JP6758371B2 - 細胞の培養方法および培養液 - Google Patents
細胞の培養方法および培養液 Download PDFInfo
- Publication number
- JP6758371B2 JP6758371B2 JP2018522373A JP2018522373A JP6758371B2 JP 6758371 B2 JP6758371 B2 JP 6758371B2 JP 2018522373 A JP2018522373 A JP 2018522373A JP 2018522373 A JP2018522373 A JP 2018522373A JP 6758371 B2 JP6758371 B2 JP 6758371B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- culture solution
- culture
- cell
- tcs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004113 cell culture Methods 0.000 title claims description 26
- 239000001963 growth medium Substances 0.000 title description 25
- 210000004027 cell Anatomy 0.000 claims description 345
- 238000000034 method Methods 0.000 claims description 159
- 238000010438 heat treatment Methods 0.000 claims description 139
- 238000012258 culturing Methods 0.000 claims description 134
- 238000011084 recovery Methods 0.000 claims description 108
- 230000007704 transition Effects 0.000 claims description 98
- 238000011282 treatment Methods 0.000 claims description 88
- 239000003795 chemical substances by application Substances 0.000 claims description 66
- 229920002678 cellulose Polymers 0.000 claims description 63
- 239000001913 cellulose Substances 0.000 claims description 63
- 239000002121 nanofiber Substances 0.000 claims description 62
- 238000010899 nucleation Methods 0.000 claims description 58
- 229920000609 methyl cellulose Polymers 0.000 claims description 55
- 239000001923 methylcellulose Substances 0.000 claims description 55
- 235000010981 methylcellulose Nutrition 0.000 claims description 55
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 39
- 230000003647 oxidation Effects 0.000 claims description 20
- 238000007254 oxidation reaction Methods 0.000 claims description 20
- 210000000130 stem cell Anatomy 0.000 claims description 15
- 230000007423 decrease Effects 0.000 claims description 13
- 239000000243 solution Substances 0.000 description 428
- 239000000499 gel Substances 0.000 description 110
- 238000009331 sowing Methods 0.000 description 107
- 238000002360 preparation method Methods 0.000 description 92
- 230000008569 process Effects 0.000 description 73
- 230000004663 cell proliferation Effects 0.000 description 65
- 238000004062 sedimentation Methods 0.000 description 58
- 230000000052 comparative effect Effects 0.000 description 33
- 210000004748 cultured cell Anatomy 0.000 description 31
- 239000006185 dispersion Substances 0.000 description 30
- 238000001879 gelation Methods 0.000 description 29
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 24
- 235000010633 broth Nutrition 0.000 description 18
- 239000002609 medium Substances 0.000 description 18
- 239000008279 sol Substances 0.000 description 18
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 17
- 230000000694 effects Effects 0.000 description 17
- 238000003756 stirring Methods 0.000 description 17
- 239000001879 Curdlan Substances 0.000 description 16
- 229920002558 Curdlan Polymers 0.000 description 16
- 229940078035 curdlan Drugs 0.000 description 16
- 235000019316 curdlan Nutrition 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 239000000835 fiber Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000012533 medium component Substances 0.000 description 10
- 230000006378 damage Effects 0.000 description 8
- 239000007800 oxidant agent Substances 0.000 description 8
- 238000004114 suspension culture Methods 0.000 description 8
- 239000000306 component Substances 0.000 description 7
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methyl-cyclopentane Natural products CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000012136 culture method Methods 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 239000007640 basal medium Substances 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 229920002148 Gellan gum Polymers 0.000 description 4
- 101000904787 Homo sapiens Serine/threonine-protein kinase ATR Proteins 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 4
- 229930182816 L-glutamine Natural products 0.000 description 4
- 102100023921 Serine/threonine-protein kinase ATR Human genes 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 210000001671 embryonic stem cell Anatomy 0.000 description 4
- 239000000216 gellan gum Substances 0.000 description 4
- 235000010492 gellan gum Nutrition 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000001172 regenerating effect Effects 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 210000001988 somatic stem cell Anatomy 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 238000000889 atomisation Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000030833 cell death Effects 0.000 description 3
- QQODLKZGRKWIFG-UHFFFAOYSA-N cyfluthrin Chemical compound CC1(C)C(C=C(Cl)Cl)C1C(=O)OC(C#N)C1=CC=C(F)C(OC=2C=CC=CC=2)=C1 QQODLKZGRKWIFG-UHFFFAOYSA-N 0.000 description 3
- 210000003743 erythrocyte Anatomy 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 239000000017 hydrogel Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- 210000005036 nerve Anatomy 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229920002749 Bacterial cellulose Polymers 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000005708 Sodium hypochlorite Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000005016 bacterial cellulose Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010908 decantation Methods 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 210000004700 fetal blood Anatomy 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 210000003780 hair follicle Anatomy 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 210000004966 intestinal stem cell Anatomy 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 239000007758 minimum essential medium Substances 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 210000001057 smooth muscle myoblast Anatomy 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229920001342 Bakelite® Polymers 0.000 description 1
- 239000006145 Eagle's minimal essential medium Substances 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 208000006735 Periostitis Diseases 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004271 bone marrow stromal cell Anatomy 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000002436 femur neck Anatomy 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 210000004263 induced pluripotent stem cell Anatomy 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 210000001178 neural stem cell Anatomy 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 210000001706 olfactory mucosa Anatomy 0.000 description 1
