JP6754185B2 - Organic functional materials for organic electroluminescence devices, display devices, lighting devices and electronic devices - Google Patents

Organic functional materials for organic electroluminescence devices, display devices, lighting devices and electronic devices Download PDF

Info

Publication number
JP6754185B2
JP6754185B2 JP2015240757A JP2015240757A JP6754185B2 JP 6754185 B2 JP6754185 B2 JP 6754185B2 JP 2015240757 A JP2015240757 A JP 2015240757A JP 2015240757 A JP2015240757 A JP 2015240757A JP 6754185 B2 JP6754185 B2 JP 6754185B2
Authority
JP
Japan
Prior art keywords
group
organic
layer
light emitting
organic electroluminescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015240757A
Other languages
Japanese (ja)
Other versions
JP2017107992A (en
Inventor
杉野 元昭
元昭 杉野
加藤 栄作
栄作 加藤
公彦 大久保
公彦 大久保
継吾 玉木
継吾 玉木
杉田 修一
修一 杉田
幸宏 牧島
幸宏 牧島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2015240757A priority Critical patent/JP6754185B2/en
Publication of JP2017107992A publication Critical patent/JP2017107992A/en
Application granted granted Critical
Publication of JP6754185B2 publication Critical patent/JP6754185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本発明は、有機エレクトロルミネッセンス素子、表示装置、照明装置及び電子デバイス用有機機能性材料に関する。さらに詳しくは、本発明は、発光効率が高く、発光寿命が長く、高温下での保存安定性が改善された有機エレクトロルミネッセンス素子等に関する。 The present invention relates to organic functional materials for organic electroluminescence devices, display devices, lighting devices and electronic devices. More specifically, the present invention relates to an organic electroluminescence device having high luminous efficiency, long luminous life, and improved storage stability at high temperature.

有機エレクトロルミネッセンス素子(以下、「有機EL素子」ともいう。)は、陽極と陰極の間を、有機発光物質が含有された有機薄膜層(単層又は多層)で構成する薄膜型の全固体素子である。この様な有機EL素子に電圧を印加すると、有機薄膜層に陰極から電子が、陽極から正孔が注入され、これらが発光層(有機発光物質含有層)において再結合して励起子が生じる。有機EL素子はこれら励起子からの光の放出(蛍光・リン光)を利用した発光素子であり、次世代の平面ディスプレイや照明として期待されている技術である。 An organic electroluminescence device (hereinafter, also referred to as an “organic EL device”) is a thin-film type all-solid-state device composed of an organic thin film layer (single layer or multilayer) containing an organic luminescent substance between an anode and a cathode. Is. When a voltage is applied to such an organic EL element, electrons are injected from the cathode into the organic thin film layer and holes are injected from the anode, and these are recombined in the light emitting layer (organic light emitting substance-containing layer) to generate excitons. The organic EL element is a light emitting element that utilizes the emission of light (fluorescence / phosphorescence) from these excitons, and is a technology expected as a next-generation flat display and lighting.

更に、蛍光発光を利用する有機EL素子に比べ、原理的に約4倍の発光効率が実現可能である励起三重項からのリン光発光を利用する有機EL素子がプリンストン大学から報告されて以来、室温でリン光を示す材料の開発を始めとし、発光素子の層構成や電極の研究開発が世界中で行われている。 Furthermore, since the University of Princeton reported an organic EL element that uses phosphorescence emission from an excited triplet, which can achieve about four times the emission efficiency in principle compared to an organic EL element that uses fluorescence emission. Starting with the development of materials that exhibit phosphorescence at room temperature, research and development of the layer structure of light emitting elements and electrodes are being carried out all over the world.

このように、リン光発光方式は大変ポテンシャルの高い方式であるが、リン光発光を利用する有機ELデバイスにおいては、蛍光発光を利用するそれとは大きく異なり、発光中心の位置をコントロールする方法、とりわけ発光層の内部で再結合を行い、いかに発光を安定に行わせることができるかが、素子の効率・寿命を高める上で重要な技術的問題となっている。 In this way, the phosphorescence emission method has a very high potential, but in an organic EL device that uses phosphorescence emission, it is significantly different from that that uses fluorescence emission, and a method for controlling the position of the emission center, particularly Recoupling inside the light emitting layer and how stable the light emission can be achieved is an important technical issue for improving the efficiency and life of the device.

そこで、近年は発光層に隣接する形で、発光層の陽極側に位置する正孔輸送層や、発光層の陰極側に位置する電子輸送層等を備えた多層積層型の素子が良く知られている。また、発光層には発光ドーパントとしてのリン光発光性化合物とホスト化合物とを用いた混合層が多く用いられている。 Therefore, in recent years, a multi-layer laminated type device having a hole transport layer located on the anode side of the light emitting layer, an electron transport layer located on the cathode side of the light emitting layer, and the like adjacent to the light emitting layer is well known. ing. Further, as the light emitting layer, a mixed layer using a phosphorescent compound as a light emitting dopant and a host compound is often used.

一方、材料の観点からは、素子性能向上に対する新規材料創出の期待が大きい。特にリン光発光性化合物のホスト化合物として、含窒素多縮環化合物を用いた有機EL用材料が報告されている(例えば、特許文献1及び2参照。)。 On the other hand, from the viewpoint of materials, there are great expectations for the creation of new materials for improving device performance. In particular, as a host compound of a phosphorescent compound, a material for organic EL using a nitrogen-containing polycondensed ring compound has been reported (see, for example, Patent Documents 1 and 2).

しかし、これら特許文献1及び2に記載の化合物では、有機EL素子材料として用いるにあたり、素子の寿命、発光効率はある程度改良されているが、十分とはいえず、さらなる改良が求められていた。また、これらの化合物を用いた有機EL素子は熱安定性に劣るという欠点、すなわち、高温下での保存又は使用において性能の経時変化が大きいという欠点を有していることが分かった。また、特許文献3及び4にはジベンゾフランの4−位に芳香族炭化水素基、6−位に含窒素複素環基を有する化合物を有機エレクトロニクス材料として使用することが開示されているが、これらの化合物を用いても、高温下での保存性は十分とは言えず、さらなる改良が求められていた。 However, in these compounds described in Patent Documents 1 and 2, when used as an organic EL device material, the life and luminous efficiency of the device have been improved to some extent, but they are not sufficient and further improvement has been required. Further, it has been found that the organic EL device using these compounds has a drawback of being inferior in thermal stability, that is, a drawback that the performance changes greatly with time when stored or used at a high temperature. Further, Patent Documents 3 and 4 disclose that compounds having an aromatic hydrocarbon group at the 4-position and a nitrogen-containing heterocyclic group at the 6-position of dibenzofuran are used as organic electronics materials. Even if a compound is used, it cannot be said that the storage stability at a high temperature is sufficient, and further improvement is required.

特表2013−510803号公報Japanese Patent Application Laid-Open No. 2013-510803 国際公開第2015/014434号International Publication No. 2015/014434 米国特許出願公開第2015/0259221号明細書U.S. Patent Application Publication No. 2015/0259221 韓国公開特許第2015−0031396号公報Korean Publication No. 2015-0031396

本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、有機機能性材料として新規な芳香族複素環誘導体を用いた、発光効率が高く、発光寿命が長く、特に高温下での保存安定性が改善された有機エレクトロルミネッセンス素子を提供することである。また、当該有機エレクトロルミネッセンス素子が具備された表示装置及び照明装置を提供することである。更に、新規な芳香族複素環誘導体を含有する電子デバイス用有機機能性材料を提供することである。 The present invention has been made in view of the above problems and situations, and the problem to be solved is that a novel aromatic heterocyclic derivative is used as an organic functional material, the luminous efficiency is high, the luminous life is long, and particularly high temperature. It is to provide an organic electroluminescence element with improved storage stability underneath. Another object of the present invention is to provide a display device and a lighting device provided with the organic electroluminescence element. Furthermore, it is to provide an organic functional material for an electronic device containing a novel aromatic heterocyclic derivative.

本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、特定構造を有する芳香族複素環誘導体が、上記課題の解決に有効であることを見出し本発明に至った。 As a result of investigating the causes of the above problems in order to solve the above problems, the present inventor has found that an aromatic heterocyclic derivative having a specific structure is effective in solving the above problems, and has reached the present invention.

すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above problem according to the present invention is solved by the following means.

1.陽極と陰極の間に、発光層を含む有機機能層が挟持された有機エレクトロルミネッセンス素子であって、前記有機機能層のうち少なくとも1層に、下記一般式(1)で表される構造を有する芳香族複素環誘導体を含有することを特徴とする有機エレクトロルミネッセンス素子。 1. An organic electroluminescence element in which an organic functional layer including a light emitting layer is sandwiched between an anode and a cathode, and at least one of the organic functional layers has a structure represented by the following general formula (1). An organic electroluminescence element containing an aromatic heterocyclic derivative.

Figure 0006754185
(式中、Ar及びArは、それぞれ独立に、アルキル基又は単環のアリール基を表す。R〜Rは、それぞれ独立に、水素原子、アルキル基、シアノ基又はフッ素原子を表す。R〜Rは、互いに結合して環を形成することはない。また、一般式(1)中の他の部分と環を形成することはない。Xは、酸素原子又は硫黄原子を表す。ただし、下記一般式(E1)〜一般式(E8)で表される構造を有する化合物を除く。
Figure 0006754185
(式中、Xは、酸素原子又は硫黄原子を表す。)
2.前記一般式(1)で表される構造を有する芳香族複素環誘導体が、下記一般式(1−1)〜(1−16)で表される構造のうちのいずれかで表される構造を有することを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。
Figure 0006754185
(In the formula, Ar 1 and Ar 2 each independently represent an alkyl group or a monocyclic aryl group. R 1 to R 5 each independently represent a hydrogen atom, an alkyl group, a cyano group or a fluorine atom. R 1 to R 5 do not bond with each other to form a ring, and do not form a ring with other parts in the general formula (1). X is an oxygen atom or a sulfur atom. However, compounds having a structure represented by the following general formulas (E1) to (E8) are excluded. )
Figure 0006754185
(In the formula, X represents an oxygen atom or a sulfur atom.)
2. The aromatic heterocyclic derivative having the structure represented by the general formula (1) has a structure represented by any of the structures represented by the following general formulas (1-1) to (1-16). The organic electroluminescence device according to the first item, which is characterized by having.

Figure 0006754185
Figure 0006754185

(式中、Ar 及びAr は、それぞれ独立に、アルキル基又は単環のアリール基を表す。R 〜R は、それぞれ独立に、水素原子、アルキル基、シアノ基又はフッ素原子を表す。R 〜R は、互いに結合して環を形成することはない。また、一般式(1−1)〜一般式(1−16)中の他の部分と環を形成することはない。Xは、酸素原子又は硫黄原子を表す。ただし、一般式(1−8)、一般式(1−14)及び一般式(1−16)のそれぞれにおいて、R 〜R が、全て水素原子の場合を除く。)
3.前記Ar及びArが、それぞれ、単環のアリール基を表すことを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。
(In the formula, Ar 1 and Ar 2 each independently represent an alkyl group or a monocyclic aryl group. R 1 to R 5 each independently represent a hydrogen atom, an alkyl group, a cyano group or a fluorine atom. R 1 to R 5 do not combine with each other to form a ring, nor do they form a ring with other parts of the general formulas (1-1) to (1-16). X represents an oxygen atom or a sulfur atom. However, in each of the general formula (1-8), the general formula (1-14) and the general formula (1-16), R 1 to R 5 are all hydrogen. Except for atoms.)
3. The organic electroluminescence device according to the first or second term, wherein Ar 1 and Ar 2 each represent a monocyclic aryl group.

4.前記R〜Rが、それぞれ、水素原子を表すことを特徴とする第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 4. The organic electroluminescence device according to any one of the items 1 to 3, wherein each of R 1 to R 5 represents a hydrogen atom.

5.前記R〜Rが、それぞれ、水素原子を表し、かつ前記Ar及びArが、それぞれ、単環のアリール基を表すことを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 5. Any one of the first to fourth terms, wherein R 1 to R 5 each represent a hydrogen atom, and Ar 1 and Ar 2 each represent a monocyclic aryl group. The organic electroluminescence device described in the section.

6.前記発光層が、前記芳香族複素環誘導体を含有することを特徴とする第1項から第5項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 6. The organic electroluminescence device according to any one of items 1 to 5, wherein the light emitting layer contains the aromatic heterocyclic derivative.

7.前記発光層が、前記芳香族複素環誘導体をホスト化合物として含有することを特徴とする第1項から第6項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 7. The organic electroluminescence device according to any one of items 1 to 6, wherein the light emitting layer contains the aromatic heterocyclic derivative as a host compound.

8.前記発光層が、リン光発光性ドーパントを含有することを特徴とする第1項から第7項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 8. The organic electroluminescence device according to any one of items 1 to 7, wherein the light emitting layer contains a phosphorescent dopant.

9.前記発光層が、前記芳香族複素環誘導体とは異なる構造を有するホスト化合物を更に含有することを特徴とする第1項から第8項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 9. The organic electroluminescence device according to any one of items 1 to 8, wherein the light emitting layer further contains a host compound having a structure different from that of the aromatic heterocyclic derivative.

10.第1項から第9項までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備することを特徴とする表示装置。 10. A display device comprising the organic electroluminescence device according to any one of items 1 to 9.

11.第1項から第9項までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備することを特徴とする照明装置。 11. A lighting device comprising the organic electroluminescence device according to any one of items 1 to 9.

12.下記一般式(1)で表される構造を有する芳香族複素環誘導体を含有することを特徴とする電子デバイス用有機機能性材料。 12. An organic functional material for an electronic device, which contains an aromatic heterocyclic derivative having a structure represented by the following general formula (1).

Figure 0006754185
(式中、Ar及びArは、それぞれ独立に、アルキル基又は単環のアリール基を表す。R〜Rは、それぞれ独立に、水素原子、アルキル基、シアノ基又はフッ素原子を表す。R〜Rは、互いに結合して環を形成することはない。また、一般式(1)中の他の部分と環を形成することはない。Xは、酸素原子又は硫黄原子を表す。ただし、下記一般式(E1)〜一般式(E8)で表される構造を有する化合物を除く。
Figure 0006754185
(式中、Xは、酸素原子又は硫黄原子を表す。)
Figure 0006754185
(In the formula, Ar 1 and Ar 2 each independently represent an alkyl group or a monocyclic aryl group. R 1 to R 5 each independently represent a hydrogen atom, an alkyl group, a cyano group or a fluorine atom. R 1 to R 5 do not bond with each other to form a ring, and do not form a ring with other parts in the general formula (1). X is an oxygen atom or a sulfur atom. However, compounds having a structure represented by the following general formulas (E1) to (E8) are excluded. )
Figure 0006754185
(In the formula, X represents an oxygen atom or a sulfur atom.)

本発明は、上記手段により、有機機能性材料として新規な芳香族複素環誘導体を用いた、発光効率が高く、発光寿命が長く、特に高温下での保存安定性が改善された有機エレクトロルミネッセンス素子を提供することができる。また、当該有機エレクトロルミネッセンス素子が具備された表示装置及び照明装置を提供することができる。更に、新規な芳香族複素環誘導体を含有する電子デバイス用有機機能性材料を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, an organic electroluminescence device using a novel aromatic heterocyclic derivative as an organic functional material, which has high luminous efficiency, long luminous life, and particularly improved storage stability at high temperatures by the above means. Can be provided. Further, it is possible to provide a display device and a lighting device provided with the organic electroluminescence element. Furthermore, it is possible to provide an organic functional material for an electronic device containing a novel aromatic heterocyclic derivative.

本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 Although the mechanism of expression or mechanism of action of the effects of the present invention has not been clarified, it is inferred as follows.

電子輸送性材料又は電子輸送性のホスト化合物として用いるためには、化合物上で励起子が生成しない方が好ましく、その抑制手段としては、電子輸送性を持った化合物の最高被占分子軌道(HOMO)準位を低くする(「深く」するともいう。)ことが考えられる。 In order to use it as an electron-transporting material or an electron-transporting host compound, it is preferable that excitons are not generated on the compound, and as a means for suppressing the exciton, the highest occupied molecular orbital (HOMO) of the electron-transporting compound is used. ) It is conceivable to lower the level (also called "deep").

電子輸送性を持たせるためには、トリアジンのようなN原子の多い構造を持たせることが有用な手段として知られているが、本発明者が鋭意、試行錯誤的検討をした結果、ジベンゾフラン又はジベンゾチオフェンと組み合わせることにより、ジベンゾフラン又はジベンゾチオフェンのHOMO由来の深いHOMO準位を持った本発明に係る一般式(1)で表される構造を有する化合物を設計できた。 In order to have electron transportability, it is known as a useful means to have a structure with many N atoms such as triazine, but as a result of diligent and trial-and-error studies by the present inventor, dibenzofuran or By combining with dibenzothiophene, a compound having a structure represented by the general formula (1) according to the present invention having a deep HOMO level derived from HOMO of dibenzofuran or dibenzothiophene could be designed.

一方、有機EL素子のような電子デバイスを製造する際に、自由回転できる箇所の多い分子によって形成された膜は、分子が膜中で動いたときに、膜質の変動が大きくなることが知られている。 On the other hand, when manufacturing an electronic device such as an organic EL element, it is known that a film formed by molecules having many free-rotating parts has a large variation in film quality when the molecules move in the film. ing.

例えば、蒸着によって膜を形成する場合、膜上に分子が蒸着された直後は、分子が自由回転可能な状態にあり、安定な状態の膜が形成されるまでには時間がかかる。また、熱をかけたとき、駆動電圧をかけたときにも分子が動くことが推測されるが、そういった変動が大きい膜は、性能が変動しやすく、好ましい性能が得られない傾向がある。そのため、できるだけ膜中での分子の動きが小さい化合物が好ましい。 For example, when a film is formed by thin-film deposition, immediately after the molecules are deposited on the film, the molecules are in a free-rotating state, and it takes time until a stable film is formed. Further, it is presumed that the molecules move when heat is applied and when a drive voltage is applied, but the performance of a film having such a large fluctuation tends to fluctuate and preferable performance tends not to be obtained. Therefore, a compound in which the movement of molecules in the membrane is as small as possible is preferable.

本発明に係る一般式(1)で表される構造を有する化合物では、自由回転できる箇所の少なく、そのため、膜中で分子が動いても膜全体の変化は小さく安定した性能が得られると推察される。 It is presumed that the compound having the structure represented by the general formula (1) according to the present invention has few places where it can freely rotate, and therefore, even if molecules move in the membrane, the change in the entire membrane is small and stable performance can be obtained. Will be done.

