JP4035985B2 - Method for dissolving Co precipitate with acid - Google Patents

Method for dissolving Co precipitate with acid Download PDF

Info

Publication number
JP4035985B2
JP4035985B2 JP2001364006A JP2001364006A JP4035985B2 JP 4035985 B2 JP4035985 B2 JP 4035985B2 JP 2001364006 A JP2001364006 A JP 2001364006A JP 2001364006 A JP2001364006 A JP 2001364006A JP 4035985 B2 JP4035985 B2 JP 4035985B2
Authority
JP
Japan
Prior art keywords
precipitate
less
acid
solution
dissolving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001364006A
Other languages
Japanese (ja)
Other versions
JP2003166022A (en
Inventor
勲 西川
和幸 高石
伸正 家守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001364006A priority Critical patent/JP4035985B2/en
Priority to AU2002308793A priority patent/AU2002308793B2/en
Priority to GB0227732A priority patent/GB2382573B/en
Priority to CA2413207A priority patent/CA2413207C/en
Publication of JP2003166022A publication Critical patent/JP2003166022A/en
Application granted granted Critical
Publication of JP4035985B2 publication Critical patent/JP4035985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Removal Of Specific Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル・コバルト精錬において、主としてCoおよびFeの水酸化物からなるCo沈殿物の酸による溶解方法に関する。
【0002】
【従来の技術】
一般的なニッケル精錬においては、原料鉱石からNiを濃縮したニッケルマットを得て、このマットからNi、Co、Feなどの金属成分を浸出し、次いで、得られた浸出液から、酸化中和法によりCoおよびFeを水酸化物として除去して、純粋なニッケル溶液として、電解精製によりニッケルを製造する。
【0003】
前記酸化中和法で除去され、主としてCoおよびFeの水酸化物からなるCo沈殿物は、硫酸あるいは塩酸により溶解した後、得られた溶解液は、電気コバルトあるいはコバルト化成品の原料として使用される。
【0004】
この溶解液からのコバルトの分離・精製には、最近では溶媒抽出法が多く使用されるが、工業的に用いられる有機溶媒の多くは、CoよりFeを抽出し易いので、溶解液をそのまま溶媒抽出工程で処理すると、目的金属であるCoの抽出不良や、有機溶媒中へのFeの濃縮といった問題を引き起こす可能性がある。そのため、図4に示すように、溶媒抽出工程の前段には、通常、脱Fe工程が設けられ、酸化中和法等により溶解液中からFeを除去することが行われる。
【0005】
以上、述べたように、Co沈殿物の溶解液から、Coを分離・精製するための溶媒抽出工程の前段には、脱Fe工程が不可欠であるが、脱Fe工程の設置により設備点数が増加し、さらに、酸化中和法による脱Feでは中和剤が必要なことから、設備投資額の増加および操業コストの上昇を招く原因となる。
【0006】
【発明が解決しようとする課題】
上記課題を解決するため、本発明は、脱Fe工程を用いずに、Co沈殿物の溶解液を直接、溶媒抽出工程で処理する方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明のCo沈殿物の溶解処理方法は、少なくともCoおよびFeの水酸化物を含有するCo沈殿物を、酸により溶解する処理方法において、処理液のpHを0.5以上2.0以下とすることにより、Coと共にFeを処理液中に溶解させた後、処理液のpHを2.0以上3.0以下に上昇させて、Feを優先的に沈殿物中へ分配させる。
【0008】
具体的には、塩酸または硫酸(プラス還元剤)を添加して処理液のpHを0.5以上2.0以下とすることにより、FeおよびCoを処理液中に溶解させた後、Co沈殿物、Coの炭酸塩およびNiの炭酸塩のいずれかを添加して処理液のpHを2.0以上3.0以下に上昇させてFeを沈殿物中に沈積させることが望ましい。なお、本明細書において、「溶解させ」「沈積させ」は、条件によってFeやCoの全てあるいは一部に対するものである。以上の処理により、Feを沈殿物中に固体の状態で実質的に残したまま、Coの一部または実質的に全部を、処理液中に溶解する。
【0009】
【発明の実施の形態】
Co沈殿物中のCoおよびFeは、3価の水酸化物として存在する。これらを溶解する反応は、式1、2にて表される。
【0010】
【式1】