- 210000003460 periosteum Anatomy 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 210000001325 yolk sac Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/02—Separating microorganisms from their culture media
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/22—Processes using, or culture media containing, cellulose or hydrolysates thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/02—Enzymes or microbial cells immobilised on or in an organic carrier
- C12N11/10—Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a carbohydrate
- C12N11/12—Cellulose or derivatives thereof
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Cell Biology (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
例えば、特許文献1には、間葉系幹細胞をセルロースナノファイバー等の天然物由来の多糖類が分散されてなる細胞培養液の中に液中を漂うように分散させることにより、培養液を凍結させることなく、培養条件下で間葉系幹細胞の分化を抑制し、そして望みの一定期間、初期状態を維持し保存することができること、および、セルロースナノファイバー等のナノファイバーの形態にある多糖類といった天然物由来の多糖類を用いることにより、一般的な細胞回収方法により、培養液からの間葉系幹細胞の回収が可能であり、間葉系幹細胞の再利用が可能となることが記載されている([0011])。
また、特許文献2には、ヒドロゲルまたは膜の形態の植物由来の機械的に崩壊させたセルロースナノファイバーおよび/またはその誘導体を含む細胞培養または細胞送達組成物が記載され、さらに、細胞を提供する工程、細胞をこの細胞培養または細胞送達組成物と接触させ、マトリックスを形成する工程、およびそのマトリックス内で三次元または二次元の配置で細胞を培養する工程を含む細胞を培養する方法、ならびに、細胞培養培地および細胞を含む材料を提供する工程、細胞培養材料を分解酵素と接触させる工程、細胞および細胞凝集体を沈降させるために材料を遠心する工程、およびデカンテーションによりセルロースナノファイバーを除去する工程を含む、細胞培養材料から植物ベースのセルロースナノファイバーおよび/またはその培養体を除去する方法が記載されている(特許請求の範囲)。
しかし、遠沈処理時に細胞にかかる遠心加速度によって細胞が潰されてダメージを受けるため、細胞増殖率および細胞回収率を両立できないことが問題となっていた。
また、遠沈処理を行うために、培養により得られた細胞分散液を希釈する必要があるなど、煩雑な操作を要する工程が増加することによって、培養コストが上昇する等の不利益があった。
[1] 昇温時相転移温度TcおよびTcよりも温度が低い降温時相転移温度Tcsを有する培養液をTc未満からTc以上に昇温する昇温工程と、
上記昇温工程において上記培養液をTc以上に昇温した後、Tcs以上の培養温度で、上記培養液中で細胞を浮遊培養する培養工程と、
を備える、細胞の培養方法。
ここで、上記昇温時相転移温度Tcは、上記培養液が5.0℃/分の昇温速度で3.0℃から98.0℃まで昇温されたとする場合において、上記培養液の3.0℃における粘度がηsであるときの、上記培養液の粘度が10×ηsとなる時の温度であり、上記降温時相転移温度Tcsは、上記培養液が5.0℃/分の降温速度で98.0℃から3.0℃まで降温されたとする場合において、上記培養液の粘度が10×ηsとなる時の温度であり、温度の単位を℃、粘度の単位をPa・sとする。
[2] TcおよびTcsが下記式(1)を満たす、上記[1]に記載の細胞の培養方法。
1.0℃≦Tc−Tcs≦70.0℃ (1)
[3] 上記培養工程の後に、さらに、
上記培養液をTcs未満に降温して、上記培養工程において培養された細胞を沈降させ、回収する回収工程、
を備える、上記[1]または[2]に記載の細胞の培養方法。
[4] 上記降温時相転移温度Tcsが3.0℃以上41.0℃以下である、上記[1]〜[3]のいずれか1つに記載の細胞の培養方法。
[5] 上記培養液が、平均直径2.0nm以上100nm以下のセルロースナノファイバーと、熱ゾルゲル変化剤と、を含む、上記[1]〜[4]のいずれか1つに記載の細胞の培養方法。
[6] 上記セルロースナノファイバーのカルボキシ基含有量が0.60mmol/g以上2.0mmol/g以下である、上記[5]に記載の細胞の培養方法。
[7] 上記セルロースナノファイバーの含有量が上記培養液中0.01質量%以上1.0質量%以下である、上記[5]または[6]に記載の細胞の培養方法。
[8] 上記セルロースナノファイバーに酸化処理が施されている、上記[5]〜 [7]のいずれか1つに記載の細胞の培養方法。
[9] 上記熱ゾルゲル変化剤の含有量が上記培養液中0.05質量%以上3.0質量%以下である、上記[5]〜[8]のいずれか1つに記載の細胞の培養方法。
[10] 上記熱ゾルゲル変化剤がメチルセルロースである、上記[5]〜[9]のいずれか1つに記載の細胞の培養方法。
[11] 上記細胞が幹細胞である、上記[1]〜[10]のいずれか1つに記載の細胞の培養方法。
[12] 上記昇温工程の後、かつ、上記培養工程の前に、さらに、
上記昇温工程において上記培養液をTc以上に昇温した後、上記培養液に細胞を播種するゲル化後播種工程
を備える、上記[1]〜[11]のいずれか1つに記載の細胞の培養方法。
[13] 上記昇温工程の前に、さらに、
上記培養液に細胞を播種するゲル化前播種工程
を備える、上記[1]〜[11]のいずれか1つに記載の細胞の培養方法。
[14] 昇温時相転移温度Tcおよび降温時相転移温度Tcsを有する培養液。
ここで、上記昇温時相転移温度Tcは、上記培養液が5.0℃/分の昇温速度で3.0℃から98.0℃まで昇温されたとする場合において、上記培養液の3.0℃における粘度がηsであるときの、上記培養液の粘度が10×ηsとなる時の温度であり、上記降温時相転移温度Tcsは、上記培養液が5.0℃/分の降温速度で98.0℃から3.0℃まで降温されたとする場合において、上記培養液の粘度が10×ηsとなる時の温度であり、温度の単位を℃、粘度の単位をPa・sとする。
[15] TcおよびTcsが下記式(1)を満たす、上記[14]に記載の培養液。
1.0℃≦Tc−Tcs≦70.0℃ (1)
[16] 上記降温時相転移温度Tcsが3.0℃以上41.0℃以下である、上記[14]または[15]に記載の培養液。
[17] 平均直径2.0nm以上100nm以下のセルロースナノファイバーと、熱ゾルゲル変化剤と、を含む、上記[14]〜[16]のいずれか1つに記載の培養液。
[18] 上記セルロースナノファイバーのカルボキシ基含有量が0.60mmol/g以上2.0mmol/g以下である、上記[17]に記載の培養液。
[19] 上記セルロースナノファイバーを0.01質量%以上1.0質量%以下含む、上記[17]または[18]に記載の細胞の培養液。
[20] 上記セルロースナノファイバーに酸化処理が施されている、上記[17]〜[19]のいずれか1つに記載の培養液。
[21] 上記熱ゾルゲル変化剤を0.05質量%以上3.0質量%以下含む、上記[17]〜[20]のいずれか1つに記載の培養液。
[22] 上記熱ゾルゲル変化剤がメチルセルロースである、上記[17]〜[21]のいずれか1つに記載の培養液。
[23] 上記[1]〜[13]のいずれか1つに記載の細胞の培養方法に使用するための、上記[14]〜[22]のいずれか1つに記載の培養液。
従来の細胞の培養方法では、浮遊培養により得られた培養細胞分散液(培養された細胞と培養液とからなる細胞分散液をいう。)を遠沈処理にかけて培養した細胞を沈降させ、培養された細胞を回収していた。そのため、遠沈処理を行う従来の培養細胞の回収方法では、遠沈処理の際に細胞にかかる遠心加速度によるダメージが大きく、遠沈処理の前後における細胞の死亡率が高かった。
これに対して、本発明の細胞の培養方法では、培養液に、高温でゾル状態からゲル状態に相転移し、低温でゲル状態からゾル状態に相転移する機能を付与し、高温でゲル化させた培養液中で浮遊培養し、培養終了後に低温でゲル化した培養液をゾル化することによって、培養された細胞(細胞塊(スフェロイド)を含む。)を沈降させることができるので、遠沈処理によらず細胞を沈降させることができ、培養された細胞が回収時に受けるダメージを抑制するとともに、煩雑な回収操作を簡略化することができる。
これに対して、本発明の細胞の培養方法では、ゲル化した培養液中に細胞を浮遊させるため、培養中に培養液を撹拌することなく、浮遊培養を維持することができる。また、培養中の細胞は容易に沈降せず、かつ本発明のゲルは増殖に必要な栄養素および酸素を十分に拡散できるように強すぎないゲルを構成するため、高い細胞増殖率を達成することができる。
また、本明細書においては、メチルセルロース(methyl cellulose)を「MC」という場合がある。
また、本明細書においては、カードラン(curdlan)を「CU」という場合がある。
また、本明細書においては、カルボキシメチル(carboxymethyl)を「CM」という場合がある。
また、本明細書においては、2,2,6,6−テトラメチル−1−ピペリジン−N−オキシル(2,2,6,6-tetramethyl-1-pyperizine-N-oxyl)を「TEMPO」という場合がある。
また、本明細書において「〜」を用いて表される範囲は、その範囲に「〜」の前後に記載された両端を含む範囲を意味する。例えば、「a〜b」(ここで、aおよびbはある数値(実数)を表し、かつ、a<bであるとする。)という範囲には、aおよびbを含む。
また、本明細書においては、温度の単位を℃、粘度の単位をPa・sとする。
以下、本発明の細胞の培養方法を詳細に説明する。
本発明の細胞の培養方法は、培養液をTc未満からTc以上に昇温する昇温工程と、Tcs以上の培養温度で、培養液中で細胞を浮遊培養する培養工程と、を備える。
本発明の細胞の培養方法においては、昇温工程において培養液をTc以上に昇温した後、培養工程においてTcs以上の培養温度で細胞を浮遊培養する前に、培養液はTcs以上に保たれることが好ましい。
また、本発明の培養方法は、培養液をTcs未満に降温して、培養された細胞を沈降させる回収工程を備えることが好ましい。
また、本発明の培養方法は、昇温工程の後に培養液に細胞を播種するゲル化後播種工程、または昇温工程の前に培養液に細胞を播種するゲル化前播種工程を備えることが好ましい。
また、本発明の培養方法に用いる培養液は、昇温時相転移温度Tcおよび降温時相転移温度Tcsを有する。
本発明の細胞の培養方法において使用する培養液(以下、単に「本発明の培養液」という場合がある。)について詳細に説明する。
本発明の培養液は、昇温時相転移温度TcおよびTcよりも温度が低い降温時相転移温度Tcsを有する。
昇温時相転移温度Tcは、培養液が5.0℃/分の昇温速度で3.0℃から98.0℃まで昇温されたとする場合において、培養液の3.0℃における粘度がηsであるときの、培養液の粘度が10×ηsとなる時の温度である。
降温時相転移温度Tcsは、培養液が5.0℃/分の降温速度で98.0℃から3.0℃まで降温されたとする場合において、培養液の粘度が10×ηsとなる時の温度である。
ここで、TcおよびTcsは、Tc>Tcsの関係を満たす。
また、上記定義から、TcおよびTcsは、3.0<Tc<98.0および3.0<Tcs<98.0の関係を満たすこともいえる。
培養液の昇温時の温度T−粘度ηの関係は、図1のグラフの下側の曲線によって表され、培養液の降温時の温度T−粘度ηの関係は、図1のグラフの上側の曲線によって表される。
昇温時の3.0℃における粘度がηsである。
まず、培養液の温度を昇温してゆき、温度がTcになると、培養液の粘度は10×ηsとなる。すなわち、温度Tcにおいては、培養液はゲル化状態にある。
培養液の温度をT1まで昇温すると、培養液の粘度はη1となる。すなわち、温度T1においては、培養液はゲル化状態にある。ただし、T1はT1≧Tcを満たす温度とし、η1はη1≧10×ηsを満たす粘度とする。
次に、培養液の温度をT1から降温してゆき、温度がTcsになると、培養液の粘度は10×ηsとなる。すなわち、温度Tcsにおいては、培養液はゲル化状態にある。
さらに、培養液の温度をT2まで降温すると、培養液の粘度はη2となる。すなわち、温度T2においては、培養液はゾル化状態にある。ただし、T2はT2<Tcsを満たす温度とし、η2はη2<10×ηsを満たす粘度とする。
ΔTcがこの範囲内であると、ゾル−ゲル転移の幅が広く、ゾル化およびゲル化が同時に起きにくく、培養液がより安定となり、細胞増殖率が向上しやすい。
また、昇温時相転移温度(Tc)が高温になりにくい。Tcが高温になりにくいことによって、昇温工程における培養液の加熱処理の際の温度が低く、培養液中の培地成分が変性し難く、細胞の増殖率を向上しやすい。
また、降温時相転移温度(Tcs)が低温になりにくい。Tcsが低温になりにくいことによって、回収工程における降温処理の際の温度が低くならず、細胞死亡率を低下させやすい。
培養液の粘度を、プレート型粘度計(例えば、Anton Paar 社製MCR301)を用い、プレート径=45mm、ギャップ=0.049mm、および剪断速度=0.1s−1の測定条件で、3.0℃から98.0℃まで、昇温速度5.0℃/分で昇温しながら測定し、粘度が3.0℃における粘度の10倍となる温度を「昇温時相転移温度(Tc)」とする。
次に、培養液の粘度を、同じ測定条件で、98.0℃から3.0℃まで、降温速度5.0℃/分で降温しながら測定し、粘度が昇温時の3.0℃における粘度の10倍となる温度を「降温時相転移温度(Tcs)」とする。