また、トリフェニレンなどπ共役面の大きな会合しやすい構造は結晶性が高いため、アモルファス状の膜を得るという目的から好ましくないことが多いが、本発明に係る一般式(1)で表される構造を有する化合物は、そのような構造を有しないため、アモルファス状の膜を形成しやすいと考えられる。 Further, a structure such as triphenylene having a large π-conjugated surface that easily associates has high crystallinity and is often not preferable for the purpose of obtaining an amorphous film, but the structure represented by the general formula (1) according to the present invention. Since the compound having the above does not have such a structure, it is considered that an amorphous film is easily formed.

本発明の表示装置の構成の一例を示した概略斜視図Schematic perspective view showing an example of the configuration of the display device of the present invention. 図1に示す表示部Aの構成の一例を示した概略斜視図Schematic perspective view showing an example of the configuration of the display unit A shown in FIG. 本発明の有機EL素子を用いた照明装置の一例を示す概略斜視図Schematic perspective view showing an example of a lighting device using the organic EL element of the present invention. 本発明の有機EL素子を用いた照明装置の一例を示す概略断面図Schematic cross-sectional view showing an example of a lighting device using the organic EL element of the present invention.

本発明の有機エレクトロルミネッセンス素子は、陽極と陰極の間に、発光層を含む有機機能層が挟持された有機エレクトロルミネッセンス素子であって、前記有機機能層のうち少なくとも1層に、前記一般式(1)で表される構造を有する芳香族複素環誘導体を含有することを特徴とする。この特徴は、各請求項に係る発明に共通する技術的特徴である。 The organic electroluminescence element of the present invention is an organic electroluminescence element in which an organic functional layer including a light emitting layer is sandwiched between an anode and a cathode, and at least one of the organic functional layers has the above general formula ( It is characterized by containing an aromatic heterocyclic derivative having the structure represented by 1). This feature is a technical feature common to the inventions according to each claim.

本発明の実施形態としては、本発明の効果発現の観点から、前記一般式(1)で表される構造を有する芳香族複素環誘導体が、前記一般式(1−1)〜(1−16)で表される構造のうちのいずれかで表される構造を有することが好ましい。 In the embodiment of the present invention, from the viewpoint of expressing the effect of the present invention, the aromatic heterocyclic derivative having the structure represented by the general formula (1) is a general formula (1-1) to (1-16). It is preferable to have a structure represented by any one of the structures represented by).

また、特に、前記Ar及びArが、それぞれ、単環のアリール基を表すこと、前記R〜Rが、それぞれ、水素原子を表すこと、又は、前記R〜Rが、それぞれ、水素原子を表し、かつ前記Ar及びArが、それぞれ、単環のアリール基を表すことが好ましい。 In particular, Ar 1 and Ar 2 each represent a monocyclic aryl group, R 1 to R 5 each represent a hydrogen atom, or R 1 to R 5 represent a hydrogen atom, respectively. , A hydrogen atom, and Ar 1 and Ar 2 each represent a monocyclic aryl group.

本発明においては、前記芳香族複素環誘導体の特徴をより有効に生かす観点から、前記発光層が、前記芳香族複素環誘導体を含有することが好ましく、さらに、前記発光層が、前記芳香族複素環誘導体をホスト化合物として含有することが好ましい。 In the present invention, from the viewpoint of more effectively utilizing the characteristics of the aromatic heterocyclic derivative, it is preferable that the light emitting layer contains the aromatic heterocyclic derivative, and further, the light emitting layer is the aromatic heterocyclic derivative. It is preferable to contain a ring derivative as a host compound.

また、同様の観点から前記発光層が、リン光発光性ドーパントを含有すること、さらに、前記発光層が、前記芳香族複素環誘導体とは異なる構造を有するホスト化合物を更に含有することが好ましい。 From the same viewpoint, it is preferable that the light emitting layer contains a phosphorescent dopant, and that the light emitting layer further contains a host compound having a structure different from that of the aromatic heterocyclic derivative.

本発明の有機エレクトロルミネッセンス素子は、表示装置や照明装置に好適に具備され得る。 The organic electroluminescence element of the present invention can be suitably provided in a display device or a lighting device.

また、前記一般式(1)で表される構造を有する芳香族複素環誘導体は、電子デバイス用有機機能性材料として好適に用いることができる。 Further, the aromatic heterocyclic derivative having the structure represented by the general formula (1) can be suitably used as an organic functional material for an electronic device.

以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「〜」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described in detail. In the present application, "~" is used to mean that the numerical values described before and after the value are included as the lower limit value and the upper limit value.

《有機エレクトロルミネッセンス素子》
本発明の有機エレクトロルミネッセンス素子は、陽極と陰極の間に、発光層を含む有機機能層が挟持された有機エレクトロルミネッセンス素子であって、前記有機機能層のうち少なくとも1層に、下記一般式(1)で表される構造を有する芳香族複素環誘導体を含有することを特徴とする。以下において、当該芳香族複素環誘導体について詳細な説明をする。
《Organic electroluminescence element》
The organic electroluminescence element of the present invention is an organic electroluminescence element in which an organic functional layer including a light emitting layer is sandwiched between an anode and a cathode, and at least one of the organic functional layers has the following general formula ( It is characterized by containing an aromatic heterocyclic derivative having the structure represented by 1). The aromatic heterocyclic derivative will be described in detail below.

<一般式(1)で表される構造を有する芳香族複素環誘導体>

Figure 0006754185
(式中、Ar及びArは、それぞれ独立に、アルキル基又は単環のアリール基を表す。R〜Rは、それぞれ独立に、水素原子、アルキル基、シアノ基又はフッ素原子を表す。R〜Rは、互いに結合して環を形成することはない。また、一般式(1)中の他の部分と環を形成することはない。Xは、酸素原子又は硫黄原子を表す。ただし、下記一般式(E1)〜一般式(E8)で表される構造を有する化合物を除く。
Figure 0006754185
(式中、Xは、酸素原子又は硫黄原子を表す。)
一般式(1)中、Ar及びArは、それぞれ独立に、置換若しくは無置換の炭素数1〜12のアルキル基、又は、置換若しくは無置換の単環のアリール基(ただし、ヘテロアリール基は含まないものとする。)を表す。Ar及びArは、好ましくは、置換若しくは無置換の単環のアリール基である。 <Aromatic heterocyclic derivative having a structure represented by the general formula (1)>
Figure 0006754185
(In the formula, Ar 1 and Ar 2 each independently represent an alkyl group or a monocyclic aryl group. R 1 to R 5 each independently represent a hydrogen atom, an alkyl group, a cyano group or a fluorine atom. R 1 to R 5 do not bond with each other to form a ring, and do not form a ring with other parts in the general formula (1). X is an oxygen atom or a sulfur atom. However, compounds having a structure represented by the following general formulas (E1) to (E8) are excluded. )
Figure 0006754185
(In the formula, X represents an oxygen atom or a sulfur atom.)
In the general formula (1), Ar 1 and Ar 2 are independently substituted or unsubstituted alkyl groups having 1 to 12 carbon atoms, or substituted or unsubstituted monocyclic aryl groups (however, heteroaryl groups). Is not included.) Ar 1 and Ar 2 are preferably substituted or unsubstituted monocyclic aryl groups.

Ar又はArで表される炭素数1〜12のアルキル基は、本発明に係る一般式(1)で表される構造を有する芳香族複素環誘導体の機能を阻害しない範囲であれば、直鎖状であっても分岐構造を有していてもよく、また、シクロアルキル基のように環状構造であってもよい。 The alkyl group having 1 to 12 carbon atoms represented by Ar 1 or Ar 2 does not inhibit the function of the aromatic heterocyclic derivative having the structure represented by the general formula (1) according to the present invention. It may be linear or have a branched structure, or it may have a cyclic structure such as a cycloalkyl group.

Ar又はArで表される炭素数1〜12のアルキル基の例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、イソプロピル基、ネオペンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。 Examples of alkyl groups having 1 to 12 carbon atoms represented by Ar 1 or Ar 2 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group and decyl. Examples thereof include a group, an undecyl group, a dodecyl group, an isopropyl group, a neopentyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group and a cyclooctyl group.

Ar又はArで表される単環のアリール基(芳香族炭化水素環基ともいう。)としては、例えば、フェニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、等が挙げられる。 Examples of the monocyclic aryl group represented by Ar 1 or Ar 2 (also referred to as an aromatic hydrocarbon ring group) include a phenyl group, a biphenyl group, a terphenyl group, a quarter phenyl group, and the like.

本発明の化合物の励起三重項エネルギー準位(Tエネルギー準位)を適度に保つ目的から、Ar又はArで表されるアリール基としては、フェニル基、ビフェニル基、ターフェニル基、及びクォーターフェニル基が好ましい。 For the purpose of maintaining the excited triplet energy level (T 1 energy level) of the compound of the present invention appropriately, the aryl groups represented by Ar 1 or Ar 2 include phenyl group, biphenyl group, turphenyl group, and A quarter phenyl group is preferred.

Ar又はArで表される上記のアルキル基及びアリール基は、本発明の化合物の機能を阻害しない範囲で各々更に置換基を有していてもよく、そのような置換基の具体例としては、後述のR〜Rで表される置換基と同様の基が挙げられる。 The above-mentioned alkyl group and aryl group represented by Ar 1 or Ar 2 may each have a further substituent as long as the function of the compound of the present invention is not impaired, and as a specific example of such a substituent. Is a group similar to the substituent represented by R 1 to R 5 described later.

好ましくは、Ar及びArはアリール基であり、より好ましくは置換又は無置換のフェニル基である。 Preferably, Ar 1 and Ar 2 are aryl groups, more preferably substituted or unsubstituted phenyl groups.

〜Rは、それぞれ独立に、水素原子、アルキル基、シアノ基、又はフッ素原子を表す。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等が挙げられる。より好ましくは、R〜Rは、水素原子である。 R 1 to R 5 independently represent a hydrogen atom, an alkyl group, a cyano group, or a fluorine atom. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group, a tridecyl group, a tetradecyl group and a pentadecyl group. More preferably, R 1 to R 5 are hydrogen atoms.

〜Rは、互いに結合して環を形成することはない。また、一般式(1)中の他の部分と環を形成することはない。 R 1 to R 5 do not combine with each other to form a ring. In addition, it does not form a ring with other parts in the general formula (1).

Ar又はAr2で表されるアルキル基及びアリール基、並びにR〜Rで表されるアルキル基は置換基を有することができる。 Alkyl and aryl groups represented by Ar 1 or A r2, and the alkyl group represented by R 1 to R 5 may have a substituent.

これらの置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピラジル基、ピリミジニル基、トリアジル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、アザカルバゾリル基(前記カルバゾリル基のカルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。 Examples of these substituents include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group, a tridecyl group, a tetradecyl group and a pentadecyl group. Group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group, etc.), alkynyl group (eg, ethynyl group, propargyl group, etc.), aromatic hydrocarbon group (eg, ethynyl group, propargyl group, etc.) Also referred to as an aromatic hydrocarbon ring group, an aromatic carbon ring group, an aryl group, etc., for example, a phenyl group, a p-chlorophenyl group, a mesityl group, a trill group, a xsilyl group, a naphthyl group, an anthryl group, an azulenyl group, an acenaphthenyl group, Fluolenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group, etc.), aromatic heterocyclic group (for example, pyridyl group, pyrazil group, pyrimidinyl group, triadyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl) Group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazol-1-yl group, 1,2,3-triazole-1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, Isooxazolyl group, isothiazolyl group, frazayl group, thienyl group, quinolyl group, benzofuryl group, dibenzofuryl group, benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, azacarbazolyl group (carbon atoms constituting the carbazole ring of the carbazolyl group) Any one or more of the above is replaced with a nitrogen atom), quinoxalinyl group, pyridazinyl group, triazinyl group, quinazolinyl group, phthalazinyl group, etc.), heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholic group, oxazolidyl). Groups, etc.), alkoxy groups (eg, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyloxy group, etc.) Etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio group (eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (eg, methylthio group, ethylthio group, propylthio group, etc.) For example, cyclopentylthio group, cyclohexylthio group, etc., arylthio group (eg, phenyl) Thio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxy) Carbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (eg, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecyl Aminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-Ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (eg, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyl) Oxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino Group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylamino Carbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido) Group, ethyl ureido group, pentyl ureido group, cyclohexyl ureido group, octyl ureido group, dodecyl ureido group, phenyl ureido group, naphthyl ureido group, 2-pyridyl aminoure Ido group, etc.), sulfinyl group (eg, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc. ), Alkylsulfonyl group (eg, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (eg, phenylsulfonyl group) , Naftylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (eg, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, Naftylamino group, 2-pyridylamino group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom, etc.), fluoride hydrocarbon group (eg, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, penta) Fluorophenyl group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.), phosphono group and the like.

これらの置換基は、上記の置換基によって更に置換されていてもよく、更に、これらの置換基は複数が互いに結合して環構造を形成してもよい。 These substituents may be further substituted by the above-mentioned substituents, and a plurality of these substituents may be bonded to each other to form a ring structure.

Xは、酸素原子又は硫黄原子を表す。 X represents an oxygen atom or a sulfur atom.

本発明においては、特に、前記Ar及びArが、それぞれ、単環のアリール基を表すこと、前記R〜Rが、それぞれ、水素原子を表すこと、又は、前記R〜Rが、それぞれ、水素原子を表し、かつ前記Ar及びArが、それぞれ、単環のアリール基を表すことが好ましい。 In the present invention, in particular, the Ar 1 and Ar 2 each represent a monocyclic aryl group, the R 1 to R 5 each represent a hydrogen atom, or the R 1 to R 5 However, it is preferable that Ar 1 and Ar 2 each represent a hydrogen atom, and Ar 1 and Ar 2 each represent a monocyclic aryl group.

本発明の実施形態としては、前記一般式(1)で表される構造を有する芳香族複素環誘導体が、下記一般式(1−1)〜(1−16)で表される構造のうちのいずれかで表される構造を有することが好ましい。 In the embodiment of the present invention, the aromatic heterocyclic derivative having the structure represented by the general formula (1) is among the structures represented by the following general formulas (1-1) to (1-16). It is preferable to have a structure represented by either.

Figure 0006754185
Figure 0006754185

なお、上記一般式(1−1)〜(1−16)式中の、Ar、Ar、R〜R及びXは、一般式(1)におけるものと同義である。ただし、一般式(1−8)、一般式(1−14)及び一般式(1−16)のそれぞれにおいて、R 〜R が、全て水素原子の場合を除く。) In the general formulas (1-1) to (1-16), Ar 1 , Ar 2 , R 1 to R 5 and X have the same meaning as those in the general formula (1). However, in each of the general formula (1-8), the general formula (1-14) and the general formula (1-16), the cases where R 1 to R 5 are all hydrogen atoms are excluded. )

以下に、好ましい芳香族複素環誘導体の具体例及び参考例を示すが、これらに限定されるものではない。 Specific examples and reference examples of preferable aromatic heterocyclic derivatives are shown below, but the present invention is not limited thereto.

Figure 0006754185
Figure 0006754185

Figure 0006754185
Figure 0006754185

Figure 0006754185
Figure 0006754185

Figure 0006754185
Figure 0006754185

Figure 0006754185
Figure 0006754185

Figure 0006754185
Figure 0006754185

Figure 0006754185
Figure 0006754185

Figure 0006754185
Figure 0006754185

Figure 0006754185
Figure 0006754185

Figure 0006754185
Figure 0006754185

Figure 0006754185
Figure 0006754185

Figure 0006754185
Figure 0006754185

Figure 0006754185
Figure 0006754185

Figure 0006754185
Figure 0006754185

Figure 0006754185
Figure 0006754185

Figure 0006754185
Figure 0006754185

本発明においては、前述のように、特に、前記Ar及びArが、それぞれ、単環のアリール基を表すこと、前記R〜Rが、それぞれ、水素原子を表すこと、又は、前記R〜Rが、それぞれ、水素原子を表し、かつ前記Ar及びArが、それぞれ、単環のアリール基を表すことが好ましい。 In the present invention, as described above, in particular, the Ar 1 and Ar 2 each represent a monocyclic aryl group, the R 1 to R 5 each represent a hydrogen atom, or the above. It is preferable that R 1 to R 5 each represent a hydrogen atom, and Ar 1 and Ar 2 each represent a monocyclic aryl group.

<例示化合物の合成例>
以下において、例示化合物120の合成方法について説明する。
<Example of synthesis of exemplary compound>
The method for synthesizing the exemplified compound 120 will be described below.

当該例示化合物120の合成経路及び合成方法は、下記のとおりである。なお、他の例示化合物も、それぞれについて、適切な原料、反応条件を採用することで、基本的には、下記合成法と同様の方法により合成できる。 The synthetic route and method for synthesizing the exemplified compound 120 are as follows. In addition, other exemplified compounds can be basically synthesized by the same method as the following synthesis method by adopting appropriate raw materials and reaction conditions for each.

Figure 0006754185
Figure 0006754185

(中間体1の合成)
21.2gのジベンゾフラン−4−ボロン酸、26.5gのヨードベンゼンをトルエン310mlに溶解し、2.77gの1,1′−ビス(ジフェニルホスフィノ)フェロセンと2.88gのビス(ジベンジリデンアセトン)パラジウム、27.6gの炭酸カリウム、水60mlを加え、窒素雰囲気下80℃で17時間撹拌した。反応液を放冷し、有機層を水洗、無水硫酸マグネシウムで乾燥し、減圧下で溶媒を留去した。得られた濃縮物をシリカゲルカラムクロマトグラフィ―で精製し、中間体1を19.2g得た。
(Synthesis of Intermediate 1)
21.2 g of dibenzofuran-4-boronic acid and 26.5 g of iodobenzene were dissolved in 310 ml of toluene, 2.77 g of 1,1'-bis (diphenylphosphino) ferrocene and 2.88 g of bis (dibenzylideneacetone). ) Palladium, 27.6 g of potassium carbonate and 60 ml of water were added, and the mixture was stirred at 80 ° C. for 17 hours under a nitrogen atmosphere. The reaction mixture was allowed to cool, the organic layer was washed with water, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The obtained concentrate was purified by silica gel column chromatography to obtain 19.2 g of Intermediate 1.