Figure 0004035985
【0011】
【式2】
Figure 0004035985
【0012】
これらの式から、Coについては、pHを低下させると共に還元反応と組み合わせることにより水酸化物を溶解することが可能であり、一方、FeについてはpHの調整のみで溶解制御が可能であることがわかる。
【0013】
また、pHの調整には、pH調整剤として塩酸あるいは硫酸を用いることが可能であるが、pH調整剤として硫酸を用いた場合には、SO2ガスや亜硫酸ソーダ等の還元剤を添加し、Coの溶解反応を進行させる必要がある。一方、pH調整剤として塩酸を用いた場合には、塩素イオンが酸化されるために、還元剤を投入する必要はない。
【0014】
また、酸を添加して単にpHを低下させるのみでは、Coが溶解すると共に、Feも溶解し、Co沈殿物中にFeを固定することは困難である。そこで、いったん、pHを0.5以上2.0以下に低下させて、CoおよびFeを溶解した後に、炭酸コバルト、炭酸ニッケルあるいはCo沈殿物によってpHを2.0以上3.0以下に調整する。これにより、Coは溶解したままで、Feが沈積する。このように、FeとCoの水酸化物生成ポテンシャルの差を利用する事によって、Feを優先的に沈殿物中へ分配させる方法をとる。なお、pHをいったん0.5以上2.0以下に低下させないで、2.0以上3.0以下に維持しても、コバルトの浸出率は高くならない。
【0015】
以上の反応を、式3〜6に示す。
【0016】
【式3】
3++3CoCO3+3H+=M(OH)3CO2+3Co2+
【0017】
【式4】
3++3NiCO3+3H+=M(OH)3CO2+3Ni2+
【0018】
【式5】
Figure 0004035985
【0019】
【式6】
Figure 0004035985
【0020】
式3は、炭酸コバルトによるpH調整の場合を示し、式4は、炭酸ニッケルによるpH調整の場合を示し、式5および式6は、Co沈殿物によるpH調整の場合を示す。いずれの式においても、Mは、FeまたはCoである。
【0021】
pH調整剤にCo沈殿物自身を使用するのは、pH調整用に新たな薬剤を添加する方法と比較して、操業コストを低下させる目的がある。ただし、この場合は、式5および式6に示す様に、Co沈殿物中には、Niの2価の水酸化物、Niの3価の水酸化物、またはその両方の水酸化物が含まれている必要がある。
【0022】
なお、液中に溶出したニッケルイオンを、溶媒抽出工程でコバルトと分離することは可能である。
【0023】
【実施例】
Co沈殿物を400g/Lにレパルプしたスラリーに、塩酸を添加してpHを調整した。溶液のFe濃度(プロット●)を図2に示す。また、Co浸出率(プロット●)を図3に示す。
【0024】
また、pHをいったん1.5まで低下させた後、Co沈殿物(Co−ppt)でpHを上昇させた時の溶液のFe濃度の変化(プロット□)を図2に示す。また、Co浸出率の変化(プロット□で測定結果を示し、点線で変化の動向を表す)を図3に示す。
【0025】
さらに、pHをいったん1.5まで低下させた後、炭酸ニッケル(NiCO)でpHを上昇させた時の溶液のFe濃度の変化(プロット△)を図2に示す。また、Co浸出率の変化(プロット△で測定結果を示し、点線で変化の動向を表す)を図3に示す。
【0026】
図2から分かるように、pHを2.0以上に調整すれば、Fe濃度は0.1g/L以下となる。さらに、pHを2.5以上に調整すれば、Fe濃度は0.01g/L以下となる。このように、どのようなpH調整を行っても、Fe濃度については、ほぼpHに依存した値をとり、Feはほぼ沈殿物中に固定されていることが分かる。
【0027】
しかしながら、酸の添加のみで、このpH領域に調整するだけでは、図3から分かるように、Co浸出率が、pH2.0で約20%、pH2.5では5%以下と、pH2.0〜3.0の領域では、十分な溶解率を得ることはできなかった。
【0028】
一方、いったん、pHを0.5以上2.0以下としてから、Co沈殿物(Co−ppt)でpHを2.0以上3.0以下に調整をした場合(プロット□)には、pH2.5におけるCo浸出率が約50%であった。また、いったん、pHを0.5以上2.0以下としてから、炭酸ニッケル(NiCO)でpHを2.0以上3.0以下に調整を行った場合(プロット△)には、pH2.5におけるCo浸出率が約90%であった。このように、単純に塩酸を添加してpHを2.5に調整したのみの場合と比較して、極めて良好なCo浸出率が得られた。
【0029】
【発明の効果】
本発明の方法により、Co沈殿物を溶解させた溶解液から、Feを容易に除去することが可能となり、電気コバルトやコバルト化成品を経済的に製造することができる。
【図面の簡単な説明】
【図1】 本発明において、コバルト沈殿物の溶解液からpH調整による選択的溶媒抽出を示すフローチャートである。
【図2】 溶液のFe濃度の変化を示すグラフである。
【図3】 溶液のCo浸出率の変化を示すグラフである。
【図4】 コバルト沈殿物の溶解液から、脱Fe工程を経て、溶媒抽出を行う従来工程を示すフローチャートである。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for dissolving a Co precipitate mainly composed of Co and Fe hydroxide with an acid in nickel / cobalt refining.
[0002]
[Prior art]
In general nickel refining, a nickel mat enriched with Ni is obtained from the raw ore, and metal components such as Ni, Co, and Fe are leached from the mat, and then the obtained leachate is subjected to an oxidation neutralization method. Co and Fe are removed as hydroxides to produce nickel by electrolytic purification as a pure nickel solution.
[0003]
After the Co precipitate consisting mainly of Co and Fe hydroxide is removed by the oxidative neutralization method and dissolved with sulfuric acid or hydrochloric acid, the resulting solution is used as a raw material for electrocobalt or cobalt chemical products. The
[0004]
Recently, many solvent extraction methods are used for the separation and purification of cobalt from the solution, but since many organic solvents used industrially are more likely to extract Fe than Co, the solution is used as it is. When the treatment is performed in the extraction step, problems such as poor extraction of the target metal Co and concentration of Fe in an organic solvent may be caused. Therefore, as shown in FIG. 4, a de-Fe process is usually provided before the solvent extraction process, and Fe is removed from the solution by an oxidation neutralization method or the like.
[0005]