本発明では、熱で培養液のゾル−ゲル転移が生じるが、昇温時相転移温度(Tc)(「ゲル化温度」という場合がある。)および降温時相転移温度(Tcs)(「ゾル化温度」という場合がある。)にヒステリシスが存在することが特徴である。
そして、上記した通り、TcおよびTcsは、Tc>Tcsの関係を満たすため、本発明の培養液は、降温してもゲル化状態を維持でき、ゲル化温度が広がって、培養温度を広く取れるという特徴を有する。
また、本発明の培養液は、ゾル−ゲル転移のヒステリシスが大きいが、ゾル−ゲル転移のヒステリシスが大きいと、培養液をTc以上に昇温してゲル化させると、Tcを下回ってもゾル化し難く、浮遊力が得やすい。すなわち、本発明の培養液は、一度高温に曝してゲル化させると、低温(培養温度)に低下させてもゾル化せず、ゲル化状態のままで浮力を維持する。
さらに、ヒステリシスが大きいことにより、ゾル−ゲルの転移温度を広く取ることができるので、材料設計しやすい。
培養液の成分は、昇温時相転移温度(Tc)および降温時相転移温度(Tcs)を有することができれば、特に限定されないが、平均直径2.0nm以上100nm以下のセルロースナノファイバーおよび熱ゾルゲル変化剤を含むことが望ましい。
セルロースナノファイバー(以下「CNF」という。)の平均直径は、2.0nm以上100nm以下であれば特に限定されないが、好ましくは3.0nm〜50nm、より好ましくは4.0〜20nmである。
CNFの平均直径が2.0nm未満では、CNFのネットワーク構造が脆弱であるため、培養液をゲル化状態としても、培養中の細胞の浮遊性が十分でなく、沈降しやすいため、良好な細胞増殖率を達成することができない。
一方、CNFの平均直径が100nm超では、CNFのネットワーク構造が強固であるため、培養液をゾル化状態としても、培養された細胞の沈降性が十分でなく、沈降し難いため、良好な細胞沈降率を達成することができない。
なお、本発明において、培養終了後、培養液に温度差を与えるだけで細胞が沈降することを指して、回収性が良好であるという場合がある。
CNFの平均直径は、その製造条件を調整することによって、調節することができる。
例えば、機械解砕でCNFを製造する場合、解砕機の圧力を高くするほど、または解砕機の処理回数(パス回数)を多くするほど、CNFの平均直径を小さくすることができる。すなわち、CNFの平均直径を細くすることができる。解砕機の圧力を低くするほど、または解砕機の処理回数(パス回数)を少なくするほど、CNFの平均直径を大きくすることができる。すなわち、CNFの平均直径を太くすることができる。
また、例えば、化学解砕でCNFを製造する場合、化学修飾(例えば、酸化(特許第4998981号公報を参照)、カルボキシメチル化(例えば、国際公開第2015/107995号を参照)、またはリン酸エステル化(例えば、国際公開第2014/185505号を参照)など)の後に機械解砕し、解砕機の圧力および/または処理回数を調整することによって、CNFの平均直径を調節することができる。機械解砕でCNFを製造する場合と同様、解砕機の圧力を高くするほど、または解砕機の処理回数(パス回数)を多くするほど、CNFの平均直径を小さくすることができ、解砕機の圧力を低くするほど、または解砕機の処理回数(パス回数)を少なくするほど、CNFの平均直径を大きくすることができる。
CNF濃度が0.001質量%となるように希釈したCNF水分散液を調製する。このCNF分散液をマイカ製試料台に薄く延ばし、50℃で加熱乾燥させて観察用試料を作成する。観察用試料をAFM(Atomic Force Microscope;原子間力顕微鏡)を用いて観察し、観察した形状像の断面高さを10点計測する。10点の計測値の算術平均値をCNFの平均直径とする。
CNFの平均繊維長は、特に限定されないが、好ましくは0.20μm以上2.0μm以下であり、より好ましくは0.30μm以上1.5μm以下であり、さらに好ましくは0.40μm以上1.0μm以下である。
この範囲内であると、培養液をゲル化状態からゾル化状態に相転移させた際に、より細胞が沈降しやすく、より良好な細胞沈降率を達成することができる。
なお、CNFの平均繊維長は、特表2013−541956号公報に記載された方法にしたがって測定することができる。
例えば、機械解砕でCNFを製造する場合、解砕処理時のCNF分散液の温度を上げるほど平均繊維長を短くすることができ、CNF分散液の温度を下げるほど平均繊維長を長くすることができる。
また、例えば、化学解砕でCNFを製造する場合、化学修飾(例えば、酸化(特許第4998981号公報を参照)、カルボキシメチル化(例えば、国際公開第2015/107995号を参照)、またはリン酸エステル化(例えば、国際公開第2014/185505号を参照)など)の際の処理温度を上げるほど平均繊維長を短くすることができ、処理温度を下げるほど平均繊維長を長くすることができる。
培養液中のCNF含有量が多いほど、昇温時相転移温度(Tc)は下降し、CNF含有量が少ないほど、Tcは上昇する。
培養液中のCNF含有量は、特に限定されないが、好ましくは0.01質量%以上1.0質量%以下であり、より好ましくは0.02質量%以上0.50質量%以下、より好ましくは0.03質量%以上0.10質量%以下である。
本発明の培養液がCNFを含む場合は、含まない場合に比べて、より低温でゲル化することができるので、細胞を培養するための培地成分の変性を抑制することができ、好ましい。CNF含有量が上記範囲内であると、昇温時相転移温度(Tc)を低下させる効果がより発現しやすい。
また、本発明の培養液がCNFを含む場合は、含まない場合に比べて、培養中の細胞を浮遊させることがより容易になり、培養中により沈降し難くなるので、より良好な細胞増殖率を達成することができる。
CNFは、カルボキシ基を含有することが好ましい。
CNFのカルボキシ基含有量は、特に限定されないが、好ましくは0.6mmol/g以上2.0mmol/g以下であり、より好ましくは0.7mmol/g以上1.9mmol/g以下であり、さらに好ましくは0.9mmol以上1.8mmol/g以下である。
CNFがカルボキシ基を含有すると、カルボキシ基によってCNFの分散が促進されて、本発明の培養液中でCNFの繊維が大きく広がり、CNF間の相互作用が大きくなる。その結果、本発明の培養液のゾル−ゲル転移をし易くする効果が発揮される。
また、CNFと熱ゾルゲル変化剤との相互作用を大きくし、ゲル形成を促す効果もある。
CNFの0.5質量%スラリーを60mL調製し、0.1M塩酸水溶液を加えてpH2.5とする。このスラリーに0.05M水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定する。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム水溶液量A(mL)から、下記式により算出する。
カルボキシ基含有量(mmol/g)=A(mL)×0.05(mol/L)/CNF質量(g)
また、CNFは酸化処理が施されていることが好ましい。
酸化処理としては、上記したTEMPO酸化処理などが挙げられる。
すなわち、TEMPO化CNFは、カルボキシ基を含有するとともに、酸化処理が施されているCNFである。
熱ゾルゲル変性材をCNFと併用することで、Tcsを制御することができる。
熱ゾルゲル変性材は降温の際のゾル化を促す。すなわち、あまり低温まで下げずに、ゲル化状態の培養液をゾル化させる効果、すなわち、ゾル化温度を上昇させる降下を有する。
この結果、培養液をゾル化し細胞を沈降、回収する際に、細胞が死亡するような低温にまで培養液温度を下げずにすみ、細胞の死亡率を抑制できる。
熱ゾルゲル変化剤は、特に限定されないが、例えば、メチルセルロース(MC)、およびカードラン(CU)等を挙げることができ、好ましくはMCまたはCUであり、より好ましくはMCである。
MCおよびCUの重合度は、特に限定されないが、好ましくは100〜1万であり、より好ましくは200〜6000であり、さらに好ましくは300〜4000である。
この範囲内であると、ゾル化の効果をより発現しやすく、かつ、培養の粘度がより低下するため、より良好な細胞沈降率を達成することができる。
MC(例えば、メチルセルロース#400,ナカライテスク社製)は、ゲル化温度(Tc)が約60℃であり、ゾル化温度(Tcs)が約20℃である。
市販のMCとしては、例えば、メチルセルロース#100、メチルセルロース#400、メチルセルロース#1500、またはメチルセルロース#4000(いずれもナカライテスク社製;#のあとの数字は重合度を示す)を用いることができる。
CU(例えば、カードラン(生化学用),和光純薬工業株式会社製)は、ゲル化温度(Tc)が約80℃であり、ゾル化温度(Tcs)が約15℃である。
培養液中の熱ゾルゲル変性剤含有量が多いほど、降温時相転移温度(Tcs)は上昇し、熱ゾルゲル剤含有量が少ないほど、Tcsは下降する。
即ち熱ゾルゲル変性剤は、培養液がゾル化する温度を上昇させる効果を有する。この結果、培養液をゾル化し細胞を沈降、回収する際に、細胞が死亡するような低温にまで培養液温度を下げずにすみ、細胞の死亡率を抑制できる。
本発明の好ましい実施態様は、次のような特徴を有する。
培養液がCNFおよび熱ゾルゲル変化剤を含むことにより、培養液にゾル−ゲル転移能が付与される。
培養液をゲル化し、ゲル化状態の培養液中で細胞を浮遊培養することにより、高い細胞増殖率を達成することができる。
培養液のゲル中で浮遊培養を行った後、培養液をゾル化して、培養された細胞を沈降させ、回収し易くする。
このようなゲル化およびゾル化は、意外なことに、CNFと熱ゾルゲル変化剤と相互作用により発現する。
培養液をゲル化温度(Tc)以上の温度に昇温すると、培養液中でハイドロゲルが形成されてゲル化し、細胞が浮遊するが、培養液をゾル化温度(Tcs)未満に降温すると、ハイドロゲルが崩れ、細胞が沈降する。
熱ゾルゲル変化剤だけでもゲル化温度(Tc)およびゾル化温度(Tcs)を発現することは可能であるが、培養時の細胞浮遊性を確保するためには、CNFを併用することが望ましい。
なお、TcはCNFの含有量によって調節することができ、Tcsは熱ゾルゲル変性剤の含有量によって調節することができ、これらは独立しているので、ΔTc=Tc−Tcsは、CNFおよび熱ゾルゲル変化剤の含有量比で調節することができる。
本発明の培養液は、細胞を培養するための培地成分を含んでもよい。
細胞を培養するための培地成分は、細胞の種類によって適宜選択することができるが、ヒト細胞を培養するための基礎培地成分を含む培地としては、例えば、イーグル最小必須培地(EMEM(Eagle’s minimal essential medium)と称する場合がある。)および/またはその変法培地などが挙げられる。EMEMの変法培地として、例えば、ダルベッコ・フォークト変法イーグル最小必須培地(DMEM(Dulbecco's modified Eagle medium))が挙げられる。また、基礎培地成分を含む培地としては、これらの最小必須培地にビタミン、アミノ酸、およびグルコース等の成分を添加したものも含まれる。
昇温工程は、培養液をゲル化温度Tc未満からゾル化温度Tc以上に昇温する工程である。
昇温工程においては、加熱処理により培養液をTc以上に昇温することにより、培養液をゲル化させる。
ゲル化温度Tcがこの範囲内であると、培養工程において、ゲル化した培養液の内部まで酸素が拡散するため、細胞増殖率をより高くすることができる。また、細胞を培養するための培地成分が分解されず、培養される細胞が利用できるため、細胞増殖率をより高くすることができる。
加熱処理の温度がこの範囲内であると、培養液のゲル化が十分に進み、培養工程におおいて細胞に十分な浮力が与えられるため、細胞増殖率がより向上する。また、細胞を培養するための培地成分が加熱処理によって分解されることがないので、細胞増殖率を低下させない。
加熱処理の温度の下限は、ゲル化温度(Tc)に依存するため、培養液に依存して決定される。一方、加熱処理の温度の上限は、細胞を培養するための培地成分の熱分解により規定されるため、ゲル化温度(Tc)に依存しない。
加熱処理の時間がこの範囲内であると、培養液のゲル化が十分に進み、培養工程におおいて細胞に十分な浮力が与えられるため、細胞増殖率がより向上する。また、細胞を培養するための培地成分が加熱処理によって分解されることがないので、細胞増殖率を低下させない。
なお、細胞を培養するための培地成分のうち、アミノ酸、タンパク質、糖、およびビタミンなど、加熱により変性しやすい成分は、後述する培養液調製工程では添加せず、昇温工程の後に培養液に添加することも好ましい。
加熱処理の温度がこの範囲内であると、加熱による細胞の死亡を抑制し、培養工程における細胞増殖率を向上させることができる。
加熱処理のための方法(加熱方法)は、特に限定されないが、例えば、培養容器をプレートヒーター上に乗せて培養容器を加熱する方法、培養容器を湯せんにより加熱する方法、などが挙げられる。また、放射熱源(赤外線ヒーター等)を用いる方法でも良い。
培養工程は、昇温工程において培養液をTc以上に昇温した後、Tcs以上の培養温度で、培養液中で細胞を浮遊培養する工程である。
培養液をゲル化した後、培養開始前においては、培養液をゲル化状態、好ましくは培養液の温度をゾル化温度(Tcs)以上、に保つ。
また、培養開始後、すなわち培養中においては、培養液の温度をTcs以上に保つ。
培養液をゲル化した後、培養液の温度をTcs以上に保つと、培養液がゲル化状態を保ちやすい。
なお、培養中の培養液の温度、すなわち培養温度については、後述する。
本発明の培養液は、熱によってゾル−ゲル転移が生じるが、ゲル化温度(Tc)およびゾル化温度(Tcs)にヒステリシスが存在することが特徴である。
Tc>Tcsであり、この結果、低温に下げてもゲル状態を維持できるため、ゲル化温度が広がり、培養温度を広く取れる特徴を有する。
細胞は、特に限定されず、種々の細胞を含み得る。
細胞の由来は、特に限定されないが、好ましくは動物細胞であり、より好ましくはヒト細胞である。
細胞の種類は、特に限定されないが、好ましくは幹細胞であり、より好ましくは胚性幹細胞(以下「ES細胞」という場合がある。:ES,embryonic stem)、体性幹細胞、および人工多能性幹細胞(以下「iPS細胞」という場合がある。:iPS,induced pluripotent stem)からなる群から選択される少なくとも1つである。
細胞の由来および種類は、特に限定されないが、好ましくはヒト幹細胞であり、より好ましくはヒト胚性幹細胞(ヒトES細胞)、ヒト体性幹細胞、およびヒト人工多能性細胞(iPS細胞)からなる群から選択される少なくとも1つである。
幹細胞は比較的温度変化に強く、培養温度から降温処理の温度まで温度を変化させても、細胞の生存率を高くすることができるためである。
また、ヒト体性幹細胞としては、例えば、ヒト造血幹細胞、ヒト臍帯血幹細胞、ヒト衛星細胞、ヒト腸管幹細胞、ヒト毛包幹細胞、ヒト間葉系幹細胞、ヒト神経幹細胞、ヒト内皮幹細胞、ヒト嗅粘膜幹細胞、ヒト神経冠幹細胞、およびヒト精巣細胞などが挙げられ、好ましくはヒト間葉系幹細胞である。
当業者であれば既知のとおり、これらの間葉系幹細胞は、臨床上の適用の観点から捉えると、自家ソース由来、異種異系ソース由来、または異種間ソース由来のいずれの細胞であってもよい。また、採取源は、ドナー骨髄、組織生検、胚性ソース、または出生後ソースなどのいずれの採取源であってもよい。具体的には、腸骨稜の骨髄、大腿頸骨、脊椎、肋骨、もしくはその他の骨髄腔由来、または胚性卵黄嚢、胎盤、臍帯、骨膜、胎児または青年期の皮膚、および血液を含む組織生検由来などの採取源が挙げられる。
本発明の細胞の培養方法は、昇温工程の前または後に、播種工程を実施してもよい。
播種工程は、培養液に細胞を播種する工程である。
培養液に細胞を播種する方法は、特に限定されないが、例えば、細胞を培養液に分散して調製した懸濁液を培養液に注入する方法が挙げられる。
播種工程は、昇温工程の後(「ART」(after rising temperature)という場合がある。)に行ってもよいし、昇温工程の前(「BRT」(before rising temperature)という場合がある。)に行ってもよい。
また、播種工程において、播種時の細胞濃度は特に限定されないが、好ましくは1.0×105個/mL〜1.0×1010個/mLであり、より好ましくは1.0×106個/mL〜1.0×109個/mLであり、さらに好ましくは1.5×106個/mL〜5.0×108個/mLである。
本発明の細胞の培養方法において、昇温工程の後に行う播種工程を、特に、ゲル化後播種工程という。
ゲル化後播種工程を行う場合は、ゲル化状態にある培養液を弱く撹拌し、細胞を播種することで、培地内部まで細胞を拡散できる。培養液を撹拌する方法としては、例えば、スパチュラーを用いて手で撹拌する方法、マグネティックスターラーおよび撹拌子を用いて撹拌する方法などが挙げられる。撹拌する際の回転数は、特に限定されないが、好ましくは10rpm〜150rpmであり、撹拌時間は、特に限定されないが、好ましくは0.1分〜5分である。これは、以下の理由による。
本発明の培養液がゲル化状態にあるとき、そのゲル構造は熱力学的に安定であるため、撹拌によってゲル構造が壊れても、ゲル化状態を維持できる温度範囲にあれば容易に再構築される。再構築までの時間は、ゲル構造の破壊の程度が大きいほど時間を要するが、弱い撹拌による弱い構造破壊では、1分〜30分で構造が復元し、細胞の浮遊培養が可能となる。
さらに、上記撹拌は、播種の前に行ってもよいし、播種の後に行なってもよい。弱い撹拌なので、遠心処理のような強い撹拌と異なり、播種後に行っても細胞が死亡するようなことがない。
ゲル化後播種工程は、昇温工程において培養液をTc℃以上に昇温してゲル化した後、培養液をゲル化状態に保ったまま、好ましくは培養液の温度をTcs以上に保ったまま行われる。
培養液をゲル化した後、培養液の温度をTcs以上に保つと、培養液がゲル化状態を保ちやすい。
また、ゲル化後播種工程において、細胞を播種する際の培養液の温度はゾル化温度Tcs以上であれば特に限定されないが、好ましくはTcs以上Tc以下であり、より好ましくはTcs+2.0℃以上Tc−2.0℃以下であり、さらに好ましくはTcs+5.0℃以上Tc−5.0℃以下である。
播種時の培地の温度は、細胞に与えるストレスを軽減するため、培養温度付近とすることが望ましい。
本発明の細胞の培養方法において、昇温工程の前に行う播種工程を、特に、ゲル化前播種工程という。
ゲル化前播種工程を行う場合は、昇温時相転移温度(Tc)が低温であることが望ましい。播種工程の後に昇温工程を行っても、低温で培養液をゲル化することができるため、昇温工程の加熱処理に伴う細胞の死亡を抑制でき、培養後の細胞増殖率をより高くすること、および/または、沈降後の細胞死亡率をより低くすること、ができる。
このような昇温時相転移温度(Tc)は、細胞の耐熱性、生存率閾値等に影響され、一律に規定することはできないが、好ましくは45.0℃以下であり、より好ましくは43.0℃以下であり、さらに好ましくは42.0℃以下である。
また、ゲル化前播種工程において、細胞を播種する際の培養液の温度はゲル化温度Tc未満であれば特に限定されないが、好ましくはTcs以上Tc未満であり、より好ましくはTcs+2.0℃以上Tc−2.0℃以下であり、さらに好ましくはTcs+5.0℃以上Tc−5.0℃以下である。
播種時の培地の温度は、細胞に与えるストレスを軽減するため、培養温度付近とすることが望ましい。
本発明の細胞の培養方法は、培養工程の後に、さらに、回収工程を実施してもよい。
回収工程は、培養液をTcs未満に降温して、培養工程において培養された細胞を沈降させ、回収する工程である。
培養液をTcs未満に降温する処理を降温処理といい、その操作を降温操作という場合がある。
なお、本明細書において、Tcsをゾル化温度という場合がある。ただし、Tcsの定義より、Tcsでは培養液はゲル化状態にある。
ゾル化温度Tcsがこの範囲内であると、回収工程において、あまり低温にすることなく細胞を沈降させることができ、かつ、ゲル化状態からゾル化状態への転移が安定するため、細胞死亡率をより低下させることができるとともに、細胞沈降率をより向上させることができる。
降温処理の温度がこの範囲内であると、沈降が十分であり、細胞回収率がより向上するとともに、細胞に与える温度ストレスが少なく、細胞死亡率がより低下する。
降温処理の温度の上限は、ゾル化温度(Tcs)に依存するため、培養液に依存して決定される。一方、降温処理の温度の下限は、その温度での細胞の生存率に依存するため、ゾル化温度(Tcs)に依存しない。
降温処理のための方法(降温方法)は、特に限定されるものではないが、例えば、培養器を水等の冷媒に浸ける方法、培養器にクーラーを接触させる方法等が挙げられる。また冷風をあてることで降温させても良い。
培養液をゾル化して細胞を沈降させた後、上清の培養液をデカンテーション、デカントアスピレーション、またはアスピレーション等の方法で除去することにより、細胞を回収することができる。
本発明の細胞の培養方法は、最初に培養液調製工程を実施してもよい。
培養液調製工程は、細胞を培養するための培養液を調製する工程である。
本発明の培養液がCNFおよび熱ゾルゲル変化剤を含む場合、培養液調製工程は、CNFの調製と、培養液の調製との二段階を含み得る。
ただし、CNFとして既製品を使用する場合は、CNFの調製を省略することができる。
(1)TEMPO(2,2,6,6-tetramethyl-1-pyperizine-N-oxyl;2,2,6,6−テトラメチル−1−ピペリジン−N−オキシル)化CNFの調製方法
TEMPO化CNFの調製方法は、特に限定されないが、例えば、特開2009−263853号公報([0015]〜[0030])に記載された方法にしたがって、セルロース系材料を酸化剤(次亜塩素酸ナトリウム)存在下でTEMPO(2,2,6,6-tetramethyl-1-pyperizine-N-oxyl;2,2,6,6−テトラメチル−1−ピペリジン−N−オキシル)触媒酸化処理を行って酸化処理されたセルロース系原料を、超高圧ホモジナイザーを用いて湿式微粒化処理して解繊することにより、TEMPO化セルロースナノファイバーを調製することができる。
CM化CNFの調製方法は、特に限定されないが、例えば、国際公開第2015/107995号([0056])に記載された方法にしたがって、アルカリ触媒存在下で、CM化剤であるモノクロロ酢酸を用いてCM化処理されたセルロース系原料を、高圧ホモジナイザーを用いて湿式微粒化処理して解繊することにより、CM化セルロースナノファイバーを調製することができる。
その他、特開2015−227517号公報、特開2015−134873号公報、特開2015−4032号公報、特開2014−193580号公報、特開2013−185122号公報、特許3642147号公報、特許4055914号公報、国際公開第13/137140号、国際公開第2015/107995号、国際公開第2015/50117号、国際公開第2014/181560号、国際公開第2014/181260号、国際公開第2014/088072号、または国際公開第2014/087767号等に記載されたCM化CNFの調製方法を使用できる。
リン酸基をCNFに導入することにより、より好ましくはリン酸エステル化することにより、調製することができる。
例えば、国際公開第2014/185505号、特開2016−37031号公報、国際公開第2016/002689号、または国際公開第2016/002688号に記載された方法を使用することができる。
機械解砕CNFの調製方法は、特に限定されないが、例えば、国際公開第2015/111734号([0039])に記載された方法にしたがって、セルロース系原料を、高圧ホモジナイザーを用いて湿式微粒化処理して解繊することにより、機械解砕CNFを調製することができる。
すなわち、CNFとしては、好ましくはカルボキシ基を含有するCNFであり、より好ましくはカルボキシ基を含有するとともに酸化処理が施されているCNFである。
TEMPO化CNFはTEMPO酸化処理により、カルボキシ基の導入と酸化処理が施されている。
CM化CNFはカルボキシメチル化によりカルボキシ基が導入されているが、酸化処置は施されていない。
機械解砕CNFはカルボキシ基が導入されておらず、酸化処理も施されていない。
(CNF無添加培養液の調製)
使用する細胞に適した基礎培地を、従来公知の方法によって、調製することができる。
例えば、国際公開第2015/111734号([0029]〜[0031])に記載された培地、または国際公開第2014/136581号([0062])に記載された培地を使用してもよい。
基礎培地にCNFおよび熱ゾルゲル変化剤を添加することにより、本発明の細胞の培養方法で用いる培養液を調製する。
CNFおよび熱ゾルゲル変化剤の添加順序は、特に限定されず、CNFを添加した後に熱ゾルゲル変化剤を添加してもよいし、CNFを添加する前に熱ゾルゲル変化剤を添加してもよい。また、CNFおよび熱ゾルゲル変化剤を同時に基礎培地に添加してもよい。
CNFを熱ゾルゲル変化剤の添加後に添加する場合、CNFを添加するときに急激な撹拌を行うことで、CNFと熱ゾルゲル変化剤との混合を促し、CNFと熱ゾルゲル変化剤との相互作用によるゾル−ゲル転移を起こし易くすることができる。
また、熱ゾルゲル変化剤をCNFの添加後に添加する場合、熱ゾルゲル変化剤を添加するときに急激な撹拌を行うことで、熱ゾルゲル変化剤とCNFとの混合を促し、熱ゾルゲル変化剤とCNFとの相互作用によるゾル−ゲル転移を起こし易くすることができる。
さらに、CNFおよび熱ゾルゲル変化剤を同時に添加する場合、CNFおよび熱ゾルゲル変化剤を添加するときに急激な撹拌を行うことで、CNFと熱ゾルゲル変化剤との混合を促し、CNFと熱ゾルゲル変化剤との相互作用によるゾル−ゲル転移を起こし易くすることができる。
具体的には、CNFおよび/または熱ゾルゲル変化剤を培地に添加する際、マグネティックスターラー等で撹拌することが好ましく、さらには、添加後高回転のホモジナイザーで撹拌することが好ましい。
ホモジナイザーの回転数は、好ましくは1000rpm〜10万rpm、より好ましくは3000rpm〜5万rpm、さらに好ましくは6000rpm〜2万rpmである。
ホモジナイザーの撹拌時間は、好ましくは10秒〜30分、より好ましくは20秒〜15分、さらに好ましくは30秒〜10分である。
回転数および時間がともにこの範囲内であると、細胞増殖率および細胞沈降率がともに向上しやすい。
培養液の量がこの範囲内であると、浮遊培養の際に細胞に酸素を十分に供給することができるため、細胞増殖率を高くして、大量の細胞を培養することができる。その結果、効率的に培養された細胞の回収をすることが容易となる。
本発明は、また、本発明の細胞の培養方法に使用するための培養液を提供する。
培養液は既に説明したとおりである。
実施例1〜6、および比較例1は、熱ゾルゲル変化剤の効果を示す例である。
比較例1は、セルロースナノファイバーを含むが、熱ゾルゲル変化剤を含まない培養液を使用した例である。
(セルロースナノファイバーの調製)
特開2009−263853号公報([0015]〜[0030])に記載された方法にしたがって、セルロース系材料を酸化剤(次亜塩素酸ナトリウム)存在下でTEMPO(2,2,6,6-tetramethyl-1-pyperizine-N-oxyl;2,2,6,6−テトラメチル−1−ピペリジン−N−オキシル)触媒酸化処理を行って酸化処理されたセルロース系原料を、超高圧ホモジナイザーを用いて湿式微粒化処理して解繊することにより、TEMPO化セルロースナノファイバーを調製した。
調製したTEMPO化セルロースナノファイバーの平均直径およびカルボキシ基導入量を後述する方法にしたがって測定したところ、平均直径は4.0nmであり、カルボキシ基導入量は1.7mmol/gであった。以下、このTEMPO化セルロースナノファイバーを「TEMPO1」と称する場合がある。
セルロースナノファイバーの濃度が0.001質量%となるように希釈したセルロースナノファイバー水分散液(以下「CNF水分散液」という場合がある。)を調製した。このCNF水分散液をマイカ製試料台に薄く延ばし、50℃で加熱乾燥して観察用試料を作成し、原子間力顕微鏡(AFM:atomic force microscope)を用いて観察した形状像の断面高さを10点計測し、平均直径を算出した。
セルロースナノファイバーの0.5質量%スラリーを60mL調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05M水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が穏やかな弱酸の中和段階において消費された0.05M水酸化ナトリウム水溶液の量(a)から、下記式を用いて算出した。
カルボキシ基導入量(mmol/g)=a(mL)×0.05/セルロースナノファイバー質量(g)
調製したTEMPO1を純水と混合して0.3質量%水分散液(以下「CNF分散液」という場合がある。)を得た。このCNF分散液を、121℃で15分間オートクレーブ滅菌し、滅菌後、室温まで冷却した。
粉末培地(ダルベッコ変法イーグル培地2,日水製薬(株)製)に加水し、30分程マグネティックスターラーで撹拌してダルベッコ変法イーグル培地2溶液(以下「DMEM2溶液」という場合がある。)を調製した。DMEM2溶液を、121℃で15分間オートクレーブ滅菌し、滅菌後、室温まで冷却した。
オートクレーブ滅菌後、室温まで冷却したDMEM2溶液に、滅菌したCNF分散液を、表1記載の濃度になるように無菌条件下で滴下した。滴下後、CNF分散液を添加したDMEM2溶液を、ホモミキサーを用いて、10000rpmで5分間撹拌処理し、CNF添加DMEM2溶液を得た。
このCNF添加DMEM2溶液を室温まで冷却した後に、ろ過滅菌したL−グルタミン溶液(L−グルタミン溶液(×100),和光純薬工業(株)製;200mmol/L)を終濃度2mMとなるように添加した。さらに、滅菌した10質量%炭酸水素ナトリウム水溶液を1mL加え、アミノ酸添加DMEM2溶液を得た。
得られたアミノ酸添加DMEM2溶液の少量を採取し、pH試験紙を使用して溶液のpHがpH7.0〜8.0の範囲内であることを確認した。少量を採取して残ったアミノ酸添加DMEM2溶液に、使用前に10体積%となるようにFBS(fetal bovine serum;ウシ胎児血清)を加え、細胞の培養に使用する培養液を得た。
培養容器として、親水化処理したポリスチレン製培養容器(浮遊細胞培養用フラスコ MS−21800,住友ベークライト社製;培養面積225cm2;容量800mL)を準備した。なお、培養容器は、培養液を注入した際の培養液の高さが4.0〜5.0cmとなる培養面積(底面積)を有するものを選定した。
準備した培養容器に、調製した培養液を表1に示す量、無菌的に注入した。
(1)昇温時の粘度の測定
調製した培養液を、3.0℃から98.0℃まで、昇温速度5.0℃/分で昇温しながら、プレート型粘度計(MCR301,Anton Paar社製)を用いて、プレート径=45mm、ギャップ=0.049mm、剪断速度=0.1s−1の測定条件で粘度を測定した。3.0℃から98.0℃までの範囲で、粘度が3.0℃における粘度の10倍となることはなかった。
(2)降温時粘度の測定
98.0℃に昇温した培養液を、降温速度5.0℃/分で降温しながら、3.0℃まで昇温時と同じ測定条件で粘度測定した。98.0℃から3.0℃までの範囲で、粘度が3.0℃における粘度の10倍となることはなかった。
培養液調製工程の後、昇温工程を行った。
培養容器に注入した培養液を表1の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
培養液を注入した培養容器に、ヒト間葉系幹細胞(hMSC(human mesenchymal stem cells),Lonza社製;カタログ番号 PT−2501)(以下「hMSC」という場合がある。)を、表1の「播種工程」の「播種時の細胞濃度[個/mL]」に記載した細胞濃度となるように、播種した(培養容器内の培養液に種細胞を播種したものを、以下「播種細胞分散液」という場合がある。)。具体的には、ヒト間葉系幹細胞PT−2501を培養液に分散して調製した懸濁液(以下「PT−2501懸濁液」という。)を培養液に注入した。
播種時の培養液の状態および培養液の温度は、表1の「播種工程」の該当欄に示すとおりであった。
昇温工程の後、細胞を播種した培養容器を、表1の「培養工程」の「培養液の平均温度 ℃」の欄に記載した温度に設定したインキュベーター(Heracall VIOS CO2インキュベーター,サーモフィッシャー株式会社製)の中に入れ、細胞の培養を開始した(培養工程における、浮遊培養中の細胞および培養液からなる細胞分散液を「浮遊細胞分散液」という。)。
培養条件は、二酸化炭素濃度5.0体積%、および湿度95%RHとした。
培養開始から1日後、培養容器に接着した細胞を取り除くため、培養容器中の浮遊細胞分散液を新しいアズノール滅菌容器(アズノール滅菌シャーレ GD90−15,アズワン社製)に移し、さらに4日間、培養を継続して、スフェロイドを形成した。
培養終了後、表1の「回収工程」の「降温処理の温度 ℃」に記載した温度に5分間曝した後、表1の「回収工程」の「沈降手段」の欄に記載した手段で、培養した細胞を沈降させた。
培養細胞分散液(回収工程における、培養終了した培養容器中の培養された細胞および培養液からなる細胞分散液をいう。)中の総細胞数、細胞増殖率、細胞沈降率、および細胞死亡率を以下に記載する方法にしたがって求めた。
培養細胞分散液を2mLサンプリングし、トリプシン処理によってスフェロイドを形成している細胞をばらばらにした後、光学顕微鏡を用いて、培養細胞分散液1mLあたりの細胞数を計測し、これに培養細胞分散液量をかけて培養細胞分散液中の細胞総数を算出した。
培養細胞分散液中の細胞総数をN個、播種した細胞数をNf個として、細胞増殖率を下記式により算出した。
細胞増殖率=N/Nf 倍
細胞増殖率は高いほどよく、特に5.2倍以上であることが望ましい。
1)降温操作前の全スフェロイド数(N)の計測:
培養細胞分散液を2mLサンプリングし、これを37℃に保った直径20mmのポリスチレン製培養ウェルに注入した。培養ウェルの中央部を、光学顕微鏡を用いて、倍率200倍で10視野観察し、各視野についてスフェロイド数を測定した。この平均値をN1とした。これを10個の培養ウェルの培養液に対して繰返し実施し、N2、N3、・・・、N10を求めた。N1〜N10の平均値から培養細胞分散液1mLあたりのスフェロイド数N 個/mL を算出した。なお、直径50μm以上の細胞塊をスフェロイドとして扱った。
2)降温操作後の浮遊(非沈降性)スフェロイド数(n)の計測:
上記培養ウェルに降温処理を行った後、ウェル中の培養液の上澄みを静かに採取した。採取した上澄みを、同様に顕微鏡を用いて倍率200倍で10視野観察し、各視野について浮遊しているスフェロイド数を測定した。この平均値をn1とした。これを10個の培養ウェルの培養液に対して繰り返し測定し、n2、n3、・・・、n10を求めた。n1〜n10の平均値から上澄み1mLあたりの浮遊スフェロイド数n 個/mL を算出した。なお、直径50μm以上の細胞塊をスフェロイドとして扱った。
3)細胞沈降率の算出:
下記式により細胞沈降率(%)を算出した。
細胞沈降率(%)={(N−n)/N}×100 (%)
細胞沈降率は高いほどよく、特に75.0%以上であることが望ましい。
降温操作前の細胞について、特表2013−541956号公報([0082])に記載の方法にしたがって、生細胞と死細胞とを染め分け、降温操作前の細胞生存率Xa(%)を算出した。
次に、降温操作後の細胞について、同様にして、降温操作後の細胞生存率Xb(%)を算出した。
降温操作による細胞死亡率を下記式により算出した。
細胞死亡率(%)=Xa(%)−Xb(%)
細胞死亡率は低いほどよく、特に11.0%以下であることが望ましい。
スコア=a×{(100−c)/100}×(b/100)
スコアは大きいほどよく、特に4.4以上であることが望ましい。
《培養液調製工程》
CNF添加DMEM2溶液を室温まで冷却した後に、メチルセルロース(メチルセルロース400,和光純薬工業株式会社製)を表1記載の濃度になるように無菌的に添加し、次いで、ろ過滅菌したL−グルタミン溶液(L−グルタミン溶液(×100),和光純薬工業(株)製;200mmol/L)を終濃度2mMとなるように添加した点、およびメチルセルロース添加からの一連の操作およびその後の操作を、約37℃に保って行った点を除いて、比較例1と同様にして行った。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、以下の測定方法によって測定した。
(1)昇温時相転移温度(Tc)の測定
調製した培養液を、3.0℃から98.0℃まで、昇温速度5.0℃/分で昇温しながら、プレート型粘度計(MCR301,Anton Paar社製)を用いて、プレート径=45mm、ギャップ=0.049mm、剪断速度=0.1s−1の測定条件で粘度を測定し、粘度が3.0℃における粘度の10倍になった時の温度を「昇温時相転移温度(Tc)」とした。
(2)降温時相転移温度(Tcs)の測定
98.0℃に昇温した培養液を、降温速度5.0℃/分で降温しながら、3.0℃まで昇温時と同じ測定条件で粘度測定し、粘度が昇温時の3.0℃における粘度の10倍になった時の温度を「降温時相転移温度(Tcs)」とした。
培養液調製工程の後、昇温工程を行った。
培養容器に注入した培養液を表1の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
昇温工程の後、実施例1と同様にして、播種工程を行った。
播種工程の後、実施例1と同様にして、培養工程を行った。
培養工程の後、降温処理の温度を表1の「回収工程」の「降温処理の温度 ℃」の欄に記載した温度とした点を除いて、実施例1と同様にして、回収工程を行った。
《培養液調製工程》
熱ゾルゲル変化剤としてメチルセルロース(MC)を表1に示す添加量で使用した点を除いて、実施例1と同様にして培養液を調製した。
調製した培養液を表1に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、温度および時間を、表1の「昇温工程」の「加熱処理の温度 ℃」欄に記載した温度、とした点を除いて、実施例1と同様にして、培養容器に注入した培養液を、加熱処理した。
昇温工程の後、実施例1と同様にして、播種工程を行った。
播種工程の後、実施例1と同様にして、培養工程を行った。
培養工程の後、降温処理の温度を表1の「回収工程」の「降温処理の温度 ℃」の欄に記載した温度とした点を除いて、実施例1と同様にして、回収工程を行った。
《培養液調製工程》
熱ゾルゲル変化剤としてメチルセルロース(MC)を表1に示す添加量で使用した点を除いて、実施例1と同様にして培養液を調製した。
調製した培養液を表1に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、温度および時間を、表1の「昇温工程」の「加熱処理の温度 ℃」欄に記載した温度、とした点を除いて、実施例1と同様にして、培養容器に注入した培養液を、加熱処理した。
昇温工程の後、実施例1と同様にして、播種工程を行った。
播種工程の後、実施例1と同様にして、培養工程を行った。
培養工程の後、降温処理の温度を表1の「回収工程」の「降温処理の温度 ℃」の欄に記載した温度とした点を除いて、実施例1と同様にして、回収工程を行った。
《培養液調製工程》
熱ゾルゲル変化剤としてメチルセルロース(MC)を表1に示す添加量で使用した点を除いて、実施例1と同様にして培養液を調製した。
調製した培養液を表1に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、温度および時間を、表1の「昇温工程」の「加熱処理の温度 ℃」欄に記載した温度、とした点を除いて、実施例1と同様にして、培養容器に注入した培養液を、加熱処理した。
昇温工程の後、実施例1と同様にして、播種工程を行った。
播種工程の後、実施例1と同様にして、培養工程を行った。
培養工程の後、降温処理の温度を表1の「回収工程」の「降温処理の温度 ℃」の欄に記載した温度とした点を除いて、実施例1と同様にして、回収工程を行った。
《培養液調製工程》
熱ゾルゲル変化剤としてメチルセルロース(MC)を表1に示す添加量で使用した点を除いて、実施例1と同様にして培養液を調製した。
調製した培養液を表1に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、温度および時間を、表1の「昇温工程」の「加熱処理の温度 ℃」欄に記載した温度、とした点を除いて、実施例1と同様にして、培養容器に注入した培養液を、加熱処理した。
昇温工程の後、実施例1と同様にして、播種工程を行った。
播種工程の後、実施例1と同様にして、培養工程を行った。
培養工程の後、降温処理の温度を表1の「回収工程」の「降温処理の温度 ℃」の欄に記載した温度とした点を除いて、実施例1と同様にして、回収工程を行った。
《培養液調製工程》
熱ゾルゲル変化剤としてメチルセルロース(MC)を表1に示す添加量で使用した点を除いて、実施例1と同様にして培養液を調製した。
調製した培養液を表1に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、温度および時間を、表1の「昇温工程」の「加熱処理の温度 ℃」欄に記載した温度、とした点を除いて、実施例1と同様にして、培養容器に注入した培養液を、加熱処理した。
昇温工程の後、実施例1と同様にして、播種工程を行った。
播種工程の後、実施例1と同様にして、培養工程を行った。
培養工程の後、降温処理の温度を表1の「回収工程」の「降温処理の温度 ℃」の欄に記載した温度とした点を除いて、実施例1と同様にして、回収工程を行った。
実施例1〜実施例6は、熱ゾルゲル変化剤(MC)を添加した例である。
MCを含まない比較例1は、ゾル化温度Tcsおよびゲル化温度Tcが無く、培養液を降温しただけでは細胞はほとんど沈降せず、細胞沈降率が低い(35.0%)。
培養液のTcはCNF含有量に依存し、TcsはMC含有量に依存するが、実施例1〜6では、CNF含有量は同一であり、MC含有量のみが異なる。
したがって、MC含有量が多くなるほど、Tcsも上昇し、ΔTc=Tc−Tcsが減少する。MC含有量が少なくなるほど、Tcsは下降し、ΔTcは増加する。ΔTcが大きい方が細胞増殖率が向上しやすいことがわかる。
実施例1は細胞死亡率が11.0%と高いが、これは、回収工程において、降温処理の温度が低かったためであると考えられる。
また、実施例6の細胞増殖率が7.5倍と低いが、これは、培養工程において、ゲル化温度Tcとゾル化温度Tcsとが近く、培養液のゲル化状態が不安定であったためであると考えられる。
実施例7〜実施例9は、加熱処理の温度の効果を示す例である。
《培養液調製工程》
(セルロースナノファイバーの調製)
国際公開第2015/107995号([0056])に記載された方法にしたがって、アルカリ触媒存在下で、カルボキシメチル化(以下「CM化」という場合がある。)剤であるモノクロロ酢酸を用いてCM化処理されたセルロース系原料を、高圧ホモジナイザーを用いて湿式微粒化処理して解繊することにより、CM化セルロースナノファイバー(以下「CM1」という場合がある。)を調製した。調製したCM1の平均直径およびカルボキシ基導入量を、比較例1と同様にして測定したところ、表2に示すとおりであった。
TEMPO1に代えて、調製したCM1を表2に示す添加量で使用した点、および熱ゾルゲル変化剤としてメチルセルロース(MC)を表2に示す添加量で使用した点を除いて、実施例1と同様にして培養液を調製した。
調製した培養液を表2に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、昇温工程を行った。
培養容器に注入した培養液を表2の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
ヒト間葉系幹細胞PT−2501(hMSC)に代えて、ヒトiPS細胞IMR90−1(WiCell Research Institute, Inc., Madison, WI, USA)(以下「IMR90−1」という場合がある。)を使用した点、播種時の細胞濃度を表2に示す細胞濃度とした点、および播種時の培養液の温度を表2に示す温度とした点を除いて、実施例1と同様にして細胞を播種した。
播種時の培養液の状態および培養液の温度は、表2の「播種工程」の該当欄に示すとおりであった。
播種工程の後、表2の「培養液の平均温度 ℃」の欄に記載した温度に設定したインキュベーターを使用した点を除いて、実施例1と同様にして、培養工程を行った。
培養工程の後、降温処理の温度を表2の「回収工程」の「降温処理の温度 ℃」の欄に記載した温度とした点を除いて、実施例1と同様にして、回収工程を行った。
《培養液調製工程〉
実施例7と同様にして培養液を調製した。
調製した培養液を表2に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、昇温工程を行った。
培養容器中の培養液を表2の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
昇温工程の後、実施例7と同様にして、播種工程を行った。
播種工程の後、実施例7と同様にして、培養工程を行った。
培養工程の後、実施例7と同様にして、回収工程を行った。
《培養液調製工程〉
実施例7と同様にして、培養液を調製した。
調製した培養液を表2に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、温度を、表2の「昇温工程」の「加熱処理の温度 ℃」欄に記載した温度とした点を除いて、実施例7と同様にして、培養容器に注入した培養液を、加熱処理した。
昇温工程の後、実施例7と同様にして、播種工程を行った。
播種工程の後、実施例7と同様にして、培養工程を行った。
培養工程の後、実施例7と同様にして、回収工程を行った。
実施例9は、細胞増殖率が8.3倍であり、細胞沈降率が75.0%であり、実施例8の細胞増殖率および細胞沈降率に比べて低かった。
これは、昇温工程における加熱処理の温度が高く、培養工程および回収工程でゲル強度が高かったためであると考えらえる。
また、実施例7は、細胞増殖率が8.2倍であり、実施例8の細胞増殖率に比べて低かった。
これは、昇温工程における加熱処理の温度が低く、ゲル強度が低かったため、培養工程において浮力が低下したためであると考えられる。
実施例10〜12は、降温処理の温度の効果を示す例である。
《培養液調製工程》
(セルロースナノファイバーの調製)
表2に示す平均直径およびカルボキシ基含有量となるように酸化剤の使用量および超高圧ホモジナイザーの圧力を調整した点を除いて、比較例1と同様にしてTEMPO化セルロースナノファイバー(以下「TEMPO2」という場合がある。)を調製した。調製したTEMPO2の平均直径およびカルボキシ基導入量を、比較例1と同様にして測定したところ、表2に示すとおりであった。
TEMPO1に代えて、調製したTEMPO2を表2に示す添加量で使用した点、および熱ゾルゲル変化剤としてカードラン(カードラン(生化学用),和光純薬工業株式会社製)(以下「CU」(curdlan)という場合がある。)を表2に示す添加量で使用した点を除いて、実施例1と同様にして培養液を調製した。
調製した培養液を表2に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、昇温工程を行った。
培養容器に注入した培養液を表2の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
ヒト間葉系幹細胞PT−2501(hMSC)に代えて、ヒトES細胞KhES−1(京都大学再生医療科学研究所附属幹細胞医学研究センター)(以下「KhES−1」という場合がある。)を使用した点、播種時の細胞濃度を表2に示す細胞濃度とした点、および播種時の培養液の温度を表2に示す温度とした点を除いて、実施例1と同様にして細胞を播種した。
播種時の培養液の状態および培養液の温度は、表2の「播種工程」の該当欄に示すとおりであった。
播種工程の後、表2の「培養液の平均温度 ℃」の欄に記載した温度に設定したインキュベーターを使用した点を除いて、実施例1と同様にして、培養工程を行った。
培養工程の後、降温処理の温度を表2の「回収工程」の「降温処理の温度 ℃」の欄に記載した温度とした点を除いて、実施例1と同様にして、回収工程を行った。
《培養液調製工程〉
実施例10と同様にして培養液を調製した。
調製した培養液を表2に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、実施例10と同様にして、培養容器に注入した培養液を、加熱処理した。
昇温工程の後、実施例10と同様にして、播種工程を行った。
播種工程の後、実施例10と同様にして、培養工程を行った。
培養工程の後、実施例10と同様にして、回収工程を行った。
《培養液調製工程〉
実施例10と同様にして培養液を調製した。
調製した培養液を表2に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、実施例10と同様にして、培養容器に注入した培養液を、加熱処理した。
昇温工程の後、実施例10と同様にして、播種工程を行った。
播種工程の後、実施例10と同様にして、培養工程を行った。
培養工程の後、実施例10と同様にして、回収工程を行った。
実施例10は実施例11と比べて細胞沈降率が低かった。これは、降温処理の温度がゾル化温度に近く、ゾルゲル変換が不安定になったためであると考えられる。
実施例12は実施例12と比べて細胞死亡率が高かった。これは、降温処理の温度が低く、細胞に温度ストレスを与えたためであると考えられる。
実施例13〜実施例19はセルロースナノファイバーの含有量の効果を示す例である。
《培養液調製工程》
セルロースナノファイバーを添加しなかった点、および熱ゾルゲル変化剤としてメチルセルロース(MC)を表3に示す添加量で使用した点を除いて、実施例1と同様にして培養液を調製した。
調製した培養液を表3に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、昇温工程を行った。
培養容器に注入した培養液を表3の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
ヒト間葉系幹細胞PT−2501(hMSC)に代えて、ヒト胚性幹細胞H9(WiCell Research Institute, Inc., Madison, WI, USA)を使用した点、播種時の細胞濃度を表3に示す細胞濃度とした点、および播種時の培養液の温度を表3に示す温度とした点を除いて、実施例1と同様にして細胞を播種した。
播種時の培養液の状態および培養液の温度は、表3の「播種工程」の該当欄に示すとおりであった。
播種工程の後、表3の「培養液の平均温度 ℃」の欄に記載した温度に設定したインキュベーターを使用した点を除いて、実施例1と同様にして、培養工程を行った。
培養工程の後、降温処理の温度を表3の「回収工程」の「降温処理の温度 ℃」の欄に記載した温度とした点を除いて、実施例1と同様にして、回収工程を行った。
《培養液調製工程》
(セルロースナノファイバーの調製)
比較例1と同様にしてTEMPO化セルロースナノファイバー(TEMPO1)を調製した。調製したTEMPO1の平均直径およびカルボキシ基導入量を、比較例1と同様にして測定したところ、表2に示すとおりであった。
調製したTEMPO1を表3に示す添加量で使用した点、および熱ゾルゲル変化剤としてメチルセルロース(MC)を表3に示す添加量で使用した点を除いて、実施例1と同様にして、培養液を調製した。
調製した培養液を表3に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例13と同様にして測定した。
培養液調製工程の後、昇温工程を行った。
培養容器に注入した培養液を表3の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
昇温工程の後、実施例13と同様にして、細胞を播種した。
播種工程の後、実施例13と同様にして、培養工程を行った。
培養工程の後、実施例13と同様にして、回収工程を行った。
《培養液調製工程》
TEMPO1を表3に示す添加量で使用した点を除いて、実施例14と同様にして、培養液を調製した。
調製した培養液を表3に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例14と同様にして測定した。
培養液調製工程の後、昇温工程を行った。
培養容器に注入した培養液を表3の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
昇温工程の後、実施例13と同様にして、細胞を播種した。
播種工程の後、実施例13と同様にして、培養工程を行った。
培養工程の後、実施例13と同様にして、回収工程を行った。
《培養液調製工程》
TEMPO1を表3に示す添加量で使用した点を除いて、実施例14と同様にして、培養液を調製した。
調製した培養液を表3に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例14と同様にして測定した。
培養液調製工程の後、昇温工程を行った。
培養容器に注入した培養液を表3の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
昇温工程の後、実施例13と同様にして、細胞を播種した。
播種工程の後、実施例13と同様にして、培養工程を行った。
培養工程の後、実施例13と同様にして、回収工程を行った。
《培養液調製工程》
TEMPO1を表3に示す添加量で使用した点を除いて、実施例14と同様にして、培養液を調製した。
調製した培養液を表3に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例14と同様にして測定した。
培養液調製工程の後、昇温工程を行った。
培養容器に注入した培養液を表3の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
昇温工程の後、実施例13と同様にして、細胞を播種した。
播種工程の後、実施例13と同様にして、培養工程を行った。
培養工程の後、実施例13と同様にして、回収工程を行った。
《培養液調製工程》
TEMPO1を表3に示す添加量で使用した点を除いて、実施例14と同様にして、培養液を調製した。
調製した培養液を表3に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例14と同様にして測定した。
培養液調製工程の後、昇温工程を行った。
培養容器に注入した培養液を表3の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
昇温工程の後、実施例13と同様にして、細胞を播種した。
播種工程の後、実施例13と同様にして、培養工程を行った。
培養工程の後、実施例13と同様にして、回収工程を行った。
《培養液調製工程》
TEMPO1を表3に示す添加量で使用した点を除いて、実施例14と同様にして、培養液を調製した。
調製した培養液を表3に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例14と同様にして測定した。
培養液調製工程の後、昇温工程を行った。
培養容器に注入した培養液を表3の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
昇温工程の後、実施例13と同様にして、細胞を播種した。
播種工程の後、実施例13と同様にして、培養工程を行った。
培養工程の後、実施例13と同様にして、回収工程を行った。
CNF含有量が増加するにしたがってゲル化温度Tcが低下する。
CNFを含まない実施例13は細胞増殖率および細胞沈降性が低い。これは、ゲル化温度Tcおよびゾル化温度Tcsがいずれも高く、昇温工程の加熱処理の温度および回収工程の降温処理の温度がいずれも高くなったためであると考えられる。
実施例19は細胞増殖率が低い。これは、ゲル強度が強いため、培養液内部の酸素濃度が低下したためであると考えられる。
実施例20〜22はCNFの種類の効果およびCNFのカルボキシル基の効果を示す例である。
《培養液調製工程》
(セルロースナノファイバーの調製)
表4に示す平均直径およびカルボキシ基含有量となるように酸化剤の使用量および超高圧ホモジナイザーの圧力を調整した点を除いて、比較例1と同様にしてTEMPO化セルロースナノファイバー(以下「TEMPO3」という場合がある。)を調製した。調製したTEMPO3の平均直径およびカルボキシ基導入量を、比較例1と同様にして測定したところ、表4に示すとおりであった。
TEMPO1に代えて、調製したTEMPO3を表4に示す添加量で使用した点、および熱ゾルゲル変化剤としてメチルセルロース(MC)を表4に示す添加量で使用した点を除いて、実施例1と同様にして培養液を調製した。
調製した培養液を表4に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、昇温工程を行った。
培養容器に注入した培養液を表4の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
ヒト間葉系幹細胞PT−2501(hMSC)に代えて、ヒトES細胞KhES−1(京都大学再生医療科学研究所附属幹細胞医学研究センター)(以下「KhES−1」という場合がある。)を使用した点、播種時の細胞濃度を表4に示す細胞濃度とした点、および播種時の培養液の温度を表4に示す温度とした点を除いて、実施例1と同様にして細胞を播種した。
播種時の培養液の状態および培養液の温度は、表4の「播種工程」の該当欄に示すとおりであった。
《培養工程》
播種工程の後、表4の「培養液の平均温度 ℃」の欄に記載した温度に設定したインキュベーターを使用した点を除いて、実施例1と同様にして、培養工程を行った。
培養工程の後、降温処理の温度を表4の「回収工程」の「降温処理の温度 ℃」の欄に記載した温度とした点を除いて、実施例1と同様にして、回収工程を行った。
《培養液調製工程》
(セルロースナノファイバーの調製)
表4に示す平均直径およびカルボキシ基含有量となるようにカルボキシメチル化剤の使用量および高圧ホモジナイザーの圧力を調整した点を除いて、実施例7と同様にしてCM化セルロースナノファイバー(以下「CM2」という場合がある。)を調製した。調製したCM2の平均直径およびカルボキシ基導入量を、比較例1と同様にして測定したところ、表4に示すとおりであった。
TEMPO3に代えて、調製したCM2を表4に示す添加量で使用した点を除いて、実施例20と同様にして培養液を調製した。
調製した培養液を表4に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、昇温工程を行った。
培養容器に注入した培養液を表4の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
昇温工程の後、実施例20と同様にして、細胞を播種した。
播種工程の後、実施例20と同様にして、培養工程を行った。
培養工程の後、実施例20と同様にして、回収工程を行った。
《培養液調製工程》
(セルロースナノファイバーの調製)
国際公開第2015/111734号([0039])に記載された方法にしたがって、セルロース系原料を、高圧ホモジナイザーを用いて湿式微粒化処理して解繊することにより、機械解砕セルロースナノファイバー(以下「MEC1」という場合がある。)を調製した。調製したMEC1の平均直径を、比較例1と同様にして測定したところ、表4に示すとおりであった。MEC1は酸化処理等のカルボキシ基導入処理を行っていないことから、カルボキシ基導入量は0.0mmol/gである。
TEMPO3に代えて、調製したMEC1を表4に示す添加量で使用した点を除いて、実施例20と同様にして培養液を調製した。
調製した培養液を表4に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、昇温工程を行った。
培養容器に注入した培養液を表4の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
昇温工程の後、実施例20と同様にして、細胞を播種した。
播種工程の後、実施例20と同様にして、培養工程を行った。
培養工程の後、実施例20と同様にして、回収工程を行った。
細胞増殖率および細胞死亡率とも、実施例20(TEMPO化CNF)が最も良好であり、実施例21(CM化CNF)がその次に良好であった。
実施例22(機械解砕CNF)はゲル化温度Tcが高くなり易く、加熱処理の温度が高めとなり、増殖率がやや低下し、さらにゾル化温度Tcsがやや低くなり、降温処理の温度が低めとなって細胞死亡率がやや増加したものと考えられる。
実施例23および実施例24は、熱ゾルゲル変化剤の種類の効果を示す例である。
《培養液調製工程》
(セルロースナノファイバーの調製)
表4に示す平均直径およびカルボキシ基含有量となるように酸化剤の使用量および超高圧ホモジナイザーの圧力を調整した点を除いて、比較例1と同様にしてTEMPO化セルロースナノファイバー(以下「TEMPO4」という場合がある。)を調製した。調製したTEMPO4の平均直径およびカルボキシ基導入量を、比較例1と同様にして測定したところ、表4に示すとおりであった。
TEMPO1に代えて、調製したTEMPO4を表4に示す添加量で使用した点、および熱ゾルゲル変化剤としてメチルセルロース(MC)を表4に示す添加量で使用した点を除いて、実施例1と同様にして培養液を調製した。
調製した培養液を表4に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、昇温工程を行った。
培養容器に注入した培養液を表4の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
ヒト間葉系幹細胞PT−2501(hMSC)に代えて、ヒト胚性幹細胞H9(WiCell Research Institute, Inc., Madison, WI, USA)を使用した点、播種時の細胞濃度を表4に示す細胞濃度とした点、および播種時の培養液の温度を表4に示す温度とした点を除いて、実施例1と同様にして細胞を播種した。
播種時の培養液の状態および培養液の温度は、表4の「播種工程」の該当欄に示すとおりであった。
播種工程の後、表4の「培養液の平均温度 ℃」の欄に記載した温度に設定したインキュベーターを使用した点を除いて、実施例1と同様にして、培養工程を行った。
培養工程の後、降温処理の温度を表4の「回収工程」の「降温処理の温度 ℃」の欄に記載した温度とした点を除いて、実施例1と同様にして、回収工程を行った。
《培養液調製工程》
熱ゾルゲル変化剤としてカードラン(CU)を表4に示す添加量で使用した点を除いて、実施例23と同様にして培養液を調製した。
調製した培養液を表4に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、昇温工程を行った。
培養容器に注入した培養液を表4の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
昇温工程の後、実施例23と同様にして、細胞を播種した。
播種工程の後、実施例23と同様にして、培養工程を行った。
培養工程の後、実施例23と同様にして、回収工程を行った。
実施例23(MC)の方が実施例24(カードラン)に比べ、細胞増殖率および細胞沈降性に優れ、細胞死亡率もやや小さい。
実施例25および比較例2は、回収工程における降温操作を変更した例である。実施例25は降温処理によって細胞を沈降させた例であり、比較例2は遠沈処理によって細胞を沈降させた例である。
《培養液調製工程》
(セルロースナノファイバーの調製)
表4に示す平均直径およびカルボキシ基含有量となるように酸化剤の使用量および超高圧ホモジナイザーの圧力を調整した点を除いて、比較例1と同様にしてTEMPO化セルロースナノファイバー(以下「TEMPO5」という場合がある。)を調製した。調製したTEMPO5の平均直径およびカルボキシ基導入量を、比較例1と同様にして測定したところ、表4に示すとおりであった。
TEMPO1に代えて、調製したTEMPO5を表4に示す添加量で使用した点、および熱ゾルゲル変化剤としてメチルセルロース(MC)を表4に示す添加量で使用した点を除いて、実施例1と同様にして培養液を調製した。
調製した培養液を表4に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、昇温工程を行った。
培養容器に注入した培養液を表4の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
ヒト間葉系幹細胞PT−2501(hMSC)に代えて、ヒトES細胞KhES−1(京都大学再生医療科学研究所附属幹細胞医学研究センター)(以下「KhES−1」という場合がある。)を使用した点、播種時の細胞濃度を表4に示す細胞濃度とした点、および播種時の培養液の温度を表4に示す温度とした点を除いて、実施例1と同様にして細胞を播種した。
播種時の培養液の状態および培養液の温度は、表4の「播種工程」の該当欄に示すとおりであった。
播種工程の後、表4の「培養液の平均温度 ℃」の欄に記載した温度に設定したインキュベーターを使用した点を除いて、実施例1と同様にして、培養工程を行った。
培養工程の後、降温処理の温度を表4の「回収工程」の「降温処理の温度 ℃」の欄に記載した温度とした点を除いて、実施例1と同様にして、回収工程を行った。
《培養液調製工程》
実施例25と同様にして、培養液を調製した。
調製した培養液を表4に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、昇温工程を行わず、実施例25と同様にして、播種工程を行った。
播種工程の後、実施例25と同様にして、培養工程を行った。
培養工程の後、降温操作を遠沈処理(相対遠心加速度335×g)により行った。
降温処理により細胞を沈降させた実施例25に比べて、遠沈処理により細胞を沈降させた比較例2は、細胞死亡率が明らかに高かった。
これは、遠沈処理の際の相対遠心加速度が大きく、細胞に過大なストレスを与えたため、細胞の死亡率が高くなったことによると考えられる。
実施例26および比較例3は、CNF以外の浮遊性素材(ゲランガム)の効果を示す例である。
《培養液調製工程》
(セルロースナノファイバーの調製)
表5に示す平均直径およびカルボキシ基含有量となるように酸化剤の使用量および超高圧ホモジナイザーの圧力を調整した点を除いて、比較例1と同様にしてTEMPO化セルロースナノファイバー(以下「TEMPO6」という場合がある。)を調製した。調製したTEMPO6の平均直径およびカルボキシ基導入量を、比較例1と同様にして測定したところ、表5に示すとおりであった。
TEMPO1に代えて、調製したTEMPO6を表5に示す添加量で使用した点、および熱ゾルゲル変化剤としてメチルセルロース(MC)を表5に示す添加量で使用した点を除いて、実施例1と同様にして培養液を調製した。
調製した培養液を表5に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、昇温工程を行った。
培養容器に注入した培養液を表5の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
ヒト間葉系幹細胞PT−2501(hMSC)に代えて、ヒトES細胞KhES−1(京都大学再生医療科学研究所附属幹細胞医学研究センター)(以下「KhES−1」という場合がある。)を使用した点、播種時の細胞濃度を表5に示す細胞濃度とした点、および播種時の培養液の温度を表5に示す温度とした点を除いて、実施例1と同様にして細胞を播種した。
播種時の培養液の状態および培養液の温度は、表5の「播種工程」の該当欄に示すとおりであった。
播種工程の後、表5の「培養液の平均温度 ℃」の欄に記載した温度に設定したインキュベーターを使用した点を除いて、実施例1と同様にして、培養工程を行った。
培養工程の後、降温処理の温度を表5の「回収工程」の「降温処理の温度 ℃」の欄に記載した温度とした点を除いて、実施例1と同様にして、回収工程を行った。
《培養液調製工程》
TEMPO6に代えて、ゲランガム(脱アシル化ジェランガム KELCOGEL CG−LA,三晶株式会社製)を表5に示す添加量で使用した点を除いて、実施例25と同様にして、培養液を調製した。
調製した培養液を表5に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、昇温工程を行わず、実施例26と同様にして、播種工程を行った。
昇温工程の後、実施例26と同様にして、細胞を播種した。
播種工程の後、実施例26と同様にして、培養工程を行った。
培養工程の後、実施例26と同様にして、回収工程を行った。
比較例3(ゲランガム)はゾルゲル転移せず、細胞沈降性および細胞回収率が実施例26(CNF)に比べて劣っていた。
実施例27および実施例28は、昇温工程の前に播種工程を行った場合(実施例27)と、昇温工程の後に播種工程を行った場合(実施例28)とを比較する例である。
《培養液調製工程》
熱ゾルゲル変化剤としてメチルセルロース(MC)を表5に示す添加量で使用した点を除いて、実施例1と同様にして培養液を調製した。
調製した培養液を表5に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、培養液の温度をTc[℃]未満に保ったまま、細胞を播種した。
細胞の播種は、実施例1と同様に、ヒト間葉系幹細胞PT−2501(hMSC)を使用し、播種時の細胞濃度を表5に示す細胞濃度とした点、および播種時の培養液の温度を表5に示す温度とした点を除いて、実施例1と同様にして細胞を播種した。
播種時の培養液の状態および培養液の温度は、表5の「播種工程」の該当欄に示すとおりであった。
播種工程の後、昇温工程を行った。
培養容器中の培養液を表5の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
播種工程の後、表5の「培養液の平均温度 ℃」の欄に記載した温度に設定したインキュベーターを使用した点を除いて、実施例1と同様にして、培養工程を行った。
培養工程の後、降温処理の温度を表5の「回収工程」の「降温処理の温度 ℃」の欄に記載した温度とした点を除いて、実施例1と同様にして、回収工程を行った。
《培養液調製工程》
実施例27と同様にして培養液を調製した。
調製した培養液を表5に示す量、培養容器に注入して、以降の工程に用いた。
さらに、調製した培養液の相転移温度(TcおよびTcs)を、実施例1と同様にして測定した。
培養液調製工程の後、昇温工程を行った。
培養容器中の培養液を表5の「昇温工程」の「加熱処理の温度 ℃」欄に記載の温度で、「加熱処理の時間 分」欄に記載の時間、加熱処理した。
昇温工程の後、培養液の温度をTcs以上に保ったまま、細胞を播種した。
細胞の播種は、実施例1と同様に、hMSCを使用し、播種時の細胞濃度を表5に示す細胞濃度とした点、および播種時の培養液の温度を表5に示す温度とした点を除いて、実施例1と同様にして細胞を播種した。
播種時の培養液の状態および培養液の温度は、表5の「播種工程」の該当欄に示すとおりであった。
播種工程の後、実施例27と同様にして、培養工程を行った。
培養工程の後、実施例27と同様にして、回収工程を行った。
実施例27と実施例28との間で、効果に差異はなかった。
Claims (21)
- 昇温時相転移温度TcおよびTcよりも温度が低い降温時相転移温度Tcsを有する培養液をTc未満からTc以上に昇温する昇温工程と、
前記昇温工程において前記培養液をTc以上に昇温した後、Tcs以上の培養温度で、前記培養液中で細胞を浮遊培養する培養工程と、
を備え、
前記培養液が、平均直径2.0nm以上100nm以下のセルロースナノファイバーと、熱ゾルゲル変化剤と、を含む、細胞の培養方法。
ここで、前記昇温時相転移温度Tcは、前記培養液が5.0℃/分の昇温速度で3.0℃から98.0℃まで昇温されたとする場合において、前記培養液の3.0℃における粘度がηsであるときの、前記培養液の粘度が10×ηsとなる時の温度であり、前記降温時相転移温度Tcsは、前記培養液が5.0℃/分の降温速度で98.0℃から3.0℃まで降温されたとする場合において、前記培養液の粘度が10×ηsとなる時の温度であり、温度の単位を℃、粘度の単位をPa・sとする。 - TcおよびTcsが下記式(1)を満たす、請求項1に記載の細胞の培養方法。
1.0℃≦Tc−Tcs≦70.0℃ (1) - 前記培養工程の後に、さらに、
前記培養液をTcs未満に降温して、前記培養工程において培養された細胞を沈降させ、回収する回収工程、
を備える、請求項1または2に記載の細胞の培養方法。 - 前記降温時相転移温度Tcsが3.0℃以上41.0℃以下である、請求項1〜3のいずれか1項に記載の細胞の培養方法。
- 前記セルロースナノファイバーのカルボキシ基含有量が0.60mmol/g以上2.0mmol/g以下である、請求項1〜4のいずれか1項に記載の細胞の培養方法。
- 前記セルロースナノファイバーの含有量が前記培養液中0.01質量%以上1.0質量%以下である、請求項1〜4のいずれか1項に記載の細胞の培養方法。
- 前記セルロースナノファイバーに酸化処理が施されている、請求項1〜6のいずれか1項に記載の細胞の培養方法。
- 前記熱ゾルゲル変化剤の含有量が前記培養液中0.05質量%以上3.0質量%以下である、請求項1〜7のいずれか1項に記載の細胞の培養方法。
- 前記熱ゾルゲル変化剤がメチルセルロースである、請求項1〜8のいずれか1項に記載の細胞の培養方法。
- 前記細胞が幹細胞である、請求項1〜9のいずれか1項に記載の細胞の培養方法。
- 前記昇温工程の後、かつ、前記培養工程の前に、さらに、
前記昇温工程において前記培養液をTc以上に昇温した後、前記培養液に細胞を播種するゲル化後播種工程
を備える、請求項1〜10のいずれか1項に記載の細胞の培養方法。 - 前記昇温工程の前に、さらに、
前記培養液に細胞を播種するゲル化前播種工程
を備える、請求項1〜10のいずれか1項に記載の細胞の培養方法。 - 昇温時相転移温度Tcおよび降温時相転移温度Tcsを有し、
平均直径2.0nm以上100nm以下のセルロースナノファイバーと、熱ゾルゲル変化剤と、を含む、培養液。
ここで、前記昇温時相転移温度Tcは、前記培養液が5.0℃/分の昇温速度で3.0℃から98.0℃まで昇温されたとする場合において、前記培養液の3.0℃における粘度がηsであるときの、前記培養液の粘度が10×ηsとなる時の温度であり、前記降温時相転移温度Tcsは、前記培養液が5.0℃/分の降温速度で98.0℃から3.0℃まで降温されたとする場合において、前記培養液の粘度が10×ηsとなる時の温度であり、温度の単位を℃、粘度の単位をPa・sとする。 - TcおよびTcsが下記式(1)を満たす、請求項13に記載の培養液。
1.0℃≦Tc−Tcs≦70.0℃ (1) - 前記降温時相転移温度Tcsが3.0℃以上41.0℃以下である、請求項13または14に記載の培養液。
- 前記セルロースナノファイバーのカルボキシ基含有量が0.60mmol/g以上2.0mmol/g以下である、請求項13〜15のいずれか1項に記載の培養液。
- 前記セルロースナノファイバーを0.01質量%以上1.0質量%以下含む、請求項13〜16のいずれか1項に記載の細胞の培養液。
- 前記セルロースナノファイバーに酸化処理が施されている、請求項13〜17のいずれか1項に記載の培養液。
- 前記熱ゾルゲル変化剤を0.05質量%以上3.0質量%以下含む、請求項13〜18のいずれか1項に記載の培養液。
- 前記熱ゾルゲル変化剤がメチルセルロースである、請求項13〜19のいずれか1項に記載の培養液。
- 請求項1〜12のいずれか1項に記載の細胞の培養方法に使用するための、請求項13〜20のいずれか1項に記載の培養液。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016112917 | 2016-06-06 | ||
JP2016112917 | 2016-06-06 | ||
PCT/JP2017/017040 WO2017212829A1 (ja) | 2016-06-06 | 2017-04-28 | 細胞の培養方法および培養液 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2017212829A1 JPWO2017212829A1 (ja) | 2019-04-04 |
JP6758371B2 true JP6758371B2 (ja) | 2020-09-23 |
Family
ID=60577795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018522373A Active JP6758371B2 (ja) | 2016-06-06 | 2017-04-28 | 細胞の培養方法および培養液 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6758371B2 (ja) |
WO (1) | WO2017212829A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020184350A1 (ja) * | 2019-03-08 | 2020-09-17 | 株式会社カネカ | 多能性幹細胞の大量培養 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3190145B2 (ja) * | 1992-10-30 | 2001-07-23 | 倭 窪田 | 動物組織培養用担体およびこれを用いる動物組織培養方法 |
JP4439221B2 (ja) * | 2003-08-14 | 2010-03-24 | メビオール株式会社 | 熱可逆ハイドロゲル形成性組成物 |
JP2008104358A (ja) * | 2006-10-23 | 2008-05-08 | Toyobo Co Ltd | 培養皮膚の作製方法及びその培地 |
JP6029102B2 (ja) * | 2012-11-14 | 2016-11-24 | グンゼ株式会社 | 三次元培養弾性線維組織の製造方法 |
US11603415B2 (en) * | 2014-01-17 | 2023-03-14 | Nippon Paper Industries Co., Ltd. | Dry solids of anionically modified cellulose nanofibers and processes for preparing them |
US10316292B2 (en) * | 2014-01-23 | 2019-06-11 | Nissan Chemical Industries, Ltd. | Material for undifferentiated state-maintaining culture |
JP6410343B2 (ja) * | 2014-07-01 | 2018-10-24 | 学校法人順天堂 | 脂肪組織由来幹細胞から表皮角化細胞への誘導 |
-
2017
- 2017-04-28 JP JP2018522373A patent/JP6758371B2/ja active Active
- 2017-04-28 WO PCT/JP2017/017040 patent/WO2017212829A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2017212829A1 (ja) | 2017-12-14 |
JPWO2017212829A1 (ja) | 2019-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jessop et al. | Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting | |
TWI671406B (zh) | 維持未分化性之培養材料 | |
Hasany et al. | Combinatorial screening of nanoclay-reinforced hydrogels: a glimpse of the “holy grail” in orthopedic stem cell therapy? | |
Zheng et al. | Use of chitosan conduit combined with bone marrow mesenchymal stem cells for promoting peripheral nerve regeneration | |
US20210069378A1 (en) | Nanocellulose-containing bioinks for 3d bioprinting, methods of making and using the same, and 3d biostructures obtained therefrom | |
WO2017199737A1 (ja) | 培養細胞の回収方法および培養細胞分散液 | |
JP2022009047A (ja) | 細胞外マトリックス含有組成物、三次元組織体形成用仮足場材及び三次元組織体形成剤並びに三次元組織体から細胞を回収する方法 | |
James et al. | Mineralized DNA-collagen complex-based biomaterials for bone tissue engineering | |
Valiani et al. | Study of carbon nano-tubes effects on the chondrogenesis of human adipose derived stem cells in alginate scaffold | |
Huang et al. | Dynamic culture of a thermosensitive collagen hydrogel as an extracellular matrix improves the construction of tissue-engineered peripheral nerve | |
Rufaihah et al. | The effect of scaffold modulus on the morphology and remodeling of fetal mesenchymal stem cells | |
JP6758371B2 (ja) | 細胞の培養方法および培養液 | |
Liu et al. | Chitosan with enhanced deprotonation for accelerated thermosensitive gelation with β-glycerophosphate | |
US20240052314A1 (en) | A bioreactor and a method for extracting cell-derived products from cultured cells and a nanostructured cellulose product | |
Chen et al. | Preparation of porous GelMA microcarriers by microfluidic technology for Stem-Cell culture | |
Chung et al. | Fabrication of adipose-derived mesenchymal stem cell aggregates using biodegradable porous microspheres for injectable adipose tissue regeneration | |
US20220213432A1 (en) | Transplantable cell composition comprising eukaryotic cells in a nanofibrillar cellulose hydrogel, method for preparing thereof and use of nanofibrillar cellulose | |
JP7410491B2 (ja) | 浮遊培養用培地添加剤、培地組成物及び培養方法 | |
EP4148071A1 (en) | A method for preparing microbeads, microbeads, a cell culture, a method for providing cell-derived products, the microbeads for use for providing bioactive substances to a target, and use of chemically anionically modified nanofibrillar cellulose | |
Kim et al. | Calcium Sulfate Microparticle Size Modification for Improved Alginate Hydrogel Fabrication and Its Application in 3D Cell Culture | |
Tian et al. | Preparation and performance study of in situ mineralized bone tissue engineering scaffolds | |
Chen et al. | Facile design of biofunctionalized nanocomposite hydrogel to potentiate angiogenesis and osteogenesis for the skull regeneration | |
Zheng et al. | Incorporation of small extracellular vesicles in PEG/HA-Bio-Oss hydrogel composite scaffold for bone regeneration | |
Hamidian Jahromi | Hydrogel encapsulation for the culture of bone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181205 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200818 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200901 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6758371 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |