JP6760793B2 - How to recover valuable metals from cobalt / tungsten raw materials - Google Patents

How to recover valuable metals from cobalt / tungsten raw materials Download PDF

Info

Publication number
JP6760793B2
JP6760793B2 JP2016153108A JP2016153108A JP6760793B2 JP 6760793 B2 JP6760793 B2 JP 6760793B2 JP 2016153108 A JP2016153108 A JP 2016153108A JP 2016153108 A JP2016153108 A JP 2016153108A JP 6760793 B2 JP6760793 B2 JP 6760793B2
Authority
JP
Japan
Prior art keywords
cobalt
leaching
tungsten
recovering
residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016153108A
Other languages
Japanese (ja)
Other versions
JP2018021232A (en
Inventor
裕貴 有吉
裕貴 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2016153108A priority Critical patent/JP6760793B2/en
Publication of JP2018021232A publication Critical patent/JP2018021232A/en
Application granted granted Critical
Publication of JP6760793B2 publication Critical patent/JP6760793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、コバルト・タングステン原料からの有価金属の回収方法に関し、特に、超硬工具メーカーなどから発生するコバルト・タングステンスクラップを焙焼処理してアルカリ浸出した後のコバルト・タングステン含有アルカリ浸出残渣から、コバルト、タングステン、クロム、鉄を効率良く回収可能なコバルト・タングステン原料からの有価金属の回収方法に関する。 The present invention relates to a method for recovering valuable metals from a cobalt / tungsten raw material, in particular, from a cobalt / tungsten-containing alkali leaching residue after cobalt / tungsten scrap generated from a carbide tool maker or the like is roasted and alkaline leached. , A method for recovering valuable metals from cobalt / tungsten raw materials capable of efficiently recovering cobalt, tungsten, chromium and iron.

超硬工具メーカーなどから発生するCo−Wスクラップ(コバルト・タングステン原料)からコバルトとタングステン等の有価金属を分離回収するための方法として、Co−Wスクラップを焙焼してアルカリ浸出し、タングステンを抽出した後のタングステン浸出残渣に鉱酸を加えて酸浸出してコバルト等の有価金属を回収する方法が知られている。 As a method for separating and recovering valuable metals such as cobalt and tungsten from Co-W scrap (cobalt / tungsten raw material) generated from cemented carbide tool makers, Co-W scrap is roasted and alkaline leached to obtain tungsten. A method is known in which mineral acid is added to the tungsten leaching residue after extraction and acid leaching is performed to recover valuable metals such as cobalt.

例えば、特許第5796716号公報では、タングステン浸出残渣の水スラリーにpH4.0以下になるまで鉱酸を加えてコバルト及びその他金属を浸出させた後、酸浸出スラリーに鉄(II)化合物を添加して液中のクロムを還元し、酸化剤を添加して液中の鉄(II)を酸化してクロム及び鉄の水酸化物を沈殿させ、これを更に固液分離して脱銅処理した後、脱銅後に固液分離した溶液を用いてコバルトを回収する方法が記載されている。 For example, in Japanese Patent No. 5996716, mineral acid is added to an aqueous slurry of tungsten leaching residue until the pH becomes 4.0 or less to leach cobalt and other metals, and then an iron (II) compound is added to the acid leaching slurry. After reducing chromium in the liquid, adding an oxidizing agent to oxidize iron (II) in the liquid to precipitate chromium and iron hydroxide, further solid-liquid separation and decopping treatment. , A method for recovering cobalt using a solution separated into solid and liquid after decopping is described.

特許第5796716号公報Japanese Patent No. 5796716

しかしながら、特許文献1に記載されるように、鉱酸によりアルカリ浸出残渣を溶解する際にpHを4.0以下に調整するだけでは、たとえ酸濃度を低くしたとしても、コバルトの浸出率が上がらず、コバルトの回収率が低くなる場合がある。 However, as described in Patent Document 1, simply adjusting the pH to 4.0 or less when dissolving the alkaline leaching residue with mineral acid increases the leaching rate of cobalt even if the acid concentration is lowered. However, the cobalt recovery rate may be low.

上記課題を鑑み、本発明は、コバルトの回収率を高くすることが可能なコバルト・タングステン原料からの有価金属の回収方法を提供する。 In view of the above problems, the present invention provides a method for recovering a valuable metal from a cobalt / tungsten raw material capable of increasing the recovery rate of cobalt.

本発明者は鋭意検討を重ねた結果、原料中には、鉱酸によって溶出しにくい組成のCo化合物が含まれており、鉱酸を加えてpHを低くするだけでは、Coが十分に溶出しない場合があることを見いだした。 As a result of diligent studies by the present inventor, the raw material contains a Co compound having a composition that is difficult to elute with mineral acid, and Co is not sufficiently eluted by simply adding mineral acid to lower the pH. I found that there are cases.

以上の知見を基礎として完成した本発明は一側面において、タングステン浸出残渣に対し、鉱酸と還元剤とを加えてコバルトを浸出させる浸出工程を含むコバルト・タングステン原料からの有価金属の回収方法が提供される。 One aspect of the present invention, which was completed based on the above findings, is a method for recovering valuable metals from a cobalt / tungsten raw material, which includes a leaching step of adding a mineral acid and a reducing agent to a tungsten leaching residue to leaching cobalt. Provided.

本発明に係るコバルト・タングステン原料からの有価金属の回収方法は一実施態様において、浸出液の酸化還元電位(銀/塩化銀電極)を600〜800mVに調整することを含む。 In one embodiment, the method for recovering a valuable metal from a cobalt / tungsten raw material according to the present invention includes adjusting the redox potential (silver / silver chloride electrode) of the leachate to 600 to 800 mV.

本発明に係るコバルト・タングステン原料からの有価金属の回収方法は別の一実施態様において、浸出液のpHが0.5以下になるまで鉱酸を添加することを含む。 In another embodiment, the method for recovering a valuable metal from a cobalt / tungsten raw material according to the present invention includes adding a mineral acid until the pH of the leachate becomes 0.5 or less.

本発明に係るコバルト・タングステン原料からの有価金属の回収方法は更に別の一実施態様において、タングステン浸出残渣中のコバルト含有量に対して2.5倍モル当量以上の鉱酸を添加することを含む。 In still another embodiment, the method for recovering a valuable metal from a cobalt / tungsten raw material according to the present invention is to add a mineral acid having a molar equivalent of 2.5 times or more the cobalt content in the tungsten leaching residue. Including.

本発明に係るコバルト・タングステン原料からの有価金属の回収方法は更に別の一実施態様において、還元剤が亜硫酸ナトリウム又は過酸化水素である。 In yet another embodiment of the method for recovering a valuable metal from a cobalt / tungsten raw material according to the present invention, the reducing agent is sodium sulfite or hydrogen peroxide.

本発明に係るコバルト・タングステン原料からの有価金属の回収方法は更に別の一実施態様において、タングステン浸出残渣が、HCoO2を含有する。 In yet another embodiment of the method for recovering a valuable metal from a cobalt / tungsten raw material according to the present invention, the tungsten leaching residue contains HCoO 2 .

本発明に係るコバルト・タングステン原料からの有価金属の回収方法は更に別の一実施態様において、浸出工程で得られる浸出液にpH3.0以上になるまで中和剤を加える中和工程を更に含む。 In yet another embodiment, the method for recovering a valuable metal from a cobalt / tungsten raw material according to the present invention further includes a neutralization step of adding a neutralizing agent to the leaching solution obtained in the leaching step until the pH reaches 3.0 or higher.

本発明に係るコバルト・タングステン原料からの有価金属の回収方法は更に別の一実施態様において、浸出工程で得られる浸出液にpH3.4以上になるまで中和剤を加え、鉄及びクロムを含む不純物を沈殿させた後、固液分離することにより、クロムを回収する工程を更に含む。 In still another embodiment of the method for recovering a valuable metal from a cobalt / tungsten raw material according to the present invention, a neutralizing agent is added to the leachate obtained in the leachate step until the pH reaches 3.4 or higher, and impurities containing iron and chromium are added. Further includes a step of recovering chromium by solid-liquid separation after precipitating.

本発明によれば、コバルトの回収率を高くすることが可能なコバルト・タングステン原料からの有価金属の回収方法を提供する。更に本発明によれば、コバルト・タングステン原料からクロムの回収率を高くすることも可能である。 According to the present invention, there is provided a method for recovering a valuable metal from a cobalt / tungsten raw material capable of increasing the recovery rate of cobalt. Further, according to the present invention, it is possible to increase the recovery rate of chromium from the cobalt / tungsten raw material.

本発明の実施の形態に係るコバルト・タングステン原料からの有価金属の回収方法の概要を表すフロー図である。It is a flow chart which shows the outline of the method of recovering a valuable metal from a cobalt-tungsten raw material which concerns on embodiment of this invention. タングステン浸出残渣のXRD解析結果を示すグラフである。It is a graph which shows the XRD analysis result of the tungsten leaching residue. 還元剤を添加して酸浸出した場合の中和残渣のXRD解析結果を示すグラフである。It is a graph which shows the XRD analysis result of the neutralization residue at the time of acid leaching by adding a reducing agent. 還元剤を添加せずに酸浸出した場合の中和残渣のXRD解析結果を示すグラフである。It is a graph which shows the XRD analysis result of the neutralization residue at the time of acid leaching without adding a reducing agent.

以下に図面を参照しながら本発明の実施の形態について説明する。
本発明に係るコバルト・タングステン原料は、少なくともコバルト及びタングステンを含むCo−Wスクラップを焙焼処理してアルカリ浸出して得られるコバルト・タングステン含有アルカリ浸出残渣である。以下に制限されるものではないが、例えば、Coを15〜70wt%、Wを1〜40wt%、Agを0.02〜0.2wt%、Taを4〜8wt%、Crを1〜5wt%程度含むアルカリ浸出残渣が使用可能である。
Embodiments of the present invention will be described below with reference to the drawings.
The cobalt / tungsten raw material according to the present invention is a cobalt / tungsten-containing alkali leaching residue obtained by roasting Co-W scrap containing at least cobalt and tungsten and leaching alkali. Although not limited to the following, for example, Co is 15 to 70 wt%, W is 1 to 40 wt%, Ag is 0.02 to 0.2 wt%, Ta is 4 to 8 wt%, and Cr is 1 to 5 wt%. Alkaline leaching residues containing a degree can be used.

コバルト・タングステン含有アルカリ浸出残渣からタングステンを抽出した後のタングステン浸出残渣には、コバルト、鉄、クロム、タンタルなどの金属が含まれている。このタングステン浸出残渣は、以下の組成に制限されるものではないが、例えば、水分を40〜45wt%、Coを30〜40wt%、Wを1〜10wt%、Feを2〜5wt%、Crを1〜5wt%、Taを1〜2%含んでいる。 The tungsten leaching residue after extracting tungsten from the cobalt-tungsten-containing alkali leaching residue contains metals such as cobalt, iron, chromium, and tantalum. The tungsten leaching residue is not limited to the following composition, but for example, it contains 40 to 45 wt% of water, 30 to 40 wt% of Co, 1 to 10 wt% of W, 2 to 5 wt% of Fe, and Cr. It contains 1 to 5 wt% and 1 to 2% of Ta.

図1に本実施形態に係る処理方法のフローチャートの一例を示す。本発明に係るタングステン浸出残渣に対し、硫酸、塩酸、硝酸などの鉱酸を加えて酸浸出する。反応時間は、コバルトの回収率や効率の観点から典型的には0.5時間以上6時間以下、より具体的には3時間程度とすることができる。 FIG. 1 shows an example of a flowchart of the processing method according to the present embodiment. Mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid are added to the tungsten leaching residue according to the present invention for acid leaching. From the viewpoint of cobalt recovery rate and efficiency, the reaction time can be typically 0.5 hours or more and 6 hours or less, and more specifically, about 3 hours.

浸出液の酸濃度を高くするほど浸出液へのコバルト浸出率が高くなる。このため、鉱酸の添加量は、タングステン浸出残渣中のコバルト含有量に対して2.5倍モル当量以上、より好ましくは3倍モル当量以上とすることが好ましい。しかしながら、鉱酸の添加量は多すぎても経済性及び効率性を損なう場合もあることから、3.5モル当量未満とすることが好ましい。浸出終了時の浸出液のpHはできるだけ低くすることが好ましく、pH0.5以下、より好ましくはpH0以下(マイナス値)となるまで、鉱酸を添加することが好ましい。 The higher the acid concentration of the leachate, the higher the cobalt leaching rate into the leachate. Therefore, the amount of the mineral acid added is preferably 2.5 times molar equivalent or more, more preferably 3 times molar equivalent or more, based on the cobalt content in the tungsten leaching residue. However, if the amount of the mineral acid added is too large, the economy and efficiency may be impaired. Therefore, the amount of the mineral acid added is preferably less than 3.5 molar equivalents. The pH of the leaching solution at the end of leaching is preferably as low as possible, and it is preferable to add mineral acid until the pH becomes 0.5 or less, more preferably 0 or less (minus value).

(還元浸出)
次に、浸出液中に還元剤を添加して、浸出液の酸化還元電位を調整する。タングステン浸出残渣中には、コバルトが酸化物の形態で含有されている場合があり、酸浸出によって酸濃度を高めるだけでは、コバルトの浸出率を高められない場合がある。本実施形態では、鉱酸による酸浸出に加えて、還元剤による還元浸出を行うことにより、タングステン浸出残渣中のコバルトの酸化物を還元してコバルトを浸出液中へより多く浸出させることができる。
(Reduction leaching)
Next, a reducing agent is added to the leachate to adjust the redox potential of the leachate. Cobalt may be contained in the tungsten leaching residue in the form of an oxide, and the leaching rate of cobalt may not be increased only by increasing the acid concentration by acid leaching. In the present embodiment, by performing reduction leaching with a reducing agent in addition to acid leaching with mineral acid, the oxide of cobalt in the tungsten leaching residue can be reduced and more cobalt can be leached into the leachate.

浸出液の酸化還元電位(銀/塩化銀電極)は、600〜800mVに調整することが好ましい。還元剤としては、タングステン浸出残渣中のコバルト酸化物を還元できる材料であれば特に制限されないが、本実施形態では、経済面や効率面の観点から、亜硫酸ナトリウム又は過酸化水素を用いることが好ましい。 The redox potential (silver / silver chloride electrode) of the leachate is preferably adjusted to 600 to 800 mV. The reducing agent is not particularly limited as long as it is a material capable of reducing the cobalt oxide in the tungsten leaching residue, but in the present embodiment, it is preferable to use sodium sulfite or hydrogen peroxide from the viewpoint of economy and efficiency. ..

図1のフローでは、酸浸出を行った後に、還元浸出する例を示しているが、コバルトの浸出において還元剤を添加するタイミングは特に制限されない。即ち、タングステン浸出残渣に対し、鉱酸と還元剤とを同時に加えてコバルトを浸出液中に浸出させるような態様であってもよい。あるいは、実際には、タングステン浸出残渣に鉱酸を加えて撹拌していくうちに酸化還元電位が徐々に上昇してくるため、その上昇度合いを確認しながら、pHが0.5以下で、酸化還元電位が600〜800mVとなるように、還元剤を添加してもよい。 The flow of FIG. 1 shows an example of reduction leaching after acid leaching, but the timing of adding the reducing agent in cobalt leaching is not particularly limited. That is, a mode may be used in which a mineral acid and a reducing agent are simultaneously added to the tungsten leaching residue to leach cobalt into the leaching solution. Alternatively, in reality, the redox potential gradually increases as mineral acid is added to the tungsten leachate residue and stirred, so while checking the degree of increase, the pH is 0.5 or less and oxidation is performed. A reducing agent may be added so that the reduction potential becomes 600 to 800 mV.

(中和)
次に、酸浸出及び還元浸出によって得られた浸出液に対して中和剤を添加し、浸出液中に含まれる鉄及びクロムを含む不純物金属を沈殿させる。中和剤としては例えば、水酸化ナトリウム等が利用可能である。
(Neutralization)
Next, a neutralizing agent is added to the leachate obtained by acid leaching and reduction leaching to precipitate the impurity metal containing iron and chromium contained in the leachate. As the neutralizing agent, for example, sodium hydroxide and the like can be used.

中和工程においては、上記浸出工程で得られる浸出液をpH3.0以上になるまで中和剤を加えることが好ましい。pH3.0以上となるまで中和剤を加えて中和することにより、コバルトの共沈による中和ロスを抑制しながら、クロム、鉄などの不純物金属を効率良く沈殿させることができる。中和工程におけるpHを高くしすぎるとCoの共沈による中和ロスが発生する場合があるため、pHは5.0以下、更には4.5以下とするのが好ましい。 In the neutralization step, it is preferable to add a neutralizing agent to the leachate obtained in the leaching step until the pH becomes 3.0 or higher. By neutralizing by adding a neutralizing agent until the pH becomes 3.0 or higher, impurity metals such as chromium and iron can be efficiently precipitated while suppressing the neutralization loss due to coprecipitation of cobalt. If the pH in the neutralization step is too high, neutralization loss due to coprecipitation of Co may occur. Therefore, the pH is preferably 5.0 or less, more preferably 4.5 or less.

中和工程では、pH3.4以上、更にはpH3.8以上になるまで中和することが更に好ましい。これにより、クロムも高効率(除去率80%以上)で除去できる。本実施形態によれば、上述の還元浸出工程における還元剤の添加により、コバルトを浸出させながら、タングステン浸出残渣中のクロムも同時に還元されるため、クロムの除去率も向上させることができる。 In the neutralization step, it is more preferable to neutralize until the pH becomes 3.4 or higher, more preferably 3.8 or higher. As a result, chromium can also be removed with high efficiency (removal rate of 80% or more). According to the present embodiment, by adding the reducing agent in the above-mentioned reduction leaching step, chromium in the tungsten leaching residue is reduced at the same time as cobalt is leached, so that the removal rate of chromium can be improved.

(固液分離)
次に、中和工程で得られた中和残渣には、中和工程で沈殿した鉄及びクロム等の不純物金属が含まれているため、固液分離により中和残渣を回収する。固液分離で得られた後液(硫酸コバルト溶液)を電解採取することにより、コバルトが回収できる。
(Solid-liquid separation)
Next, since the neutralization residue obtained in the neutralization step contains impurity metals such as iron and chromium precipitated in the neutralization step, the neutralization residue is recovered by solid-liquid separation. Cobalt can be recovered by electrowinning the after-liquid (cobalt sulfate solution) obtained by solid-liquid separation.

図2はタングステン浸出残渣のXRD解析結果、図3はタングステン浸出残渣のコバルト浸出工程で酸化剤と還元剤を添加した場合の浸出残渣のXRD解析結果、図4はタングステン浸出残渣のコバルト浸出工程で還元剤を添加しないで酸浸出した場合の浸出残渣のXRD解析結果をそれぞれ示す。図2〜図4において、ピークはコバルトに関するもののみ記載している。 FIG. 2 shows the XRD analysis result of the tungsten leaching residue, FIG. 3 shows the XRD analysis result of the leaching residue when an oxidizing agent and a reducing agent are added in the cobalt leaching step of the tungsten leaching residue, and FIG. 4 shows the cobalt leaching step of the tungsten leaching residue. The XRD analysis results of the leaching residue when the acid is leached without adding the reducing agent are shown. In FIGS. 2 to 4, only peaks related to cobalt are shown.

タングステン浸出残渣中には、コバルトが「HCoO2」という酸化物の一種と思われる形態で含有されていることが分かる。還元剤を添加しない場合は、浸出時の酸化還元電位が適切範囲よりも高いために、溶出したとしてもCo34として再析出したと考えられる。一方、還元剤を添加した場合には、HCoO2のピークが減衰したことから、還元剤を添加することによってHCoO2が浸出可能な形態に変換されたか、浸出が促進され、溶出したCoの酸化が抑制されたと考えられる。 It can be seen that cobalt is contained in the tungsten leaching residue in a form that seems to be a kind of oxide called "HCoO 2 ". When the reducing agent was not added, the redox potential at the time of leaching was higher than the appropriate range, and it is considered that even if it was eluted, it was reprecipitated as Co 3 O 4 . On the other hand, when the reducing agent was added, the peak of HCoO 2 was attenuated. Therefore, the addition of the reducing agent converted HCoO 2 into a form capable of leaching, or the leaching was promoted and the eluted Co was oxidized. Is considered to have been suppressed.

このように、本発明の実施の形態に係るコバルト・タングステン原料からの有価金属の回収方法によれば、鉱酸と還元剤とを添加することにより、タングステン浸出残渣中に含まれるpHを低くするだけでは溶出しにくい組成のCo化合物(HCoO2)の浸出を促進することができるため、従来手法に比べてコバルトの浸出率及び回収率を向上させることができる。 As described above, according to the method for recovering valuable metals from the cobalt / tungsten raw material according to the embodiment of the present invention, the pH contained in the tungsten leaching residue is lowered by adding the mineral acid and the reducing agent. Since the leaching of the Co compound (HCoO 2 ) having a composition that is difficult to elute by itself can be promoted, the leaching rate and recovery rate of cobalt can be improved as compared with the conventional method.

更に、還元材の添加によって、コバルトの浸出と同時に、原料中に含まれる6価のCrも還元できるため、その後の中和工程で効率良くCr除去を行うことができ、Crの除去率も向上できる。 Furthermore, by adding a reducing agent, hexavalent Cr contained in the raw material can be reduced at the same time as cobalt is leached, so that Cr can be efficiently removed in the subsequent neutralization step, and the Cr removal rate is also improved. it can.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention are shown below together with comparative examples, but these examples are provided for a better understanding of the present invention and its advantages, and are not intended to limit the invention.

(実施例1)
<還元剤と鉱酸とを添加した場合のCo回収率>
Co−Wスクラップを酸化焙焼し、苛性ソーダを加えてアルカリ浸出し、タングステンを抽出した後のタングステン浸出残渣として、試料A(パルプ濃度217g/L)及び試料B(パルプ濃度179g/L)を用意した。タングステン浸出残渣(50g−wet)に対し、タングステン浸出残渣中のコバルト含有量に対して3.0倍モル当量の硫酸を添加し、更に酸化還元電位(銀/塩化銀電極)が600〜800mVの範囲内となるように、還元剤として亜硫酸ナトリウムを添加した。浸出時間は3時間とした。浸出工程で得られた浸出液に25%NaOHを加え、pHが3.0以上となるまで約0.5時間中和処理を行って、中和残渣及び硫酸Co溶液を得た。pHおよび酸化還元電位は、TOADKK製MM−60Rを用いて計測した。結果を表1に示す。表1中の「Co回収率」は、タングステン浸出残渣中のCo濃度を100%とし、浸出工程後の浸出液のCo濃度及び最終的に得られる硫酸Co溶液中のCo濃度を{(Co液濃度×液量)/(Co品位×残渣dry重量)×100}(%)により評価して算出した。
(Example 1)
<Co recovery rate when reducing agent and mineral acid are added>
Sample A (pulp concentration 217 g / L) and sample B (pulp concentration 179 g / L) are prepared as tungsten leaching residue after oxidative roasting of Co-W scrap, adding caustic soda and leaching with alkali, and extracting tungsten. did. To the tungsten leaching residue (50 g-wet), 3.0 times the molar equivalent of sulfuric acid is added to the cobalt content in the tungsten leaching residue, and the redox potential (silver / silver chloride electrode) is 600 to 800 mV. Sodium sulfite was added as a reducing agent so as to be within the range. The leaching time was 3 hours. 25% NaOH was added to the leaching solution obtained in the leaching step, and the neutralization treatment was carried out for about 0.5 hours until the pH became 3.0 or higher to obtain a neutralized residue and a Cosulfate solution. The pH and redox potential were measured using MM-60R manufactured by TOADKK. The results are shown in Table 1. For the "Co recovery rate" in Table 1, the Co concentration in the tungsten leaching residue is 100%, and the Co concentration in the leaching solution after the leaching step and the Co concentration in the finally obtained sulfuric acid Co solution are {(Co solution concentration). It was evaluated and calculated by (x liquid volume) / (Co grade x residual dry weight) x 100} (%).

表1に示すように、硫酸を3.0倍モル当量添加して、コバルト浸出処理終了時のpHを0.5以下とし、還元剤を加えて酸化還元電位を600〜800mVの範囲へ調整することで、浸出液のCo回収率を70%以上にすることができた。更に、中和工程で中和剤を添加して浸出液のpHを3.0以上にまで調整することにより、Co回収率が80%以上にまで向上した。 As shown in Table 1, a 3.0-fold molar equivalent of sulfuric acid is added to bring the pH at the end of the cobalt leaching treatment to 0.5 or less, and a reducing agent is added to adjust the redox potential to the range of 600 to 800 mV. As a result, the Co recovery rate of the leachate could be 70% or more. Further, by adding a neutralizing agent in the neutralization step to adjust the pH of the leachate to 3.0 or more, the Co recovery rate was improved to 80% or more.

(実施例2)
<還元剤の影響>
Co−Wスクラップを酸化焙焼し、苛性ソーダを加えてアルカリ浸出し、タングステンを抽出した後のタングステン浸出残渣として、試料C及び試料D(パルプ濃度100g/L)を用意した。タングステン浸出残渣(50g−wet)に対し、タングステン浸出残渣中のコバルト含有量に対して3.0倍モル当量の硫酸を添加し、更に酸化還元電位(銀/塩化銀電極)が600〜800mVの範囲内となるように、還元剤として亜硫酸ナトリウム又は過酸化水素を添加した。pHおよび酸化還元電位は、TOADKK製MM−60Rを用いて計測した。浸出時間は3時間とした。浸出工程で得られた浸出液に25%NaOHを加え、pHが3.0以上となるまで約0.5時間中和処理を行って、中和残渣及び硫酸Co溶液を得た。結果を表2に示す。
(Example 2)
<Effect of reducing agent>
Co-W scrap was oxidatively roasted, caustic soda was added, and alkali leaching was performed. Sample C and sample D (pulp concentration 100 g / L) were prepared as tungsten leaching residues after extracting tungsten. To the tungsten leachate residue (50 g-wet), 3.0 times the molar equivalent of sulfuric acid is added to the cobalt content in the tungsten leachate residue, and the redox potential (silver / silver chloride electrode) is 600 to 800 mV. Sodium sulfite or hydrogen peroxide was added as a reducing agent so as to be within the range. The pH and redox potential were measured using MM-60R manufactured by TOADKK. The leaching time was 3 hours. 25% NaOH was added to the leaching solution obtained in the leaching step, and the neutralization treatment was carried out for about 0.5 hours until the pH became 3.0 or higher to obtain a neutralized residue and a Cosulfate solution. The results are shown in Table 2.

還元剤として亜硫酸ナトリウムを用いた場合においても、過酸化水素を用いた場合においてもいずれも、中和処理後のCo回収率を75%以上にまで向上させることができることが分かる。 It can be seen that the Co recovery rate after the neutralization treatment can be improved to 75% or more in both the case where sodium sulfite is used as the reducing agent and the case where hydrogen peroxide is used.

(実施例3)
<中和工程でのpH調整によるCr除去率の影響>
Co−Wスクラップを酸化焙焼し、苛性ソーダを加えてアルカリ浸出し、タングステンを抽出した後のタングステン浸出残渣として、試料E〜Gを用意した。タングステン浸出残渣(50g−wet)に対し、タングステン浸出残渣中のコバルト含有量に対して3.0倍モル当量の硫酸を添加し、更に酸化還元電位(銀/塩化銀電極)が600〜800mVの範囲内となるように、還元剤として亜硫酸ナトリウム又は過酸化水素を添加した。pHおよび酸化還元電位は、TOADKK製MM−60Rを用いて計測した。浸出時間は3時間とした。浸出工程で得られた浸出液に25%NaOHを加え、pHが3.0〜4.0の範囲に調整しながら約0.5時間中和処理を行って、中和残渣及び硫酸Co溶液を得た。表3中「Cr除去率」は、100−{(Cr液濃度×液量)/(Cr品位×残渣dry重量)×100}(%)により評価した。結果を表3に示す。
(Example 3)
<Effect of Cr removal rate by pH adjustment in neutralization process>
Samples E to G were prepared as tungsten leaching residues after oxidative roasting of CoW scrap, caustic soda was added, and alkali leaching was performed to extract tungsten. To the tungsten leachate residue (50 g-wet), 3.0 times the molar equivalent of sulfuric acid is added to the cobalt content in the tungsten leachate residue, and the redox potential (silver / silver chloride electrode) is 600 to 800 mV. Sodium sulfite or hydrogen peroxide was added as a reducing agent so as to be within the range. The pH and redox potential were measured using MM-60R manufactured by TOADKK. The leaching time was 3 hours. 25% NaOH was added to the leaching solution obtained in the leaching step, and the neutralization treatment was carried out for about 0.5 hours while adjusting the pH to the range of 3.0 to 4.0 to obtain a neutralized residue and a Co-sulfate solution. It was. The “Cr removal rate” in Table 3 was evaluated by 100-{(Cr liquid concentration × liquid amount) / (Cr grade × residual dry weight) × 100} (%). The results are shown in Table 3.

還元剤の種類を問わず、pHが3.5以上となるまで中和剤を添加した場合にはいずれもCr除去率が80%以上となった。pH3.2前後で中和を完了させた場合には、Co回収率は十分に高いが、Crの除去率も同時に高くすることはできていない。 Regardless of the type of reducing agent, when the neutralizing agent was added until the pH became 3.5 or more, the Cr removal rate was 80% or more. When the neutralization is completed at around pH 3.2, the Co recovery rate is sufficiently high, but the Cr removal rate cannot be increased at the same time.

(実施例4)
<Cr還元効果>
Co−Wスクラップを酸化焙焼し、苛性ソーダを加えてアルカリ浸出し、タングステンを抽出した後のタングステン浸出残渣として、パルプ濃度100g/Lの試料No.6〜8を用意した。このタングステン浸出残渣(50g−wet)に対し、タングステン浸出残渣中のコバルト含有量に対して3.0倍モル当量の硫酸を添加した。更に、試料No.6は還元剤を添加せずに酸化還元電位の調整も行わずにコバルト浸出を終了し、試料No.7は亜硫酸ナトリウム、試料No.8には過酸化水素を添加して、浸出液の酸化還元電位(銀/塩化銀電極)が600〜800mVの範囲内となるように調整した。pHおよび酸化還元電位は、TOADKK製MM−60Rを用いて計測した。浸出時間は3時間とした。浸出工程で得られた浸出液に25%NaOHを加え、pHが3.5になるまで約0.5時間中和処理を行って、中和残渣及び中和液を得た。コバルト浸出終了時の浸出液と、中和処理終了後の中和液について、酸化還元電位(ORP)、pH、6価のCr濃度、全Cr濃度を表4に、液中の主要金属元素濃度の測定結果を表5に示す。
(Example 4)
<Cr reduction effect>
Co-W scrap was oxidatively roasted, caustic soda was added and alkali leached, and as a tungsten leaching residue after tungsten was extracted, Sample No. with a pulp concentration of 100 g / L. 6 to 8 were prepared. To this tungsten leaching residue (50 g-wet), 3.0 times the molar equivalent of sulfuric acid was added with respect to the cobalt content in the tungsten leaching residue. Furthermore, the sample No. In No. 6, cobalt leaching was completed without adding a reducing agent and without adjusting the redox potential. 7 is sodium sulfite, sample No. Hydrogen peroxide was added to No. 8 to adjust the redox potential (silver / silver chloride electrode) of the leachate to be within the range of 600 to 800 mV. The pH and redox potential were measured using MM-60R manufactured by TOADKK. The leaching time was 3 hours. 25% NaOH was added to the leaching solution obtained in the leaching step, and the neutralization treatment was carried out for about 0.5 hours until the pH reached 3.5 to obtain a neutralized residue and a neutralized solution. Regarding the leachate at the end of cobalt leaching and the neutralizing solution after the neutralization treatment, the redox potential (ORP), pH, hexavalent Cr concentration, and total Cr concentration are shown in Table 4, and the concentrations of major metal elements in the solution are shown. The measurement results are shown in Table 5.

還元剤を添加して酸化還元電位を600〜800mVの範囲に調整することで、還元剤種によらず、液中の6価のCrの価数を3価へと還元することができた。 By adjusting the redox potential to the range of 600 to 800 mV by adding a reducing agent, the valence of hexavalent Cr in the liquid could be reduced to trivalent regardless of the type of reducing agent.

(比較例1)
<浸出処理で還元剤を添加しなかった場合>
Co−Wスクラップを酸化焙焼し、苛性ソーダを加えてアルカリ浸出し、タングステンを抽出した後のタングステン浸出残渣として、実施例1と同様の試料A(パルプ濃度217g/L)及び試料B(パルプ濃度179g/L)を用意した。タングステン浸出残渣(50g−wet)に対し、タングステン浸出残渣中のコバルト含有量に対して3.0倍モル当量の硫酸を添加し、還元剤を添加せずに浸出処理を行った。pHおよび酸化還元電位は、TOADKK製MM−60Rを用いて計測した。浸出時間は3時間とした。浸出工程で得られた浸出液に25%NaOHを加え、約0.5時間中和処理を行って、中和残渣及び硫酸Co溶液を得た。結果を表6に示す。
(Comparative Example 1)
<When no reducing agent is added in the leaching process>
Co-W scrap is oxidatively roasted, caustic soda is added, alkali leaching is performed, and as the tungsten leaching residue after tungsten is extracted, sample A (pulp concentration 217 g / L) and sample B (pulp concentration) similar to those in Example 1 are used. 179 g / L) was prepared. To the tungsten leaching residue (50 g-wet), sulfuric acid having a molar equivalent of 3.0 times the cobalt content in the tungsten leaching residue was added, and the leaching treatment was carried out without adding a reducing agent. The pH and redox potential were measured using MM-60R manufactured by TOADKK. The leaching time was 3 hours. 25% NaOH was added to the leaching solution obtained in the leaching step, and the neutralization treatment was carried out for about 0.5 hours to obtain a neutralized residue and a Co-sulfate solution. The results are shown in Table 6.

還元剤を添加しない場合は、pHをマイナス値にまで下げたとしてもCoの回収率は上がらず、中和処理後のCo回収率も50%以下であった。 When the reducing agent was not added, the recovery rate of Co did not increase even if the pH was lowered to a negative value, and the recovery rate of Co after the neutralization treatment was 50% or less.

Claims (5)

タングステン浸出残渣に対し、鉱酸と還元剤とを同時に加えるか、または鉱酸を加えて酸化還元電位(銀/塩化銀電極)の上昇度合いを確認しながら、pHが0.5以下で酸化還元電位が600〜800mVとなるように還元剤を加えてコバルトを浸出させる浸出工程と、
前記浸出工程で得られる浸出液に対し、pHが3.0以上になるまで中和剤を加える中和工程と
を含むコバルト・タングステン原料からの有価金属の回収方法。
Mineral acid and a reducing agent are added to the tungsten leachate residue at the same time, or mineral acid is added and redox at a pH of 0.5 or less while checking the degree of increase in the redox potential (silver / silver chloride electrode). The leaching step of adding a reducing agent so that the potential becomes 600 to 800 mV and leaching cobalt .
A method for recovering valuable metals from a cobalt / tungsten raw material, which comprises a neutralization step of adding a neutralizing agent to the leachate obtained in the leaching step until the pH becomes 3.0 or higher .
前記タングステン浸出残渣中のコバルト含有量に対して2.5倍モル当量以上の前記鉱酸を添加することを含む請求項に記載のコバルト・タングステン原料からの有価金属の回収方法。 The method for recovering a valuable metal from a cobalt / tungsten raw material according to claim 1 , which comprises adding the mineral acid having a molar equivalent of 2.5 times or more with respect to the cobalt content in the tungsten leaching residue. 前記還元剤が亜硫酸ナトリウム又は過酸化水素である請求項1又は2に記載のコバルト・タングステン原料からの有価金属の回収方法。 The method for recovering a valuable metal from a cobalt / tungsten raw material according to claim 1 or 2 , wherein the reducing agent is sodium sulfite or hydrogen peroxide. 前記タングステン浸出残渣が、HCoO2を含有する請求項1〜のいずれか1項に記載のコバルト・タングステン原料からの有価金属の回収方法。 The method for recovering a valuable metal from a cobalt / tungsten raw material according to any one of claims 1 to 3 , wherein the tungsten leaching residue contains HCoO 2 . 前記浸出工程で得られる浸出液にpH3.4以上になるまで中和剤を加え、鉄及びクロムを含む不純物を沈殿させた後、固液分離することにより、クロムを回収する工程を更に含む請求項1〜のいずれか1項に記載のコバルト・タングステン原料からの有価金属の回収方法。 The claim further includes a step of recovering chromium by adding a neutralizing agent to the leachate obtained in the leaching step until the pH becomes 3.4 or higher, precipitating impurities containing iron and chromium, and then performing solid-liquid separation. The method for recovering a valuable metal from a cobalt / tungsten raw material according to any one of 1 to 4 .
JP2016153108A 2016-08-03 2016-08-03 How to recover valuable metals from cobalt / tungsten raw materials Active JP6760793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016153108A JP6760793B2 (en) 2016-08-03 2016-08-03 How to recover valuable metals from cobalt / tungsten raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016153108A JP6760793B2 (en) 2016-08-03 2016-08-03 How to recover valuable metals from cobalt / tungsten raw materials

Publications (2)

Publication Number Publication Date
JP2018021232A JP2018021232A (en) 2018-02-08
JP6760793B2 true JP6760793B2 (en) 2020-09-23

Family

ID=61165203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016153108A Active JP6760793B2 (en) 2016-08-03 2016-08-03 How to recover valuable metals from cobalt / tungsten raw materials

Country Status (1)

Country Link
JP (1) JP6760793B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113373315A (en) * 2021-05-18 2021-09-10 厦门嘉鹭金属工业有限公司 Method for efficiently recovering cobalt and nickel in tungsten slag
CN115216629B (en) * 2022-06-28 2023-08-04 湖南中伟新能源科技有限公司 Method for comprehensively recovering metal elements in tungsten-doped ternary precursor waste

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4035985B2 (en) * 2001-11-29 2008-01-23 住友金属鉱山株式会社 Method for dissolving Co precipitate with acid
JP5796716B2 (en) * 2012-03-17 2015-10-21 三菱マテリアル株式会社 Method for removing impurities from cobalt-containing liquid

Also Published As

Publication number Publication date
JP2018021232A (en) 2018-02-08

Similar Documents

Publication Publication Date Title
JP5796716B2 (en) Method for removing impurities from cobalt-containing liquid
JP4525428B2 (en) Method for hydrometallizing nickel oxide ore
JP6304530B2 (en) Tellurium separation and recovery method
JP5176053B2 (en) Wet treatment method for zinc leaching residue
JP5483009B2 (en) A method of recovering tungsten from cemented carbide scrap.
JP5495418B2 (en) Method for recovering manganese
JP2018062691A (en) Method for collecting tungsten concentrate from cobalt-tungsten raw material
JP5439997B2 (en) Method for recovering copper from copper-containing iron
JP6760793B2 (en) How to recover valuable metals from cobalt / tungsten raw materials
WO2000065113A1 (en) Process for recovering value metals from iron-containing alloys
JP2012197492A (en) RECOVERING METHOD OF Cu, Co, AND Ni FROM LEACHATE OF In CONTAINING DRAINAGE SLUDGE
JP4962078B2 (en) Nickel sulfide chlorine leaching method
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP2010138490A (en) Method of recovering zinc
JP4801372B2 (en) Method for removing manganese from cobalt sulfate solution
JP6202083B2 (en) Removal method of sulfurizing agent
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
JP2006283163A (en) Method for leaching nickel from iron removal precipitate
JP2008013388A (en) Method for purifying nickel chloride aqueous solution
JP6418140B2 (en) Nickel smelting method, chlorine leaching method
JP6634870B2 (en) Deironing method of nickel chloride aqueous solution
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
JP2005104809A (en) Method for purifying nickel chloride aqueous solution
JP2015105396A (en) Neutralization treatment method
JP2007154234A (en) Wet treatment method for zinc leaching residue

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200903

R151 Written notification of patent or utility model registration

Ref document number: 6760793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250