JP6759513B2 - 無線バッテリー管理システム及びこれを含むバッテリーパック - Google Patents

無線バッテリー管理システム及びこれを含むバッテリーパック Download PDF

Info

Publication number
JP6759513B2
JP6759513B2 JP2019514270A JP2019514270A JP6759513B2 JP 6759513 B2 JP6759513 B2 JP 6759513B2 JP 2019514270 A JP2019514270 A JP 2019514270A JP 2019514270 A JP2019514270 A JP 2019514270A JP 6759513 B2 JP6759513 B2 JP 6759513B2
Authority
JP
Japan
Prior art keywords
battery
balancing
cell
slave
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019514270A
Other languages
English (en)
Other versions
JP2019531042A (ja
Inventor
キム、ジ−ウン
リー、サン−フン
チョイ、ヤン−シク
Original Assignee
エルジー・ケム・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー・ケム・リミテッド filed Critical エルジー・ケム・リミテッド
Publication of JP2019531042A publication Critical patent/JP2019531042A/ja
Application granted granted Critical
Publication of JP6759513B2 publication Critical patent/JP6759513B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Description

本発明は、無線バッテリー管理システムに関し、より詳しくは、複数のバッテリーモジュール間の残存容量の差を低減する無線バッテリー管理システム及びこれを含むバッテリーパックに関する。
本出願は、2017年7月20日出願の韓国特許出願第10−2017−0092151号に基づく優先権を主張し、該当出願の明細書及び図面に開示された内容は、全て本出願に援用される。
最近、ノートブックPC、ビデオカメラ、携帯電話などのような携帯用電子製品の需要が急増し、電気自動車、エネルギー貯蔵用蓄電池、ロボット、衛星などの開発が本格化するにつれ、反復的な充放電の可能な高性能二次電池についての研究が活発に進行しつつある。
現在、商用化した二次電池としては、ニッケルカドミウム電池、ニッケル水素電池、ニッケル亜鉛電池、リチウム二次電池などがあり、このうち、リチウム二次電池は、ニッケル系の二次電池に比べてメモリー効果がほとんど起こらず、充放電が自由で、自己放電率が非常に低くてエネルギー密度が高いという長所から脚光を浴びている。
電気車両などに適用されるバッテリーパックは通常相互直列に接続した複数のバッテリーモジュール及び複数のBMSを含む。各BMSは、自分が管理するバッテリーモジュールの状態をモニター及び制御する。最近は、大容量かつ高出力のバッテリーパックが要求されることによって、バッテリーパックに含まれるバッテリーモジュールの個数も増加しつつある。このようなバッテリーパックに含まれた各バッテリーモジュールの状態を効率的に管理するために、シングルマスター−マルチスレーブ構造が開示されている。シングルマスター−マルチスレーブ構造は、各バッテリーモジュールに設えられる複数のスレーブBMS及び前記複数のスレーブBMSを全般的に管制するマスターBMSを含む。この際、複数のスレーブBMSとマスターBMSとの通信が無線方式で行われ得る。
複数のスレーブBMS各々は、自分が設けられたバッテリーモジュールの電気エネルギーを用いて、マスターBMSに無線信号を送信するか、マスターBMSからの無線信号を受信する。
一方、バッテリーパックの動作環境や個別バッテリーモジュール自体の電気化学的な特性により、複数のバッテリーモジュール間には残存容量の差が発生する。複数のバッテリーモジュール間の残存容量の差を抑制するためには、バランシング制御が必要である。
しかし、バランシングに関わる従来技術は、複数のスレーブBMS及びマスターBMSがケーブルのような有線手段によって通信するように設計されたシステムに適用するためのものがほとんどである。
本発明は、複数のバッテリーモジュールのうち少なくとも一つの電気エネルギーを用いて、非通信用の無線チャンネルを通じてRF信号を送信することで、複数のバッテリーモジュール間の残存容量の差を減少させるためのモジュールバランシングを行うことができる無線バッテリー管理システム及びこれを含むバッテリーパックを提供することを目的とする。
本発明の他の目的及び長所は、下記する説明によって理解でき、本発明の実施例によってより明らかに分かるであろう。また、本発明の目的及び長所は、特許請求の範囲に示される手段及びその組合せによって実現することができる。
上記の課題を達成するための本発明の多様な実施例は、次のようである。
本発明の一面による無線バッテリー管理システムは、状態検出命令を含む第1RF信号を第1無線チャンネルを通じて送信するように構成されたマスターBMSと、複数のバッテリーモジュールに1対1で設けられるものであって、前記第1RF信号に応答し、自分が設けられたバッテリーモジュールの状態情報を検出し、前記バッテリーモジュールの状態情報を示す第2RF信号を前記第1無線チャンネルを通じて送信するように構成された複数のスレーブBMSと、を含む。前記マスターBMSは、前記第2RF信号に基づき、前記複数のバッテリーモジュール各々に対する無線バランシング時間を決定し、前記無線バランシング時間を示すモジュールバランシング命令を含む第3RF信号を前記第1無線チャンネルを通じて前記複数のスレーブBMSに送信する。前記複数のスレーブBMS各々は、前記第3RF信号に含まれた前記モジュールバランシング命令に応じて、前記無線バランシング時間の間、自分が設けられたバッテリーモジュールの電気エネルギーを用いて第2無線チャンネルを通じて第4RF信号を送信する。
また、前記第1無線チャンネルは、予め決められた第1周波数帯域を有し得る。この場合、前記第2無線チャンネルは、前記第1周波数帯域とは分離した予め決められた第2周波数帯域を有し得る。
また、前記マスターBMSは、前記第2RF信号に基づき、前記複数のバッテリーモジュール各々に保存されたモジュール残存容量を演算し、前記複数のバッテリーモジュール各々のモジュール残存容量に基づき、前記複数のバッテリーモジュール各々に対する前記無線バランシング時間を決定し得る。
また、前記マスターBMSは、前記複数のバッテリーモジュールのうちいずれか一つのモジュール残存容量を第1ターゲット残存容量に設定し、前記第1ターゲット残存容量と残りのモジュール残存容量各々との差に基づき、前記複数のバッテリーモジュール各々に対する前記無線バランシング時間を決定し得る。
また、前記バッテリーモジュールの状態情報は、前記バッテリーモジュールに含まれた各バッテリーセルの状態情報を含み得る。前記マスターBMSは、前記第2RF信号に基づき、前記複数のバッテリーモジュール各々に含まれた各バッテリーセルのセル残存容量を演算し、前記複数のバッテリーモジュール各々に含まれた各バッテリーセルのセル残存容量に基づき、前記複数のバッテリーモジュール各々に対する前記無線バランシング時間を決定し得る。
また、前記マスターBMSは、前記複数のバッテリーモジュールに含まれた全てのバッテリーセルのセル残存容量のうち最も少ないものを第2ターゲット残存容量に決定し、前記第2ターゲット残存容量と残りの各バッテリーモジュールの最少セル残存容量各々との差にさらに基づき、前記複数のバッテリーモジュール各々に対する前記無線バランシング時間を決定し得る。
また、前記マスターBMSは、前記複数のバッテリーモジュール各々の最少セル残存容量と残りの各セル残存容量との差に基づき、前記複数のバッテリーモジュール各々に含まれた各バッテリーセルに対する有線バランシング時間を決定し得る。この場合、前記第3RF信号が、前記有線バランシング時間を示すセルバランシング命令をさらに含み得る。
また、前記複数のスレーブBMS各々は、自分が設けられたバッテリーモジュールに含まれた各バッテリーセルの両端の間に電気的に接続した有線バランシング部を含み得る。この場合、前記第3RF信号に含まれた前記セルバランシング命令に応じて、前記有線バランシング回路を制御し、自分が設けられたバッテリーモジュールに含まれた各バッテリーセルのセル残存容量をバランシングし得る。
本発明の他面によるバッテリーパックは、前記無線バッテリー管理システムと、前記複数のバッテリーモジュールと、を含む。
本発明の実施例の少なくとも一つによれば、複数のバッテリーモジュールのうち少なくとも一つの電気エネルギーを用いて、非通信用の無線チャンネルを通じてRF信号を送信することで、複数のバッテリーモジュール間の残存容量の差を減少させるためのモジュールバランシングを行うことができる。
また、本発明の実施例の少なくとも一つによれば、各バッテリーモジュールから状態情報を検出する期間中にもモジュールバランシングを行うことで、モジュールバランシング及びセルバランシングが完了するまでの時間を短縮することができる。
また、本発明の実施例の少なくとも一つによれば、各バッテリーモジュールの最少セル残存容量に基づいてモジュールバランシングを行った上でセルバランシングを行うことで、セルバランシングに使用可能な時間を確保することができる。
本発明の効果が、上述の効果に制限されず、言及されていないさらに他の効果は、請求範囲の記載から当業者にとって明確に理解されるであろう。
本明細書に添付される次の図面は、本発明の望ましい実施例を例示するものであり、発明の詳細な説明とともに本発明の技術的な思想をさらに理解させる役割をするため、本発明は図面に記載された事項だけに限定されて解釈されてはならない。
本発明の一実施例による無線バッテリー管理システム及びこれを含むバッテリーパックの構成を概略的に示す図である。 図1に示したスレーブBMSの構成を概略的に示す図である。 本発明の一実施例による有線バランシング部の構成を概略的に示す図である。 図1に示したマスターBMSの構成を概略的に示す図である。 本発明の一実施例による無線バッテリー管理システムが第1バランシングルールによって複数のバッテリーモジュールをバランシングする動作を説明するのに参照される図である。 本発明の一実施例による無線バッテリー管理システムが第1バランシングルールによって複数のバッテリーモジュールをバランシングする動作を説明するのに参照される図である。 本発明の一実施例による無線バッテリー管理システムが第2バランシングルールによって複数のバッテリーモジュールをバランシングする動作を説明するのに参照される図である。 本発明の一実施例による無線バッテリー管理システムが第2バランシングルールによって複数のバッテリーモジュールをバランシングする動作を説明するのに参照される図である。
以下、添付された図面を参照して本発明の望ましい実施例を詳しく説明する。これに先立ち、本明細書及び請求範囲に使われた用語や単語は通常的や辞書的な意味に限定して解釈されてはならず、発明者自らは発明を最善の方法で説明するために用語の概念を適切に定義できるという原則に則して本発明の技術的な思想に応ずる意味及び概念で解釈されねばならない。
したがって、本明細書に記載された実施例及び図面に示された構成は、本発明のもっとも望ましい一実施例に過ぎず、本発明の技術的な思想の全てを代弁するものではないため、本出願の時点においてこれらに代替できる多様な均等物及び変形例があり得ることを理解せねばならない。
また、本発明に関連する公知の機能または構成についての具体的な説明が、本発明の要旨をぼやかすと判断される場合、その説明を省略する。
第1、第2などのように序数を含む用語は、多様な構成要素のうちいずれか一つを残りと区別する目的として使用され、このような用語によって構成要素が限定されることではない。
なお、明細書の全体にかけて、ある部分が、ある構成要素を「含む」とするとき、これは特に反する記載がない限り、他の構成要素を除くことではなく、他の構成要素をさらに含み得ることを意味する。また、明細書に記載の「制御ユニット」のような用語は、少なくとも一つの機能や動作を処理する単位を示し、これはハードウェアやソフトウェア、またはハードウェアとソフトウェアとの結合せにより具現され得る。
さらに、明細書の全体に亘って、ある部分が他の部分と「連結(接続)」されているとするとき、これは、「直接的に連結(接続)」されている場合のみならず、その中間に他の素子を介して「間接的に(接続)」されている場合も含む。
本発明において全般的に使われる用語である「BMS」とは、Battery Management Systemの略語であることを予め明らかにしておく。
図1は、本発明の一実施例による無線バッテリー管理システム30及びこれを含むバッテリーパック10の構成を概略的に示す図である。
図1を参照すれば、バッテリーパック10は、複数のバッテリーモジュール20及び無線バッテリー管理システム30を含む。各バッテリーモジュール20は、少なくとも一つのバッテリーセル(図2の「21」参照)を含み得る。無線バッテリー管理システム30は、複数のスレーブBMS100及び少なくとも一つのマスターBMS200を含む。バッテリーパック10は、電気自動車に搭載され、電気自動車の電気モーターの駆動に要求される電力を供給することができる。
以下では、説明の便宜のために、バッテリーパック10が相互直列接続した三つのバッテリーモジュール20を含み、各バッテリーモジュール20は、相互直列接続した三つのバッテリーセル21を含み、無線バッテリー管理システム30は、三つのスレーブBMS100及び単一のマスターBMS200を含むと仮定する。但し、本発明の範囲はこれに限定されない。例えば、バッテリーパック10は、二つのバッテリーモジュール20のみを含むか、四つ以上のバッテリーモジュール20を含み得る。勿論、無線バッテリー管理システム30は、二つのスレーブBMS100または四つ以上のスレーブBMS100を含み得、二つ以上のマスターBMS200が含まれ得る。
複数のスレーブBMS100は、バッテリーパック10に含まれた複数のバッテリーモジュール20に1対1で対応するように設けられる。
複数のスレーブBMS100各々は、複数のバッテリーモジュール20のうち自分が設けられたいずれか一つのバッテリーモジュール20と電気的に接続する。複数のスレーブBMS100各々は、自分と電気的に接続したバッテリーモジュール20の全般的な状態(例えば、電圧、電流、温度)を検出し、バッテリーモジュール20の状態を調節するための各種制御機能(例えば、充電、放電、バランシング)を実行する。この際、各制御機能は、スレーブBMS100がバッテリーモジュール20の状態に基づき直接実行するか、またはマスターBMS200からの命令に応じて実行するものであり得る。
図2は、図1に示したスレーブBMS100の構成を概略的に示す図であり、図3は、本発明の一実施例による有線バランシング部140の構成を概略的に示す図である。
図2を参照すれば、各スレーブBMS100は、スレーブメモリー110、スレーブ通信部120、スレーブセンシング部130、スレーブ電源供給部150及びスレーブ制御部160を含み得る。各スレーブBMS100は、選択的に、有線バランシング部140をさらに含み得る。
スレーブメモリー110には、スレーブBMSに予め割り当てられていたIDが保存されている。IDは、スレーブメモリー110を含むスレーブBMS100の製造時に予め割り当てられたものであり得る。IDは、各スレーブBMS100がマスターBMS200との無線通信を行うのに用いられ得る。この際、複数のスレーブBMS100−1〜100−3のうちいずれか一つに予め割り当てられたIDは、残りのスレーブBMS各々に予め割り当てられたIDとは相違し得る。
各IDは、マスターBMS200が各スレーブBMS100を残りのスレーブBMS100から区分するのに用いられ得る。また、各IDは、それが予め割り当てられたスレーブBMS100が複数のバッテリーモジュール20のうちいずれに設けらされたかを示すものであり得る。
スレーブメモリー110は、データを、記録、消去、更新及び読出可能であると知られた公知の情報保存手段であれば、その種類は特に制限されない。一例として、スレーブメモリー110は、DRAM、SDRAM、フラッシュメモリー、ROM、EEPROM、レジスターなどであり得る。スレーブメモリー110は、スレーブ制御部160によって実行可能なプロセスが定義されたプログラムコードを保存し得る。
一方、スレーブメモリー110は、スレーブ制御部160と物理的に分離していてもよく、チップなどにスレーブ制御部160と一体で集積化していてもよい。
スレーブ通信部120は、スレーブアンテナ121及びスレーブ通信回路122を含む。スレーブアンテナ121及びスレーブ通信回路122は、相互動作可能に接続する。スレーブ通信回路122は、スレーブアンテナ121によって受信された無線信号を復調する。また、スレーブ通信回路122は、スレーブ制御部から提供された信号を変調した後、スレーブアンテナ121に提供し得る。スレーブアンテナ121は、スレーブ通信回路122によって変調された信号に対応する無線信号を他のスレーブBMSまたはマスターBMS200に同時にまたは選択的に送信し得る。
スレーブセンシング部130は、バッテリーモジュール20の状態情報を検出するように構成される。例えば、スレーブセンシング部130は、バッテリーモジュール20の電圧を検出する電圧測定回路を含み、選択的にバッテリーモジュール20の電流を検出する電流測定回路、またはバッテリーモジュール20の温度を検出する温度検出回路をさらに含み得る。スレーブ制御部160は、検出されたバッテリーモジュール20の状態情報をスレーブ制御部160に提供する。スレーブセンシング部130は、電圧検出回路及び温度検出回路が内蔵された少なくとも一つの注文型半導体(application specific integrated circuit,ASIC)を含み得る。
有線バランシング部140は、各バッテリーモジュール20に含まれた複数のバッテリーセル21間の残存容量の差を抑制するように構成される。有線バランシング部140は、セルバランシングを行う。
例えば、有線バランシング部140は、他のバッテリーセル21よりも相対的に高い残存容量を有するバッテリーセル21を放電させることで、複数のバッテリーセル21間の残存容量を均一化する。
図3を参照すれば、有線バランシング部140は、複数のバランシング抵抗Rc及び複数のバランシングスイッチSWを含む。一つのバランシング抵抗Rc及び一つのバランシングスイッチSWの直列回路は、各バッテリーセル21の両端の間に接続する。したがって、バッテリーモジュール20当たりのバッテリーセル21の個数は、各有線バランシング部140に含まれるバランシング抵抗Rcの個数とバランシングスイッチSWの個数と同一であり得る。
いずれか一つのバッテリーセル21の電圧または残存容量が残りのバッテリーセル21に比べて高い場合、前記いずれか一つのバッテリーセル21の両端の間に接続したバランシングスイッチSWがターンオンされることで、前記いずれか一つのバッテリーセル21の電気エネルギーがバランシング抵抗Rcによって消費される。
一方、図2において、Rは診断抵抗であり、有線バランシング部140内の故障の検出に用いられる。有線バランシング部140内の故障には、例えば、断線やバランシングスイッチSWの誤動作などが挙げられる。また、図2において、R及びCは、各々保護抵抗及び保護キャパシタであって、RCフィルターとして動作する。RCフィルターは、センシング部130に流入するノイズ(例えば、急激な電流変化)のフィルタリングに用いられる。
スレーブ電源供給部150は、バッテリーモジュール20から供給される電力を用いて、予め決められた少なくとも一つのレベルを有する電源電圧を生成する。スレーブ電源供給部150によって生成した電源電圧は、スレーブメモリー110、スレーブ通信部120、スレーブセンシング部130及び/または有線バランシング部140に個別的に提供され得る。また、スレーブ電源供給部150によって生成した電源電圧は、スレーブ制御部160に含まれた各プロセッサに提供され得る。例えば、スレーブ電源供給部150によって生成した第1電源電圧は、有線バランシング部140及びスレーブ制御部160に含まれた各プロセッサの動作電源として用いられ、スレーブ電源供給部150によって生成した第2電源電圧は、スレーブメモリー110、スレーブ通信部120及び/またはスレーブセンシング部130各々の動作電源に用いられ得る。
スレーブ電源供給部150は、スレーブ制御部160の命令に応じて、スレーブ通信部120と共にバッテリーモジュール20のモジュールバランシングを行い得る。
スレーブ制御部160は、少なくとも一つのプロセッサを含み、スレーブメモリー110、スレーブ通信部120及びスレーブ電源供給部150に動作可能に接続する。スレーブ制御部160は、自分を含むスレーブBMS100の全般的な動作を管理するように構成される。
スレーブ制御部160は、スレーブセンシング部130によって検出されたバッテリーモジュール20の状態情報をスレーブ通信部120に提供する。これによって、スレーブ通信部120は、バッテリーモジュール20の状態情報を示す無線信号をスレーブアンテナ121を通じてマスターBMS200に送信するようになる。
スレーブ制御部160に含まれた各プロセッサは、多様な制御ロジッグを実行するために当業界に知られたプロセッサ、ASIC、他のチップセット、論理回路、レジスター、通信モデム、データ処理装置などを選択的に含み得る。スレーブ制御部160の多様な制御ロジッグは少なくとも一つ以上が組み合わせられ、組み合わせられた制御ロジッグは、コンピュータが読出可能なコード体系で作成され、コンピュータが読出可能な記録媒体に収録され得る。記録媒体は、コンピュータに含まれたプロセッサによってアクセス可能なものであれば、その種類は特に制限されない。一例として、記録媒体は、ROM、RAM、レジスター、CD−ROM、磁気テープ、ハードディスク、フロッピーディスク及び光データ記録装置を含む群より選択された少なくとも一つ以上を含む。また、コード体系は、キャリア信号に変調されて特定の時点に通信キャリアに含まれ得、ネットワークによって接続したコンピュータに分散して保存されて実行され得る。また、組み合わせられた制御ロジッグを具現するための機能的なプログラム、コード及びコードセグメントは、本発明が属する技術分野におけるプログラマーによって容易に推論できる。
図4は、図1に示したマスターBMS200の構成を概略的に示す図である。
図4を参照すれば、マスターBMS200は、マスターメモリー210、マスター通信部220、マスター電源供給部230及びマスター制御部240を含み得る。
マスターメモリー210には、IDテーブルが予め保存されていてもよい。IDテーブルは、複数のスレーブBMSに予め割り当てられていた各々のIDを含む。
マスターメモリー210は、データを、記録、消去、更新及び読出が可能であると知られた公知の情報保存手段であれば、その種類は特に制限されない。一例として、マスターメモリー210は、DRAM、SDRAM、フラッシュメモリー、ROM、EEPROM、レジスターであり得る。マスターメモリー210は、マスター制御部240によって実行可能なプロセスが定義されたプログラムコードを保存し得る。
一方、マスターメモリー210は、マスター制御部240と物理的に分離していてもよく、チップなどにマスター制御部240と一体で集積化していてもよい。
マスター通信部220は、マスターアンテナ221及びマスター通信回路222を含む。マスターアンテナ221及びマスター通信回路222は、相互動作可能に接続する。マスター通信回路222は、マスターアンテナ221を通じて受信された無線信号を復調し得る。マスター通信回路222は、また各スレーブBMS100に送信しようとする信号を変調した後、変調された信号をマスターアンテナ222を通じて無線で送信し得る。マスターアンテナ221は、マスター通信部220によって変調された信号に対応する無線信号を複数のスレーブBMS100の少なくとも一つに選択的に送信し得る。
マスター電源供給部230は、少なくとも一つのバッテリーモジュール20、外部電源または自分に備えられた電源から供給される電気エネルギーを用いて、少なくとも一つの電源電圧を生成する。マスター電源供給部230によって生成した電源電圧は、マスターメモリー210及びマスター通信部220に提供され得る。また、マスター電源供給部230によって生成した電源電圧は、マスター制御部240に含まれた各プロセッサに提供され得る。
マスター制御部240は、少なくとも一つのプロセッサを含み、マスターメモリー210及びマスター通信部220に動作可能に接続する。マスター制御部240は、マスターBMS200の全般的な動作を管理するように構成される。また、マスター制御部240は、マスターアンテナ221を通じて受信される無線信号のうち、複数のスレーブBMS100各々のセンシング情報に対応する無線信号に基づき、複数のスレーブBMS100各々のSOC(State Of Charge)及び/またはSOH(State Of Health)を演算し得る。また、マスター制御部240は、演算されたSOC及び/またはSOHに基づき、複数のスレーブBMS100各々の充電、放電及び/またはバランシングを制御するための情報を生成した後、マスターアンテナ221及びマスター通信部220を通じて複数のスレーブBMS100のうち少なくとも一つに選択的に送信し得る。
マスター制御部240に含まれた各プロセッサは、多様な制御ロジッグを実行するために当業界に知られたプロセッサ、ASIC、他のチップセット、論理回路、レジスター、通信モデム、データ処理装置などを選択的に含み得る。マスター制御部240の多様な制御ロジッグは、少なくとも一つ以上が組み合わせられ、組み合わせられた制御ロジッグは、コンピュータが読出可能なコード体系として作成され、コンピュータが読出可能な記録媒体に収録され得る。記録媒体は、コンピュータに含まれたプロセッサによってアクセス可能なものであれば、その種類は別に制限されない。一例として、記録媒体は、ROM、RAM、レジスター、CD−ROM、磁気テープ、ハードディスク、フロッピーディスク及び光データ記録装置を含む群より選択された少なくとも一つ以上を含む。また、コード体系は、キャリア信号に変調されて特定の時点に通信キャリアに含まれ得、ネットワークによって接続したコンピュータに分散して保存されて実行され得る。また、組み合わせられた制御ロジッグを具現するための機能的なプログラム、コード及びコードセグメントは、本発明が属する技術分野におけるプログラマーによって容易に推論できる。
図1〜図4を参照すれば、マスターBMS200は、状態検出命令を含む無線信号(以下、「第1RF信号」する。)を複数のスレーブBMS100−1〜100−3に送信する。
各スレーブBMS100は、所定の週期ごとにまたは第1RF信号に応答して、自分が設けられたバッテリーモジュール20の状態情報を検出する。この際、バッテリーモジュール20の状態情報は、バッテリーモジュール20の電圧、電流及び/または温度を示す。選択的に、バッテリーモジュール20の状態情報は、バッテリーモジュール20に含まれた各バッテリーセル20の状態情報をさらに含み得る。バッテリーセル20の状態情報は、バッテリーセル20の電圧、電流及び/または温度を示す。
各スレーブBMS100は、バッテリーモジュール20の状態情報を示す無線信号(以下、「第2RF信号」とする。)をマスターBMS200に送信するように構成される。
マスターBMS200は、マスターアンテナ221を通じて、複数のスレーブBMS100−1〜100−3各々から第2RF信号を受信する。マスターBMS200は、複数のスレーブBMS100−1〜100−3各々から受信された第2RF信号に基づき、複数のバッテリーモジュール20−1〜20−3各々のモジュール残存容量を演算する。モジュール残存容量は、バッテリーモジュール20の充電状態(State Of Charge,SOC)を示す。
選択的に、マスターBMS200は、複数のスレーブBMS100−1〜100−3各々から受信された第2RF信号に基づき、複数のバッテリーモジュール20−1〜20−3各々に含まれた各バッテリーセル21のセル残存容量を演算し得る。セル残存容量は、バッテリーセル21の充電状態を示す。
次に、マスターBMS200は、第1バランシングルール及び第2バランシングルールのいずれか一つによって、複数のバッテリーモジュール20−1〜20−3各々に対する無線バランシング時間を決定する。第1バランシングルールは、複数のバッテリーモジュール20−1〜20−3各々のモジュール残存容量に基づき、複数のバッテリーモジュール20−1〜20−3各々に対する無線バランシング時間を決定するものであり得る。第2バランシングルールは、複数のバッテリーモジュール20−1〜20−3各々に含まれた各バッテリーセル20のセル残存容量に基づき、複数のバッテリーモジュール20−1〜20−3各々に対する無線バランシング時間を決定するものであり得る。
マスターBMS200は、複数のスレーブBMS100−1〜100−3 各々に対して決定された無線バランシング時間をマスターメモリー210に保存し得る。これと共にまたは別に、マスターBMS200は、複数のスレーブBMS100−1〜100−3各々に対して決定された無線バランシング時間を示すモジュールバランシング命令を生成する。次に、マスターBMS200は、モジュールバランシング命令を含む無線信号(以下、「第3RF信号」とする。)を複数のスレーブBMS100−1〜100−3に送信し得る。
複数のスレーブBMS100−1〜100−3各々は、スレーブアンテナ121を通じて第3RF信号を受信する。複数のスレーブBMS100−1〜100−3各々は、受信された第3RF信号に含まれたモジュールバランシング命令に応じて、マスターBMS200によって自分に決定された無線バランシング時間をスレーブメモリー110に保存する。また、複数のスレーブBMS100−1〜100−3各々は、マスターBMS200によって自分に決定された無線バランシング時間の間、自分が設けられたバッテリーモジュール20の電気エネルギーを用いて、無線信号(以下、「第4RF信号」とする。)を送信する。この場合、第4RF信号は、スレーブアンテナ121によって予め決められた最大電力で送信され得る。
前記第1〜第3RF信号各々は、第1無線チャンネルを通じて送受信される無線信号である。一方、前記第4RF信号は、第2無線チャンネルを通じて各スレーブBMS100が送信する無線信号である。この際、第1無線チャンネルは、通信用チャンネルであって、予め決められた第1周波数帯域を有する。一方、第2無線チャンネルは、非通信用のチャンネルであって、第1周波数帯域とは分離した予め決められた第2周波数帯域を有する。各スレーブBMS100のスレーブ通信部120は、第1及び第2無線チャンネルに選択的に接続可能に設計される。一方、マスターBMS200のマスター通信部120は、第1及び第2無線チャンネルのうち第1無線チャンネルのみに接続可能に設計され得る。これによって、第4RF信号は、マスターBMS200の動作に影響を及ぼさないことが可能となる。
以下では、マスターBMS200が複数のスレーブBMS100−1〜100−3を制御し、複数のバッテリーモジュール20−1〜20−3間のモジュール残存容量の差と、各バッテリーモジュール20に含まれた複数のバッテリーセル20間のセル残存容量の差と、を低減する実施例各々について具体的に説明する。各実施例では、モジュールバランシング及びセルバランシング以外の動作によって各バッテリーモジュール20から消耗する電気エネルギーは、モジュールバランシング及びセルバランシングによって各バッテリーモジュール20から消耗する電気エネルギーに比べて無視できるほどに小さいと仮定する。
図5及び図6は、本発明の一実施例による無線バッテリー管理システム30が、第1バランシングルールによって複数のバッテリーモジュールをバランシングする動作を説明するのに参照される図である。
図5は、複数のバッテリーモジュール20−1〜20−3各々に対する無線バランシング時間が決定される前の状態を例示する。
図5を参照すれば、第1バッテリーモジュール20−1に含まれた三つのバッテリーセル21−1〜21−3各々のセル残存容量は、3.0kAh、3.1kAh、3.0kAhであり、第2バッテリーモジュール20−2に含まれた三つのバッテリーセル21−4〜21−6各々のセル残存容量は、3.3kAh、3.1kAh、3.0kAhであり、第3バッテリーモジュール20−3に含まれた三つのバッテリーセル21−7〜21−9各々のセル残存容量は、 3.2kAh、3.2kAh、3.3kAhである。したがって、第1バッテリーモジュール20−1のモジュール残存容量は9.1kAh、第2バッテリーモジュール20−2のモジュール残存容量は9.4kAh、第3バッテリーモジュール20−3のモジュール残存容量は9.7kAhである。ここで、kAhとは、kilo ampere hourの略字であって、残存容量を示す単位の一つである。
マスターBMS200は、複数のバッテリーモジュール20−1〜20−3のいずれか一つのモジュール残存容量を第1ターゲット残存容量に設定する。第1バランシングルールにおいて、複数のバッテリーモジュール20−1〜20−3のモジュール残存容量、9.1kAh、9.4kAh、9.7kAhのうち最も少ない9.1KAhを第1ターゲット残存容量に設定し得る。
マスターBMS200は、第1ターゲット残存容量9.1kAhと、残りのモジュール残存容量9.4kAh、9.7kAh各々との差に基づき、複数のバッテリーモジュール20−1〜20−3各々に対する無線バランシング時間を決定する。詳しくは、マスターBMS200は、第1ターゲット残存容量9.1kAhと第2バッテリーモジュール20−2のモジュール残存容量9.4kAhとの差0.3kAhに基づき、第2バッテリーモジュール20−2に対する無線バランシング時間を決定する。また、マスターBMS200は、第1ターゲット残存容量9.1kAhと第3バッテリーモジュール20−3のモジュール残存容量9.7kAhとの差0.6KAhに基づき、第3バッテリーモジュール20−3に対する無線バランシング時間を決定する。
この際、各バッテリーモジュール20のモジュール残存容量と第1ターゲット残存容量との差が大きいほど、各バッテリーモジュール20に対して決定される無線バランシング時間は、増加し得る。例えば、第3バッテリーモジュール20−3に対して決定される無線バランシング時間(図6の「D3」)は、第2バッテリーモジュール20−2に対して決定される無線バランシング時間(図6の「D2」)よりも長い。
一方、第1ターゲット残存容量9.1kAhと同じモジュール残存容量を有する第1バッテリーモジュール20−1に対するモジュールバランシングは、不要である。したがって、マスターBMS200は、第1ターゲット残存容量 9.1kAhと同じモジュール残存容量を有する第1バッテリーモジュール20−1に対する無線バランシング時間を基準時間(例えば、0秒)と同一に決定し得る。
図6は、無線バッテリー管理システム30が図5に示した複数のバッテリーモジュール20−1〜20−3をバランシングする動作を説明するためのタイミングチャートである。
図6を参照すれば、時点T1とT2との間で、マスターBMS200は、第1RF信号601を第1無線チャンネルを通じて複数のスレーブBMS100−1〜100−3に送信する。この際、時点T1前に、複数のバッテリーモジュール20−1〜20−3のモジュール残存容量のうち、最も少ないものと二番目で少ないものとの差が第1臨界値未満であり得る。複数のバッテリーモジュール20−1〜20−3のモジュール残存容量のうち、最も少ないものと二番目で少ないものとの差が第1臨界値未満である場合、モジュールバランシングは、中断され得る。
時点T2と時点T3との間で、複数のスレーブBMS100−1〜100−3各々は、第1RF信号601に応答し、自分が設けられたバッテリーモジュール20の状態情報を検出する。
時点T3と時点T4との間で、複数のスレーブBMS100−1〜100−3各々は、自分が設けられたバッテリーモジュール20−1、20−3、20−3から検出された状態情報(図5参照)を示す第2RF信号611、621、631を第1無線チャンネルを通じてマスターBMS200に送信する。
時点T4と時点T5との間で、マスターBMS200は、第2RF信号611、621、631に基づき、複数のバッテリーモジュール20−1〜20−3各々に対する無線バランシング時間を決定する。
時点T5と時点T6との間で、マスターBMS200は、第1RF信号602及び第3RF信号603を第1無線チャンネルを通じて複数のスレーブBMS100−1〜100−3に送信する。第3RF信号603は、複数のバッテリーモジュール20−1〜20−3各々に対して決定された無線バランシング時間を示すモジュールバランシング命令を含む。
前述のように、第1バッテリーモジュール20−1に対する無線バランシング時間は、0秒であり得る。したがって、第1スレーブBMS100−1は、第1バッテリーモジュール20−1に対するモジュールバランシングを行わない。時点T6と時点T7との間で、第1スレーブBMS100−1は、第1RF信号602に応答し、第1バッテリーモジュール20−1の状態情報を検出する。この場合、時点T7までの第2バッテリーモジュール20−2のモジュール残存容量は、9.1kAhに維持され得る。その後、時点T7と時点T9との間で、第1スレーブBMS100−1は、第1バッテリーモジュール20−1の状態情報を示す第2RF信号612を第1無線チャンネルを通じてマスターBMS200に送信する。
時点T6と時点T8との間で、第2スレーブBMS100−2は、第3RF信号603に含まれたモジュールバランシング命令に応じて、無線バランシング時間D2の間、第2バッテリーモジュール20−2の電気エネルギーを用いて、第2無線チャンネルを通じて第4RF信号622を送信する。これによって、第4RF信号622の送信前よりも送信後に、第2バッテリーモジュール20−2のモジュール残存容量は、第1ターゲット残存容量9.1kAhに近くなる。例えば、無線バランシング時間D2の間のモジュールバランシングによって、三つのバッテリーセル21−4〜21−6各々のセル残存容量が0.1kAhずつ減少した3.2kAh、3.0kAh、2.9kAhになるため、時点T8における第2バッテリーモジュール20−2のモジュール残存容量は、第1ターゲット残存容量9.1kAhと同一になり得る。
時点T6と時点T8との間または時点T8において、第2スレーブBMS100−2は、第2バッテリーモジュール20−2の状態情報を検出し得る。時点T6から時点T8までは、第2バッテリーモジュール20−2に含まれたバッテリーセル21−4〜21−6に対するセルバランシングが行われない。即ち、時点T6から時点T8までは、第2スレーブBMS100−2の有線バランシング部140の全てのバランシングスイッチSWがターンオフされる。したがって、第2スレーブBMS100−2のスレーブセンシング部130は、第2バッテリーモジュール20−2の状態情報を検出することができる。