As described above, the Fe removal step is indispensable in the first stage of the solvent extraction step for separating and purifying Co from the Co precipitate solution, but the number of facilities increases due to the installation of the Fe removal step. Furthermore, since the neutralization agent is required for the de-Fe removal by the oxidation neutralization method, it causes an increase in the amount of capital investment and an increase in operation cost.
[0006]
[Problems to be solved by the invention]
In order to solve the above problems, an object of the present invention is to provide a method for directly treating a Co precipitate solution in a solvent extraction step without using a Fe removal step.
[0007]
[Means for Solving the Problems]
The Co precipitate dissolution treatment method of the present invention is a treatment method in which a Co precipitate containing at least Co and Fe hydroxide is dissolved with an acid, and the pH of the treatment liquid is 0.5 or more and 2.0 or less. By doing this, Fe and Co are dissolved in the treatment liquid, and then the pH of the treatment liquid is raised to 2.0 or more and 3.0 or less, so that Fe is preferentially distributed into the precipitate.
[0008]
Specifically, hydrochloric acid or sulfuric acid (plus reducing agent) is added to adjust the pH of the treatment liquid to 0.5 or more and 2.0 or less, so that Fe and Co are dissolved in the treatment liquid, followed by Co precipitation. It is desirable to add Fe, Co carbonate and Ni carbonate to raise the pH of the treatment liquid to 2.0 or more and 3.0 or less to deposit Fe in the precipitate. In this specification, “dissolve” and “deposit” are for all or part of Fe and Co depending on conditions. Through the above-described treatment, a part or substantially all of Co is dissolved in the treatment liquid while substantially leaving Fe in a solid state in the precipitate.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Co and Fe in the Co precipitate are present as trivalent hydroxides. Reactions for dissolving these are represented by Formulas 1 and 2.
[0010]
[Formula 1]
Figure 0004035985
[0011]
[Formula 2]
Figure 0004035985
[0012]
From these formulas, it is possible to dissolve hydroxide by reducing the pH and combining it with a reduction reaction for Co. On the other hand, for Fe, dissolution control is possible only by adjusting the pH. Recognize.
[0013]
In addition, hydrochloric acid or sulfuric acid can be used as a pH adjusting agent to adjust the pH, but when sulfuric acid is used as the pH adjusting agent, a reducing agent such as SO 2 gas or sodium sulfite is added, It is necessary to proceed the dissolution reaction of Co. On the other hand, when hydrochloric acid is used as the pH adjuster, chlorine ions are oxidized, so there is no need to add a reducing agent.
[0014]
Further, by simply adding an acid to lower the pH, it is difficult to fix Co in the Co precipitate by dissolving Co and dissolving Fe. Therefore, once the pH is lowered to 0.5 or more and 2.0 or less and Co and Fe are dissolved, the pH is adjusted to 2.0 or more and 3.0 or less with cobalt carbonate, nickel carbonate or Co precipitate. . Thereby, Co is dissolved and Fe is deposited. In this way, a method of preferentially distributing Fe into the precipitate is used by utilizing the difference in hydroxide formation potential between Fe and Co. Even if the pH is once lowered to 0.5 or more and 2.0 or less and maintained at 2.0 or more and 3.0 or less, the leaching rate of cobalt does not increase.
[0015]
The above reactions are shown in Formulas 3-6.
[0016]
[Formula 3]
M 3+ + 3CoCO 3 + 3H + = M (OH) 3 + 3 CO 2 + 3Co 2+
[0017]
