での前記第1の光電変換部の出力レベルよりも出力レベルが高い前記第3の出力条件に設定し、
    前記画素信号の出力条件は、前記光電変換部の感度、露光時間、信号の増幅度および絞り値のうちの1つ以上の条件である
    ことを特徴とする撮像素子。
  2. 前記画像生成の信号処理は、露出の異なる前記第1ないし第3の出力条件の画素信号に基づいてダイナミックレンジの拡大された画像を生成する信号処理であることを特徴とする請求項1に記載の撮像素子。
  3. 前記複数の画素部から画素信号を読み出す読み出し手段を備え、
    前記読み出し手段は、前記第2の撮影については、前記複数の画素部が有する全ての光電変換部から信号を読み出し、前記第1の撮影については、前記焦点検出の信号処理に用いられる光電変換部のみから信号を読み出すことを特徴とする請求項1又は2に記載の撮像素子。
  4. 前記第1および第2の画素部は、第1の方向に配置され、前記第1および第2の光電変換部は、画素部内で前記第1の方向とは異なる第2の方向に配置されており、
    前記信号処理手段は、前記第1の撮影についての前記第1の画素部が有する第1の光電変換部の信号と、前記第2の光電変換部の信号と、前記第2の撮影についての前記第2の光電変換部の信号とに基づいて、画像信号のダイナミックレンジ拡大の信号処理を行うことを特徴とする請求項1から3のいずれか1項に記載の撮像素子。
  5. 前記画像信号のダイナミックレンジ拡大の信号処理を行うかを判定する判定手段を備え、
    前記信号処理手段は、前記画像信号のダイナミックレンジ拡大の信号処理を行うと判定された場合に、前記画像信号のダイナミックレンジ拡大の信号処理を行うことを特徴とする請求項に記載の撮像素子。
  6. 前記第1および第2の画素部は、マイクロレンズと、前記マイクロレンズに対応する前記第1および第2の光電変換部をそれぞれ有し、
    前記第1および第2の光電変換部は、撮像光学系の異なる射出瞳を通った被写体光を光電変換する
    ことを特徴とする請求項1からのいずれか1項に記載の撮像素子。
  7. 撮像素子を構成する複数の画素部の信号を取得して、焦点検出および画像生成の信号処理を行う撮像信号処理方法であって、
    第1および第2の画素部がそれぞれ有する第1および第2の光電変換部に対して、信号の出力条件を設定する工程と、
    第1および第2の撮影について前記第1および第2の画素部から得られる、第1ないし第3の出力条件の画素信号に基づいて、前記画像生成の信号処理を行い、前記第1および第2の画素部がそれぞれ有する前記第1および第2の光電変換部のうち、出力条件の設定が同じである光電変換部から得られる複数の信号を用いて、前記焦点検出の信号処理を行う工程と、を有し、
    前記画像生成の信号処理において、前記出力条件の設定が同じである光電変換部から前記第1および第2の撮影で得られる複数の信号を加算平均して用い、
    前記設定する工程は、
    前記第1の撮影については、前記第1の画素部が有する前記第1の光電変換部を前記第2の出力条件に設定し、前記第2の光電変換部を前記第2の出力条件での前記第1の光電変換部の出力レベルよりも出力レベルが低い前記第1の出力条件に設定し、
    前記第2の撮影については、前記第1の画素部が有する前記第1の光電変換部を前記第2の出力条件に設定し、前記第2の光電変換部を前記第2の出力条件での前記第1の光電変換部の出力レベルよりも出力レベルが高い前記第3の出力条件に設定し、
    前記画素信号の出力条件は、前記光電変換部の感度、露光時間、信号の増幅度および絞り値のうちの1つ以上の条件である
    ことを特徴とする撮像信号処理方法。
JP2016110503A 2016-06-01 2016-06-01 撮像素子、撮像装置、および撮像信号処理方法 Active JP6762767B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016110503A JP6762767B2 (ja) 2016-06-01 2016-06-01 撮像素子、撮像装置、および撮像信号処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016110503A JP6762767B2 (ja) 2016-06-01 2016-06-01 撮像素子、撮像装置、および撮像信号処理方法

Publications (2)

Publication Number Publication Date
JP2017216649A JP2017216649A (ja) 2017-12-07
JP6762767B2 true JP6762767B2 (ja) 2020-09-30

Family

ID=60577337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016110503A Active JP6762767B2 (ja) 2016-06-01 2016-06-01 撮像素子、撮像装置、および撮像信号処理方法

Country Status (1)

Country Link
JP (1) JP6762767B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2014DN10658A (ja) * 2012-05-18 2015-08-28 Vironova Ab
CN108366213B (zh) * 2017-12-19 2020-09-04 思特威(上海)电子科技有限公司 像素及其成像方法和成像装置
JP7218108B2 (ja) * 2018-06-26 2023-02-06 キヤノン株式会社 固体撮像装置、撮像システム、移動体、固体撮像装置の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6417809B2 (ja) * 2014-03-05 2018-11-07 ソニー株式会社 撮像装置
JP6408372B2 (ja) * 2014-03-31 2018-10-17 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及びその駆動制御方法、並びに、電子機器
JP2016053849A (ja) * 2014-09-03 2016-04-14 ソニー株式会社 画像処理装置および画像処理方法、並びに固体撮像装置

Also Published As

Publication number Publication date
JP2017216649A (ja) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6765860B2 (ja) 撮像素子、撮像装置、および撮像信号処理方法
JP6762766B2 (ja) 撮像素子、撮像装置、および撮像信号処理方法
JP6555863B2 (ja) 撮像装置及び撮像装置の制御方法
JP5850680B2 (ja) 撮像装置及びその制御方法
JP6944846B2 (ja) 撮像装置、撮像装置の制御方法
JP2005106994A (ja) 焦点検出装置、撮像装置、それらの制御方法
US11171169B2 (en) Image sensor, imaging device and imaging method
JP6800618B2 (ja) 撮像素子、撮像装置、および撮像信号処理方法
US20170019583A1 (en) Image sensor and driving method thereof, and image capturing apparatus
US10645320B2 (en) Image pickup apparatus, control method for image pickup apparatus, and computer-readable non-transitory recording medium in which control program for image pickup apparatus is recorded
JP5406889B2 (ja) 撮像装置及びその制御方法
JP2009031682A (ja) 撮像システム及び画像信号処理プログラム
US10225494B2 (en) Image capturing apparatus and control method thereof
JP6762767B2 (ja) 撮像素子、撮像装置、および撮像信号処理方法
JP2018019296A (ja) 撮像装置およびその制御方法
JP2015161906A (ja) 撮像装置
JP2010157863A (ja) 複眼カメラ及び画像処理方法
JP6559021B2 (ja) 撮像装置およびその制御プログラム
JP6223160B2 (ja) 撮像装置、その制御方法、および制御プログラム
JP6609910B2 (ja) 撮像装置
JP6762849B2 (ja) 撮像素子、その制御方法、プログラム及び記録媒体
JP7329136B2 (ja) 撮像装置
JP2009272703A (ja) 撮像装置及びその制御方法
JP2018191223A (ja) 撮像装置及び撮像素子の制御方法
JP2018191026A (ja) 撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200909

R151 Written notification of patent or utility model registration

Ref document number: 6762767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151