時点T8と時点T10との間で、第2スレーブBMS100−2は、第2バッテリーモジュール20−2の状態情報を示す第2RF信号623を第1無線チャンネルを通じてマスターBMS200に送信する。
時点T6と時点T11との間で、第3スレーブBMS100−3は、第3RF信号603に含まれたモジュールバランシング命令に応じて、無線バランシング時間D3の間、第3バッテリーモジュール20−3の電気エネルギーを用いて、第2無線チャンネルを通じて第4RF信号632を送信する。これによって、第4RF信号632の送信前よりも送信後に、第3バッテリーモジュール20−3のモジュール残存容量は、第1ターゲット残存容量9.1kAhに近くなる。例えば、無線バランシング時間D3の間のモジュールバランシングによって、三つのバッテリーセル21−7〜21−9各々のセル残存容量が図5でよりも0.2kAhずつ減少した3.0kAh、3.0kAh、3.1kAhになるので、時点T11における第3バッテリーモジュール20−3のモジュール残存容量は、第1ターゲット残存容量9.1kAhと同一になり得る。
時点T6と時点T11との間または時点T11において、第3スレーブBMS100−3は、第3バッテリーモジュール20−3の状態情報を検出し得る。時点T6から時点T11までは、第3バッテリーモジュール20−3に含まれたバッテリーセル21−7〜21−9に対するセルバランシングが行われない。即ち、時点T6から時点T11までは、第3スレーブBMS100−3の有線バランシング部140の全てのバランシングスイッチSWがターンオフされる。したがって、第3スレーブBMS100−3のスレーブセンシング部130は、第3バッテリーモジュール20−3の状態情報を検出することができる。
時点T11と時点T12との間で、第3スレーブBMS100−3は、第3バッテリーモジュール20−3の状態情報を示す第2RF信号633を第1無線チャンネルを通じてマスターBMS200に送信する。
一方、第3RF信号603のモジュールバランシング命令は、複数のバッテリーモジュール20−1〜20−3のモジュール残存容量の差を抑制するためのものであるが、共通するバッテリーモジュール20に含まれた複数のバッテリーセル21のセル残存容量の差を抑制するためのものではない。これは、図5などのように、同じバッテリーモジュール20内で相互直列接続した複数のバッテリーセル20のうちいずれか一つが放電すれば、残りの各バッテリーセルも同程度に放電するためである。
複数のバッテリーセル21のセル残存容量の差を抑制するために、複数のバッテリーモジュール20−1〜20−3に含まれた少なくとも一つのバッテリーセル21に対する有線バランシング時間を決定し得る。この際、各バッテリーセル21に対して決定される有線バランシング時間は、各バッテリーセル21のセル残存容量と各バッテリーセル21が含まれたバッテリーモジュール20の最少セル残存容量との差に基づくものであり得る。
例えば、バッテリーセル21−2のセル残存容量3.1kAhと、バッテリーセル21−2が含まれた第1バッテリーモジュール20−1の最少セル残存容量3.0kAhとの差0.1kAhに基づき、バッテリーセル21−2に対する有線バランシング時間が決定され得る。他の例で、バッテリーセル21−4のセル残存容量3.3kAhと、バッテリーセル21−4が含まれた第2バッテリーモジュール20−2の最少セル残存容量3.0kAhとの差0.3kAhに基づき、バッテリーセル21−4に対する有線バランシング時間が決定され得る。
マスターBMS200は、第3RF信号603にセルバランシング命令をさらに含ませ得る。セルバランシング命令は、複数のバッテリーモジュール20−1〜20−3に含まれた少なくとも一つのバッテリーセル21に対する有線バランシング時間を示し得る。
第1スレーブBMS100−1は、第3RF信号603のセルバランシング命令によって、有線バランシング部140を制御し、三つのバッテリーセル21−1〜21−3に対する選択的なセルバランシングを行い得る。時点T9の後から、第1スレーブBMS100−1は、有線バランシング部140のバランシングスイッチSWを制御し、三つのバッテリーセル21−1〜21−3のの少なくとも一つを放電し得る。時点T13は、マスターBMS200が新しい第3RF信号を第1無線チャンネルを通じて送信する時点であり得る。
例えば、第1スレーブBMS100−1は、バッテリーセル21−2のセル残存容量が0.1kAhだけ低くなるように、バッテリーセル21−2の両端の間に接続したバランシングスイッチSWをターンオンし、残りのバッテリーセル21−1、21−3各々の両端の間に接続したバランシングスイッチSWは、ターンオフし得る。この際、バッテリーセル21−2の両端の間に接続したバランシングスイッチSWは、バッテリーセル21−2に対して決定された有線バランシング時間だけターンオンされ得る。これによって、時点T9以後の任意の時点で、三つのバッテリーセル21−1〜21−3のセル残存容量が、3.0kAhとして全部同一になり得る。即ち、第1バッテリーモジュール20−1のモジュール残存容量は、9.0kAhになり得る。
第2スレーブBMS100−2は、第3RF信号603のセルバランシング命令に応じて、有線バランシング部140を制御し、三つのバッテリーセル21−4〜21−6に対する選択的なセルバランシングを行い得る。時点T10と時点T13との間の少なくとも一部時間の間、第2スレーブBMS100−2は、有線バランシング部140のバランシングスイッチSWを制御し、三つのバッテリーセル21−4〜21−6の少なくとも一つを放電し得る。例えば、第2スレーブBMS100−2は、バッテリーセル21−4のセル残存容量が0.3kAhだけ低くなるようにバッテリーセル21−4の両端に接続したバランシングスイッチSWをターンオンし、バッテリーセル21−5のセル残存容量が0.1kAhだけ低くなるようにバッテリーセル21−5の両端の間に接続したバランシングスイッチSWをターンオンし、残りのバッテリーセル21−6の両端の間に接続したバランシングスイッチSWはターンオフし得る。この際、バッテリーセル21−4の両端の間に接続したバランシングスイッチSWは、バッテリーセル21−4に対して決定された有線バランシング時間だけターンオンされ得る。また、バッテリーセル21−5の両端の間に接続したバランシングスイッチSWは、バッテリーセル21−5に対して決定された有線バランシング時間だけターンオンされ得る。これによって、時点T10 以後の任意の時点で、三つのバッテリーセル21−4〜21−6のセル残存容量が2.9kAhとして全部同一になり得る。即ち、第2バッテリーモジュール20−2のモジュール残存容量は、8.7kAhになり得る。
第3スレーブBMS100−3は、第3RF信号603のセルバランシング命令に応じて、有線バランシング部140を制御し、三つのバッテリーセル21−7〜21−9に対する選択的なセルバランシングを行い得る。時点T12と時点T13との間における少なくとも一部時間の間、第3スレーブBMS100−3は、有線バランシング部140のバランシングスイッチSWを制御し、三つのバッテリーセル21−7〜21−9の少なくとも一つを放電し得る。例えば、第3スレーブBMS100−3は、バッテリーセル21−8の両端の間に接続したバランシングスイッチSWをターンオフし、バッテリーセル21−9のセル残存容量が0.1kAhだけ低くなるようにバッテリーセル21−9の両端の間に接続したバランシングスイッチSWをターンオンし、残りのバッテリーセル21−7の両端の間に接続したバランシングスイッチSWはターンオフし得る。この際、バッテリーセル21−9の両端の間に接続したバランシングスイッチSWは、バッテリーセル21−9に対して決定された有線バランシング時間だけターンオンされ得る。これによって、時点T12以後の任意の時点では、三つのバッテリーセル21−7〜21−9のセル残存容量が3.0kAhに全部同一になり得る。即ち、第3バッテリーモジュール20−3のモジュール残存容量は9.0kAhになり得る。
一方、図示していないが、時点T13の後には、第1及び第3スレーブBMS100−1、100−3がマスターBMS200からの新しい第3RF信号に含まれたモジュールバランシング命令に応じて、第1及び第3バッテリーモジュール20−1、20−3各々のモジュール残存容量を0.3kAhだけ減少させ得る。これによって、第1〜第3バッテリーモジュール20−1〜20−3のモジュール残存容量が8.7kAhとして全部同一となる。
図7及び図8は、本発明の一実施例による無線バッテリー管理システム30が第2バランシングルールによって複数のバッテリーモジュールをバランシングする動作を説明するのに参照される図である。
図7は、複数のバッテリーモジュール20−1〜20−3各々に対する無線バランシング時間が決定される前の状態を示す。
図7を参照すれば、図5とは違って、第1バッテリーモジュール20−1に含まれた三つのバッテリーセル21−1〜21−3各々のセル残存容量は、3.0kAh、3.1kAh、3.0kAhであり、第2バッテリーモジュール20−2に含まれた三つのバッテリーセル21−4〜21−6各々のセル残存容量は、3.2kAh、3.0kAh、2.9kAhであり、第3バッテリーモジュール20−3に含まれた三つのバッテリーセル21−7〜21−9各々のセル残存容量は、3.1kAh、3.2kAh、3.1kAhである。したがって、第1バッテリーモジュール20−1のモジュール残存容量は9.1kAh、第2バッテリーモジュール20−2のモジュール残存容量は9.1kAh、第3バッテリーモジュール20−3のモジュール残存容量は9.4kAhである。
マスターBMS200は、複数のバッテリーモジュール20−1〜20−3に含まれた全てのバッテリーセル21−1〜21−9のうちいずれか一つを第2ターゲット残存容量に設定する。第2バランシングルールにおいて、複数のバッテリーモジュール20−1〜20−3に含まれた全てのバッテリーセル21−1〜21−9のうち最も少ないものを第2ターゲット残存容量に決定し得る。図7においては、バッテリーセル21−6のセル残存容量2.9kAhが第2ターゲット残存容量として設定される。
また、マスターBMS200は、複数のバッテリーモジュール20−1〜20−3各々の最少セル残存容量を決定する。図7のような状態では、第1バッテリーモジュール20−1の最少セル残存容量は、バッテリーセル21−1またはバッテリーセル21−3のセル残存容量である3.0kAhに決定され、 第2バッテリーモジュール20−2の最少セル残存容量は、バッテリーセル21−6のセル残存容量である2.9kAhに決定され、第3バッテリーモジュール20−3の最少セル残存容量は、バッテリーセル21−7またはバッテリーセル21−9のセル残存容量である3.1kAhに決定される。
マスターBMS200は、第2ターゲット残存容量と残りの各バッテリーモジュール20の最少セル残存容量各々との差に基づき、複数のバッテリーモジュール20−1〜20−3各々に対する無線バランシング時間を決定し得る。
詳しくは、マスターBMS200は、第2ターゲット残存容量2.9kAhと第1バッテリーモジュール20−1の最少セル残存容量3.0kAhとの差0.1kAhに基づき、第1バッテリーモジュール20−1に対する無線バランシング時間を決定する。
また、マスターBMS200は、第2ターゲット残存容量2.9kAhと、第3バッテリーモジュール20−3の最少セル残存容量3.1kAhとの差0.2kAhに基づき、第3バッテリーモジュール20−3に対する無線バランシング時間を決定する。
この際、各バッテリーモジュール20の最少セル残存容量と第2ターゲット残存容量との差が大きいほど、各バッテリーモジュール20に対して決定される無線バランシング時間は増加し得る。例えば、第1バッテリーモジュール20−1に対する無線バランシング時間は、差0.1kAhに、第1バッテリーモジュール20−1に含まれたバッテリーセル21の個数である3を掛けた0.3kAhに対応し、第3バッテリーモジュール20−3に対する無線バランシング時間は、差0.2kAhに、第3バッテリーモジュール20−3に含まれたバッテリーセル21の個数である3を掛けた0.6kAhに対応し得る。
したがって、図7のような状態で、第3バッテリーモジュール20−3に対する無線バランシング時間(図8の「D13」)は、第1バッテリーモジュール20−1に対する無線バランシング時間(図8の「D11」)よりも長い。
一方、第2ターゲット残存容量2.9kAhと第2バッテリーモジュール20−1の最少セル残存容量2.9kAhとは、相互同一である。この場合、マスターBMS200は、第2バッテリーモジュール20−1に対する無線バランシング時間を基準時間(例えば、0秒)と同一に決定し得る。
図8は、無線バッテリー管理システム30が図7に示した複数のバッテリーモジュール20−1〜20−3をバランシングする動作を説明するためのタイミングチャートである。
図8を参照すれば、時点T21とT22との間で、マスターBMS200は第1RF信号701を第1無線チャンネルを通じて複数のスレーブBMS100−1〜100−3に送信する。この際、時点T21の前に、複数のバッテリーモジュール20−1〜20−3の最少セル残存容量のうち、最も少ないものと二番目で少ないものとの差が、第2臨界値未満であり得る。複数のバッテリーモジュール20−1〜20−3の最少セル残存容量のうち最も少ないものと二番目で少ないものとの差が第2臨界値未満である場合、モジュールバランシングは中断され得る。
時点T22と時点T23との間で、複数のスレーブBMS100−1〜100−3各々は、第1RF信号701に応答し、自分が設けられたバッテリーモジュール20の状態情報を検出する。
時点T23と時点T24との間で、複数のスレーブBMS100−1〜100−3各々は、自分が設けられたバッテリーモジュール20−1、20−3、20−3から検出された状態情報(図7参照)を示す第2RF信号711、721、731を第1無線チャンネルを通じてマスターBMS200に送信する。
時点T24と時点T25との間で、マスターBMS200は、第2RF信号711、721、731に基づき、複数のバッテリーモジュール20−1〜20−3各々に対する無線バランシング時間を決定する。
時点T25と時点T26との間で、マスターBMS200は、第1RF信号702及び第3RF信号703を第1無線チャンネルを通じて複数のスレーブBMS100−1〜100−3に送信する。第3RF信号703は、複数のバッテリーモジュール20−1〜20−3各々に対して決定された無線バランシング時間を示すモジュールバランシング命令を含む。
時点T26と時点T28との間で、第1スレーブBMS100−1は、第3RF信号703に含まれたモジュールバランシング命令に応じて、無線バランシング時間D11の間、第1バッテリーモジュール20−1の電気エネルギーを用いて、第2無線チャンネルを通じて第4RF信号712を送信する。これによって、第4RF信号712の送信前よりも送信後に、第1バッテリーモジュール20−1の最少セル残存容量は、第2ターゲット残存容量2.9kAhに近くなる。例えば、無線バランシング時間D11の間のモジュールバランシングによって、三つのバッテリーセル21−1〜21−3各々のセル残存容量が0.1kAhずつ減少した、2.9kAh、3.0kAh、2.9kAhになるので、時点T28における第1バッテリーモジュール20−1の最少セル残存容量は、第2ターゲット残存容量2.9kAhと同一になり得る。
時点T26と時点T28との間または時点T28において、第1スレーブBMS100−1は、第1バッテリーモジュール20−1の状態情報を検出し得る。時点T26から時点T28までは、第1バッテリーモジュール20−1に含まれたバッテリーセル21−1〜21−3に対するセルバランシングが行われない。即ち、時点T26から時点T28までは、第1スレーブBMS100−1の有線バランシング部140の全てのバランシングスイッチSWがターンオフされる。したがって、第1スレーブBMS100−1のスレーブセンシング部130は、第1バッテリーモジュール20−1の状態情報を検出することができる。
時点T28と時点T30との間で、第1スレーブBMS100−1は、第1バッテリーモジュール20−1の状態情報を示す第2RF信号713を第1無線チャンネルを通じてマスターBMS200に送信する。
前述のように、第2バッテリーモジュール20−2に対する無線バランシング時間は、0秒であり得る。したがって、第2スレーブBMS100−2は、第2バッテリーモジュール20−2に対するモジュールバランシングを行わない。時点T26と時点T27との間で、第2スレーブBMS100−2は、第1RF信号702に応答し、第2バッテリーモジュール20−2の状態情報を検出する。この場合、時点T27まで第2バッテリーモジュール20−2のモジュール残存容量は、9.1kAhに維持され得る。その後、時点T27と時点T29との間で、第2スレーブBMS100−2は、第2バッテリーモジュール20−2の状態情報を示す第2RF信号722を第1無線チャンネルを通じてマスターBMS200に送信する。
時点T26と時点T31との間で、第3スレーブBMS100−3は、第3RF信号703に含まれたモジュールバランシング命令に応じて、無線バランシング時間D13の間、第3バッテリーモジュール20−3の電気エネルギーを用いて、第2無線チャンネルを通じて第4RF信号732を送信する。これによって、第4RF信号732の送信前よりも送信後に、第3バッテリーモジュール20−3の最少セル残存容量は、第2ターゲット残存容量2.9kAhに近くなる。例えば、無線バランシング時間D13の間のモジュールバランシングによって、三つのバッテリーセル21−7〜21−9各々のセル残存容量が図7でよりも0.2kAhずつ減少した2.9kAh、3.0kAh、2.9kAhになるので、時点T31における第3バッテリーモジュール20−3の最少セル残存容量は、第2ターゲット残存容量2.9kAhと同一になり得る。
時点T26と時点T31との間または時点T31において、第3スレーブBMS100−3は、第3バッテリーモジュール20−3の状態情報を検出し得る。時点T26から時点T31までは、第3バッテリーモジュール20−3に含まれたバッテリーセル21−7〜21−9に対するセルバランシングが行われない。即ち、時点T26から時点T31までは、第3スレーブBMS100−3の有線バランシング部140の全てのバランシングスイッチSWがターンオフされる。したがって、第3スレーブBMS100−3のスレーブセンシング部130は、第3バッテリーモジュール20−3の状態情報を検出することができる。
時点T31と時点T32との間で、第3スレーブBMS100−3は、第3 バッテリーモジュール20−3の状態情報を示す第2RF信号733を第1無線チャンネルを通じてマスターBMS200に送信する。
一方、第3RF信号703のモジュールバランシング命令は、複数のバッテリーモジュール20−1〜20−3の最少セル残存容量を相互一致させるためのものであるが、共通するバッテリーモジュール20に含まれた複数のバッテリーセル21のセル残存容量の差を抑制するためのものではない。これは、図7などのように、同じバッテリーモジュール20内で相互直列接続した複数のバッテリーセル20のうちいずれか一つが放電すれば、残りの各バッテリーセルも同程度に放電するためである。
各バッテリーモジュール20ごとにそれに含まれた複数のバッテリーセル21のセル残存容量の差を抑制するために、マスターBMS200は、第3RF信号703にセルバランシング命令をさらに含ませ得る。
第1スレーブBMS100−1は、第3RF信号703のセルバランシング命令に応じて、有線バランシング部140を制御し、三つのバッテリーセル21−1〜21−3に対する選択的なセルバランシングを行い得る。時点T30と時点T33との間の少なくとも一部時間の間、第1スレーブBMS100−1は、有線バランシング部140のバランシングスイッチSWを制御し、三つのバッテリーセル21−1〜21−3のうち少なくとも一つを放電させ得る。時点T33は、マスターBMS200が新しい第3RF信号を第1無線チャンネルを通じて送信する時点であり得る。
例えば、第1スレーブBMS100−1は、バッテリーセル21−2のセル残存容量が0.1kAhだけ低くなるよう、バッテリーセル21−2の両端の間に接続したバランシングスイッチSWをターンオンし、残りのバッテリーセル21−1、21−3各々の両端の間に接続したバランシングスイッチSWはターンオフし得る。この際、バッテリーセル21−2の両端の間に接続したバランシングスイッチSWは、バッテリーセル21−2に対して決定された有線バランシング時間だけターンオンされ得る。これによって、時点T30以後の任意の時点で、三つのバッテリーセル21−1〜21−3のセル残存容量が 2.9kAhとして全部同一になり得る。即ち、第1バッテリーモジュール20−1のモジュール残存容量は、8.7kAhになり得る。
第2スレーブBMS100−2は、第3RF信号703のセルバランシング命令に応じて、有線バランシング部140を制御し、三つのバッテリーセル21−4〜21−6に対する選択的なセルバランシングを行い得る。時点T29と時点T33との間の少なくとも一部時間の間、第2スレーブBMS100−2は、有線バランシング部140のバランシングスイッチSWを制御し、三つのバッテリーセル21−4〜21−6のうち少なくとも一つを放電し得る。
例えば、第2スレーブBMS100−2は、バッテリーセル21−4のセル残存容量が0.3kAhだけ低くなるようにバッテリーセル21−4の両端の間に接続したバランシングスイッチSWをターンオンし、バッテリーセル21−5のセル残存容量が0.1kAhだけ低くなるようにバッテリーセル21−5の両端の間に接続したバランシングスイッチSWをターンオンし、残りのバッテリーセル21−6の両端の間に接続したバランシングスイッチSWは、ターンオフし得る。この際、バッテリーセル21−4の両端の間に接続したバランシングスイッチSWは、バッテリーセル21−4に対して決定された有線バランシング時間だけターンオンされ得る。また、バッテリーセル21−5の両端の間に接続したバランシングスイッチSWは、バッテリーセル21−5に対して決定された有線バランシング時間だけターンオンされ得る。これによって、時点T29以後の任意の時点で、三つのバッテリーセル21−4〜21−6のセル残存容量が2.9kAhとして全部同一になり得る。即ち、第2バッテリーモジュール20−2のモジュール残存容量は、8.7kAhになり得る。
第3スレーブBMS100−3は、第3RF信号703のセルバランシング命令に応じて、有線バランシング部140を制御し、三つのバッテリーセル21−7〜21−9に対する選択的なセルバランシングを行い得る。時点T32と時点T33との間の少なくとも一部時間の間、第3スレーブBMS100−3は、有線バランシング部140のバランシングスイッチSWを制御し、三つのバッテリーセル21−7〜21−9のうち少なくとも一つを放電し得る。
例えば、第3スレーブBMS100−3は、バッテリーセル21−8のセル残存容量が0.2kAhだけ低くなるようにバッテリーセル21−8の両端の間に接続したバランシングスイッチSWをターンオンし、残りのバッテリーセル21−7、21−9各々の両端の間に接続したバランシングスイッチSWはターンオフし得る。この際、バッテリーセル21−8の両端の間に接続したバランシングスイッチSWは、バッテリーセル21−8に対して決定された有線バランシング時間だけターンオンされ得る。これによって、時点T32以後の任意の時点では、三つのバッテリーセル21−7〜21−9のセル残存容量が 2.9kAhとして全部同一になり得る。即ち、第3バッテリーモジュール20−3のモジュール残存容量は、8.7kAhになり得る。
一方、図5〜図8を参照してセルバランシング動作よりもモジュールバランシング動作を先に行う実施例を基準で説明したが、本発明の範囲はこれに限定されない。即ち、無線バッテリー管理システム30は、セルバランシング動作を先に行った後にモジュールバランシングを行い得る。
例えば、図7のような状態で、セルバランシング動作が先に行われれば、第1バッテリーモジュール20−1の全てのバッテリーセル21−1〜21−3の残存容量は3.0kAhになり、第2バッテリーモジュール20−2の全てのバッテリーセル21−4〜21−6の残存容量は2.9kAhになり、第3バッテリーモジュール20−3の全てのバッテリーセル21−7〜21−9の残存容量は3.1kAhになる。セルバランシング動作は、各バッテリーモジュール20の最少セル残存容量で残りの全てのバッテリーセル21をバランシングするためである。次に、モジュールバランシング動作が行われれば、第1バッテリーモジュール20−1の全てのバッテリーセル21−1〜21−3の残存容量が0.1kAhずつ減少し、第3バッテリーモジュール20−3の全てのバッテリーセル21−7〜21−9の残存容量が0.2kAhずつ減少する。これによって、全てのバッテリーモジュール20−1〜20−3間のモジュール残存容量の差は勿論、全てのバッテリーセル21−1〜21−9間のセル残存容量の差が除去される。
以上で説明した本発明の実施例は、必ずしも装置及び方法を通じて具現されることではなく、本発明の実施例の構成に対応する機能を実現するプログラムまたはそのプログラムが記録された記録媒体を通じて具現され得、このような具現は、本発明が属する技術分野における専門家であれば、前述した実施例の記載から容易に具現できるはずである。
以上、本発明を限定された実施例と図面によって説明したが、本発明はこれに限定されず、本発明の属する技術分野で通常の知識を持つ者によって本発明の技術思想と特許請求の範囲の均等範囲内で多様な修正及び変形が可能であることは言うまでもない。
また、上述の本発明は、本発明が属する技術分野における通常の知識を持つ者によって本発明の技術思想から脱しない範囲内で多様な置換、変形及び変更が可能であるため、上述の実施例及び添付された図面によって限定されず、多様な変形が行われるように各実施例の全部または一部を選択的に組み合わせて構成可能である。
10 バッテリーパック
20 バッテリーモジュール
30 無線バッテリー管理システム
100 スレーブBMS
110 スレーブメモリー
120 スレーブ通信部
130 スレーブセンシング部
140 有線バランシング部
150 スレーブ電源供給部
160 スレーブ制御部
200 マスターBMS
210 マスターメモリー
220 マスター通信部
240 マスター制御部

Claims (5)

  1. 無線バッテリー管理システムであって、
    状態検出命令を含む第1RF信号を第1無線チャンネルを通じて送信するように構成されたマスターBMSと、
    複数のバッテリーモジュールに1対1で設けられるものであって、前記第1RF信号に応答し、自分が設けられたバッテリーモジュールの状態情報を検出し、前記バッテリーモジュールの状態情報を示す第2RF信号を前記第1無線チャンネルを通じて送信するように構成された複数のスレーブBMSと、を含み、
    各バッテリーモジュールは、直列接続した複数のバッテリーセルを含み、
    前記バッテリーモジュールの状態情報が、前記バッテリーモジュールに含まれた各バッテリーセルの状態情報を含み、
    前記マスターBMSは、
    前記第2RF信号に基づき、前記複数のバッテリーモジュール各々に含まれた各バッテリーセルのセル残存容量を演算し、
    前記複数のバッテリーモジュールに含まれた全てのバッテリーセルのセル残存容量のうち最も少ないものをターゲット残存容量に決定し、
    前記ターゲット残存容量と各バッテリーモジュールの最少セル残存容量との差に基づき、前記複数のバッテリーモジュール各々に対する無線バランシング時間を決定し、
    前記無線バランシング時間を示すモジュールバランシング命令を含む第3RF信号を前記第1無線チャンネルを通じて前記複数のスレーブBMSに送信し、
    前記複数のスレーブBMS各々は、
    前記第3RF信号に含まれた前記モジュールバランシング命令に応じて、前記無線バランシング時間の間、自分が設けられたバッテリーモジュールの電気エネルギーを用いて第2無線チャンネルを通じて第4RF信号を送信する、無線バッテリー管理システム。
  2. 前記第1無線チャンネルが、予め決められた第1周波数帯域を有し、
    前記第2無線チャンネルが、前記第1周波数帯域とは分離した予め決められた第2周波数帯域を有することを特徴とする請求項1に記載の無線バッテリー管理システム。
  3. 前記マスターBMSが、
    前記複数のバッテリーモジュール各々の最少セル残存容量と残りの各セル残存容量との差に基づき、前記複数のバッテリーモジュール各々に含まれた各バッテリーセルに対する有線バランシング時間を決定し、
    前記第3RF信号が、
    前記有線バランシング時間を示すセルバランシング命令をさらに含むことを特徴とする請求項に記載の無線バッテリー管理システム。
  4. 前記複数のスレーブBMS各々が、
    自分が設けられたバッテリーモジュールに含まれた各バッテリーセルの両端の間に電気的に接続した有線バランシング部を含み、
    前記第3RF信号に含まれた前記セルバランシング命令に応じて、前記有線バランシングを制御し、自分が設けられたバッテリーモジュールに含まれた各バッテリーセルのセル残存容量をバランシングすることを特徴とする請求項に記載の無線バッテリー管理システム。
  5. 請求項1から請求項のうちいずれか一項に記載の前記無線バッテリー管理システムと、
    前記複数のバッテリーモジュールと、を含む、バッテリーパック。
JP2019514270A 2017-07-20 2018-06-19 無線バッテリー管理システム及びこれを含むバッテリーパック Active JP6759513B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2017-0092151 2017-07-20
KR1020170092151A KR102204301B1 (ko) 2017-07-20 2017-07-20 무선 배터리 관리 시스템 및 이를 포함하는 배터리팩
PCT/KR2018/006913 WO2019017596A1 (ko) 2017-07-20 2018-06-19 무선 배터리 관리 시스템 및 이를 포함하는 배터리팩

Publications (2)

Publication Number Publication Date
JP2019531042A JP2019531042A (ja) 2019-10-24
JP6759513B2 true JP6759513B2 (ja) 2020-09-23

Family

ID=65016218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019514270A Active JP6759513B2 (ja) 2017-07-20 2018-06-19 無線バッテリー管理システム及びこれを含むバッテリーパック

Country Status (6)

Country Link
US (1) US10571523B2 (ja)
EP (1) EP3517350A4 (ja)
JP (1) JP6759513B2 (ja)
KR (1) KR102204301B1 (ja)
CN (1) CN110050378B (ja)
WO (1) WO2019017596A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102173778B1 (ko) * 2017-07-25 2020-11-03 주식회사 엘지화학 배터리 관리 유닛 및 이를 포함하는 배터리팩
KR102164547B1 (ko) 2017-07-31 2020-10-12 주식회사 엘지화학 배터리 관리 장치 및 이를 포함하는 배터리 팩
KR102202613B1 (ko) * 2017-09-27 2021-01-12 주식회사 엘지화학 배터리 모듈 균등화 장치, 이를 포함하는 배터리 팩 및 자동차
KR102203247B1 (ko) * 2017-10-10 2021-01-13 주식회사 엘지화학 무선 배터리 관리 장치 및 이를 포함하는 배터리팩
KR20200040997A (ko) * 2018-10-11 2020-04-21 삼성전자주식회사 배터리 관리 방법 및 장치
KR102550319B1 (ko) * 2019-02-01 2023-07-04 주식회사 엘지에너지솔루션 배터리 시스템 및 슬레이브 배터리 관리 시스템
KR20200100967A (ko) * 2019-02-19 2020-08-27 주식회사 엘지화학 Ic 칩 및 이를 이용한 회로 시스템
KR20210016795A (ko) * 2019-08-05 2021-02-17 주식회사 엘지화학 에너지 허브 장치 및 에너지 관리 방법
DE102020122491A1 (de) * 2019-08-30 2021-03-04 Silicon Works Co., Ltd. Drahtloses batterie-verwaltungssystem, verwaltungsknoten für dasselbe und verfahren zum betreiben eines kanals
KR102246451B1 (ko) * 2019-11-11 2021-04-30 주식회사 에스제이 테크 모듈 배터리 시스템
CN115485950A (zh) * 2020-04-29 2022-12-16 森萨塔科技公司 电池管理系统中的多功能无线模块监测系统
WO2021243550A1 (en) 2020-06-02 2021-12-09 Inventus Power, Inc. Large-format battery management system
US11509144B2 (en) 2020-06-02 2022-11-22 Inventus Power, Inc. Large-format battery management system with in-rush current protection for master-slave battery packs
US11594892B2 (en) 2020-06-02 2023-02-28 Inventus Power, Inc. Battery pack with series or parallel identification signal
US11489343B2 (en) 2020-06-02 2022-11-01 Inventus Power, Inc. Hardware short circuit protection in a large battery pack
US11552479B2 (en) 2020-06-02 2023-01-10 Inventus Power, Inc. Battery charge balancing circuit for series connections
US11588334B2 (en) 2020-06-02 2023-02-21 Inventus Power, Inc. Broadcast of discharge current based on state-of-health imbalance between battery packs
US11476677B2 (en) 2020-06-02 2022-10-18 Inventus Power, Inc. Battery pack charge cell balancing
US11245268B1 (en) 2020-07-24 2022-02-08 Inventus Power, Inc. Mode-based disabling of communiction bus of a battery management system
US20220074997A1 (en) * 2020-09-04 2022-03-10 Analog Devices, Inc. Measuring ac frequency response in wireless battery management systems
KR20220067327A (ko) * 2020-11-17 2022-05-24 주식회사 엘지에너지솔루션 Bms 관리 장치 및 방법
US11411407B1 (en) 2021-02-24 2022-08-09 Inventus Power, Inc. Large-format battery management systems with gateway PCBA
US11404885B1 (en) 2021-02-24 2022-08-02 Inventus Power, Inc. Large-format battery management systems with gateway PCBA
US11736928B2 (en) * 2021-05-07 2023-08-22 Texas Instruments Incorporated Wireless management of modular subsystems with proxy node options
US11812268B2 (en) 2021-09-30 2023-11-07 Texas Instruments Incorporated Data integrity options for wireless management of modular subsystems
DE102021129775A1 (de) 2021-11-16 2023-05-17 Webasto SE System zum Bereitstellen von Energie für ein Fahrzeug und Verfahren zum Betreiben eines solchen Systems
CN116916374B (zh) * 2023-09-13 2024-01-26 羿动新能源科技有限公司 动力电池无线bms信道质量评价方法和评价系统

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7774151B2 (en) * 1997-11-03 2010-08-10 Midtronics, Inc. Wireless battery monitor
CN100372167C (zh) 2002-11-15 2008-02-27 Nxp股份有限公司 无线电池组管理系统
US7598880B2 (en) * 2005-03-14 2009-10-06 Liebert Corporation Wireless battery monitoring system and method
EP2092627B1 (en) 2006-11-10 2018-05-23 Lithium Balance A/S A battery management system
KR100852060B1 (ko) 2007-07-11 2008-08-13 현대자동차주식회사 하이브리드 자동차용 고전압배터리의 셀 밸런싱 방법
JP2010029050A (ja) * 2008-07-24 2010-02-04 Toshiba Corp 電池システム
JP5521409B2 (ja) * 2008-10-03 2014-06-11 日産自動車株式会社 電池
KR20110029883A (ko) * 2009-09-16 2011-03-23 주식회사 포스코 배터리 셀의 밸런싱 동작을 수행하는 배터리 모듈 제어시스템 및 제어방법
WO2012061262A1 (en) * 2010-11-02 2012-05-10 Navitas Solutions Wireless battery area network for smart battery management
US9559530B2 (en) * 2010-11-02 2017-01-31 Navitas Solutions Fault tolerant wireless battery area network for a smart battery management system
US9564762B2 (en) * 2010-11-02 2017-02-07 Navitas Solutions Fault tolerant wireless battery area network for a smart battery management system
US9553460B2 (en) * 2011-03-31 2017-01-24 Elite Power Solutions Llc Wireless battery management system
JP2013140055A (ja) * 2011-12-29 2013-07-18 Toyota Central R&D Labs Inc 電池監視システム
KR101485127B1 (ko) 2012-03-05 2015-01-28 정윤이 무선 제어 방식의 배터리 에너지 저장장치
GB2500425B (en) * 2012-03-22 2015-07-01 Jaguar Land Rover Ltd Battery management system
JP2013250086A (ja) * 2012-05-30 2013-12-12 Gs Yuasa Corp 蓄電装置システムおよび蓄電装置システムの通信方法
KR101631064B1 (ko) 2012-08-06 2016-06-16 삼성에스디아이 주식회사 배터리 팩의 전압 측정 방법 및 이를 포함하는 에너지 저장 시스템
KR101457191B1 (ko) * 2012-08-24 2014-10-31 서울대학교산학협력단 배터리 팩, 이를 포함하는 배터리 장치 및 셀 밸런싱 방법
KR101477272B1 (ko) * 2012-11-09 2015-01-06 주식회사 엘지화학 이차 전지 셀의 충전량 밸런싱 작업을 제어하는 장치 및 방법
KR101564365B1 (ko) * 2012-11-12 2015-10-29 주식회사 엘지화학 무선 통신을 이용한 배터리 밸런싱 시스템 및 방법
KR20140073949A (ko) * 2012-12-07 2014-06-17 현대모비스 주식회사 차량용 배터리 관리 시스템 및 그 방법
US9553473B2 (en) 2013-02-04 2017-01-24 Ossia Inc. Systems and methods for optimally delivering pulsed wireless power
KR20140110574A (ko) 2013-03-08 2014-09-17 엘지전자 주식회사 배터리 셀 밸런싱 장치 및 배터리 셀 밸런싱 방법
KR101768251B1 (ko) * 2013-04-05 2017-08-30 삼성에스디아이 주식회사 배터리 모듈의 정상 연결 상태 확인을 제공하는 배터리 팩
US9203118B2 (en) * 2013-04-09 2015-12-01 GM Global Technology Operations LLC Capacitive communication layer for cell integrated battery management system
US9537328B2 (en) * 2013-05-23 2017-01-03 Samsung Sdi Co., Ltd. Battery management system and method of driving the same
KR102210890B1 (ko) * 2013-06-05 2021-02-02 삼성에스디아이 주식회사 배터리 시스템, 및 배터리 시스템의 관리 방법
KR101632350B1 (ko) * 2013-09-09 2016-06-21 주식회사 엘지화학 멀티 bms에 대한 통신 식별자 할당 시스템 및 방법
WO2015058165A1 (en) * 2013-10-17 2015-04-23 Ambri Inc. Battery management systems for energy storage devices
KR101630411B1 (ko) 2013-10-22 2016-06-14 주식회사 엘지화학 배터리 팩 관리 장치 및 이를 포함하는 배터리 팩
KR101631065B1 (ko) * 2013-12-03 2016-06-16 삼성에스디아이 주식회사 배터리 시스템 및 배터리 연결방법
FR3014612B1 (fr) * 2013-12-10 2015-12-04 IFP Energies Nouvelles Systeme et procede d'equilibrage de la charge d'une pluralite de modules de stockage d'energie
KR102234290B1 (ko) * 2014-04-04 2021-03-31 삼성에스디아이 주식회사 에너지 저장 시스템 및 그의 구동방법
KR20150137675A (ko) * 2014-05-30 2015-12-09 삼성전자주식회사 배터리 관리 시스템의 셀 밸런싱 방법 및 장치
WO2016072002A1 (ja) * 2014-11-07 2016-05-12 株式会社日立製作所 蓄電管理システム
JP6421625B2 (ja) * 2015-01-30 2018-11-14 日立化成株式会社 無線電池システムおよび無線システム
JP6305358B2 (ja) * 2015-02-03 2018-04-04 株式会社東芝 セル監視装置、方法及びプログラム
KR101863700B1 (ko) * 2015-02-24 2018-06-01 주식회사 엘지화학 배터리 관리 장치
CN205429792U (zh) * 2016-01-27 2016-08-03 德龙伟创科技(深圳)有限公司 一种电池组监控系统
KR102046608B1 (ko) * 2016-08-12 2019-11-19 주식회사 엘지화학 배터리 팩을 위한 온도 모니터링 장치 및 방법
KR20180044484A (ko) * 2016-10-21 2018-05-03 주식회사 엘지화학 충전전압 공급장치 및 공급방법
DE102016224002A1 (de) * 2016-12-02 2018-06-07 Audi Ag Entladen von einem wenigstens zwei Batteriezellen aufweisenden Batteriemodul einer wenigstens zwei Batteriemodule aufweisenden Batterie
KR102155331B1 (ko) * 2017-07-06 2020-09-11 주식회사 엘지화학 무선 배터리 관리 시스템 및 이를 포함하는 배터리팩
KR102399604B1 (ko) * 2017-08-28 2022-05-18 삼성전자주식회사 배터리 관리 장치 및 시스템
KR20190045708A (ko) * 2017-10-24 2019-05-03 삼성전자주식회사 배터리 온도 제어 장치
US10790549B2 (en) * 2017-10-26 2020-09-29 Sunfield Semiconductor Inc. Method for management of energy storage systems, and related method of operation for smart energy storage cells
US11063445B2 (en) * 2017-12-05 2021-07-13 Green Cubes Technology, Llc Multi-cell battery management device
CN110323500A (zh) * 2018-03-28 2019-10-11 纳维达斯解决方案有限公司 容错电池管理

Also Published As

Publication number Publication date
JP2019531042A (ja) 2019-10-24
CN110050378A (zh) 2019-07-23
US10571523B2 (en) 2020-02-25
KR102204301B1 (ko) 2021-01-15
WO2019017596A1 (ko) 2019-01-24
EP3517350A4 (en) 2019-12-25
EP3517350A1 (en) 2019-07-31
CN110050378B (zh) 2022-04-01
KR20190010032A (ko) 2019-01-30
US20190265304A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP6759513B2 (ja) 無線バッテリー管理システム及びこれを含むバッテリーパック
JP6828865B2 (ja) 無線バッテリー管理システム及びこれを含むバッテリーパック
US11718188B2 (en) Wireless battery management system and battery pack including same
US11349159B2 (en) Battery management system and battery pack including same
JP6996065B2 (ja) バッテリー管理ユニット及びこれを含むバッテリーパック
CN110178261B (zh) 主电池管理单元和包括主电池管理单元的电池组
US11165263B2 (en) Wireless battery management system and method for protecting battery pack using same
EP3996237A1 (en) Battery control system, battery pack, electrical vehicle, and id setting method for battery control system
JP2022525001A (ja) バッテリー管理装置及び方法、並びにそれを含むバッテリーシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200807

R150 Certificate of patent or registration of utility model

Ref document number: 6759513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250