[Formula 4]
M 3+ + 3NiCO 3 + 3H + = M (OH) 3 + 3 CO 2 + 3Ni 2+
[0018]
[Formula 5]
Figure 0004035985
[0019]
[Formula 6]
Figure 0004035985
[0020]
Equation 3 shows the case of pH adjustment with cobalt carbonate, Equation 4 shows the case of pH adjustment with nickel carbonate, and Equations 5 and 6 show the case of pH adjustment with Co precipitates. In any formula, M is Fe or Co.
[0021]
The use of the Co precipitate itself as the pH adjusting agent has the purpose of reducing the operating cost as compared with a method of adding a new agent for adjusting the pH. However, in this case, as shown in Formula 5 and Formula 6, the Co precipitate contains a divalent hydroxide of Ni, a trivalent hydroxide of Ni, or both hydroxides. It is necessary to have been.
[0022]
It is possible to separate nickel ions eluted in the liquid from cobalt in the solvent extraction step.
[0023]
【Example】
Hydrochloric acid was added to the slurry obtained by repulping Co precipitate to 400 g / L to adjust the pH. The Fe concentration (plot ●) of the solution is shown in FIG. Further, the Co leaching rate (plot ●) is shown in FIG.
[0024]
Further, FIG. 2 shows the change in the Fe concentration of the solution (plot □) when the pH is once lowered to 1.5 and then increased with Co precipitate (Co-ppt). Further, FIG. 3 shows a change in Co leaching rate (a measurement result is indicated by plot □ and a change trend is indicated by a dotted line).
[0025]
Further, FIG. 2 shows changes in the Fe concentration of the solution (plot Δ) when the pH is once lowered to 1.5 and then raised with nickel carbonate (NiCO 3 ). Further, FIG. 3 shows changes in Co leaching rate (measurement results are indicated by plots Δ and changes are indicated by dotted lines).
[0026]
As can be seen from FIG. 2, when the pH is adjusted to 2.0 or more, the Fe concentration becomes 0.1 g / L or less. Furthermore, if the pH is adjusted to 2.5 or more, the Fe concentration becomes 0.01 g / L or less. Thus, it can be seen that, regardless of what pH adjustment is performed, the Fe concentration takes a value that is substantially dependent on the pH, and Fe is almost fixed in the precipitate.
[0027]
However, as shown in FIG. 3, only by adding acid to adjust to this pH range, the Co leaching rate is about 20% at pH 2.0, 5% or less at pH 2.5, pH 2.0 to In the region of 3.0, a sufficient dissolution rate could not be obtained.
[0028]
On the other hand, when the pH is once adjusted to 0.5 or more and 2.0 or less and then adjusted to 2.0 or more and 3.0 or less with Co precipitate (Co-ppt) (plot □), pH 2. The Co leaching rate at 5 was about 50%. Further, once the pH is adjusted to 0.5 or more and 2.0 or less and then adjusted to 2.0 or more and 3.0 or less with nickel carbonate (NiCO 3 ) (plot Δ), the pH is 2.5. Co leaching rate was about 90%. Thus, a very good Co leaching rate was obtained as compared with the case of simply adding hydrochloric acid and adjusting the pH to 2.5.
[0029]
【The invention's effect】
According to the method of the present invention, Fe can be easily removed from a solution in which Co precipitate is dissolved, and electric cobalt and a cobalt chemical product can be produced economically.
[Brief description of the drawings]
FIG. 1 is a flowchart showing selective solvent extraction from a cobalt precipitate solution by pH adjustment in the present invention.
FIG. 2 is a graph showing changes in Fe concentration of a solution.
FIG. 3 is a graph showing a change in Co leaching rate of a solution.
FIG. 4 is a flowchart showing a conventional process for performing solvent extraction from a cobalt precipitate solution through a Fe removal process.

Claims (1)

少なくともCoおよびFeの水酸化物を含有するCo沈殿物を、酸により溶解する処理方法において、塩酸または硫酸を添加して処理液のpHを0.5以上2.0以下とすることにより、FeおよびCoを処理液中に溶解させた後、Co沈殿物、Co炭酸塩およびNi炭酸塩のいずれかを添加して処理液のpHを2.0以上3.0以下に上昇させてFeを沈積させることを特徴とするCo沈殿物の酸による溶解方法。In a treatment method in which a Co precipitate containing at least Co and Fe hydroxide is dissolved with an acid, hydrochloric acid or sulfuric acid is added to adjust the pH of the treatment liquid to 0.5 or more and 2.0 or less. And Co are dissolved in the treatment liquid, and then any one of Co precipitate, Co carbonate and Ni carbonate is added to raise the pH of the treatment liquid to 2.0 or more and 3.0 or less to deposit Fe. A method for dissolving Co precipitate with an acid, characterized by comprising:
JP2001364006A 2001-11-29 2001-11-29 Method for dissolving Co precipitate with acid Expired - Fee Related JP4035985B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001364006A JP4035985B2 (en) 2001-11-29 2001-11-29 Method for dissolving Co precipitate with acid
AU2002308793A AU2002308793B2 (en) 2001-11-29 2002-11-28 Dissolution Method of Co Precipitate with Acid
GB0227732A GB2382573B (en) 2001-11-29 2002-11-28 Dissolution method of co precipitate with acid
CA2413207A CA2413207C (en) 2001-11-29 2002-11-28 Dissolution method of co precipitate with acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364006A JP4035985B2 (en) 2001-11-29 2001-11-29 Method for dissolving Co precipitate with acid