(中間体2の合成)
17.1gの中間体1を脱水THF260mlに溶解し、窒素雰囲気下、−40℃以下でnブチルリチウム(1.6mol/L ヘキサン溶液)を135ml加え、−40℃で1時間撹拌した。その後反応液を0℃まで昇温させ、4時間撹拌したのち、再度反応液を冷却し、−10℃以下で10.9gのトリメトキシボランを滴下し、室温で1時間撹拌した。反応液に希塩酸を加え、1時間撹拌したのち、静置し、水層を除去した。有機層は水洗し、無水硫酸マグネシウムで乾燥し、減圧下で溶媒を留去した。得られた中間体2濃縮物をそのまま次工程に用いた。
(Synthesis of Intermediate 2)
17.1 g of Intermediate 1 was dissolved in 260 ml of dehydrated THF, 135 ml of n-butyllithium (1.6 mol / L hexane solution) was added at −40 ° C. or lower under a nitrogen atmosphere, and the mixture was stirred at −40 ° C. for 1 hour. Then, the temperature of the reaction solution was raised to 0 ° C., the mixture was stirred for 4 hours, the reaction solution was cooled again, 10.9 g of trimethoxyborane was added dropwise at −10 ° C. or lower, and the mixture was stirred at room temperature for 1 hour. Dilute hydrochloric acid was added to the reaction solution, and the mixture was stirred for 1 hour and then allowed to stand to remove the aqueous layer. The organic layer was washed with water, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The obtained Intermediate 2 Concentrate was used as it was in the next step.

(例示化合物120の合成)
上記の操作で得られた中間体2をトルエン260mlに溶解し窒素雰囲気下、20gの炭酸カリウム、水120ml、22.5gの3,5−ジフェニル−1−クロロトリアジン、4.0gのテトラキス(トリフェニルホスフィン)パラジウムを加え、70℃で7時間加熱しながら撹拌した。
反応液を室温まで放冷し、析出した固体をろ取し、水で洗浄したのち、メタノールで洗浄した。さらにトルエンで再結晶し、例示化合物120を19.0g得た。
(Synthesis of Exemplified Compound 120)
Intermediate 2 obtained by the above operation is dissolved in 260 ml of toluene, and under a nitrogen atmosphere, 20 g of potassium carbonate, 120 ml of water, 22.5 g of 3,5-diphenyl-1-chlorotriazine, and 4.0 g of tetrakis (tri). Phenylphosphine) Palladium was added, and the mixture was stirred while heating at 70 ° C. for 7 hours.
The reaction mixture was allowed to cool to room temperature, the precipitated solid was collected by filtration, washed with water, and then washed with methanol. Further, it was recrystallized from toluene to obtain 19.0 g of Exemplified Compound 120.

<芳香族複素環誘導体の用途>
本発明に係る一般式(1)で表される構造を有する芳香族複素環誘導体は、広範な技術分野で用いることができるが、当該芳香族複素環誘導体単独又は他種の化合物を含有させた電子デバイス用有機機能性材料として適している。例えば、有機エレクトロルミネッセンス素子、太陽電池、電子写真用感光体等において好適に用いることができる。特に、有機エレクトロルミネッセンス素子における機能性有機材料として好適に用いることができる。
<Use of aromatic heterocyclic derivatives>
The aromatic heterocyclic derivative having the structure represented by the general formula (1) according to the present invention can be used in a wide range of technical fields, but contains the aromatic heterocyclic derivative alone or a compound of another kind. Suitable as an organic functional material for electronic devices. For example, it can be suitably used in an organic electroluminescence element, a solar cell, a photoconductor for electrophotographic, and the like. In particular, it can be suitably used as a functional organic material in an organic electroluminescence device.

有機エレクトロルミネッセンス素子において用いる場合、前記芳香族複素環誘導体の特徴をより有効に生かす観点から、発光層が、当該芳香族複素環誘導体を含有することが好ましく、さらに、前記発光層が、前記芳香族複素環誘導体をホスト化合物として含有することが好ましい。 When used in an organic electroluminescence element, the light emitting layer preferably contains the aromatic heterocyclic derivative from the viewpoint of making more effective use of the characteristics of the aromatic heterocyclic derivative, and further, the light emitting layer contains the aromatic heterocyclic derivative. It is preferable to contain a group heterocyclic derivative as a host compound.

また、同様の観点から前記発光層が、リン光発光性ドーパントを含有すること、さらに、前記発光層が、前記芳香族複素環誘導体とは異なる構造を有するホスト化合物を更に含有することが好ましい。 From the same viewpoint, it is preferable that the light emitting layer contains a phosphorescent dopant, and that the light emitting layer further contains a host compound having a structure different from that of the aromatic heterocyclic derivative.

《有機エレクトロルミネッセンス素子の構成層》
本発明の有機EL素子における有機機能層等の典型的な構成としては、以下の構成例を挙げることができるが、これらに限定されるものではない。
(1)陽極/発光層/陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極
上記の中で(7)の構成が好ましく用いられるが、これに限定されるものではない。
<< Constituent layer of organic electroluminescence device >>
Typical configurations of the organic functional layer and the like in the organic EL device of the present invention include, but are not limited to, the following configuration examples.
(1) anode / light emitting layer / cathode (2) anode / light emitting layer / electron transport layer / cathode (3) anode / hole transport layer / light emitting layer / cathode (4) anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (6) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ( 7) Anophode / hole injection layer / hole transport layer / (electron blocking layer /) light emitting layer / (hole blocking layer /) electron transport layer / electron injection layer / cathode Among the above, the configuration of (7) is preferable. It is used, but is not limited to this.

本発明に係る発光層は、単層又は複数層で構成されており、発光層が複数の場合は各発光層の間に非発光性の中間層を設けてもよい。 The light emitting layer according to the present invention is composed of a single layer or a plurality of layers, and when there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the light emitting layers.

必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう)や電子注入層(陰極バッファー層ともいう)を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層ともいう)や正孔注入層(陽極バッファー層ともいう)を設けてもよい。 If necessary, a hole blocking layer (also referred to as a hole barrier layer) or an electron injection layer (also referred to as a cathode buffer layer) may be provided between the light emitting layer and the cathode, and the light emitting layer and the anode may be provided. An electron blocking layer (also referred to as an electron barrier layer) or a hole injection layer (also referred to as an anode buffer layer) may be provided between them.

本発明に係る電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、複数層で構成されていてもよい。 The electron transport layer according to the present invention is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Further, it may be composed of a plurality of layers.

本発明に係る正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、複数層で構成されていてもよい。 The hole transporting layer according to the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transporting layer. Further, it may be composed of a plurality of layers.

上記の代表的な素子構成において、陽極と陰極を除いた層を「有機層」ともいう。 In the above typical device configuration, the layer excluding the anode and the cathode is also referred to as an "organic layer".

(タンデム構造)
また、本発明の有機EL素子は、少なくとも1層の発光層を含む発光ユニットを複数積層した、いわゆるタンデム構造の素子であってもよい。
(Tandem structure)
Further, the organic EL element of the present invention may be an element having a so-called tandem structure in which a plurality of light emitting units including at least one light emitting layer are laminated.

タンデム構造の代表的な素子構成としては、例えば以下の構成を挙げることができる。 As a typical element configuration of the tandem structure, for example, the following configuration can be mentioned.

陽極/第1発光ユニット/第2発光ユニット/第3発光ユニット/陰極
陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
ここで、上記第1発光ユニット、第2発光ユニット及び第3発光ユニットは全て同じであっても、異なっていてもよい。また二つの発光ユニットが同じであり、残る一つが異なっていてもよい。
Anode / 1st light emitting unit / 2nd light emitting unit / 3rd light emitting unit / cathode Anode / 1st light emitting unit / intermediate layer / 2nd light emitting unit / intermediate layer / 3rd light emitting unit / cathode Here, the first light emitting unit , The second light emitting unit and the third light emitting unit may all be the same or different. Further, the two light emitting units may be the same, and the remaining one may be different.

また、第3発光ユニットはなくてもよく、一方で第3発光ユニットと電極の間に更に発光ユニットや中間層を設けてもよい。 Further, the third light emitting unit may not be provided, while a light emitting unit or an intermediate layer may be further provided between the third light emitting unit and the electrode.

複数の発光ユニットは直接積層されていても、中間層を介して積層されていてもよく、中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料及び構成を用いることができる。 The plurality of light emitting units may be directly laminated or may be laminated via an intermediate layer, and the intermediate layer is generally an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate layer. A known material and structure can be used as long as it is also called an insulating layer and has a function of supplying electrons to the adjacent layer on the anode side and holes to the adjacent layer on the cathode side.

中間層に用いられる材料としては、例えば、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。 Examples of the material used for the intermediate layer include ITO (inorganic tin oxide), IZO (inorganic zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, and CuAlO 2. , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 , Al and other conductive inorganic compound layers, Au / Bi 2 O 3 and other bilayer films, SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3, TiO 2 / TiN / TiO 2, TiO 2 / ZrN / TiO 2 or the like multilayer film, also fullerenes such as C 60, conductive organic material layer such as oligothiophene , Metallic phthalocyanines, metal-free phthalocyanines, metal porphyrins, conductive organic compound layers such as metal-free porphyrins, etc., but the present invention is not limited thereto.

発光ユニット内の好ましい構成としては、例えば上記の代表的な素子構成で挙げた(1)〜(7)の構成から、陽極と陰極を除いたもの等が挙げられるが、本発明はこれらに限定されない。 Preferred configurations in the light emitting unit include, for example, configurations in which the anode and the cathode are removed from the configurations (1) to (7) mentioned in the above typical element configurations, but the present invention is limited thereto. Not done.

タンデム型有機EL素子の具体例としては、例えば、米国特許第6337492号明細書、米国特許第7420203号明細書、米国特許第7473923号明細書、米国特許第6872472号明細書、米国特許第6107734号明細書、米国特許第6337492号明細書、国際公開第2005/009087号、特開2006−228712号公報、特開2006−24791号公報、特開2006−49393号公報、特開2006−49394号公報、特開2006−49396号公報、特開2011−96679号公報、特開2005−340187号公報、特許第4711424号、特許第3496681号、特許第3884564号、特許第4213169号、特開2010−192719号公報、特開2009−076929号公報、特開2008−078414号公報、特開2007−059848号公報、特開2003−272860号公報、特開2003−045676号公報、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。 Specific examples of the tandem organic EL element include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, and US Pat. No. 6,107,734. Specification, US Pat. No. 6,337,492, International Publication No. 2005/09087, JP-A-2006-228712, JP-A-2006-24791, JP-A-2006-49393, JP-A-2006-49394. , Japanese Patent Application Laid-Open No. 2006-49396, Japanese Patent Application Laid-Open No. 2011-96679, Japanese Patent Application Laid-Open No. 2005-340187, Japanese Patent No. 4711424, Japanese Patent No. 3496681, Japanese Patent No. 3884564, Japanese Patent No. 4213169, Japanese Patent Application Laid-Open No. 2010-192719 No., Japanese Patent Application Laid-Open No. 2009-0762929, Japanese Patent Application Laid-Open No. 2008-0784414, Japanese Patent Application Laid-Open No. 2007-059848, Japanese Patent Application Laid-Open No. 2003-272860, Japanese Patent Application Laid-Open No. 2003-045676, International Publication No. 2005/094130 The present invention is not limited thereto, although examples thereof include the element configurations and constituent materials described in the above.

以下、本発明の有機EL素子を構成する各層について説明する。 Hereinafter, each layer constituting the organic EL device of the present invention will be described.

《発光層》
本発明に用いられる発光層は、電極又は隣接層から注入されてくる電子及び正孔が再結合し、励起子を経由して発光する場を提供する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。本発明に用いられる発光層は、本発明で規定する要件を満たしていれば、その構成に特に制限はない。
《Light emitting layer》
The light emitting layer used in the present invention is a layer that provides a place where electrons and holes injected from an electrode or an adjacent layer are recombined and emit light via excitons, and the light emitting portion is a light emitting layer. It may be in the layer or at the interface between the light emitting layer and the adjacent layer. The structure of the light emitting layer used in the present invention is not particularly limited as long as it satisfies the requirements specified in the present invention.

発光層の層厚の総和は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、且つ、駆動電流に対する発光色の安定性向上の観点から、2nm〜5μmの範囲に調整することが好ましく、より好ましくは2〜500nmの範囲に調整され、更に好ましくは5〜200nmの範囲に調整される。 The total thickness of the light emitting layer is not particularly limited, but the homogeneity of the film to be formed, the prevention of applying an unnecessary high voltage at the time of light emission, and the improvement of the stability of the emission color with respect to the drive current are improved. From the viewpoint, it is preferably adjusted to the range of 2 nm to 5 μm, more preferably to the range of 2 to 500 nm, and further preferably to the range of 5 to 200 nm.

また、本発明において個々の発光層の層厚としては、2nm〜1μmの範囲に調整することが好ましく、より好ましくは2〜200nmの範囲に調整され、更に好ましくは3〜150nmの範囲に調整される。 Further, in the present invention, the layer thickness of each light emitting layer is preferably adjusted in the range of 2 nm to 1 μm, more preferably in the range of 2 to 200 nm, and further preferably in the range of 3 to 150 nm. To.

本発明に用いられる発光層には、発光ドーパント(単にドーパントともいう)と、ホスト化合物(発光ホスト、単に「ホスト」ともいう。)とを含有することが好ましい。 The light emitting layer used in the present invention preferably contains a light emitting dopant (also simply referred to as a dopant) and a host compound (light emitting host, also simply referred to as "host").

(1)発光ドーパント
発光ドーパントとしては、リン光発光性ドーパント(リン光ドーパント、リン光性化合物ともいう)と、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物ともいう)が好ましく用いられる。本発明においては、少なくとも1層の発光層がリン光発光性ドーパントを含有することが好ましい。
(1) Phosphorescent Dopant As the light emitting dopant, a phosphorescent dopant (also referred to as a phosphorescent dopant or a phosphorescent compound) and a fluorescent dopant (also referred to as a fluorescent dopant or a fluorescent compound) are preferably used. In the present invention, it is preferable that at least one light emitting layer contains a phosphorescent dopant.

発光層中の発光ドーパントの濃度については、使用される特定のドーパント及びデバイスの必要条件に基づいて、任意に決定することができ、発光層の層厚方向に対し、均一な濃度で含有されていてもよく、また任意の濃度分布を有していてもよい。 The concentration of the light emitting dopant in the light emitting layer can be arbitrarily determined based on the specific dopant used and the requirements of the device, and is contained at a uniform concentration with respect to the layer thickness direction of the light emitting layer. It may have an arbitrary concentration distribution.

また、本発明に用いられる発光ドーパントは、複数種を併用して用いてもよく、構造の異なるドーパント同士の組み合わせや、蛍光発光性ドーパントとリン光発光性ドーパントとを組み合わせて用いてもよい。これにより、任意の発光色を得ることができる。 Further, as the light emitting dopant used in the present invention, a plurality of types may be used in combination, a combination of dopants having different structures, or a combination of a fluorescent light emitting dopant and a phosphorescent light emitting dopant may be used. Thereby, an arbitrary emission color can be obtained.

本発明の有機EL素子や本発明の化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。 The emission colors of the organic EL element of the present invention and the compound of the present invention are described in FIG. 4.16 on page 108 of the "New Color Science Handbook" (edited by the Japan Color Society, Tokyo University Press, 1985). It is determined by the color when the result measured by CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.

本発明においては、1層又は複数層の発光層が、発光色の異なる複数の発光ドーパントを含有し、白色発光を示すことも好ましい。 In the present invention, it is also preferable that the light emitting layer of one layer or a plurality of layers contains a plurality of light emitting dopants having different light emitting colors and exhibits white light emission.

白色を示す発光ドーパントの組み合わせについては特に限定はないが、例えば青と橙や、青と緑と赤の組み合わせ等が挙げられる。 The combination of luminescent dopants showing white color is not particularly limited, and examples thereof include a combination of blue and orange, a combination of blue and green and red, and the like.

本発明の有機EL素子における白色とは、特に限定はなく、橙色寄りの白色であっても青色寄りの白色であってもよいが、2度視野角正面輝度を前述の方法により測定した際に、1000cd/mでのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。 The white color in the organic EL element of the present invention is not particularly limited and may be white color closer to orange or white color closer to blue, but when the 2 degree viewing angle front luminance is measured by the above method. , It is preferable that the chromaticity in the CIE 1931 color system at 1000 cd / m 2 is within the region of x = 0.39 ± 0.09 and y = 0.38 ± 0.08.

(1.1)リン光発光性ドーパント
本発明に用いられるリン光発光性ドーパント(以下、「リン光ドーパント」ともいう)について説明する。
(1.1) Phosphorescent Dopant A phosphorescent dopant used in the present invention (hereinafter, also referred to as “phosphorescent dopant”) will be described.

本発明に用いられるリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。 The phosphorescent dopant used in the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescent light at room temperature (25 ° C.), and has a phosphorescent quantum yield. It is defined as a compound of 0.01 or more at 25 ° C., but a preferable phosphorescence quantum yield is 0.1 or more.

上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に用いられるリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。 The phosphorus photon yield can be measured by the method described on page 398 (1992 edition, Maruzen) of Spectroscopy II of the 4th edition Experimental Chemistry Course 7. The phosphorescence quantum yield in a solution can be measured using various solvents, but the phosphorescence dopant used in the present invention achieves the above phosphorescence quantum yield (0.01 or more) in any of any solvents. Just do it.

リン光ドーパントの発光は原理としては二種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型である。もう一つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こりリン光ドーパントからの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。 There are two types of light emission of the phosphorescent dopant in principle. One is that carrier recombination occurs on the host compound to which the carrier is transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant. It is an energy transfer type that obtains light emission from a phosphorescent dopant. The other is a carrier trap type in which the phosphorescent dopant serves as a carrier trap, and carriers are recombined on the phosphorescent dopant to obtain light emission from the phosphorescent dopant. In either case, the excited state energy of the phosphorescent dopant is required to be lower than the excited state energy of the host compound.

本発明において使用できるリン光ドーパントとしては、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。 As the phosphorescent dopant that can be used in the present invention, it can be appropriately selected from known ones used for the light emitting layer of the organic EL element.

本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。 Specific examples of known phosphorescent dopants that can be used in the present invention include compounds described in the following documents.

Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号、米国特許第6921915号明細書、米国特許第6687266号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許出願公開第2012/228583号明細書、米国特許出願公開第2012/212126号明細書、特開2012−069737号公報、特開2012−195554号公報、特開2009−114086号公報、特開2003−81988号公報、特開2002−302671号公報、特開2002−363552号公報等である。 Nature 395, 151 (1998), Apple. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19,739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17,1059 (2005), International Publication No. 2009/10991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Publication No. 2006/835469, US Patent Application Publication No. 2006/20202194 No., US Patent Application Publication No. 2007/0087321, US Patent Application Publication No. 2005/0244673, Inorg. Chem. 40,1704 (2001), Chem. Mater. 16,2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Apple. Phys. Lett. 86,153505 (2005), Chem. Lett. 34,592 (2005), Chem. Common. 2906 (2005), Inorg. Chem. 42,1248 (2003), International Publication No. 2009/050290, International Publication No. 2002/015645, International Publication No. 2009/000673, US Patent Application Publication No. 2002/0034656, US Patent No. 7332232 , US Patent Application Publication No. 2009/01087737, US Patent Application Publication No. 2009/00397776, US Patent Application Publication No. 6921915, US Patent No. 6687266, US Patent Application Publication No. 2007/0190359. , US Patent Application Publication No. 2006/0008670, US Patent Application Publication No. 2009/015846, US Patent Application Publication No. 2008/0015355, US Patent No. 7250226, US Patent No. 7396598 Specification, US Patent Application Publication No. 2006/0263635, US Patent Application Publication No. 2003/0138657, US Patent Application Publication No. 2003/0152802, US Patent No. 70090928, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18,5119 (2006), Inorg. Chem. 46,4308 (2007), Organometallics 23,3745 (2004), Apple. Phys. Lett. 74,1361 (1999), International Publication No. 2002/002714, International Publication No. 2006/090024, International Publication No. 2006/056418, International Publication No. 2005/019373, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2007/004380, International Publication No. 2006/082742, US Patent Application Publication No. 2006/0251923, US Patent Application Publication No. 2005/02060441, US Patent No. 73935999 Specification, US Patent No. 7534505, US Patent No. 7445855, US Patent Application Publication No. 2007/0190359, US Patent Application Publication No. 2008/0297033, US Patent No. 7338722. , US Patent Application Publication No. 2002/0134984, US Patent No. 7279704, US Patent Application Publication No. 2006/098120, US Patent Application Publication No. 2006/103874, International Publication No. 2005 / 07680, International Publication No. 2010/032663, International Publication No. 2008/140115, International Publication No. 2007/05/2431, International Publication No. 2011/134013, International Publication No. 2011/157339, International Publication No. 2010/086089 , International Publication No. 2009/113646, International Publication No. 2012/20327, International Publication No. 2011/051404, International Publication No. 2011/004639, International Publication No. 2011/073149, US Patent Application Publication No. 2012/228583 Specification, US Patent Application Publication No. 2012/212126, Japanese Patent Application Laid-Open No. 2012-069737, Japanese Patent Application Laid-Open No. 2012-195554, Japanese Patent Application Laid-Open No. 2009-114086, Japanese Patent Application Laid-Open No. 2003-81988, Japanese Patent Application Laid-Open No. 2002 −302671A, JP-A-2002-363552, and the like.

中でも、好ましいリン光ドーパントとしてはIrを中心金属に有する有機金属錯体が挙げられる。更に好ましくは、金属−炭素結合、金属−窒素結合、金属−酸素結合、金属−硫黄結合の少なくとも一つの配位様式を含む錯体が好ましい。 Among them, preferred phosphorescent dopants include organometallic complexes having Ir as the central metal. More preferably, a complex containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond and metal-sulfur bond is preferable.

(1.2)蛍光発光性ドーパント
本発明に用いられる蛍光発光性ドーパント(以下、「蛍光ドーパント」ともいう)について説明する。
(1.2) Fluorescent Luminescent Dopant A fluorescent luminescent dopant used in the present invention (hereinafter, also referred to as “fluorescent dopant”) will be described.

本発明に用いられる蛍光ドーパントは、励起一重項からの発光が可能な化合物であり、励起一重項からの発光が観測される限り特に限定されない。 The fluorescent dopant used in the present invention is a compound capable of emitting light from the excited singlet, and is not particularly limited as long as light emission from the excited singlet is observed.

本発明に用いられる蛍光ドーパントとしては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン誘導体、ピラン誘導体、シアニン誘導体、クロコニウム誘導体、スクアリウム誘導体、オキソベンツアントラセン誘導体、フルオレセイン誘導体、ローダミン誘導体、ピリリウム誘導体、ペリレン誘導体、ポリチオフェン誘導体、又は希土類錯体系化合物等が挙げられる。 Examples of the fluorescent dopant used in the present invention include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes and coumarins. Examples thereof include derivatives, pyran derivatives, cyanine derivatives, croconium derivatives, squalium derivatives, oxobenzanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, and rare earth complex compounds.

また、近年では遅延蛍光を利用した発光ドーパントも開発されており、これらを用いてもよい。 Further, in recent years, light emitting dopants using delayed fluorescence have also been developed, and these may be used.

遅延蛍光を利用した発光ドーパントの具体例としては、例えば、国際公開第2011/156793号、特開2011−213643号公報、特開2010−93181号公報等に記載の化合物が挙げられるが、本発明はこれらに限定されない。 Specific examples of the light emitting dopant using delayed fluorescence include the compounds described in International Publication No. 2011/156793, Japanese Patent Application Laid-Open No. 2011-213643, Japanese Patent Application Laid-Open No. 2010-93181, and the like. Is not limited to these.

(2)ホスト化合物
本発明に用いられるホスト化合物は、発光層において主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない。
(2) Host Compound The host compound used in the present invention is a compound mainly responsible for charge injection and transport in the light emitting layer, and its own light emission is not substantially observed in the organic EL device.

好ましくは室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物であり、更に好ましくはリン光量子収率が0.01未満の化合物である。また、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。 A compound having a phosphorescent quantum yield of less than 0.1 at room temperature (25 ° C.) is preferable, and a compound having a phosphorescent quantum yield of less than 0.01 is more preferable. Further, among the compounds contained in the light emitting layer, the mass ratio in the layer is preferably 20% or more.

また、ホスト化合物の励起状態エネルギーは、同一層内に含有される発光ドーパントの励起状態エネルギーよりも高いことが好ましい。 Further, the excited state energy of the host compound is preferably higher than the excited state energy of the light emitting dopant contained in the same layer.

ホスト化合物は、単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子の発光を高効率化することができる。 The host compound may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of electric charges, and it is possible to improve the efficiency of light emission of the organic EL element.

本発明で用いることができるホスト化合物としては、特に制限はなく、従来有機EL素子で用いられる化合物を用いることができる。低分子化合物でも繰り返し単位を有する高分子化合物でもよく、また、ビニル基やエポキシ基のような反応性基を有する化合物でもよい。 The host compound that can be used in the present invention is not particularly limited, and compounds conventionally used in organic EL devices can be used. It may be a low molecular weight compound, a high molecular weight compound having a repeating unit, or a compound having a reactive group such as a vinyl group or an epoxy group.

公知のホスト化合物としては、正孔輸送能又は電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、更に、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好ましい。好ましくはTgが90℃以上であり、より好ましくは120℃以上である。 As a known host compound, it has hole transporting ability or electron transporting ability, prevents the wavelength of light emission from being lengthened, and further stabilizes the organic EL device against heat generation during high temperature driving or device driving. It is preferable to have a high glass transition temperature (Tg) from the viewpoint of operating the device. Tg is preferably 90 ° C. or higher, and more preferably 120 ° C. or higher.

ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS−K−7121に準拠した方法により求められる値である。 Here, the glass transition point (Tg) is a value obtained by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry: differential scanning calorimetry).

本発明の有機EL素子に用いられる、公知のホスト化合物の具体例としては、以下の文献に記載の化合物等が挙げられるが、これらに限定されない。 Specific examples of the known host compound used in the organic EL device of the present invention include, but are not limited to, the compounds described in the following documents.

特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報、米国特許出願公開第2003/0175553号明細書、米国特許出願公開第2006/0280965号明細書、米国特許出願公開第2005/0112407号明細書、米国特許出願公開第2009/0017330号明細書、米国特許出願公開第2009/0030202号明細書、米国特許出願公開第2005/0238919号明細書、国際公開第2001/039234号、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008−074939号公報、特開2007−254297号公報、欧州特許第2034538号明細書等である。 JP 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357977, 2002-334786, 2002-8860, 2002-334787A, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002. 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002-363227, 2002-231453, 2003 No. 3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-260861, No. 2002-280183, No. 2002-299060, No. 2002- 302516, 2002-305083, 2002-305084, 2002-308837, US Patent Application Publication No. 2003/0175553, US Patent Application Publication No. 2006/0280965, USA Publication of Patent Application Publication No. 2005/0112407, Publication of US Patent Application Publication No. 2009/0017330, Publication of US Patent Application Publication No. 2009/0030202, Publication of US Patent Application Publication No. 2005/0238919, International Publication No. 2001/039234, International Publication No. 2009/021126, International Publication No. 2008/056746, International Publication No. 2004/093207, International Publication No. 2005/089025, International Publication No. 2007/0637996, International Publication No. 2007 / 063754, International Publication No. 2004/107822, International Publication No. 2005/030900, International Publication No. 2006/114966, International Publication No. 2009/086028, International Publication No. 2009/003898, International Publication No. 2012/0293947 , Japanese Patent Application Laid-Open No. 2008-074939, Japanese Patent Application Laid-Open No. 2007-254297, European Patent No. 2034538, and the like.

《電子輸送層》
本発明において電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
《Electron transport layer》
In the present invention, the electron transport layer may be made of a material having a function of transporting electrons and may have a function of transmitting electrons injected from the cathode to the light emitting layer.

本発明に用いられる電子輸送層の総層厚については特に制限はないが、通常は2nm〜5μmの範囲であり、より好ましくは2〜500nmであり、更に好ましくは5〜200nmである。 The total thickness of the electron transport layer used in the present invention is not particularly limited, but is usually in the range of 2 nm to 5 μm, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.

また、有機EL素子においては発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極と対極に位置する電極によって反射されてから取り出される光とが干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総層厚を5nm〜1μmの間で適宜調整することにより、この干渉効果を効率的に利用することが可能である。 Further, in the organic EL element, when the light generated in the light emitting layer is taken out from the electrode, the light taken out directly from the light emitting layer and the light taken out after being reflected by the electrode located at the opposite electrode to the electrode that takes out the light interfere with each other. It is known to wake up. When light is reflected by the cathode, this interference effect can be efficiently utilized by appropriately adjusting the total thickness of the electron transport layer between 5 nm and 1 μm.

一方で、電子輸送層の層厚を厚くすると電圧が上昇しやすくなるため、特に層厚が厚い場合においては、電子輸送層の電子移動度は10−5cm/Vs以上であることが好ましい。 On the other hand, if the layer thickness of the electron transport layer is increased, the voltage tends to increase. Therefore, especially when the layer thickness is thick, the electron mobility of the electron transport layer is preferably 10-5 cm 2 / Vs or more. ..

電子輸送層に用いられる材料(以下、電子輸送材料という)としては、電子の注入性又は輸送性、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。 The material used for the electron transport layer (hereinafter referred to as an electron transport material) may have any of electron injectability, transportability, and hole barrier property, and is arbitrary from conventionally known compounds. Can be selected and used.

例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン等)等が挙げられる。 For example, nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more of the carbon atoms constituting the carbazole ring substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, Triazine derivative, quinoline derivative, quinoxalin derivative, phenanthroline derivative, azatriphenylene derivative, oxazole derivative, thiazole derivative, oxadiazole derivative, thiadiazol derivative, triazole derivative, benzimidazole derivative, benzoxazole derivative, benzthiazole derivative, etc.), dibenzofuran derivative, Examples thereof include dibenzothiophene derivatives, silol derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenylene, etc.).

また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。 Further, a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand, for example, tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-) Dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and metal complexes thereof. A metal complex in which the central metal is replaced with In, Mg, Cu, Ca, Sn, Ga or Pb can also be used as an electron transport material.

その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。 In addition, metal-free or metal phthalocyanine, or those whose terminals are substituted with an alkyl group, a sulfonic acid group, or the like can also be preferably used as an electron transport material. Further, the distyrylpyrazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si or n-type-SiC is used like the hole injection layer and the hole transport layer. Can also be used as an electron transport material.

また、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 Further, it is also possible to use a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain.

本発明に用いられる電子輸送層においては、電子輸送層にドープ材をゲスト材料としてドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体やハロゲン化金属等金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。 In the electron transport layer used in the present invention, the electron transport layer may be doped with a doping material as a guest material to form an electron transport layer having a high n property (electron rich). Examples of the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides. Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-2970776, JP-A-10-270172, JP-A-2000-196140, JP-A-2001-102175, J. Mol. Apple. Phys. , 95, 5773 (2004) and the like.

本発明の有機EL素子に用いられる、公知の好ましい電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、これらに限定されない。 Specific examples of known and preferable electron transporting materials used in the organic EL device of the present invention include, but are not limited to, the compounds described in the following documents.

米国特許第6528187号明細書、米国特許第7230107号明細書、米国特許出願公開第2005/0025993号明細書、米国特許出願公開第2004/0036077号明細書、米国特許出願公開第2009/0115316号明細書、米国特許出願公開第2009/0101870号明細書、米国特許出願公開第2009/0179554号明細書、国際公開第2003/060956号、国際公開第2008/132085号、Appl.Phys.Lett.75,4(1999)、Appl.Phys.Lett.79,449(2001)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.79,156(2001)、米国特許第7964293号明細書、米国特許出願公開第2009/030202号明細書、国際公開第2004/080975号、国際公開第2004/063159号、国際公開第2005/085387号、国際公開第2006/067931号、国際公開第2007/086552号、国際公開第2008/114690号、国際公開第2009/069442号、国際公開第2009/066779号、国際公開第2009/054253号、国際公開第2011/086935号、国際公開第2010/150593号、国際公開第2010/047707号、欧州特許第2311826号明細書、特開2010−251675号公報、特開2009−209133号公報、特開2009−124114号公報、特開2008−277810号公報、特開2006−156445号公報、特開2005−340122号公報、特開2003−45662号公報、特開2003−31367号公報、特開2003−282270号公報、国際公開第2012/115034号等である。 US Patent No. 6528187, US Patent No. 7230107, US Patent Application Publication No. 2005/0025993, US Patent Application Publication No. 2004/0036077, US Patent Application Publication No. 2009/0115316. Books, US Patent Application Publication No. 2009/0101870, US Patent Application Publication No. 2009/0179554, International Publication No. 2003/060956, International Publication No. 2008/132805, Appl. Phys. Lett. 75, 4 (1999), Apple. Phys. Lett. 79,449 (2001), Apple. Phys. Lett. 81, 162 (2002), Apple. Phys. Lett. 81, 162 (2002), Apple. Phys. Lett. 79,156 (2001), US Patent No. 7964293, US Patent Application Publication No. 2009/030202, International Publication No. 2004/080975, International Publication No. 2004/063159, International Publication No. 2005/085387 , International Publication No. 2006/067931, International Publication No. 2007/0865552, International Publication No. 2008/114690, International Publication No. 2009/0694242, International Publication No. 2009/066797, International Publication No. 2009/054253, International Publication No. 2011/086935, International Publication No. 2010/150593, International Publication No. 2010/047707, European Patent No. 2311826, JP-A-2010-251675, JP-A-2009-209133, JP-A-2009. -124114, 2008-277810, 2006-156445, 2005-340122, 2003-45662, 2003-31367, 2003-282270. No., International Publication No. 2012/11034, etc.

本発明におけるより好ましい電子輸送材料としては、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体が挙げられる。 More preferable electron transporting materials in the present invention include pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, and benzimidazole derivatives.

電子輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。 The electron transport material may be used alone or in combination of two or more.

《正孔阻止層》
正孔阻止層とは広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
《Hole blocking layer》
The hole blocking layer is a layer having a function of an electron transporting layer in a broad sense, and is preferably made of a material having a function of transporting electrons and a small ability to transport holes, and a hole while transporting electrons. It is possible to improve the recombination probability of electrons and holes by blocking the above.

また、前述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。 In addition, the structure of the electron transport layer described above can be used as the hole blocking layer according to the present invention, if necessary.

本発明の有機EL素子に設ける正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。 The hole blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the cathode side of the light emitting layer.

本発明に用いられる正孔阻止層の層厚としては、好ましくは3〜100nmの範囲であり、更に好ましくは5〜30nmの範囲である。 The layer thickness of the hole blocking layer used in the present invention is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.

正孔阻止層に用いられる材料としては、前述の電子輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。 As the material used for the hole blocking layer, the material used for the electron transport layer described above is preferably used, and the material used as the host compound described above is also preferably used for the hole blocking layer.

《電子注入層》
本発明に用いられる電子注入層(「陰極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。
《Electron injection layer》
The electron injection layer (also referred to as "cathode buffer layer") used in the present invention is a layer provided between the cathode and the light emitting layer in order to reduce the driving voltage and improve the emission brightness, and is an "organic EL element". It is described in detail in Volume 2, Chapter 2, "Electrode Materials" (pages 123-166) of "The Forefront of Industrialization (published by NTS Co., Ltd. on November 30, 1998)".

本発明において電子注入層は必要に応じて設け、上記の如く陰極と発光層との間、又は陰極と電子輸送層との間に存在させてもよい。 In the present invention, the electron injection layer may be provided as needed and may be present between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.

電子注入層はごく薄い膜であることが好ましく、素材にもよるがその層厚は0.1〜5nmの範囲が好ましい。また構成材料が断続的に存在する不均一な膜であってもよい。 The electron injection layer is preferably a very thin film, and the layer thickness is preferably in the range of 0.1 to 5 nm, although it depends on the material. Further, it may be a non-uniform film in which the constituent material is intermittently present.

電子注入層は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、リチウム8−ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、前述の電子輸送材料を用いることも可能である。 The details of the electron-injected layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like, and specific examples of materials preferably used for the electron-injected layer include , Metals such as strontium and aluminum, alkali metal compounds such as lithium fluoride, sodium fluoride and potassium fluoride, alkaline earth metal compounds such as magnesium fluoride and calcium fluoride, oxidation Examples thereof include metal oxides typified by aluminum, metal complexes typified by lithium 8-hydroxyquinolate (Liq) and the like. It is also possible to use the above-mentioned electron transport material.

また、上記の電子注入層に用いられる材料は単独で用いてもよく、複数種を併用して用いてもよい。 Further, the material used for the above-mentioned electron injection layer may be used alone or in combination of two or more.

《正孔輸送層》
本発明において正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
《Hole transport layer》
In the present invention, the hole transport layer may be made of a material having a function of transporting holes and may have a function of transmitting holes injected from the anode to the light emitting layer.

本発明に用いられる正孔輸送層の総層厚については特に制限はないが、通常は5nm〜5μmの範囲であり、より好ましくは2〜500nmであり、更に好ましくは5nm〜200nmである。 The total thickness of the hole transport layer used in the present invention is not particularly limited, but is usually in the range of 5 nm to 5 μm, more preferably 2 to 500 nm, and further preferably 5 nm to 200 nm.

正孔輸送層に用いられる材料(以下、正孔輸送材料という)としては、正孔の注入性又は輸送性、電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。 The material used for the hole transport layer (hereinafter referred to as the hole transport material) may have any of hole injectability, transportability, and electron barrier property, and is among conventionally known compounds. Any one can be selected and used from.

例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えばPEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。 For example, porphyrin derivative, phthalocyanine derivative, oxazole derivative, oxaziazole derivative, triazole derivative, imidazole derivative, pyrazoline derivative, pyrazolone derivative, phenylenediamine derivative, hydrazone derivative, stilben derivative, polyarylalkane derivative, triarylamine derivative, carbazole derivative. , Indolocarbazole derivative, isoindole derivative, acene derivative such as anthracene and naphthalene, fluorene derivative, fluorenone derivative, polyvinylcarbazole, polymer material or oligomer in which aromatic amine is introduced into the main chain or side chain, polysilane, conductivity Examples thereof include sex polymers or oligomers (eg, PEDOT: PSS, aniline-based copolymers, polyaniline, polythiophene, etc.).

トリアリールアミン誘導体としては、αNPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。 Examples of the triarylamine derivative include a benzidine type typified by αNPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine connecting core portion.

また、特表2003−519432号公報や特開2006−135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。 Hexaazatriphenylene derivatives as described in JP-A-2003-591432 and JP-A-2006-135145 can also be used as the hole transport material in the same manner.

更に不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 Further, a hole transport layer having a high p property doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, and JP-A-2001-102175. Apple. Phys. , 95, 5773 (2004) and the like.

また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料やp型−Si、p型−SiC等の無機化合物を用いることもできる。更にIr(ppy)に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。 In addition, JP-A-11-251667, J. Am. Hung et. al. So-called p-type hole transporting materials and inorganic compounds such as p-type-Si and p-type-SiC as described in the authored literature (Applied Physics Letters 80 (2002), p.139) can also be used. Further, an orthometalated organometallic complex having Ir or Pt in the central metal as represented by Ir (ppy) 3 is also preferably used.

正孔輸送材料としては、上記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー等が好ましく用いられる。 As the hole transport material, the above-mentioned materials can be used, but a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organic metal complex, and an aromatic amine are introduced into the main chain or the side chain. High molecular weight materials or oligomers are preferably used.

本発明の有機EL素子に用いられる、公知の好ましい正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、これらに限定されない。 Specific examples of known and preferable hole transporting materials used in the organic EL device of the present invention include, but are not limited to, the compounds described in the following documents in addition to the documents mentioned above.

例えば、Appl.Phys.Lett.69,2160(1996)、J.Lumin.72−74,985(1997)、Appl.Phys.Lett.78,673(2001)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.51,913(1987)、Synth.Met.87,171(1997)、Synth.Met.91,209(1997)、Synth.Met.111,421(2000)、SID Symposium Digest,37,923(2006)、J.Mater.Chem.3,319(1993)、Adv.Mater.6,677(1994)、Chem.Mater.15,3148(2003)、米国特許出願公開第2003/0162053号明細書、米国特許出願公開第2002/0158242号明細書、米国特許出願公開第2006/0240279号明細書、米国特許出願公開第2008/0220265号明細書、米国特許第5061569号明細書、国際公開第2007/002683号、国際公開第2009/018009号、欧州特許第650955号明細書、米国特許出願公開第2008/0124572号、米国特許出願公開第2007/0278938号明細書、米国特許出願公開第2008/0106190号明細書、米国特許出願公開第2008/0018221号明細書、国際公開第2012/115034号、特表2003−519432号公報、特開2006−135145号公報、米国特許出願番号13/585981号等である。 For example, Apple. Phys. Lett. 69,2160 (1996), J. Mol. Lumin. 72-74,985 (1997), Apple. Phys. Lett. 78,673 (2001), Apple. Phys. Lett. 90,183503 (2007), Apple. Phys. Lett. 90,183503 (2007), Apple. Phys. Lett. 51,913 (1987), Synth. Met. 87,171 (1997), Synth. Met. 91,209 (1997), Synth. Met. 111,421 (2000), SID Symposium Digital, 37,923 (2006), J. Mol. Mater. Chem. 3,319 (1993), Adv. Mater. 6,677 (1994), Chem. Mater. 15, 3148 (2003), US Patent Application Publication No. 2003/0162053, US Patent Application Publication No. 2002/0158242, US Patent Application Publication No. 2006/0240279, US Patent Application Publication No. 2008 / 0220265, US Patent No. 5061569, International Publication No. 2007/002683, International Publication No. 2009/01809, European Patent No. 650955, US Patent Application Publication No. 2008/01245772, US Patent Application Publication No. 2007/0278938, US Patent Application Publication No. 2008/0106190, US Patent Application Publication No. 2008/0018221, International Publication No. 2012/115034, Japanese Patent Application Laid-Open No. 2003-591432, No. 2006-135145, US Patent Application No. 13/585981, etc.

正孔輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。 The hole transporting material may be used alone or in combination of two or more.

《電子阻止層》
電子阻止層とは広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
《Electronic blocking layer》
The electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, and is composed of a material having a small ability to transport electrons while transporting holes. It is possible to improve the recombination probability of electrons and holes by blocking the above.

また、前述する正孔輸送層の構成を必要に応じて、本発明に用いられる電子阻止層として用いることができる。 Further, the structure of the hole transport layer described above can be used as an electron blocking layer used in the present invention, if necessary.

本発明の有機EL素子に設ける電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。 The electron blocking layer provided in the organic EL element of the present invention is preferably provided adjacent to the anode side of the light emitting layer.

本発明に用いられる電子阻止層の層厚としては、好ましくは3〜100nmの範囲であり、更に好ましくは5〜30nmの範囲である。 The layer thickness of the electron blocking layer used in the present invention is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.

電子阻止層に用いられる材料としては、前述の正孔輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も電子阻止層に好ましく用いられる。 As the material used for the electron blocking layer, the material used for the hole transporting layer described above is preferably used, and the material used as the host compound described above is also preferably used for the electron blocking layer.

《正孔注入層》
本発明に用いられる正孔注入層(「陽極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。
《Hole injection layer》
The hole injection layer (also referred to as “anode buffer layer”) used in the present invention is a layer provided between the anode and the light emitting layer in order to reduce the driving voltage and improve the emission brightness, and is an “organic EL element”. And its industrialization forefront (published by NTS, Inc. on November 30, 1998), Volume 2, Chapter 2, "Electrode Materials" (pages 123-166).

本発明において正孔注入層は必要に応じて設け、上記の如く陽極と発光層又は陽極と正孔輸送層との間に存在させてもよい。 In the present invention, the hole injection layer may be provided as needed and may be present between the anode and the light emitting layer or between the anode and the hole transport layer as described above.

正孔注入層は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば前述の正孔輸送層に用いられる材料等が挙げられる。 The details of the hole injection layer are also described in JP-A-9-45479, 9-2660062, 8-288609, etc., and examples of the material used for the hole injection layer include. Examples thereof include materials used for the hole transport layer described above.

中でも銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003−519432号公報や特開2006−135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2−フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。 Among them, phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives as described in JP-A-2003-591432 and JP-A-2006-135145, metal oxides typified by vanadium oxide, amorphous carbon. , Polyaniline (emeraldine), polythiophene and other conductive polymers, tris (2-phenylpyridine) iridium complexes and the like, orthometallated complexes, triarylamine derivatives and the like are preferable.

前述の正孔注入層に用いられる材料は単独で用いてもよく、また複数種を併用して用いてもよい。 The material used for the hole injection layer described above may be used alone or in combination of two or more.

《その他の添加物》
前述した本発明における有機層は、更に他の添加物が含まれていてもよい。
<< Other additives >>
The organic layer in the present invention described above may further contain other additives.

添加物としては、例えば臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。 Examples of the additive include halogen elements such as bromine, iodine and chlorine, halogenated compounds, alkali metals and alkaline earth metals such as Pd, Ca and Na, compounds and complexes of transition metals, salts and the like.

添加物の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、更に好ましくは50ppm以下である。 The content of the additive can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, still more preferably 50 ppm or less, based on the total mass% of the contained layer. ..

ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的等によってはこの範囲内ではない。 However, it is not within this range depending on the purpose of improving the transportability of electrons and holes, the purpose of favoring the energy transfer of excitons, and the like.

《有機層の形成方法》
本発明に用いられる有機層(正孔注入層、正孔輸送層、電子阻止層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。
<< Method of forming organic layer >>
A method for forming an organic layer (hole injection layer, hole transport layer, electron blocking layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) used in the present invention will be described.

本発明に用いられる有機層の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。ここで、有機層が、ウェットプロセスで形成された層であることが好ましい。すなわち、ウェットプロセスで有機EL素子を作製することが好ましい。有機EL素子をウェットプロセスで作製することで、均質な膜(塗膜)が得られやすく、且つピンホールが生成しにくい等の効果を奏することができる。なお、ここでの膜(塗膜)とは、ウェットプロセスによる塗布後に乾燥させた状態のものである。 The method for forming the organic layer used in the present invention is not particularly limited, and conventionally known methods such as a vacuum vapor deposition method and a wet method (also referred to as a wet process) can be used. Here, it is preferable that the organic layer is a layer formed by a wet process. That is, it is preferable to manufacture an organic EL device by a wet process. By manufacturing the organic EL element by a wet process, it is possible to obtain an effect that a homogeneous film (coating film) is easily obtained and pinholes are less likely to be generated. The film (coating film) here is in a state of being dried after being applied by a wet process.

湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア−ブロジェット法)等があるが、均質な薄膜が得られやすく、且つ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法等のロール・to・ロール方式に対して適性の高い方法が好ましい。 Examples of the wet method include a spin coating method, a casting method, an inkjet method, a printing method, a die coating method, a blade coating method, a roll coating method, a spray coating method, a curtain coating method, and an LB method (Langmuir-Brojet method). From the viewpoint of easy acquisition of a homogeneous thin film and high productivity, a method highly suitable for a roll-to-roll method such as a die coating method, a roll coating method, an inkjet method, or a spray coating method is preferable.

本発明に係る有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。 Examples of the liquid medium for dissolving or dispersing the organic EL material according to the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene and mesitylene. , Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO can be used.

また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。 Further, as a dispersion method, dispersion can be performed by a dispersion method such as ultrasonic waves, high shear force dispersion, or media dispersion.

更に層毎に異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50〜450℃、真空度10−6〜10−2Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、厚さ0.1nm〜5μm、好ましくは5〜200nmの範囲で適宜選ぶことが望ましい。 Further, a different film forming method may be applied to each layer. When employing the vapor deposition film, the depositing conditions thereof are varied according to kinds of materials used, generally boat temperature 50 to 450 ° C., vacuum of 10 -6 to 10 -2 Pa, deposition rate 0.01 It is desirable to appropriately select in the range of 50 nm / sec, substrate temperature -50 to 300 ° C., thickness 0.1 nm to 5 μm, preferably 5 to 200 nm.

本発明に用いられる有機層の形成は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際は作業を乾燥不活性ガス雰囲気下で行うことが好ましい。 The organic layer used in the present invention is preferably formed from the hole injection layer to the cathode by one vacuuming, but it may be taken out in the middle and a different film forming method may be applied. In that case, it is preferable to carry out the work in a dry inert gas atmosphere.

《陽極》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5V以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
"anode"
As the anode in the organic EL element, a metal, an alloy, an electrically conductive compound having a large work function (4 eV or more, preferably 4.5 V or more) and a mixture thereof as an electrode material are preferably used. Specific examples of such an electrode material include metals such as Au and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Further, a material such as IDIXO (In 2 O 3- ZnO) that is amorphous and can produce a transparent conductive film may be used.

陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、又はパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 For the anode, a thin film may be formed by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not required so much (about 100 μm or more). The pattern may be formed through a mask having a desired shape during vapor deposition or sputtering of the electrode material.

又は、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式製膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。 Alternatively, when a coatable substance such as an organic conductive compound is used, a wet film forming method such as a printing method or a coating method can also be used. When light emission is taken out from this anode, it is desirable to increase the transmittance to more than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less.

陽極の厚さは材料にもよるが、通常10nm〜1μm、好ましくは10〜200nmの範囲で選ばれる。 The thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 μm, preferably 10 to 200 nm.

《陰極》
陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
"cathode"
As the cathode, a metal having a small work function (4 eV or less) (referred to as an electron-injectable metal), an alloy, an electrically conductive compound, or a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O). 3 ) Examples thereof include a mixture, indium, a lithium / aluminum mixture, aluminum, and a rare earth metal. Among these, from the viewpoint of electron injectability and durability against oxidation and the like, a mixture of an electron injectable metal and a second metal which is a stable metal having a larger work function value than this, for example, a magnesium / silver mixture. Magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, lithium / aluminum mixture, aluminum and the like are suitable.

陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、厚さは通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。 The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance of the cathode is preferably several hundred Ω / □ or less, and the thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.

なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。 In order to transmit the emitted light, it is convenient that the emission brightness is improved if either the anode or the cathode of the organic EL element is transparent or translucent.

また、陰極に上記金属を1〜20nmの厚さで作製した後に、陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 Further, a transparent or translucent cathode can be produced by producing the above metal on the cathode having a thickness of 1 to 20 nm and then producing the conductive transparent material mentioned in the description of the anode on the cathode. By applying the above, it is possible to manufacture an element in which both the anode and the cathode are transparent.

《支持基板》
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
《Support board》
The type of support substrate (hereinafter, also referred to as substrate, substrate, substrate, support, etc.) that can be used for the organic EL element of the present invention is not particularly limited in the types such as glass and plastic, and is transparent. May also be opaque. When light is taken out from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of imparting flexibility to the organic EL element.

樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル、又はポリアリレート類、アートン(商品名JSR社製)若しくはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate. CAP), cellulose acetate phthalate, cellulose esters such as cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyether sulfone (PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic, or polyarylates, Arton (trade name: JSR) or Cycloolefin resins such as Apel (trade name: manufactured by Mitsui Chemicals, Inc.) can be mentioned.

樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、10−3ml/(m・24h・atm)以下、水蒸気透過度が、10−5g/(m・24h)以下の高バリア性フィルムであることが好ましい。 A film of an inorganic substance, an organic substance, or a hybrid film of both of them may be formed on the surface of the resin film, and the water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. oxygen relative humidity (90 ± 2)% RH) is preferably a barrier film of 0.01g / (m 2 · 24h) or less, and still more, as measured by the method based on JIS K 7126-1987 the permeability, 10 -3 ml / (m 2 · 24h · atm) or less, the water vapor permeability is preferably 10 -5 g / (m 2 · 24h) or less of the high barrier film.

バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 As the material for forming the barrier film, any material that causes deterioration of the element such as water and oxygen but has a function of suppressing infiltration may be used, and for example, silicon oxide, silicon dioxide, silicon nitride and the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and layers made of an organic material. The stacking order of the inorganic layer and the organic layer is not particularly limited, but it is preferable to stack the inorganic layer and the organic layer alternately a plurality of times.

バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。 The method for forming the barrier film is not particularly limited, and for example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma polymerization method. , Plasma CVD method, laser CVD method, thermal CVD method, coating method and the like can be used, but the atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.

不透明な支持基板としては、例えば、アルミニウム、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。 Examples of the opaque support substrate include a metal plate such as aluminum and stainless steel, a film or opaque resin substrate, and a ceramic substrate.

本発明の有機EL素子の発光の室温における外部取り出し量子効率は、1%以上であることが好ましく、5%以上であるとより好ましい。 The external extraction quantum efficiency of the light emission of the organic EL device of the present invention at room temperature is preferably 1% or more, more preferably 5% or more.

ここで、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。 Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons passed through the organic EL element × 100.

また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を、蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。 Further, a hue improving filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.

《封止》
本発明の有機EL素子の封止に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。
《Seal》
Examples of the sealing means used for sealing the organic EL element of the present invention include a method of adhering a sealing member, an electrode, and a support substrate with an adhesive. The sealing member may be arranged so as to cover the display area of the organic EL element, and may be intaglio-shaped or flat-plate-shaped. Further, transparency and electrical insulation are not particularly limited.

封止部材として具体的には、ガラス板、ポリマー板、金属板等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金からなるものが挙げられる。 Specific examples of the sealing member include a glass plate, a polymer plate, and a metal plate. Examples of the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium and tantalum.

本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムはJIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10−3ml/(m・24h・atm)以下、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が、1×10−3g/(m・24h)以下のものであることが好ましい。 In the present invention, a polymer film or a metal film can be preferably used because the organic EL element can be thinned. Furthermore, the polymer film JIS K 7126-1987 oxygen permeability measured by the method conforming to the 1 × 10 -3 ml / (m 2 · 24h · atm) or less, by a method according to JIS K 7129-1992 the measured water vapor transmission rate (25 ± 0.5 ° C., relative humidity (90 ± 2)%) is preferably that of 1 × 10 -3 g / (m 2 · 24h) or less.

封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。 Sandblasting, chemical etching, etc. are used to process the sealing member into a concave shape.

接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Specific examples of the adhesive include a photocurable and thermosetting adhesive having a reactive vinyl group of an acrylic acid-based oligomer, a moisture-curable adhesive such as 2-cyanoacrylic acid ester, and the like. be able to. In addition, heat and chemical curing type (two-component mixture) such as epoxy type can be mentioned. Further, hot melt type polyamide, polyester and polyolefin can be mentioned. In addition, a cation-curable type ultraviolet-curable epoxy resin adhesive can be mentioned.

なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 Since the organic EL element may be deteriorated by heat treatment, it is preferable that the organic EL element can be adhesively cured from room temperature to 80 ° C. Further, the desiccant may be dispersed in the adhesive. A commercially available dispenser may be used to apply the adhesive to the sealing portion, or printing may be performed as in screen printing.

また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。 Further, it is also possible to preferably coat the electrode and the organic layer on the outside of the electrode on the side facing the support substrate with the organic layer sandwiched therein, and form a layer of an inorganic substance or an organic substance in contact with the support substrate to form a sealing film. .. In this case, the material for forming the film may be any material having a function of suppressing infiltration of a material that causes deterioration of the element such as water and oxygen, and for example, silicon oxide, silicon dioxide, silicon nitride or the like may be used. it can.

更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of an organic material. The method for forming these films is not particularly limited, and for example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight. Legal, plasma CVD method, laser CVD method, thermal CVD method, coating method and the like can be used.

封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。 In the gas phase and liquid phase, an inert gas such as nitrogen or argon or an inert liquid such as fluorinated hydrocarbon or silicon oil may be injected into the gap between the sealing member and the display region of the organic EL element. preferable. It is also possible to create a vacuum. It is also possible to enclose a hygroscopic compound inside.

吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide, etc.) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate, etc.). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchlorates (eg, perchloric acid) (Valium, magnesium perchlorate, etc.) and the like, and anhydrous salts are preferably used for sulfates, metal halides and perchlorates.

《保護膜、保護板》
有機層を挟み支持基板と対向する側の前記封止膜又は前記封止用フィルムの外側に、素子の機械的強度を高めるために、保護膜若しくは保護板を設けてもよい。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板、金属板等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
A protective film or protective plate may be provided on the outer side of the sealing film or the sealing film on the side facing the support substrate with the organic layer sandwiched in order to increase the mechanical strength of the element. In particular, when the sealing is performed by the sealing film, its mechanical strength is not necessarily high, so it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, a glass plate, a polymer plate, a metal plate, etc. similar to those used for the sealing can be used, but a polymer film can be used because it is lightweight and thin. preferable.

《光取り出し向上技術》
有機エレクトロルミネッセンス素子は、空気よりも屈折率の高い(屈折率1.6〜2.1程度の範囲内)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないと一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として、光が素子側面方向に逃げるためである。
<< Technology for improving light extraction >>
The organic electroluminescence element emits light inside a layer having a higher refractive index than air (within a refractive index of about 1.6 to 2.1), and about 15% to 20% of the light generated in the light emitting layer. It is generally said that only light can be extracted. This is because light incident on the interface (intersection between the transparent substrate and air) at an angle θ equal to or greater than the critical angle causes total internal reflection and cannot be taken out of the element, and the transparent electrode or light emitting layer and the transparent substrate This is because the light is totally reflected between them, the light is waveguideed through the transparent electrode or the light emitting layer, and as a result, the light escapes toward the side surface of the element.

この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63−314795号公報)、素子の側面等に反射面を形成する方法(例えば、特開平1−220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62−172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001−202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11−283751号公報)等が挙げられる。 As a method for improving the efficiency of light extraction, for example, a method of forming irregularities on the surface of a transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (for example, US Pat. No. 4,774,435), the substrate A method of improving efficiency by providing light-collecting property (for example, Japanese Patent Application Laid-Open No. 63-314795), a method of forming a reflective surface on a side surface of an element (for example, Japanese Patent Application Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the light emitting body and the light emitting body (for example, Japanese Patent Application Laid-Open No. 62-172691), which has a lower refractive index than the substrate between the substrate and the light emitting body. A method of introducing a flat layer having a refractive index (for example, Japanese Patent Application Laid-Open No. 2001-202827), a method of forming a diffraction grating between layers of a substrate, a transparent electrode layer or a light emitting layer (including between the substrate and the outside world) ( JP-A-11-283751) and the like.

本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、又は基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。 In the present invention, these methods can be used in combination with the organic EL element of the present invention, but a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or the substrate, transparent. A method of forming a diffraction grating between layers (including between the substrate and the outside world) of either the electrode layer or the light emitting layer can be preferably used.

本発明は、これらの手段を組み合わせることにより、更に高輝度又は耐久性に優れた素子を得ることができる。 In the present invention, by combining these means, it is possible to obtain an element having higher brightness or excellent durability.

透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。 When a medium having a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light emitted from the transparent electrode has a higher efficiency of being taken out to the outside as the refractive index of the medium is lower. Become.

低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5〜1.7程度の範囲内であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましい。また更に1.35以下であることが好ましい。 Examples of the low refractive index layer include airgel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, it is preferable that the low refractive index layer has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.

また、低屈折率媒質の厚さは、媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む層厚になると、低屈折率層の効果が薄れるからである。 Further, it is desirable that the thickness of the low refractive index medium is at least twice the wavelength in the medium. This is because the effect of the low-refractive-index layer diminishes when the thickness of the low-refractive-index medium becomes about the wavelength of light and the layer thickness at which the electromagnetic waves exuded by evanescent penetrate into the substrate.

全反射を起こす界面又は、いずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や、2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間若しくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。 The method of introducing the diffraction grating into the interface where total reflection occurs or any medium is characterized in that the effect of improving the light extraction efficiency is high. This method is generated from the light emitting layer by utilizing the property that the diffraction grating can change the direction of light to a specific direction different from the refraction by so-called Bragg diffraction such as first-order diffraction or second-order diffraction. Of the generated light, the light that cannot go out due to total reflection between the layers is diffracted by introducing a diffraction grating between either layer or in the medium (inside the transparent substrate or in the transparent electrode). , Trying to get the light out.

導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。 It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because the light emitted by the light emitting layer is randomly generated in all directions, so a general one-dimensional diffraction grating that has a periodic refractive index distribution only in one direction diffracts only the light that travels in a specific direction. The light extraction efficiency does not increase so much.

しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。 However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and the light extraction efficiency is improved.

回折格子を導入する位置としては、いずれかの層間、若しくは媒質中(透明基板内や透明電極内)でも良いが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2〜3倍程度の範囲内が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状等、二次元的に配列が繰り返されることが好ましい。 The position where the diffraction grating is introduced may be in any of the layers or in the medium (inside the transparent substrate or in the transparent electrode), but it is desirable that the diffraction grating is introduced in the vicinity of the organic light emitting layer where light is generated. At this time, the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of the light in the medium. It is preferable that the arrangement of the diffraction grating is two-dimensionally repeated, such as a square lattice shape, a triangular lattice shape, and a honeycomb lattice shape.

《集光シート》
本発明の有機EL素子は、支持基板(基板)の光取り出し側に、例えばマイクロレンズアレイ上の構造を設けるように加工したり、又は、いわゆる集光シートと組み合わせたりすることにより、特定方向、例えば素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
《Condensing sheet》
The organic EL element of the present invention can be processed in a specific direction by, for example, processing so as to provide a structure on a microlens array on the light extraction side of a support substrate (substrate) or by combining with a so-called condensing sheet. For example, the brightness in a specific direction can be increased by condensing light in the front direction with respect to the light emitting surface of the element.

マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10〜100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚さが厚くなり好ましくない。 As an example of a microlens array, a quadrangular pyramid having a side of 30 μm and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate. One side is preferably in the range of 10 to 100 μm. If it is smaller than this, the effect of diffraction occurs and it is colored, and if it is too large, the thickness becomes thick, which is not preferable.

集光シートとしては、例えば液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であっても良い。 As the condensing sheet, for example, a sheet that has been put into practical use in an LED backlight of a liquid crystal display device can be used. As such a sheet, for example, a brightness increasing film (BEF) manufactured by Sumitomo 3M Ltd. can be used. The shape of the prism sheet may be, for example, a base material having a Δ-shaped stripe having an apex angle of 90 degrees and a pitch of 50 μm, or a shape having a rounded apex angle and a random pitch change. Shape or other shape may be used.

また、有機EL素子からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。 Further, the light diffusing plate / film may be used in combination with the condensing sheet in order to control the light emission angle from the organic EL element. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.

《有機EL素子の用途》
本発明の有機EL素子は、表示装置、ディスプレイ、各種発光光源として用いることができる。
<< Applications of organic EL elements >>
The organic EL element of the present invention can be used as a display device, a display, and various light emitting light sources.

発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではなく、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。 Light sources include, for example, lighting devices (household lighting, interior lighting), clock and liquid crystal backlights, signage advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light. Examples thereof include a light source of a sensor, but the present invention is not limited to this, and the light source can be effectively used as a backlight of a liquid crystal display device or a light source for lighting.

本発明の有機EL素子においては、必要に応じ製膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。 In the organic EL device of the present invention, if necessary, patterning may be performed by a metal mask, an inkjet printing method, or the like at the time of film formation. In the case of patterning, only the electrodes may be patterned, the electrodes and the light emitting layer may be patterned, or all the layers of the device may be patterned. In the fabrication of the device, a conventionally known method is used. Can be done.

《表示装置》
発明の有機EL素子を具備した、本発明の表示装置の一態様について説明する。以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
《Display device》
An aspect of the display device of the present invention provided with the organic EL element of the present invention will be described. Hereinafter, an example of a display device having the organic EL element of the present invention will be described with reference to the drawings.

図1は、本発明の有機EL素子を具備した表示装置の構成の一例を示した概略斜視図であって、有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。図1に示すとおり、ディスプレイ1は、複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。 FIG. 1 is a schematic perspective view showing an example of the configuration of a display device including the organic EL element of the present invention, and displays image information by emitting light from the organic EL element, for example, a display of a mobile phone or the like. It is a schematic diagram. As shown in FIG. 1, the display 1 includes a display unit A having a plurality of pixels, a control unit B that scans an image of the display unit A based on image information, and the like.

制御部Bは表示部Aと電気的に接続されている。制御部Bは、複数の画素それぞれに対し、外部からの画像情報に基づいて走査信号と画像データ信号を送る。その結果、各画素が走査信号により走査線毎に画像データ信号に応じて順次発光し、画像情報が表示部Aに表示される。 The control unit B is electrically connected to the display unit A. The control unit B sends a scanning signal and an image data signal to each of the plurality of pixels based on image information from the outside. As a result, each pixel sequentially emits light according to the image data signal for each scanning line by the scanning signal, and the image information is displayed on the display unit A.

図2は、図1に記載の表示部Aの模式図である。 FIG. 2 is a schematic view of the display unit A shown in FIG.

表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と、複数の画素3等とを有する。 The display unit A has a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 and the like on the substrate.

表示部Aの主要な部材の説明を以下に行う。 The main members of the display unit A will be described below.

図2においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。配線部の走査線5及び複数のデータ線6はそれぞれ導電材料から構成されている。走査線5とデータ線6は互いに格子状に直交して、その直交する位置で画素3に接続されている(詳細は図示していない)。 FIG. 2 shows a case where the light emitted from the pixel 3 is taken out in the direction of the white arrow (downward). The scanning line 5 and the plurality of data lines 6 of the wiring portion are each made of a conductive material. The scanning line 5 and the data line 6 are orthogonal to each other in a grid pattern and are connected to the pixel 3 at the orthogonal positions (details are not shown).

画素3は、走査線5から走査信号が送信されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。 When the scanning signal is transmitted from the scanning line 5, the pixel 3 receives the image data signal from the data line 6 and emits light according to the received image data.

発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並列配置することによって、フルカラー表示が可能となる。 Full-color display is possible by appropriately arranging pixels in the red region, pixels in the green region, and pixels in the blue region in parallel on the same substrate.

《照明装置》
本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
《Lighting device》
An aspect of the lighting device of the present invention provided with the organic EL element of the present invention will be described.

本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図3、図4に示すような照明装置を形成することができる。 The non-light emitting surface of the organic EL element of the present invention is covered with a glass case, a glass substrate having a thickness of 300 μm is used as a sealing substrate, and an epoxy-based photocurable adhesive (Lux manufactured by Toa Synthetic Co., Ltd.) is used as a sealing material around the glass substrate. Track LC0629B) is applied, which is placed on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, sealed, and illuminated as shown in FIGS. 3 and 4. The device can be formed.

図3は、照明装置の概略図を示し、本発明の有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行う。)。 FIG. 3 shows a schematic view of the lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (note that the sealing operation with the glass cover brings the organic EL element 101 into contact with the atmosphere. Do not use the glove box in a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas with a purity of 99.999% or higher).

図4は、照明装置の断面図を示し、図4において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。 FIG. 4 shows a cross-sectional view of the lighting device. In FIG. 4, 105 shows a cathode, 106 shows an organic EL layer, and 107 shows a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108, and a water catching agent 109 is provided.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「体積%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in the examples, it represents "volume%" unless otherwise specified.

また、表1〜表4の本発明の有機EL素子で使用したホスト化合物の番号は、前記した一般式(1)で表される構造を有する芳香族複素環誘導体、すなわち、一般式(1−1)〜(1−16)で表される構造を有する芳香族複素環誘導体の具体例の番号に対応する。 Further, the numbers of the host compounds used in the organic EL device of the present invention in Tables 1 to 4 are aromatic heterocyclic derivatives having the structure represented by the above general formula (1), that is, the general formula (1-). 1) Corresponds to the number of a specific example of the aromatic heterocyclic derivative having the structure represented by (1-16).

《実施例に用いた化合物》
以下に実施例で用いた化合物の構造式を示す。なお。比較ホスト1〜4は、それぞれ、米国特許出願公開第2015/0259221号明細書、韓国公開特許第2015−0031396号公報、国際公開第2015/105251号及び国際公開第2015/014434号に記載の化合物である。
<< Compound used in Examples >>
The structural formulas of the compounds used in the examples are shown below. Incidentally. The comparative hosts 1 to 4 are the compounds described in U.S. Patent Application Publication No. 2015/0259221, Korean Patent Application Publication No. 2015-0031396, International Publication No. 2015/10251 and International Publication No. 2015/014434, respectively. Is.

Figure 0006754185
Figure 0006754185

Figure 0006754185
Figure 0006754185

Figure 0006754185
Figure 0006754185

〔実施例1〕
《有機EL素子の作製》
(1)有機EL素子101の作製
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで製膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
[Example 1]
<< Fabrication of organic EL element >>
(1) Preparation of Organic EL Element 101 On a glass substrate having a thickness of 50 mm × 50 mm and a thickness of 0.7 mm, ITO (indium tin oxide) as an anode was formed into a film having a thickness of 150 nm, and after patterning, it was performed. The transparent substrate to which the ITO transparent electrode was attached was ultrasonically washed with isopropyl alcohol, dried with dry nitrogen gas, UV ozone washed for 5 minutes, and then the transparent substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus. ..

真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。前記抵抗加熱ボートはモリブデン製又はタングステン製を用いた。 Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent materials of each layer in the optimum amount for manufacturing the device. The resistance heating boat was made of molybdenum or tungsten.

真空度1×10−4Paまで減圧した後、HI−1の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚15nmの正孔注入層を形成した。 After depressurizing to a vacuum degree of 1 × 10 -4 Pa, a resistance heating boat containing HI-1 is energized and heated, and thin-film deposition is performed on an ITO transparent electrode at a vapor deposition rate of 0.1 nm / sec to a positive layer thickness of 15 nm. A hole injection layer was formed.

次いで、HT−1を蒸着速度0.1nm/秒で蒸着し、層厚30nmの正孔輸送層を形成した。 Next, HT-1 was vapor-deposited at a vapor deposition rate of 0.1 nm / sec to form a hole transport layer having a layer thickness of 30 nm.

次いで、比較ホスト1とGD−1の入った抵抗加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で前記正孔輸送層上に共蒸着し、層厚40nmの発光層を形成した。 Next, the resistance heating boat containing the comparison host 1 and the GD-1 was energized and heated, and co-deposited on the hole transport layer at a vapor deposition rate of 0.1 nm / sec and 0.010 nm / sec, respectively, to achieve a layer thickness. A 40 nm light emitting layer was formed.

次いで、HB−1を蒸着速度0.1nm/秒で蒸着し、膜厚5nmの第一電子輸送層を形成した。 Next, HB-1 was vapor-deposited at a vapor deposition rate of 0.1 nm / sec to form a first electron transport layer having a film thickness of 5 nm.

さらにその上に、ET―1を蒸着速度0.1nm/秒で蒸着し、層厚45nmの第二電子輸送層を形成した。 Further, ET-1 was vapor-deposited on it at a vapor deposition rate of 0.1 nm / sec to form a second electron transport layer having a layer thickness of 45 nm.

その後、フッ化リチウムを膜厚0.5nmになるよう蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、有機EL素子101を作製した。 Then, after vapor-depositing lithium fluoride to a film thickness of 0.5 nm, aluminum 100 nm was vapor-deposited to form a cathode, thereby producing an organic EL element 101.

作製後、有機EL素子101の非発光面を、純度99.999%以上の高純度窒素ガスの雰囲気下にてガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを前記陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。 After production, the non-light emitting surface of the organic EL element 101 is covered with a glass case in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and a glass substrate having a thickness of 300 μm is used as a sealing substrate to surround the organic EL element 101. An epoxy-based photocurable adhesive (Luxtrac LC0629B manufactured by Toa Synthetic Co., Ltd.) was applied as a sealing material, and this was placed on the cathode and brought into close contact with the transparent support substrate, and UV light was irradiated from the glass substrate side. It was cured and sealed to prepare an illuminating device having the configurations shown in FIGS. 3 and 4, and this was used as a sample.

《有機EL素子102〜117の作製》
有機EL素子101の作製において、ホスト化合物を表1に記載の化合物に変更した。それ以外は同様にして、有機EL素子102〜117を作製した。
<< Fabrication of organic EL elements 102 to 117 >>
In the preparation of the organic EL element 101, the host compound was changed to the compound shown in Table 1. Other than that, the organic EL elements 102 to 117 were manufactured in the same manner.

《有機EL素子101〜117の評価》
各サンプルについて下記の評価を行った。評価結果を表1に示す。
<< Evaluation of Organic EL Elements 101-117 >>
The following evaluation was performed for each sample. The evaluation results are shown in Table 1.

(1)外部取出し量子効率
有機EL素子を室温(25℃)、2.5mA/cmの定電流条件下による通電を行い、発光開始直後の発光輝度(L0)[cd/m]を測定することにより、外部取り出し量子効率(η)を算出した。
(1) External extraction Quantum efficiency The organic EL element is energized under constant current conditions of room temperature (25 ° C.) and 2.5 mA / cm 2 , and the emission brightness (L0) [cd / m 2 ] immediately after the start of emission is measured. By doing so, the external extraction quantum efficiency (η) was calculated.

ここで、発光輝度の測定はCS−2000(コニカミノルタセンシング製)を用いて行い、外部取り出し量子効率は有機EL素子101を100とする相対値で表した。 Here, the emission brightness was measured using CS-2000 (manufactured by Konica Minolta Sensing), and the external extraction quantum efficiency was expressed as a relative value with the organic EL element 101 as 100.

なお、値が大きい方が比較に対して効率に優れていることを示す。 It should be noted that the larger the value, the more efficient the comparison.

(2)半減寿命
下記に示す測定法に従って、半減寿命の評価を行った。
(2) Half-life The half-life was evaluated according to the measurement method shown below.

各有機EL素子を初期輝度4000cd/mを与える電流で定電流駆動して、初期輝度の1/2になる時間を求め、これを半減寿命の尺度とした。なお、半減寿命は有機EL素子101を100とする相対値で表した。 Each organic EL element was driven with a constant current with a current giving an initial brightness of 4000 cd / m 2, and the time to be halved of the initial brightness was obtained, which was used as a measure of half life. The half-life was expressed as a relative value with the organic EL element 101 as 100.

なお、値が大きい方が比較に対して耐久性に優れていることを示す。 The larger the value, the better the durability for comparison.

(3)高温保存安定性評価
有機EL素子を高温条件下(約50±5℃)の恒温槽に入れ、上記(2)半減寿命の測定法と同条件で半減寿命の評価を行い、下記式を用いて耐熱性を算出した。
(3) Evaluation of stability at high temperature storage The organic EL element is placed in a constant temperature bath under high temperature conditions (about 50 ± 5 ° C.), and the half life is evaluated under the same conditions as the above (2) Half life measurement method. The heat resistance was calculated using.

耐熱性(%)=(高温条件下での半減寿命)/(室温での半減寿命)×100
表1には有機EL素子101を100とする相対値で表した。耐熱性の値が大きい方が比較に対して温度変化に対する耐久性が高いことを示す。
Heat resistance (%) = (half life under high temperature conditions) / (half life at room temperature) x 100
Table 1 shows the relative values with the organic EL element 101 as 100. The larger the value of heat resistance, the higher the durability against temperature change.

Figure 0006754185
Figure 0006754185

表1から、本発明の有機EL素子105〜117は、比較例の有機EL素子101〜104に対し発光効率が高く、発光寿命が長く、特に高温下での保存安定性が改善されていることが分かる。 From Table 1, the organic EL elements 105 to 117 of the present invention have higher luminous efficiency and longer emission life than the organic EL elements 101 to 104 of the comparative example, and the storage stability at high temperature is particularly improved. I understand.

〔実施例2〕
《有機EL素子の作製》
(1)有機EL素子201の作製
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで製膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
[Example 2]
<< Fabrication of organic EL element >>
(1) Fabrication of Organic EL Element 201 On a glass substrate having a thickness of 50 mm × 50 mm and a thickness of 0.7 mm, ITO (indium tin oxide) as an anode was formed into a film having a thickness of 150 nm, and after patterning, it was performed. The transparent substrate to which the ITO transparent electrode was attached was ultrasonically washed with isopropyl alcohol, dried with dry nitrogen gas, UV ozone washed for 5 minutes, and then the transparent substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus. ..

真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。前記抵抗加熱ボートはモリブデン製又はタングステン製を用いた。 Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent materials of each layer in the optimum amount for manufacturing the device. The resistance heating boat was made of molybdenum or tungsten.

真空度1×10−4Paまで減圧した後、HI−2の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚10nmの正孔注入層を形成した。 After depressurizing to a vacuum degree of 1 × 10 -4 Pa, a resistance heating boat containing HI-2 is energized and heated, and thin-film deposition is performed on an ITO transparent electrode at a vapor deposition rate of 0.1 nm / sec to a positive layer thickness of 10 nm. A hole injection layer was formed.

次いで、HT−2を蒸着速度0.1nm/秒で蒸着し、膜厚30nmの正孔輸送層を形成した。 Next, HT-2 was vapor-deposited at a vapor deposition rate of 0.1 nm / sec to form a hole transport layer having a film thickness of 30 nm.

次いで、比較ホスト1とGD−2の入った抵抗加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で前記正孔輸送層上に共蒸着し、層厚30nmの発光層を形成した。 Next, the resistance heating boat containing the comparison host 1 and the GD-2 was energized and heated, and co-deposited on the hole transport layer at a vapor deposition rate of 0.1 nm / sec and 0.010 nm / sec, respectively, to achieve a layer thickness. A light emitting layer of 30 nm was formed.

次いで、HB−2を蒸着速度0.1nm/秒で蒸着し、層厚5nmの第一電子輸送層を形成した。 Next, HB-2 was vapor-deposited at a vapor deposition rate of 0.1 nm / sec to form a first electron transport layer having a layer thickness of 5 nm.

さらにその上に、ET−2を蒸着速度0.1nm/秒で蒸着し、層厚45nmの第二電子輸送層を形成した。 Further, ET-2 was vapor-deposited on it at a vapor deposition rate of 0.1 nm / sec to form a second electron transport layer having a layer thickness of 45 nm.

その後、フッ化リチウムを膜厚0.5nmになるよう蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、有機EL素子201を作製した。 Then, after vapor-depositing lithium fluoride to a film thickness of 0.5 nm, aluminum 100 nm was vapor-deposited to form a cathode, thereby producing an organic EL element 201.

作製後、有機EL素子201の非発光面を、純度99.999%以上の高純度窒素ガスの雰囲気下にてガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを前記陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。 After production, the non-light emitting surface of the organic EL element 201 is covered with a glass case in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and a glass substrate having a thickness of 300 μm is used as a sealing substrate to surround the organic EL element 201. An epoxy-based photocurable adhesive (Luxtrac LC0629B manufactured by Toa Synthetic Co., Ltd.) was applied as a sealing material, and this was placed on the cathode and brought into close contact with the transparent support substrate, and UV light was irradiated from the glass substrate side. It was cured and sealed to prepare an illuminating device having the configurations shown in FIGS. 3 and 4, and this was used as a sample.

《有機EL素子202〜220の作製》
有機EL素子201の作製において、ホスト化合物を表2に記載のホスト化合物に変更した。それ以外は同様にして、有機EL素子202〜220を作製した。
<< Fabrication of organic EL elements 202 to 220 >>
In the production of the organic EL element 201, the host compound was changed to the host compound shown in Table 2. Other than that, the organic EL elements 202 to 220 were manufactured in the same manner.

《有機EL素子201〜220の評価》
各サンプルについて下記の評価を行った。
<< Evaluation of organic EL elements 201-220 >>
The following evaluation was performed for each sample.

外部取り出し量子効率、半減寿命、高温保存安定性評価については、実施例1と同様の方法で評価し、有機EL素子201の各特性値を100とする相対値で表した。 The external extraction quantum efficiency, half-life, and high-temperature storage stability evaluation were evaluated by the same method as in Example 1, and expressed as relative values with each characteristic value of the organic EL element 201 as 100.

評価結果を表2に示す。 The evaluation results are shown in Table 2.

Figure 0006754185
Figure 0006754185

表2から、本発明の有機EL素子は、比較例の有機EL素子201〜204に対し発光効率が高く、発光寿命が長く、特に高温下での保存安定性が改善されていることが分かる。 From Table 2, the organic EL element of the present invention has high luminous efficiency to the organic EL elements 201 to 204 of the comparative example, the emission lifetime is long, it can be seen that in particular improved storage stability at high temperature ..

〔実施例3〕
《有機EL素子の作製》
(1)有機EL素子301の作製
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで製膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
[Example 3]
<< Fabrication of organic EL element >>
(1) Preparation of Organic EL Element 301 A glass substrate having a thickness of 50 mm × 50 mm and a thickness of 0.7 mm is formed with ITO (indium tin oxide) as an anode to a thickness of 150 nm, and after patterning, the organic EL element 301 is formed. The transparent substrate to which the ITO transparent electrode was attached was ultrasonically washed with isopropyl alcohol, dried with dry nitrogen gas, UV ozone washed for 5 minutes, and then the transparent substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus. ..

真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。前記抵抗加熱ボートはモリブデン製又はタングステン製を用いた。 Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent materials of each layer in the optimum amount for manufacturing the device. The resistance heating boat was made of molybdenum or tungsten.

真空度1×10−4Paまで減圧した後、HI−2の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚20nmの正孔注入層を形成した。 After depressurizing to a vacuum degree of 1 × 10 -4 Pa, a resistance heating boat containing HI-2 is energized and heated, and thin-film deposition is performed on an ITO transparent electrode at a vapor deposition rate of 0.1 nm / sec to a positive layer thickness of 20 nm. A hole injection layer was formed.

次いで、HT−1を蒸着速度0.1nm/秒で蒸着し、層厚20nmの正孔輸送層を形成した。 Next, HT-1 was vapor-deposited at a vapor deposition rate of 0.1 nm / sec to form a hole transport layer having a layer thickness of 20 nm.

次いで、比較ホスト1とGD−3の入った抵抗加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で前記正孔輸送層上に共蒸着し、層厚30nmの発光層を形成した。 Next, the resistance heating boat containing the comparison host 1 and the GD-3 was energized and heated, and co-deposited on the hole transport layer at a vapor deposition rate of 0.1 nm / sec and 0.010 nm / sec, respectively, to achieve a layer thickness. A light emitting layer of 30 nm was formed.

次いで、HB−3を蒸着速度0.1nm/秒で蒸着し、層厚10nmの第一電子輸送層を形成した。 Next, HB-3 was vapor-deposited at a vapor deposition rate of 0.1 nm / sec to form a first electron transport layer having a layer thickness of 10 nm.

さらにその上に、ET−2を蒸着速度0.1nm/秒で蒸着し、層厚40nmの第二電子輸送層を形成した。 Further, ET-2 was vapor-deposited on it at a vapor deposition rate of 0.1 nm / sec to form a second electron transport layer having a layer thickness of 40 nm.

その後、フッ化リチウムを層厚0.5nmになるよう蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、有機EL素子301を作製した。 Then, after vapor-depositing lithium fluoride to a layer thickness of 0.5 nm, aluminum 100 nm was vapor-deposited to form a cathode, thereby producing an organic EL element 301.

作製後、有機EL素子301の非発光面を、純度99.999%以上の高純度窒素ガスの雰囲気下にてガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを前記陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。 After production, the non-light emitting surface of the organic EL element 301 is covered with a glass case in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and a glass substrate having a thickness of 300 μm is used as a sealing substrate to surround the organic EL element 301. An epoxy-based photocurable adhesive (Luxtrac LC0629B manufactured by Toa Synthetic Co., Ltd.) was applied as a sealing material, and this was placed on the cathode and brought into close contact with the transparent support substrate, and UV light was irradiated from the glass substrate side. It was cured and sealed to prepare an illuminating device having the configurations shown in FIGS. 3 and 4, and this was used as a sample.

《有機EL素子302〜315の作製》
有機EL素子301の作製において、ホスト化合物を表3に記載のホスト化合物に変更した。それ以外は同様にして、有機EL素子302〜315を作製した。
<< Fabrication of organic EL elements 302 to 315 >>
In the preparation of the organic EL element 301, the host compound was changed to the host compound shown in Table 3. Other than that, the organic EL elements 302 to 315 were manufactured in the same manner.

《有機EL素子301〜314の評価》
各サンプルについて下記の評価を行った。
<< Evaluation of organic EL elements 301 to 314 >>
The following evaluation was performed for each sample.

外部取り出し量子効率、半減寿命、高温保存安定性評価については、実施例1と同様の方法で評価し、有機EL素子301の各特性値を100とする相対値で表した。 The external extraction quantum efficiency, half-life, and high-temperature storage stability evaluation were evaluated by the same method as in Example 1, and expressed as relative values with each characteristic value of the organic EL element 301 as 100.

評価結果を表3に示す。 The evaluation results are shown in Table 3.

Figure 0006754185
Figure 0006754185

表3から、本発明の有機EL素子305〜315は、比較例の有機EL素子301〜304に対し発光効率が高く、発光寿命が長く、特に高温下での保存安定性が改善されていることが分かる。 From Table 3, the organic EL elements 305 to 315 of the present invention have higher luminous efficiency and longer emission life than the organic EL elements 301 to 304 of the comparative example, and the storage stability at high temperature is particularly improved. I understand.

〔実施例4〕
《有機EL素子の作製》
(1)有機EL素子401の作製
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウムスズ酸化物)を120nmの厚さで製膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
[Example 4]
<< Fabrication of organic EL element >>
(1) Fabrication of Organic EL Element 401 On a glass substrate having a thickness of 50 mm × 50 mm and a thickness of 0.7 mm, ITO (indium tin oxide) as an anode is formed into a film having a thickness of 120 nm, and after patterning, this is performed. The transparent substrate to which the ITO transparent electrode was attached was ultrasonically washed with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone washed for 5 minutes.

この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用い、3000rpm、30秒の条件でスピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、層厚20nmの正孔注入層を設けた。 A solution of poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) diluted to 70% with pure water was used on this transparent support substrate at 3000 rpm. A thin film was formed by a spin coating method under the condition of 30 seconds, and then dried at 200 ° C. for 1 hour to provide a hole injection layer having a layer thickness of 20 nm.

次に、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。 Next, this transparent substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus.

真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用抵抗加熱ボートはモリブデン製又はタングステン製を用いた。 Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent materials of each layer in the optimum amount for manufacturing the device. The resistance heating boat for vapor deposition was made of molybdenum or tungsten.

真空度1×10−4Paまで減圧した後、HT−2の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で正孔注入層上に蒸着し、層厚20nmの正孔輸送層を形成した。 After depressurizing to a vacuum degree of 1 × 10 -4 Pa, the resistance heating boat containing HT-2 is energized and heated, and thin-film deposition is performed on the hole injection layer at a vapor deposition rate of 0.1 nm / sec to a layer thickness of 20 nm. A hole transport layer was formed.

次いで、比較ホスト1とGD−1の入った抵抗加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で前記正孔輸送層上に共蒸着し、層厚40nmの発光層を形成した。 Next, the resistance heating boat containing the comparison host 1 and the GD-1 was energized and heated, and co-deposited on the hole transport layer at a vapor deposition rate of 0.1 nm / sec and 0.010 nm / sec, respectively, to achieve a layer thickness. A 40 nm light emitting layer was formed.

次いで、ET−1を蒸着速度0.1nm/秒で蒸着し、層厚40nmの電子輸送層を形成した。 Next, ET-1 was vapor-deposited at a vapor deposition rate of 0.1 nm / sec to form an electron transport layer having a layer thickness of 40 nm.

その上に、フッ化リチウムを層厚0.5nmになるよう蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、有機EL素子401を作製した。 After vapor-depositing lithium fluoride to a layer thickness of 0.5 nm, aluminum 100 nm was vapor-deposited to form a cathode, thereby producing an organic EL element 401.

作製後、有機EL素子401の非発光面を、純度99.999%以上の高純度窒素ガスの雰囲気下にてガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを前記陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。 After production, the non-emission surface of the organic EL element 401 is covered with a glass case in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and a glass substrate having a thickness of 300 μm is used as a sealing substrate to surround the organic EL element 401. An epoxy-based photocurable adhesive (Luxtrac LC0629B manufactured by Toa Synthetic Co., Ltd.) was applied as a sealing material, and this was placed on the cathode and brought into close contact with the transparent support substrate, and UV light was irradiated from the glass substrate side. It was cured and sealed to prepare an illuminating device having the configurations shown in FIGS. 3 and 4, and this was used as a sample.

《有機EL素子402〜425の作製》
有機EL素子401の作製において、ホスト化合物を表4に記載のホスト化合物に変更した。それ以外は同様にして、有機EL素子402〜425を作製した。
<< Fabrication of organic EL elements 402 to 425 >>
In the production of the organic EL element 401, the host compound was changed to the host compound shown in Table 4. Other than that, the organic EL elements 402 to 425 were manufactured in the same manner.

《有機EL素子401〜425の評価》
各サンプルについて下記の評価を行った。
<< Evaluation of organic EL elements 401 to 425 >>
The following evaluation was performed for each sample.

外部取り出し量子効率、半減寿命、高温保存安定性評価については、実施例1と同様の方法で評価し、有機EL素子401の各特性値を100とする相対値で表した。 The external extraction quantum efficiency, half-life, and high-temperature storage stability evaluation were evaluated by the same method as in Example 1, and expressed as relative values with each characteristic value of the organic EL element 401 as 100.

評価結果を表4に示す。 The evaluation results are shown in Table 4.

Figure 0006754185
Figure 0006754185

表4から、本発明の有機EL素子は、比較例の有機EL素子401〜404に対し発光効率が高く、発光寿命が長く、特に高温下での保存安定性が改善されていることが分かる。 From Table 4, the organic EL element of the present invention has high luminous efficiency to the organic EL elements 401 to 404 of the comparative example, the emission lifetime is long, it can be seen that in particular improved storage stability at high temperature ..

参考例5〕
《フルカラー表示装置の作製》
(1)青色発光素子の作製
《有機EL素子501の作製》
100mm×100mm×1.1mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を厚さ100nm製膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
[ Reference Example 5]
<< Manufacturing of full-color display device >>
(1) Fabrication of blue light emitting element << Fabrication of organic EL element 501 >>
After patterning on a 100 mm × 100 mm × 1.1 mm glass substrate with an ITO (indium tin oxide) film having a thickness of 100 nm as an anode (NA45 manufactured by NH Technoglass Co., Ltd.), this ITO transparent electrode The transparent support substrate provided with the above was ultrasonically washed with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone washed for 5 minutes.

この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにHT−3を200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物としてmCP(1,3−ビス−Nカルバゾリルベンゼン)を200mg入れ、別のモリブデン製抵抗加熱ボートにHB−4を200mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパントとしてBD−1を100mg入れ、更に別のモリブデン製抵抗加熱ボートにET−2を200mg入れ、真空蒸着装置に取り付けた。 This transparent support substrate is fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus, while 200 mg of HT-3 is placed in a molybdenum resistance heating boat, and mCP (1,3-) is used as a host compound in another molybdenum resistance heating boat. 200 mg of bis-N carbazolylbenzene), 200 mg of HB-4 in another molybdenum resistance heating boat, 100 mg of BD-1 as a light emitting dopant in another molybdenum resistance heating boat, and another molybdenum product. 200 mg of ET-2 was placed in a resistance heating boat and attached to a vacuum vapor deposition apparatus.

次に、真空槽を4×10−4Paまで減圧した後、HT−3の入った前記モリブデン製抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板上に蒸着し、層厚40nmの正孔輸送層を設けた。 Next, after depressurizing the vacuum chamber to 4 × 10 -4 Pa, the molybdenum resistance heating boat containing HT-3 is energized and heated, and vapor deposition is performed on a transparent support substrate at a vapor deposition rate of 0.1 nm / sec. Then, a hole transport layer having a layer thickness of 40 nm was provided.

更に、mCP(1,3−ビス−Nカルバゾリルベンゼン)とBD−1の入った前記モリブデン製抵抗加熱ボートを通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.012nm/秒で、前記正孔輸送層上に共蒸着して、厚さ40nmの発光層を設けた。なお、蒸着時の基板温度は室温とした。 Further, the molybdenum resistance heating boat containing mCP (1,3-bis-N carbazolylbenzene) and BD-1 is energized and heated, and the deposition rates are 0.2 nm / sec and 0.012 nm / sec, respectively. Then, a light emitting layer having a thickness of 40 nm was provided by co-depositing on the hole transport layer. The substrate temperature during vapor deposition was room temperature.

更に、HB−4の入った前記モリブデン製抵抗加熱ボートを通電して加熱し、蒸着速度0.1nm/秒で、前記発光層上に蒸着して、厚さ10nmの正孔阻止層を設けた。 Further, the molybdenum resistance heating boat containing HB-4 was energized and heated, and vapor deposition was performed on the light emitting layer at a vapor deposition rate of 0.1 nm / sec to provide a hole blocking layer having a thickness of 10 nm. ..

更に、ET−2の入った前記抵抗加熱ボートを通電して加熱し、蒸着速度0.1nm/秒で、前記正孔阻止層上に蒸着して、厚さ40nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温とした。 Further, the resistance heating boat containing ET-2 was energized and heated, and vapor deposition was performed on the hole blocking layer at a vapor deposition rate of 0.1 nm / sec to provide an electron transport layer having a thickness of 40 nm. The substrate temperature during vapor deposition was room temperature.

引き続きフッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子501を作製した。 Subsequently, 0.5 nm of lithium fluoride and 110 nm of aluminum were vapor-deposited to form a cathode, and an organic EL element 501 was manufactured.

(2)緑色発光素子の作製
実施例4の有機EL素子419を緑色発光素子として用いた。
(2) Preparation of Green Light Emitting Element The organic EL element 419 of Example 4 was used as the green light emitting element.

(3)赤色発光素子の作製
《有機EL素子502の作製》
緑色発光素子である実施例4の有機EL素子419において、発光ドーパントをGD−1からRD−1に変更した。それ以外は緑色発光素子である有機EL素子419と同様にして、赤色発光素子である有機EL素子502を作製した。
(4)表示装置の作製
上記で作製した赤色、緑色、青色発光有機EL素子を同一基板上に並列配置し、図1に記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製した。
(3) Fabrication of red light emitting element << Fabrication of organic EL element 502 >>
In the organic EL element 419 of Example 4, which is a green light emitting element, the light emitting dopant was changed from GD-1 to RD-1. Other than that, the organic EL element 502 which is a red light emitting element was manufactured in the same manner as the organic EL element 419 which is a green light emitting element.
(4) Production of Display Device The red, green, and blue light emitting organic EL elements produced above were arranged in parallel on the same substrate to produce an active matrix type full-color display device having a form as shown in FIG.

図2には、作製した前記表示装置の表示部Aの模式図のみを示した。 FIG. 2 shows only a schematic view of the display unit A of the manufactured display device.

図2に示すとおり、表示部Aは同一基板上に複数の走査線5及びデータ線6を含む配線部と並列配置した複数の画素3(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有している。配線部の走査線5及び複数のデータ線6はそれぞれ導電材料から構成されている。走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示せず)。 As shown in FIG. 2, the display unit A has a plurality of pixels 3 (pixels whose emission colors are in the red region and pixels in the green region) arranged in parallel with a wiring unit including a plurality of scanning lines 5 and data lines 6 on the same substrate. It has pixels in the blue region, etc.). The scanning line 5 and the plurality of data lines 6 of the wiring portion are each made of a conductive material. The scanning line 5 and the data line 6 are orthogonal to each other in a grid pattern and are connected to the pixel 3 at orthogonal positions (details are not shown).

複数の画素3は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動されており、走査線5から走査信号が送信されるとデータ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。このように赤、緑、青の画素3を適宜、並列配置することによって、フルカラー表示装置を作製した。 The plurality of pixels 3 are driven by an active matrix system in which an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor are provided, and a scanning signal is transmitted from the scanning line 5. And the image data signal is received from the data line 6, and light is emitted according to the received image data. A full-color display device was produced by appropriately arranging the red, green, and blue pixels 3 in parallel in this way.

得られたフルカラーの表示装置は、駆動することにより、輝度が高く、高耐久性を有し、且つ高温時での保存性に優れたフルカラー動画表示が得られることが確認できた。 It was confirmed that the obtained full-color display device can obtain a full-color moving image display having high brightness, high durability, and excellent storage stability at high temperature by driving.

1 ディスプレイ
3 画素
5 走査線
6 データ線
A 表示部
B 制御部
101 有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極尽きガラス基板
108 窒素ガス
109 捕水剤
1 Display 3 pixels 5 Scan line 6 Data line A Display unit B Control unit 101 Organic EL element 102 Glass cover 105 Cathode 106 Organic EL layer 107 Transparent electrode exhausted glass substrate 108 Nitrogen gas 109 Water catching agent

Claims (12)

陽極と陰極の間に、発光層を含む有機機能層が挟持された有機エレクトロルミネッセンス素子であって、前記有機機能層のうち少なくとも1層に、下記一般式(1)で表される構造を有する芳香族複素環誘導体を含有することを特徴とする有機エレクトロルミネッセンス素子。
Figure 0006754185
(式中、Ar及びArは、それぞれ独立に、アルキル基又は単環のアリール基を表す。R〜Rは、それぞれ独立に、水素原子、アルキル基、シアノ基又はフッ素原子を表す。R〜Rは、互いに結合して環を形成することはない。また、一般式(1)中の他の部分と環を形成することはない。Xは、酸素原子又は硫黄原子を表す。ただし、下記一般式(E1)〜一般式(E8)で表される構造を有する化合物を除く。
Figure 0006754185
(式中、Xは、酸素原子又は硫黄原子を表す。)
An organic electroluminescence element in which an organic functional layer including a light emitting layer is sandwiched between an anode and a cathode, and at least one of the organic functional layers has a structure represented by the following general formula (1). An organic electroluminescence element containing an aromatic heterocyclic derivative.
Figure 0006754185
(In the formula, Ar 1 and Ar 2 each independently represent an alkyl group or a monocyclic aryl group. R 1 to R 5 each independently represent a hydrogen atom, an alkyl group, a cyano group or a fluorine atom. R 1 to R 5 do not bond with each other to form a ring, and do not form a ring with other parts in the general formula (1). X is an oxygen atom or a sulfur atom. However, compounds having a structure represented by the following general formulas (E1) to (E8) are excluded. )
Figure 0006754185
(In the formula, X represents an oxygen atom or a sulfur atom.)
前記一般式(1)で表される構造を有する芳香族複素環誘導体が、下記一般式(1−1)〜(1−16)で表される構造のうちのいずれかで表される構造を有することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
Figure 0006754185
(式中、Ar 及びAr は、それぞれ独立に、アルキル基又は単環のアリール基を表す。R 〜R は、それぞれ独立に、水素原子、アルキル基、シアノ基又はフッ素原子を表す。R 〜R は、互いに結合して環を形成することはない。また、一般式(1−1)〜一般式(1−16)中の他の部分と環を形成することはない。Xは、酸素原子又は硫黄原子を表す。ただし、一般式(1−8)、一般式(1−14)及び一般式(1−16)のそれぞれにおいて、R 〜R が、全て水素原子の場合を除く。)
The aromatic heterocyclic derivative having the structure represented by the general formula (1) has a structure represented by any of the structures represented by the following general formulas (1-1) to (1-16). The organic electroluminescence device according to claim 1, wherein the organic electroluminescence device is provided.
Figure 0006754185
(In the formula, Ar 1 and Ar 2 each independently represent an alkyl group or a monocyclic aryl group. R 1 to R 5 each independently represent a hydrogen atom, an alkyl group, a cyano group or a fluorine atom. R 1 to R 5 do not combine with each other to form a ring, nor do they form a ring with other parts of the general formulas (1-1) to (1-16). X represents an oxygen atom or a sulfur atom. However, in each of the general formula (1-8), the general formula (1-14) and the general formula (1-16), R 1 to R 5 are all hydrogen. Except for atoms.)
前記Ar及びArが、それぞれ、単環のアリール基を表すことを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 1 or 2, wherein each of the Ar 1 and Ar 2 represents a monocyclic aryl group. 前記R〜Rが、それぞれ、水素原子を表すことを特徴とする請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 3, wherein each of R 1 to R 5 represents a hydrogen atom. 前記R〜Rが、それぞれ、水素原子を表し、かつ前記Ar及びArが、それぞれ、単環のアリール基を表すことを特徴とする請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 Any one of claims 1 to 4, wherein R 1 to R 5 each represent a hydrogen atom, and Ar 1 and Ar 2 each represent a monocyclic aryl group. The organic electroluminescence device described in the section. 前記発光層が、前記芳香族複素環誘導体を含有することを特徴とする請求項1から請求項5までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 5, wherein the light emitting layer contains the aromatic heterocyclic derivative. 前記発光層が、前記芳香族複素環誘導体をホスト化合物として含有することを特徴とする請求項1から請求項6までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 6, wherein the light emitting layer contains the aromatic heterocyclic derivative as a host compound. 前記発光層が、リン光発光性ドーパントを含有することを特徴とする請求項1から請求項7までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 7, wherein the light emitting layer contains a phosphorescent dopant. 前記発光層が、前記芳香族複素環誘導体とは異なる構造を有するホスト化合物を更に含有することを特徴とする請求項1から請求項8までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 8, wherein the light emitting layer further contains a host compound having a structure different from that of the aromatic heterocyclic derivative. 請求項1から請求項9までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備することを特徴とする表示装置。 A display device comprising the organic electroluminescence device according to any one of claims 1 to 9. 請求項1から請求項9までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備することを特徴とする照明装置。 A lighting device comprising the organic electroluminescence device according to any one of claims 1 to 9. 下記一般式(1)で表される構造を有する芳香族複素環誘導体を含有することを特徴とする電子デバイス用有機機能性材料。
Figure 0006754185
(式中、Ar及びArは、それぞれ独立に、アルキル基又は単環のアリール基を表す。R〜Rは、それぞれ独立に、水素原子、アルキル基、シアノ基又はフッ素原子を表す。R〜Rは、互いに結合して環を形成することはない。また、一般式(1)中の他の部分と環を形成することはない。Xは、酸素原子又は硫黄原子を表す。ただし、下記一般式(E1)〜一般式(E8)で表される構造を有する化合物を除く。
Figure 0006754185
(式中、Xは、酸素原子又は硫黄原子を表す。)
An organic functional material for an electronic device, which contains an aromatic heterocyclic derivative having a structure represented by the following general formula (1).
Figure 0006754185
(In the formula, Ar 1 and Ar 2 each independently represent an alkyl group or a monocyclic aryl group. R 1 to R 5 each independently represent a hydrogen atom, an alkyl group, a cyano group or a fluorine atom. R 1 to R 5 do not bond with each other to form a ring, and do not form a ring with other parts in the general formula (1). X is an oxygen atom or a sulfur atom. However, compounds having a structure represented by the following general formulas (E1) to (E8) are excluded. )
Figure 0006754185
(In the formula, X represents an oxygen atom or a sulfur atom.)
JP2015240757A 2015-12-10 2015-12-10 Organic functional materials for organic electroluminescence devices, display devices, lighting devices and electronic devices Active JP6754185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015240757A JP6754185B2 (en) 2015-12-10 2015-12-10 Organic functional materials for organic electroluminescence devices, display devices, lighting devices and electronic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015240757A JP6754185B2 (en) 2015-12-10 2015-12-10 Organic functional materials for organic electroluminescence devices, display devices, lighting devices and electronic devices

Publications (2)

Publication Number Publication Date
JP2017107992A JP2017107992A (en) 2017-06-15
JP6754185B2 true JP6754185B2 (en) 2020-09-09

Family

ID=59060135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015240757A Active JP6754185B2 (en) 2015-12-10 2015-12-10 Organic functional materials for organic electroluminescence devices, display devices, lighting devices and electronic devices

Country Status (1)

Country Link
JP (1) JP6754185B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101849747B1 (en) 2016-07-20 2018-05-31 주식회사 엘지화학 Novel hetero-cyclic compound and organic light emitting device comprising the same
KR102536248B1 (en) 2017-06-21 2023-05-25 삼성디스플레이 주식회사 Heterocyclic compound and organic light emitting device comprising the same
KR102107085B1 (en) * 2017-07-14 2020-05-06 주식회사 엘지화학 Organic light emitting device
CN110268036B (en) * 2017-07-14 2022-12-20 株式会社Lg化学 Organic light emitting element
CN110520419B (en) 2017-07-19 2023-05-26 株式会社Lg化学 Novel heterocyclic compound and organic light-emitting device comprising same
KR101982792B1 (en) 2017-07-20 2019-05-27 주식회사 엘지화학 Novel hetero-cyclic compound and organic light emitting device comprising the same
KR102415376B1 (en) 2017-08-04 2022-07-01 삼성디스플레이 주식회사 Condensed-cyclic compound and organic light emitting device comprising the same
KR101856728B1 (en) 2017-08-10 2018-05-10 주식회사 엘지화학 Organic light emitting device
KR102038031B1 (en) * 2017-09-15 2019-10-30 엘티소재주식회사 Heterocyclic compound and organic light emitting device comprising the same
KR102134383B1 (en) 2017-12-12 2020-07-15 주식회사 엘지화학 Organic light emitting device
KR102258046B1 (en) 2017-12-27 2021-05-28 삼성에스디아이 주식회사 Organic compound and composition and organic optoelectronic device and display device
CN111527081B (en) * 2018-02-23 2023-10-24 株式会社Lg化学 Polycyclic compound and organic light emitting diode including the same
KR102536246B1 (en) * 2018-03-23 2023-05-25 삼성디스플레이 주식회사 Heterocyclic compound and organic light emitting device comprising the same
KR102044943B1 (en) 2018-05-28 2019-11-14 삼성에스디아이 주식회사 Compound, composition and organic optoelectronic device and display device
WO2020040571A1 (en) * 2018-08-22 2020-02-27 주식회사 엘지화학 Novel compound and organic light-emitting device using same
US20210388001A1 (en) * 2018-11-30 2021-12-16 Lg Chem, Ltd. Novel compound and organic light emitting device comprising the same
WO2020235976A1 (en) * 2019-05-23 2020-11-26 주식회사 엘지화학 Novel compound and organic light emitting device using same
CN114621198A (en) 2020-12-11 2022-06-14 北京夏禾科技有限公司 Organic electroluminescent material and device thereof
KR20220116604A (en) * 2021-02-15 2022-08-23 (주)피엔에이치테크 An electroluminescent compound and an electroluminescent device comprising the same
WO2024121133A1 (en) 2022-12-08 2024-06-13 Merck Patent Gmbh Organic electronic device and special materials for organic electronic devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639727B2 (en) * 2004-09-30 2011-02-23 コニカミノルタホールディングス株式会社 Organic electroluminescence element, lighting device and display device
JP5868195B2 (en) * 2011-04-14 2016-02-24 キヤノン株式会社 Novel spiro compound and organic light emitting device having the same
JP6312960B2 (en) * 2012-08-03 2018-04-18 株式会社半導体エネルギー研究所 Light emitting element, light emitting device, electronic device, lighting device, and heterocyclic compound
JP6136944B2 (en) * 2014-01-22 2017-05-31 株式会社デンソー Evaporator
US10297762B2 (en) * 2014-07-09 2019-05-21 Universal Display Corporation Organic electroluminescent materials and devices
US10749113B2 (en) * 2014-09-29 2020-08-18 Universal Display Corporation Organic electroluminescent materials and devices
US11522140B2 (en) * 2015-08-17 2022-12-06 Universal Display Corporation Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
JP2017107992A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6754185B2 (en) Organic functional materials for organic electroluminescence devices, display devices, lighting devices and electronic devices
CN107250132B (en) Aromatic heterocyclic derivative, organic electroluminescent element using same, lighting device, and display device
JP6802189B2 (en) Thin film and organic electroluminescence device
KR102241439B1 (en) Organic electroluminescent element, method for manufacturing the same, display device, and lighting device
JP6761463B2 (en) Luminescent thin film and organic electroluminescence device
JP5458890B2 (en) Organic electroluminescence element, display device and lighting device
WO2018186462A1 (en) Fluorescent compound, organic material composition, light emitting film, organic electroluminescent element material, and organic electroluminescent element
JP6657895B2 (en) Organic electroluminescence element, display device and lighting device
JP6942127B2 (en) Organic electroluminescence elements, display devices, lighting devices
JP6686748B2 (en) Organic electroluminescence device, display device, lighting device, π-conjugated compound
WO2016143508A1 (en) Organic electroluminescent element and organic electroluminescent element material
JP2017079267A (en) Organic electroluminescent element, method of manufacturing organic electroluminescent element, display device, lighting device, and organic electroluminescent element material
JP6593114B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND Aromatic Heterocyclic Derivative
WO2018173600A1 (en) Organic electroluminescence element
WO2015125581A1 (en) Organic electroluminescent element
JP2017103436A (en) Organic electroluminescent element, display device, illuminating device and aromatic heterocyclic derivative
JP2017103437A (en) Organic electroluminescent element, display device, illuminating device, and aromatic heterocyclic derivative
WO2017104242A1 (en) Organic electroluminescent element material, organic electroluminescent element, display device and lighting device
WO2016194865A1 (en) Organic electroluminescent element
JP6606986B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND Aromatic Heterocyclic Derivative
WO2017038642A1 (en) Cyclic heteroaromatic compound, organic electronic element material, organic electronic element, and electronic device
JP5835217B2 (en) Organic electroluminescence device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200821

R150 Certificate of patent or registration of utility model

Ref document number: 6754185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250