Publications (2)

Publication Number Publication Date
JP2003166022A JP2003166022A (en) 2003-06-13
JP4035985B2 true JP4035985B2 (en) 2008-01-23

Family

ID=19174254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364006A Expired - Fee Related JP4035985B2 (en) 2001-11-29 2001-11-29 Method for dissolving Co precipitate with acid

Country Status (4)

Country Link
JP (1) JP4035985B2 (en)
AU (1) AU2002308793B2 (en)
CA (1) CA2413207C (en)
GB (1) GB2382573B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6760793B2 (en) * 2016-08-03 2020-09-23 Jx金属株式会社 How to recover valuable metals from cobalt / tungsten raw materials
CN107881341A (en) * 2017-12-08 2018-04-06 上海产业技术研究院 Method of comprehensive utilization based on hydrometallurgical processes middle and high concentration sodium sulfate wastewater
CN111826523B (en) * 2020-06-28 2022-07-15 广东邦普循环科技有限公司 Method for refining nickel hydroxide cobalt

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1332830A1 (en) * 1985-07-23 1992-08-07 Государственный проектный и научно-исследовательский институт "Гипроникель" Method of ferrocobaltic hydrate cakes
RU2041276C1 (en) * 1988-11-30 1995-08-09 Институт металлофизики АН Украины Cobalt cake reprocessing method
JP3385997B2 (en) * 1999-02-12 2003-03-10 大平洋金属株式会社 Method of recovering valuable metals from oxide ore

Also Published As

Publication number Publication date
AU2002308793B2 (en) 2007-10-04
GB2382573B (en) 2005-09-14
CA2413207A1 (en) 2003-05-29
CA2413207C (en) 2010-07-27
GB2382573A (en) 2003-06-04
GB0227732D0 (en) 2003-01-08
JP2003166022A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
RU2149195C1 (en) Method of hydrometallurgical recovery of nickel from nickel matte of two types
JP5334592B2 (en) Rare metal recovery method in zinc leaching process
EP2668303B1 (en) Improved method of ore processing
JP2003514109A5 (en)
WO2013030450A1 (en) Method for recovering metals from material containing them
CN105274352B (en) A kind of method that copper cobalt manganese is separated in the manganese cobalt calcium zinc mixture from copper carbonate
CN110678564A (en) Method for preparing leaching feed
JP4035985B2 (en) Method for dissolving Co precipitate with acid
JP3627641B2 (en) Method for separating and removing zinc from nickel sulfate solution
EP3395968B1 (en) Method for removing sulfurizing agent
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
JP2004285368A (en) Method for refining cobalt aqueous solution
KR102178219B1 (en) Economical Smelting Method for Nickel from Nickel Sulfide ore, combined Hydrometallurgical and Pyrometallurgical Process
JP6953765B2 (en) Iron removal method for crude nickel sulfate solution
KR101510532B1 (en) The method for recovering Fe from Iron chloride solution acquired during hydrometallurgical process
JP3823307B2 (en) Method for producing high purity cobalt solution
JP4269586B2 (en) Methods for separating platinum group elements
JP2004238735A (en) Treatment method for separating gold from solution containing platinum group element, and production method
JP3722254B2 (en) Manufacturing method of high purity nickel aqueous solution
JP2006283163A (en) Method for leaching nickel from iron removal precipitate
JP2018044201A (en) Method of treating metal-containing hydrochloric acidic liquid
JP2012001414A (en) Method for producing nickel/cobalt sulfate solution with low chlorine concentration
JP2004190133A (en) Method of treating selenium, tellurium, and platinum group-containing material
JP2004035969A (en) Method for refining selenium or the like
JP2010001564A (en) Method for recovering cobalt from aqueous chloride solution

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4035985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees