JP5458890B2 - Organic electroluminescence element, display device and lighting device - Google Patents

Organic electroluminescence element, display device and lighting device Download PDF

Info

Publication number
JP5458890B2
JP5458890B2 JP2009540016A JP2009540016A JP5458890B2 JP 5458890 B2 JP5458890 B2 JP 5458890B2 JP 2009540016 A JP2009540016 A JP 2009540016A JP 2009540016 A JP2009540016 A JP 2009540016A JP 5458890 B2 JP5458890 B2 JP 5458890B2
Authority
JP
Japan
Prior art keywords
ring
group
organic
layer
organic electroluminescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009540016A
Other languages
Japanese (ja)
Other versions
JPWO2009060742A1 (en
Inventor
信也 大津
利恵 片倉
秀雄 ▲高▼
弘志 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2009540016A priority Critical patent/JP5458890B2/en
Publication of JPWO2009060742A1 publication Critical patent/JPWO2009060742A1/en
Application granted granted Critical
Publication of JP5458890B2 publication Critical patent/JP5458890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/61Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms not forming part of a nitro radical, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Description

本発明は、有機エレクトロルミネッセンス素子、表示装置及び照明装置に関する。   The present invention relates to an organic electroluminescence element, a display device, and a lighting device.

従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(以下、ELDと言う)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子とも言う)が挙げられる。   Conventionally, as a light-emitting electronic display device, there is an electroluminescence display (hereinafter referred to as ELD). Examples of constituent elements of ELD include inorganic electroluminescent elements and organic electroluminescent elements (hereinafter also referred to as organic EL elements).

無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。有機EL素子は発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。   Inorganic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements. An organic EL device has a structure in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, injects electrons and holes into the light emitting layer, and recombines them to generate excitons (exciton). It is an element that emits light by using light emission (fluorescence / phosphorescence) when this exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts, and is also self-luminous. In addition, it is attracting attention from the viewpoints of space saving, portability and the like because it is a thin film type complete solid element with a wide viewing angle and high visibility.

しかしながら、今後の実用化に向けた有機EL素子においては、更に低消費電力で効率よく高輝度に発光する有機EL素子の開発が望まれている。   However, in organic EL elements for practical use in the future, development of organic EL elements that emit light efficiently and with high luminance with lower power consumption is desired.

特許第3093796号公報では、スチルベン誘導体、ジスチリルアリーレン誘導体またはトリススチリルアリーレン誘導体に微量の蛍光体をドープし、発光輝度の向上、素子の長寿命化を達成している。また、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これに微量の蛍光体をドープした有機発光層を有する素子(例えば、特開昭63−264692号公報)、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これにキナクリドン系色素をドープした有機発光層を有する素子(例えば、特開平3−255190号公報)等が知られている。   In Japanese Patent No. 3093796, a small amount of a phosphor is doped into a stilbene derivative, a distyrylarylene derivative or a tristyrylarylene derivative to achieve an improvement in light emission luminance and a longer device lifetime. Further, an element having an organic light-emitting layer in which an 8-hydroxyquinoline aluminum complex is used as a host compound and a small amount of phosphor is doped thereto (for example, JP-A 63-264692), and an 8-hydroxyquinoline aluminum complex is used as a host compound. For example, an element having an organic light emitting layer doped with a quinacridone dye (for example, JP-A-3-255190) is known.

以上のように、励起一重項からの発光を用いる場合、一重項励起子と三重項励起子の生成比が1:3であるため発光性励起種の生成確率が25%であり、光の取り出し効率が約20%であるため、外部取り出し量子効率(ηext)の限界は5%とされている。   As described above, when light emission from excited singlet is used, the generation ratio of singlet excitons and triplet excitons is 1: 3, and thus the generation probability of luminescent excited species is 25%. Since the efficiency is about 20%, the limit of the external extraction quantum efficiency (ηext) is set to 5%.

ところが、プリンストン大より励起三重項からのリン光発光を用いる有機EL素子の報告(M.A.Baldo et al.,Nature、395巻、151〜154頁(1998年))がされて以来、室温でリン光を示す材料の研究が活発になってきている。   However, since Princeton University reported on an organic EL device using phosphorescence emission from an excited triplet (MA Baldo et al., Nature, 395, 151-154 (1998)), Research on materials that exhibit phosphorescence has become active.

例えば、M.A.Baldo et al.,Nature、403巻、17号、750〜753頁(2000年)、また米国特許第6,097,147号明細書等にも開示されている。   For example, M.M. A. Baldo et al. , Nature, 403, 17, 750-753 (2000), US Pat. No. 6,097,147, and the like.

励起三重項を使用すると、内部量子効率の上限が100%となるため励起一重項の場合に比べて原理的に発光効率が4倍となり、冷陰極管とほぼ同等の性能が得られる可能性があることから照明用途としても注目されている。   When the excited triplet is used, the upper limit of the internal quantum efficiency is 100%. In principle, the luminous efficiency is four times that of the excited singlet, and there is a possibility that almost the same performance as a cold cathode tube can be obtained. Therefore, it is attracting attention as a lighting application.

例えば、S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304頁(2001年)等においては、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検討されている。   For example, S.M. Lamansky et al. , J .; Am. Chem. Soc. , 123, 4304 (2001), etc., many compounds are being studied for synthesis centering on heavy metal complexes such as iridium complexes.

また、前述のM.A.Baldo et al.,Nature、403巻、17号、750〜753頁(2000年)においては、ドーパントとしてトリス(2−フェニルピリジン)イリジウムを用いた検討がされている。   In addition, the aforementioned M.I. A. Baldo et al. , Nature, 403, 17, 750-753 (2000), studies have been made using tris (2-phenylpyridine) iridium as a dopant.

その他、M.E.Tompson等は、The 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)において、ドーパントとしてL2Ir(acac)、例えば、(ppy)2Ir(acac)を、またMoon−Jae Youn.0g、Tetsuo Tsutsui等は、やはりThe 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)において、ドーパントとしてトリス(2−(p−トリル)ピリジン)イリジウム(Ir(ptpy)3)、トリス(ベンゾ[h]キノリン)イリジウム(Ir(bzq)3)等を用いた検討を行っている(なおこれらの金属錯体は一般にオルトメタル化イリジウム錯体と呼ばれている。)。In addition, M.M. E. Thompson et al., In The 10th International Works on Inorganic and Organic Electroluminescence (EL'00, Hamamatsu), used L 2 Ir (acac), for example, (ppy) 2 Ir (acac), e. 0 g, Tetsuo Tsutsui, etc., again The 10th International Workshop on Inorganic and Organic Electroluminescence (EL'00, Hamamatsu), the dopant as tris (2-(p-tolyl) pyridine) iridium (Ir (ptpy) 3), tris ( Studies using benzo [h] quinoline) iridium (Ir (bzq) 3 ) and the like are being conducted (note that these metal complexes are generally called orthometalated iridium complexes).

また、前記S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304頁(2001年)や特開2001−247859号公報等においても、各種イリジウム錯体を用いて素子化する試みがされている。   In addition, the S. Lamansky et al. , J .; Am. Chem. Soc. , 123, 4304 (2001) and Japanese Patent Application Laid-Open No. 2001-247859, etc., attempts have been made to form devices using various iridium complexes.

また、高い発光効率を得るために、The 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)では、Ikai等はホール輸送性の化合物をリン光性化合物のホストとして用いている。また、M.E.Tompson等は各種電子輸送性材料をリン光性化合物のホストとして、これらに新規なイリジウム錯体をドープして用いている。   In order to obtain high luminous efficiency, in the 10th International Works on Inorganic and Organic Electroluminescence (EL'00, Hamamatsu), Ikai et al. Uses a hole transporting compound as a host of a phosphorescent compound. In addition, M.M. E. Thompson et al. Use various electron transporting materials as a host of phosphorescent compounds, doped with a novel iridium complex.

中心金属をイリジウムの代わりに白金としたオルトメタル化錯体も注目されている。この種の錯体に関しては、配位子に特徴を持たせた例が多数知られている。   Orthometalated complexes in which the central metal is platinum instead of iridium are also attracting attention. With respect to this type of complex, many examples are known in which ligands are characterized.

また、リン光ドーパントを高分子量化、デンドリマー化することもよく知られている。特に、リン光デンドリマーは3重項−3重項消滅を抑えて更なる発光効率向上を試みる研究が行われている(例えば、特許文献1参照)。デンドリマーとは巨大な分岐した化合物であり、樹状材料とも言う。   It is also well known to increase the molecular weight and dendrimer of a phosphorescent dopant. In particular, studies have been conducted on phosphorescent dendrimers to suppress the triplet-triplet annihilation and further improve the light emission efficiency (see, for example, Patent Document 1). Dendrimers are huge branched compounds, also called dendritic materials.

しかしながら、高純度の材料が得るためにはポリマーのように分子量が大きすぎ、精製が困難なものは適していない。また、プロセス面などの耐熱性の観点からは高いTgが求められるため、分子量が小さすぎても望ましい材料は得られない。
特表2005−521210号公報
However, in order to obtain a high-purity material, a material that is too high in molecular weight and difficult to purify like a polymer is not suitable. Moreover, since high Tg is calculated | required from heat resistant viewpoints, such as a process surface, even if molecular weight is too small, a desirable material cannot be obtained.
JP-T-2005-521210

本発明は係る課題に鑑みてなされたものであり、本発明の目的は、高い発光効率を示し、且つ発光寿命が長い有機EL素子、更には該有機EL素子を備えた照明装置、及び表示装置を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an organic EL element that exhibits high luminous efficiency and has a long light emission lifetime, and further, an illumination device and a display device including the organic EL element. Is to provide.

本発明の上記目的は、下記の構成により達成された。   The above object of the present invention has been achieved by the following constitution.

1.陽極と陰極により挟まれた発光層を有する有機エレクトロルミネッセンス素子において、発光層に分子量1,000以上5,000以下であるリン光発光性ドーパントと分子量800以上3,000以下のホスト化合物を含有し、前記リン光発光性ドーパントが下記一般式(1)で表される部分構造を有し、前記ホスト化合物が下記一般式(6)、(7)または(8)で表されるカルバゾール誘導体であることを特徴とする有機エレクトロルミネッセンス素子。
(式中、Y及びYは炭素原子または窒素原子を表し、Z1はイミダゾール環またはピラゾール環を形成するのに必要な残基を表し、Z2は置換基を有さないベンゼン環を形成するのに必要な残基を表し、Mはイリジウムを表す。)
(式中、Arhは芳香環基または芳香族複素環基を表し、Rnはアルキル基、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環またはジアザカルバゾール環を表す。ZはN−Rz、OまたはSを表し、Rzはアルキル基、芳香環基または芳香族複素環基を表す。)
1. In an organic electroluminescence device having a light emitting layer sandwiched between an anode and a cathode, the light emitting layer contains a phosphorescent dopant having a molecular weight of 1,000 to 5,000 and a host compound having a molecular weight of 800 to 3,000. The phosphorescent dopant has a partial structure represented by the following general formula (1), and the host compound is a carbazole derivative represented by the following general formula (6), (7) or (8). An organic electroluminescence device characterized by that.
Wherein Y 1 and Y 2 represent a carbon atom or a nitrogen atom, Z 1 represents a residue necessary for forming an imidazole ring or a pyrazole ring , and Z 2 forms a benzene ring having no substituent. And M represents iridium .)
(In the formula, Arh represents an aromatic ring group or an aromatic heterocyclic group, and Rn represents an alkyl group, a benzene ring, a biphenyl ring, a naphthalene ring, an azulene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, a chrysene ring, a naphthacene ring, Triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, Pyrene ring, pyranthrene ring, anthraanthrene ring, furan ring, thiophene ring, oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, Imidazole ring, pyrazole ring, thiazole ring, Ndole ring, indazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, carbazole ring, carboline ring or diazacarbazole ring. N-Rz, O or S is represented, and Rz represents an alkyl group, an aromatic ring group or an aromatic heterocyclic group.)

2.前記一般式(6)、(7)または(8)で表されるカルバゾール誘導体におけるArhが、フェニル基を有してもよいカルバゾール環またはジベンゾフラン環を表すことを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。 2. 2. The organic according to 1 above, wherein Arh in the carbazole derivative represented by the general formula (6), (7) or (8) represents a carbazole ring or a dibenzofuran ring which may have a phenyl group. Electroluminescence element.

3.前記リン光発光性ドーパントの分子量が1,000以上3,000以下であることを特徴とする前記2に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescent device according to the 2 the molecular weight of the phosphorescent dopant, and wherein the at 3,000 1,000 or more.

4.前記リン光発光性ドーパントの分子量が1,500以上3,000以下であることを特徴とする前記3に記載の有機エレクトロルミネッセンス素子。 4). The organic electroluminescent device according to the 3 molecular weight of the phosphorescent dopant, and wherein the at 3,000 1,500.

5.前記リン光発光性ドーパントの分子量が1,500以上2,500以下であることを特徴とする前記4に記載の有機エレクトロルミネッセンス素子。 5. The organic electroluminescent device according to the 4 molecular weight of the phosphorescent dopant, and wherein the at 2,500 1,500.

.前記ホスト化合物の分子量が800以上2,000以下であることを特徴とする前記5に記載の有機エレクトロルミネッセンス素子。 6 . The organic electroluminescent device according to the 5 molecular weight of the host compound, is characterized in that 800 or more 2,000 or less.

.前記ホスト化合物の分子量が800以上1,500以下であることを特徴とする前記6に記載の有機エレクトロルミネッセンス素子。 7 . The organic electroluminescent device according to the 6 the molecular weight of the host compound, is characterized in that 800 or more 1,500 or less.

.前記ホスト化合物の分子量が1,000以上1,500以下であることを特徴とする前記7に記載の有機エレクトロルミネッセンス素子。 8 . The organic electroluminescence device according to 7 above molecular weight of the host compound, characterized in that 1,000 or more 1,500 or less.

.前記一般式(1)で表される部分構造を有するリン光発光性ドーパントが、下記置換基群(2)から選ばれる置換基を有することを特徴とする前記1から8までいずれか一項に記載の有機エレクトロルミネッセンス素子。 9 . Phosphorescent dopant having a partial structure represented by the general formula (1) is any of the 1, characterized in that it comprises a substituent group selected from the following Ki置 substituent group (2) up to 8 The organic electroluminescence device according to one item .

(Arcは芳香環基または芳香族複素環基を表す。Rmはアルキル基、芳香環基または芳香族複素環基を表す。 (Arc, the table to an aromatic ring group or an aromatic heterocyclic group. Rm represents an alkyl group, aromatic ring group or an aromatic heterocyclic group.)

.構成層として、前記1からまでのいずれか一項に記載の化合物を含む有機層を有し、該有機層がウェットプロセスによって形成されることを特徴とする有機エレクトロルミネッセンス素子。 1 0 . An organic electroluminescent device comprising an organic layer containing the compound according to any one of 1 to 9 as a constituent layer, wherein the organic layer is formed by a wet process.

.白色発光することを特徴とする前記1から1までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 1 1 . The organic electroluminescent device according to any one of the above 1, characterized in that white light to 1 0.

.前記1から1までのいずれか一項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。 1 2 . Display apparatus comprising the organic electroluminescent device according to any one of the items 1 to 1 1.

.前記1から1までのいずれか一項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。 1 3 . Lighting apparatus comprising the organic electroluminescent device according to any one of the items 1 to 1 1.

本発明により、高い発光効率を示し、且つ発光寿命が長い有機EL素子、及び該素子を用いた照明装置、及び表示装置を提供することができた。   According to the present invention, an organic EL element that exhibits high light emission efficiency and has a long light emission lifetime, and an illumination device and a display device using the element can be provided.

有機ELフルカラー表示装置の概略構成図を示す。The schematic block diagram of an organic electroluminescent full color display apparatus is shown.

符号の説明Explanation of symbols

101 ガラス基板
102 ITO透明電極
103 隔壁
104 正孔注入層
105B、105G、105R 発光層
101 Glass substrate 102 ITO transparent electrode 103 Partition 104 Hole injection layer 105B, 105G, 105R Light emitting layer

本発明の有機EL素子においては、請求の範囲1〜23のいずれか1項に規定される構成により、高い発光効率を示し、且つ発光寿命が長い有機EL素子、更には該素子を用いた照明装置、及び表示装置を提供することができた。   In the organic EL device of the present invention, an organic EL device that exhibits high light emission efficiency and has a long light emission lifetime according to the configuration defined in any one of claims 1 to 23, and illumination using the device An apparatus and a display device can be provided.

具体的には、本発明の有機エレクトロルミネッセンス素子は、発光層に少なくとも1つの分子量1,000以上10,000以下であるリン光発光性ドーパントと少なくとも1つの分子量500以上5,000以下のホスト化合物を含有することを特徴とする。   Specifically, the organic electroluminescence device of the present invention includes at least one phosphorescent dopant having a molecular weight of 1,000 to 10,000 and a host compound having a molecular weight of 500 to 5,000 in the light emitting layer. It is characterized by containing.

本発明に係るリン光発光性ドーパントは、分子量が1,000以上10,000以下であるが、分子量1,000以上5,000以下、1,000以上3,000以下、1,500以上3,000以下が好ましく、分子量1,500以上2,500以下が最も好ましい。   The phosphorescent dopant according to the present invention has a molecular weight of 1,000 to 10,000, but a molecular weight of 1,000 to 5,000, 1,000 to 3,000, 1,500 to 3, 000 or less is preferable, and a molecular weight of 1,500 to 2,500 is most preferable.

また、本発明に係るホスト化合物は、分子量が500以上5,000以下であるが、分子量800以上3,000以下、800以上2,000以下、800以上1,500以下が好ましく、分子量1,000以上1,500以下が最も好ましい。   The host compound according to the present invention has a molecular weight of 500 or more and 5,000 or less, preferably a molecular weight of 800 or more and 3,000 or less, 800 or more and 2,000 or less, and 800 or more and 1,500 or less, and a molecular weight of 1,000. More preferably, it is 1,500 or less.

以下、本発明に係る各構成要素の詳細について、順次説明する。   Hereinafter, details of each component according to the present invention will be sequentially described.

本発明において、リン光発光性ドーパントは前記一般式(1)で表される部分構造を有することが好ましい。   In the present invention, the phosphorescent dopant preferably has a partial structure represented by the general formula (1).

本発明に係る一般式(1)で表される部分構造を有する金属錯体であるリン光発光性ドーパントは、一般式(1)表される構造、または一般式(1)の互変異性体で表される構造の少なくとも一つを有する(具体的には、配位子として有することである)ことが特徴であり、該金属錯体の配位子の全てが一般式(1)で表される構造、または一般式(1)の互変異性体で表される構造のみで構成されていてもよく、従来公知の金属錯体形成に用いられる、所謂配位子として当該業者が周知の配位子(配位化合物とも言う)を必要に応じて配位子として有していてもよい。   The phosphorescent dopant which is a metal complex having a partial structure represented by the general formula (1) according to the present invention is a structure represented by the general formula (1) or a tautomer of the general formula (1). It is characterized by having at least one of the structures represented (specifically, having as a ligand), and all of the ligands of the metal complex are represented by the general formula (1) A ligand known to those skilled in the art as a so-called ligand which may be composed of only a structure or a structure represented by a tautomer of the general formula (1) and is used for forming a conventionally known metal complex (Also referred to as a coordination compound) may be included as a ligand as necessary.

本発明に記載の効果を好ましく得る観点からは、錯体中の配位子の種類は好ましくは1〜2種類から構成されることが好ましく、更に好ましくは1種類である。   From the viewpoint of preferably obtaining the effects described in the present invention, the type of ligand in the complex is preferably composed of 1 to 2 types, and more preferably 1 type.

従来公知の金属錯体に用いられる配位子としては、種々の公知の配位子があるが、例えば、「Photochemistry and Photophysics of Coordination Compounds」Springer−Verlag社 H.Yersin著 1987年発行、「有機金属化学−基礎と応用−」裳華房社 山本明夫著 1982年発行等に記載の配位子(例えば、ハロゲン配位子(好ましくは塩素配位子)、含窒素ヘテロ環配位子(例えば、ビピリジル、フェナントロリンなど)、ジケトン配位子なと)が挙げられる。   There are various known ligands used in conventionally known metal complexes. For example, “Photochemistry and Photophysics of Coordination Compounds” Springer-Verlag H. Published by Yersin, 1987, “Organometallic Chemistry-Fundamentals and Applications-” Liu Huabosha, Akio Yamamoto, published by 1982, etc. (for example, halogen ligands (preferably chlorine ligands), Nitrogen heterocyclic ligands (for example, bipyridyl, phenanthroline, etc.) and diketone ligands).

一般式(1)において、Y1、Y2は炭素原子または窒素原子を表し、Z1は芳香族複素環を形成するのに必要な残基を表し、Z2は芳香環または芳香族複素環を形成するのに必要な残基を表し、Mは元素周期表における8〜10族の遷移金属を表す。In the general formula (1), Y 1 and Y 2 represent a carbon atom or a nitrogen atom, Z 1 represents a residue necessary for forming an aromatic heterocyclic ring, and Z 2 represents an aromatic ring or an aromatic heterocyclic ring. And M represents a group 8-10 transition metal in the periodic table.

Z2で表される芳香環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。Z2が表す芳香環としては、ベンゼン環が好ましい。   Examples of the aromatic ring represented by Z2 include benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring. Ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyrene ring, pyranthrene ring, anthraanthrene ring, etc. It is done. The aromatic ring represented by Z2 is preferably a benzene ring.

Z1、Z2で表される芳香族複素環としては、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げられる。   Examples of the aromatic heterocycle represented by Z1 and Z2 include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a benzimidazole ring, an oxadiazole ring, Triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, indazole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring , A carbazole ring, a carboline ring, a diazacarbazole ring (which represents a ring in which one of the carbon atoms of the hydrocarbon ring constituting the carboline ring is further substituted with a nitrogen atom).

Z1が表す芳香族複素環としては、ピラゾール環、イミダゾール環、ピリジン環が好ましく、またZ2が表す芳香族複素環としては5員の芳香族複素環が好ましく、例えば、オキサゾール環、オキサジアゾール環、オキサトリアゾール環、イソオキサゾール環、テトラゾール環、チアジアゾール環、チアトリアゾール環、イソチアゾール環、チオフェン環、フラン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環等が挙げられる。   The aromatic heterocycle represented by Z1 is preferably a pyrazole ring, imidazole ring or pyridine ring, and the aromatic heterocycle represented by Z2 is preferably a 5-membered aromatic heterocycle, such as an oxazole ring or an oxadiazole ring. Oxatriazole ring, isoxazole ring, tetrazole ring, thiadiazole ring, thiatriazole ring, isothiazole ring, thiophene ring, furan ring, pyrrole ring, imidazole ring, pyrazole ring, triazole ring and the like.

金属錯体の形成に用いられる金属Mとしては、元素周期表の8〜10族の遷移金属元素(単に遷移金属とも言う)が用いられるが、中でもイリジウムが好ましい遷移金属元素として挙げられる。   As the metal M used for forming the metal complex, a transition metal element of Group 8 to 10 (also simply referred to as a transition metal) in the periodic table of elements is used. Among them, iridium is a preferable transition metal element.

前記一般式(1)で表される部分構造を有するリン光発光性ドーパントは、前記置換基群(2)を有することが好ましい。   The phosphorescent dopant having a partial structure represented by the general formula (1) preferably has the substituent group (2).

置換基群(2)において、Arcは芳香環基、芳香族複素環基を表し、Rmはアルキル基、芳香環基、芳香族複素環基を表す。Arc、Rmが表す芳香環基としては、一般式(1)のZ2で挙げられた芳香環からの基が挙げられ、Arc、Rmが表す芳香族複素環基としては、一般式(1)のZ1、Z2で挙げられた芳香族複素環からの基が挙げられる。Rmが表すアルキル基としては、直鎖または分岐のアルキル基が挙げられ、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基が挙げられる。   In the substituent group (2), Arc represents an aromatic ring group or an aromatic heterocyclic group, and Rm represents an alkyl group, an aromatic ring group or an aromatic heterocyclic group. Examples of the aromatic ring group represented by Arc and Rm include groups derived from the aromatic ring listed as Z2 in the general formula (1). Examples of the aromatic heterocyclic group represented by Arc and Rm include those represented by the general formula (1). Examples thereof include groups derived from the aromatic heterocycles mentioned for Z1 and Z2. Examples of the alkyl group represented by Rm include a linear or branched alkyl group, specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a t-butyl group, a pentyl group, a hexyl group, an octyl group, A dodecyl group, a tridecyl group, a tetradecyl group, and a pentadecyl group are mentioned.

前記Arcはより具体的には、前記一般式(3)または(4)で表される。   More specifically, the Arc is represented by the general formula (3) or (4).

一般式(3)中、X3〜X12は各々独立に炭素原子、窒素原子または酸素原子を表し、R1〜R10は水素原子または置換基を表し、Ar2は芳香環基、芳香族複素環基を表し、n2は0〜10の整数を表し、R5とR6は直接結合して環を形成してもよい。In the general formula (3), X 3 to X 12 each independently represent a carbon atom, a nitrogen atom or an oxygen atom, R 1 to R 10 represent a hydrogen atom or a substituent, Ar 2 represents an aromatic ring group, an aromatic group Represents a heterocyclic group, n2 represents an integer of 0 to 10, and R 5 and R 6 may be directly bonded to form a ring.

Ar2が表す芳香環基としては、一般式(1)のZ2で挙げられた芳香環からの基が挙げられ、芳香族複素環基としては、一般式(1)のZ1、Z2で挙げられた芳香族複素環からの基が挙げられる。Examples of the aromatic ring group represented by Ar 2 include groups derived from the aromatic ring listed as Z2 in the general formula (1), and examples of the aromatic heterocyclic group include Z1 and Z2 in the general formula (1). And groups derived from aromatic heterocycles.

1〜R10が表す置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基、1−プロペニル基、2−ブテニル基、1,3−ブタジエニル基、2−ペンテニル基、イソプロペニル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。Examples of the substituent represented by R 1 to R 10 include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group). Group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group, 1-propenyl group, 2-butenyl group, 1,3-butadienyl group, 2 -Pentenyl group, isopropenyl group etc.), alkynyl group (eg ethynyl group, propargyl group etc.), aromatic hydrocarbon group (aromatic hydrocarbon ring group, aromatic carbocyclic group, aryl group etc. Phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, a Naphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group, etc.), aromatic heterocyclic group (for example, furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl) Group, pyrazolyl group, thiazolyl group, quinazolinyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), Phthalazinyl group etc.), heterocyclic group (eg pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group etc.), alkoxy group (eg methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group) Group, dodecyloxy Group), cycloalkoxy group (eg cyclopentyloxy group, cyclohexyloxy group etc.), aryloxy group (eg phenoxy group, naphthyloxy group etc.), alkylthio group (eg methylthio group, ethylthio group, propylthio group, pentylthio). Group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyloxy Carbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (for example, phenyloxycarbonyl group, naphthyl) Oxycarbonyl group, etc.), sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, Phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl) Group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy , Ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonyl) Amino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group) Methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbo Group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group) Pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexyl) Sulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), a Alkylsulfonyl group (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (for example, phenylsulfonyl group, naphthyl) Sulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino) Group, 2-pyridylamino group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom, etc.), fluorinated hydrocarbon group (eg, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pen) Fluorophenyl group), a cyano group, a nitro group, hydroxy group, a mercapto group, a silyl group (e.g., trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, a phenyl diethyl silyl group and the like), a phosphono group, and the like.

一般式(4)中、X3〜X10は各々独立に炭素原子、窒素原子または酸素原子を表し、R1〜R10は水素原子または置換基を表し、R1〜R10のいずれかが−(Ar4n3−で表され、Ar3、Ar4は芳香環基、芳香族複素環基を表し、n3は0〜10の整数を表し、R5とR6は直接結合して環を形成してもよい。In the general formula (4), X 3 to X 10 each independently represent a carbon atom, a nitrogen atom or an oxygen atom, R 1 to R 10 represent a hydrogen atom or a substituent, and any one of R 1 to R 10 is -(Ar 4 ) n3- , Ar 3 and Ar 4 represent an aromatic ring group and an aromatic heterocyclic group, n3 represents an integer of 0 to 10, and R 5 and R 6 are directly bonded to form a ring. May be formed.

1〜R10が表す置換基は、一般式(3)中のR1〜R10が表す置換基と同義である。また、Ar3、Ar4はが表す芳香環基、芳香族複素環基は、一般式(3)中のAr2が表す芳香環基、芳香族複素環基と同義である。Substituents R 1 to R 10 represents is the same as the substituents that formula (3) R 1 ~R 10 in represents. Moreover, the aromatic ring group and aromatic heterocyclic group which Ar < 3 >, Ar < 4 > represents are synonymous with the aromatic ring group and aromatic heterocyclic group which Ar < 2 > represents in General formula (3).

以下に、前記一般式(1)で表される部分構造を有するリン光発光性ドーパントの具体例を示す。   Specific examples of the phosphorescent dopant having the partial structure represented by the general formula (1) are shown below.

これらのリン光発光性ドーパントは、例えば、Organic Letter誌、vol3、No.16、2579〜2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685〜1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704〜1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055〜3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、Organic Letter誌、vol8、No.3、415〜418頁(2006)、更にこれらの文献中に記載の参考文献等の方法を適用することにより合成できる。   These phosphorescent dopants are described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), Organic Letter, vol. 3, pages 415 to 418 (2006), and further by applying methods such as references described in these documents.

本発明に係るホスト化合物としては、カルバゾール誘導体が好ましく、前記一般式(6)、(7)または(8)で表されるカルバゾール誘導体が特に好ましい。   The host compound according to the present invention is preferably a carbazole derivative, and particularly preferably a carbazole derivative represented by the general formula (6), (7) or (8).

一般式(6)、(7)または(8)において、Arhは芳香環基、芳香族複素環基を表し、Rnはアルキル基、芳香環基、芳香族複素環基を表す。ZはN−Rz、O、Sを表し、Rzはアルキル基、芳香環基、芳香族複素環基を表す。   In the general formula (6), (7) or (8), Arh represents an aromatic ring group or an aromatic heterocyclic group, and Rn represents an alkyl group, an aromatic ring group or an aromatic heterocyclic group. Z represents N—Rz, O, or S, and Rz represents an alkyl group, an aromatic ring group, or an aromatic heterocyclic group.

Arhが表す芳香環基、芳香族複素環基は、前記一般式(3)中のAr2が表す芳香環基、芳香族複素環基と同義である。Rn、Rzが表すアルキル基、芳香環基、芳香族複素環基は、置換基群(2)におけるRmが表すアルキル基、芳香環基、芳香族複素環基と同義である。The aromatic ring group and aromatic heterocyclic group represented by Arh are synonymous with the aromatic ring group and aromatic heterocyclic group represented by Ar 2 in the general formula (3). The alkyl group, aromatic ring group and aromatic heterocyclic group represented by Rn and Rz have the same meanings as the alkyl group, aromatic ring group and aromatic heterocyclic group represented by Rm in the substituent group (2).

また、本発明に係るホスト化合物としては、前記一般式(9)で表される化合物も好ましい。   Moreover, as a host compound which concerns on this invention, the compound represented by the said General formula (9) is also preferable.

一般式(9)において、Y1及びY2はO、SまたはNR0を表し、R0、R11〜R18及びR21〜R28は水素原子または置換基を表す。但し、R11〜R18及びR0の少なくとも1つはX1との連結に用いられ、R21〜R28及びR0の少なくとも1つはX1との連結に用いられる。X1は前記一般式(10)または(11)で表される2価の連結基を表す。n1は1以上の整数を表し、n1が2以上の場合、X1は同じでも異なっていてもよい。In General formula (9), Y < 1 > and Y < 2 > represent O, S, or NR < 0 >, R < 0 >, R < 11 > -R < 18 > and R < 21 > -R < 28 > represent a hydrogen atom or a substituent. However, at least one of R 11 to R 18 and R 0 is used for connection with X 1, and at least one of R 21 to R 28 and R 0 is used for connection with X 1 . X 1 represents a divalent linking group represented by the general formula (10) or (11). n1 represents an integer of 1 or more, and when n1 is 2 or more, X 1 may be the same or different.

一般式(10)、(11)において、Y3はO、SまたはNR30を表し、R30〜R38及びR41〜R46は水素原子または置換基を表す。但し、R30〜R38、R41〜R46は各々少なくとも2つは連結に用いられ、またR41とR44が連結に用いられる場合は、R42、R43、R45、R46の少なくとも1つは水素原子以外の置換基を有する。In the general formulas (10) and (11), Y 3 represents O, S or NR 30 , and R 30 to R 38 and R 41 to R 46 represent a hydrogen atom or a substituent. However, at least two of each of R 30 to R 38 and R 41 to R 46 are used for connection, and when R 41 and R 44 are used for connection, R 42 , R 43 , R 45 , R 46 At least one has a substituent other than a hydrogen atom.

0、R11〜R18及びR21〜R28、更にR30〜R38及びR41〜R46が表す置換基は、前記一般式(3)のR1〜R10が表す置換基と同義である。The substituents represented by R 0 , R 11 to R 18 and R 21 to R 28 , and R 30 to R 38 and R 41 to R 46 are the same as the substituents represented by R 1 to R 10 in the general formula (3). It is synonymous.

以下に、本発明に係るホスト化合物として挙げられた、前記一般式(6)、(7)または(8)で表されるカルバゾール誘導体、更には前記一般式(9)で表される化合物の具体例を示す。   Specific examples of the carbazole derivative represented by the general formula (6), (7), or (8), and the compound represented by the general formula (9), which are listed below as host compounds according to the present invention. An example is shown.

《有機EL素子の構成層》
本発明の有機EL素子の構成層について説明する。本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
<< Constituent layers of organic EL elements >>
The constituent layers of the organic EL element of the present invention will be described. In this invention, although the preferable specific example of the layer structure of an organic EL element is shown below, this invention is not limited to these.

(i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極。
(I) Anode / light emitting layer / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron Transport layer / cathode (iv) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) Anode / anode buffer layer / hole transport layer / light emitting layer / hole Blocking layer / electron transport layer / cathode buffer layer / cathode.

本発明の有機EL素子においては、青色発光層の発光極大波長は430〜480nmにあるものが好ましく、緑色発光層は発光極大波長が510〜550nm、赤色発光層は発光極大波長が600〜640nmの範囲にある単色発光層であることが好ましく、これらを用いた表示装置であることが好ましい。また、これらの少なくとも3層の発光層を積層して白色発光層としたものであってもよい。更に、発光層間には非発光性の中間層を有していてもよい。本発明の有機EL素子としては白色発光層であることが好ましく、これらを用いた照明装置であることが好ましい。   In the organic EL device of the present invention, the blue light emitting layer preferably has an emission maximum wavelength of 430 to 480 nm, the green light emitting layer has an emission maximum wavelength of 510 to 550 nm, and the red light emitting layer has an emission maximum wavelength of 600 to 640 nm. A monochromatic light emitting layer in the range is preferable, and a display device using these is preferable. Alternatively, a white light emitting layer may be formed by laminating at least three light emitting layers. Further, a non-light emitting intermediate layer may be provided between the light emitting layers. The organic EL element of the present invention is preferably a white light emitting layer, and is preferably a lighting device using these.

本発明の有機EL素子を構成する各層について説明する。   Each layer which comprises the organic EL element of this invention is demonstrated.

《発光層》
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
<Light emitting layer>
The light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.

発光層の膜厚の総和は特に制限はないが、膜の均質性や発光時に不必要な高電圧を印加するのを防止し、且つ駆動電流に対する発光色の安定性向上の観点から、2nm〜5μmの範囲に調整することが好ましく、更に好ましくは2〜200nmの範囲に調整され、特に好ましくは10〜20nmの範囲である。   The total film thickness of the light emitting layer is not particularly limited, but it is 2 nm to from the viewpoint of preventing the application of a high voltage unnecessary for the film homogeneity and light emission and improving the stability of the emission color with respect to the drive current. It is preferable to adjust to the range of 5 micrometers, More preferably, it adjusts to the range of 2-200 nm, Most preferably, it is the range of 10-20 nm.

発光層の作製には、後述する発光ドーパントやホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により成膜して形成することができる。   For the production of the light-emitting layer, a light-emitting dopant or a host compound, which will be described later, is formed by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink-jet method. it can.

本発明の有機EL素子の発光層には、ホスト化合物と発光ドーパント(リン光発光性ドーパントや蛍光ドーパント等)の少なくとも1種類とを含有することが好ましい。   The light emitting layer of the organic EL device of the present invention preferably contains a host compound and at least one kind of light emitting dopant (phosphorescent dopant, fluorescent dopant, etc.).

(ホスト化合物)
本発明に用いられるホスト化合物について説明する。
(Host compound)
The host compound used in the present invention will be described.

ここで、本発明においてホスト化合物とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。   Here, the host compound in the present invention is a phosphorescent quantum yield of phosphorescence emission at a room temperature (25 ° C.) having a mass ratio of 20% or more in the compound contained in the light emitting layer. Is defined as a compound of less than 0.1. The phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.

ホスト化合物としては単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光ドーパントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。   The host compound may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. Moreover, it becomes possible to mix different light emission by using multiple types of light emission dopants mentioned later, and, thereby, arbitrary luminescent colors can be obtained.

本発明に用いられるホスト化合物としては、分子量500以上5,000以下であり、上記のようにカルバゾール誘導体が好ましく、更には前記一般式(6)、(7)または(8)で表されるカルバゾール誘導体、前記一般式(9)で表される化合物がより好ましい。   The host compound used in the present invention has a molecular weight of 500 or more and 5,000 or less, preferably a carbazole derivative as described above, and further represented by the general formula (6), (7) or (8). A derivative or a compound represented by the general formula (9) is more preferable.

併用してもよい公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なお且つ高Tg(ガラス転移温度)である化合物が好ましい。   As a known host compound that may be used in combination, a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.

公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。   Specific examples of known host compounds include compounds described in the following documents.

特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等。   JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445 gazette, 2002-343568 gazette, 2002-141173 gazette, 2002-352957 gazette, 2002-203683 gazette, 2002-363227 gazette, 2002-231453 gazette, No. 003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060, No. 2002. -302516, 2002-305083, 2002-305084, 2002-308837, and the like.

(リン光発光性ドーパント)
本発明に係るリン光発光性ドーパントについて説明する。
(Phosphorescent dopant)
The phosphorescent dopant according to the present invention will be described.

本発明に係るリン光発光性ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。   The phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield. The phosphorescence quantum yield is preferably 0.1 or more, although it is defined as a compound of 0.01 or more at 25 ° C.

上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光発光性ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。   The phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence emitting dopant according to the present invention achieves the above phosphorescence quantum yield (0.01 or more) in any solvent. It only has to be done.

リン光発光性ドーパントの発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光発光性ドーパントに移動させることでリン光発光性ドーパントからの発光を得るというエネルギー移動型、もう一つはリン光発光性ドーパントがキャリアトラップとなり、リン光発光性ドーパント上でキャリアの再結合が起こりリン光発光性ドーパントからの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光発光性ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。   There are two types of light emission of phosphorescent dopants in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound. The energy transfer type is to obtain light emission from the phosphorescent dopant by transferring to the phosphorescent dopant, and the other is that the phosphorescent dopant becomes a carrier trap, and carrier recombination occurs on the phosphorescent dopant to cause phosphorescence. It is a carrier trap type in which light emission from a light-emitting dopant can be obtained. However, in any case, it is a condition that the excited state energy of the phosphorescent light-emitting dopant is lower than the excited state energy of the host compound. .

リン光発光性ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。   The phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL device.

本発明に係るリン光発光性ドーパントは、分子量1,000以上10,000以下であり、好ましくは前記一般式(1)で表される部分構造を有するものである。   The phosphorescent dopant according to the present invention has a molecular weight of 1,000 or more and 10,000 or less, and preferably has a partial structure represented by the general formula (1).

本発明においては、公知のリン光発光性ドーパントの使用も可能である。   In the present invention, a known phosphorescent dopant can be used.

以下に、リン光発光性ドーパントとして用いられる化合物の具体例を示すが、本発明はこれらに限定されない。これらの化合物は、例えば、Inorg.Chem.40巻、1704〜1711に記載の方法等により合成できる。   Although the specific example of the compound used as a phosphorescent dopant below is shown, this invention is not limited to these. These compounds are described, for example, in Inorg. Chem. 40, 1704-1711, and the like.

《注入層:電子注入層、正孔注入層》
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
<< Injection layer: electron injection layer, hole injection layer >>
The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.

注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。   An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).

陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。   The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.

陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。   The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. . The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm although it depends on the material.

《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
<Blocking layer: hole blocking layer, electron blocking layer>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258, 11-204359, and “Organic EL elements and their forefront of industrialization” (issued by NTT, Inc. on November 30, 1998). There is a hole blocking (hole blocking) layer.

正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。   The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.

また、後述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。   Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.

本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。   The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.

また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。   In the present invention, when a plurality of light emitting layers having different light emission colors are provided, the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers. In this case, it is preferable to additionally provide a hole blocking layer between the shortest wave layer and the light emitting layer next to the anode next to the anode. Furthermore, it is preferable that 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.

イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば、下記に示すような方法により求めることができる。   The ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be determined by, for example, the following method.

(1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6−31G*を用いて構造最適化を行うことにより、算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。   (1) Using Gaussian 98 (Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.), a molecular orbital calculation software manufactured by Gaussian, USA As a result of structural optimization using B3LYP / 6-31G *, the ionization potential can be obtained as a value obtained by rounding off the second decimal place of the calculated value (eV unit converted value). This calculation value is effective because the correlation between the calculation value obtained by this method and the experimental value is high.

(2)イオン化ポテンシャルは、光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC−1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。   (2) The ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy. For example, a method known as ultraviolet photoelectron spectroscopy can be suitably used by using a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd.

一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで、電子と正孔の再結合確率を向上させることができる。   On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the probability of recombination of electrons and holes can be improved.

また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3〜100nmであり、更に好ましくは5〜30nmである。   Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed. The film thickness of the hole blocking layer and the electron transporting layer according to the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.

《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.

正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。   The hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.

正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。   The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.

芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。   Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-4,4'-diaminophenyl; N, N'-diphenyl-N, N'- Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' − (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl; N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino- (2-diphenylvinyl) benzene; 3-methoxy-4′-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and also two of those described in US Pat. No. 5,061,569. Having a condensed aromatic ring in the molecule, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-3086 4,4 ', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 8 are linked in a starburst type ( MTDATA) and the like.

更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。   Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.

また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。   JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material as described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, these materials are preferably used because a light-emitting element with higher efficiency can be obtained.

正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。   The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can. Although there is no restriction | limiting in particular about the film thickness of a positive hole transport layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5-200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.

また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号、特開2000−196140号、同2001−102175号の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。   Alternatively, a hole transport layer having a high p property doped with impurities can be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, and JP-A-2001-102175; Appl. Phys. 95, 5773 (2004), and the like.

本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。   In the present invention, it is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be produced.

《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.

従来、単層の電子輸送層、及び複数層とする場合は、発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。   Conventionally, when a single electron transport layer and a plurality of layers are used, an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode. As long as it has a function of transmitting the generated electrons to the light-emitting layer, any material selected from conventionally known compounds can be selected and used. For example, nitro-substituted fluorene derivatives, diphenylquinone Derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.

更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。   Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.

また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。   In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material.

その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。   In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. In addition, the distyrylpyrazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and hole transport layer Can also be used as an electron transporting material.

電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。   The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Although there is no restriction | limiting in particular about the film thickness of an electron carrying layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5-200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.

また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。   Further, an electron transport layer having a high n property doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.

本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。   In the present invention, it is preferable to use an electron transport layer having such a high n property because an element with lower power consumption can be manufactured.

《陽極》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。
"anode"
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode substances include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.

また、IDIXO(In23−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method. A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.

あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10〜1000nm、好ましくは10〜200nmの範囲で選ばれる。   Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film-forming methods, such as a printing system and a coating system, can also be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.

《陰極》
一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
"cathode"
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.

これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Suitable are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.

陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。   The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the emission luminance is advantageously improved.

また、陰極に上記金属を1〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。   Moreover, after producing the said metal with a film thickness of 1-20 nm on a cathode, a transparent or semi-transparent cathode can be produced by producing the electroconductive transparent material quoted by description of the anode on it, By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.

《支持基板》
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
《Support substrate》
As a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.

樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(JSR社製)あるいはアペル(三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。   Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Polyetherimide, polyether ketone imide, polyamide, fluorine resin, nylon, polymethyl methacrylate, acrylic or polyarylates, and cycloolefin resins such as ARTON (JSR Corp.) or APEL (manufactured by Mitsui Chemicals, Inc.).

樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m2・24h)以下のバリア性フィルムであることが好ましく、更にはJIS K 7126−1987に準拠した方法で測定された酸素透過度が10-3ml/(m2・24h・atm)以下、水蒸気透過度が10-5g/(m2・24h)以下の高バリア性フィルムであることが好ましい。On the surface of the resin film, an inorganic film, an organic film, or a hybrid film of both may be formed. Water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. , Relative humidity (90 ± 2)% RH) is preferably 0.01 g / (m 2 · 24 h) or less, and more preferably oxygen permeability measured by a method according to JIS K 7126-1987. A high barrier property film having a degree of 10 −3 ml / (m 2 · 24 h · atm) or less and a water vapor permeability of 10 −5 g / (m 2 · 24 h) or less is preferable.

バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。   As a material for forming the barrier film, any material may be used as long as it has a function of suppressing entry of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.

バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。   The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.

不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。   Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, and ceramic substrates.

本発明の有機EL素子の発光の室温における外部取り出し量子効率は、1%以上であることが好ましく、より好ましくは5%以上である。   The external extraction quantum efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.

ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。   Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element × 100.

また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。   In addition, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor. In the case of using a color conversion filter, the λmax of light emission of the organic EL element is preferably 480 nm or less.

《封止》
本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
<Sealing>
As a sealing means used for this invention, the method of adhere | attaching a sealing member, an electrode, and a support substrate with an adhesive agent can be mentioned, for example.

封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また、透明性、電気絶縁性は特に問わない。   As a sealing member, it should just be arrange | positioned so that the display area | region of an organic EL element may be covered, and concave plate shape or flat plate shape may be sufficient. Further, transparency and electrical insulation are not particularly limited.

具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。   Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.

本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。   In the present invention, a polymer film and a metal film can be preferably used because the element can be thinned.

更にはポリマーフィルムは、JIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m2・24h・atm)以下、JIS K 7129−1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m2・24h)以下のものであることが好ましい。Further, the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, and a method according to JIS K 7129-1992. The measured water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is preferably 1 × 10 −3 g / (m 2 · 24 h) or less.

封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。   For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.

接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。   Specific examples of the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.

なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。   In addition, since an organic EL element may deteriorate by heat processing, what can be adhesive-hardened from room temperature to 80 degreeC is preferable. A desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.

また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。   In addition, it is also preferable that the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. . In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can. Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials.

これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。   The method for forming these films is not particularly limited. For example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.

封止部材と有機EL素子の表示領域との間隙には、気相及び液相では窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。   In the gap between the sealing member and the display area of the organic EL element, it is preferable to inject an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil in the gas phase and the liquid phase. . A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.

吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。   Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.

《保護膜、保護板》
有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量、且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film. In particular, when the sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used. It is preferable to use a film.

《光取り出し》
有機EL素子は空気よりも屈折率の高い(屈折率が1.7〜2.1程度)層の内部で発光し、発光層で発生した光の内、15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
《Light extraction》
The organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1), and only 15% to 20% of light generated in the light emitting layer can be extracted. It is generally said that there is no. This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.

この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63−314795号公報)、素子の側面等に反射面を形成する方法(特開平1−220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62−172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001−202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11−283751号公報)等がある。   As a method for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435), A method of improving efficiency by providing a light collecting property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on a side surface of an element (Japanese Patent Laid-Open No. 1-220394), and light emission from a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No. 62-172691), a flat having a lower refractive index between the substrate and the light emitter than the substrate A method of introducing a layer (Japanese Patent Laid-Open No. 2001-202827), a method of forming a diffraction grating between any one of a substrate, a transparent electrode layer and a light emitting layer (including between the substrate and the outside) (Japanese Patent Laid-Open No. 11-283951) Gazette).

本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。   In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.

本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。   In the present invention, by combining these means, it is possible to obtain an element having higher luminance or durability.

透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。   When a medium having a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.

低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は屈折率が凡そ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。   Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.

また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。   The thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.

全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光の内、層間での全反射等により外に出ることができない光を、いずれかの層間もしくは媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。   The method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency. This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction. Introducing a diffraction grating into any layer or medium (inside a transparent substrate or transparent electrode) diffracts light that cannot be emitted outside due to total internal reflection between layers. I want to take it out.

導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。   The introduced diffraction grating desirably has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much.

しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。   However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.

回折格子を導入する位置としては、前述の通りいずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。   As described above, the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.

このとき、回折格子の周期は媒質中の光の波長の約1/2〜3倍程度が好ましい。   At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.

回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。   The arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.

《集光シート》
本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
<Condenser sheet>
The organic EL device of the present invention is processed on the light extraction side of the substrate so as to provide, for example, a microlens array structure, or combined with a so-called condensing sheet, for example, with respect to a specific direction, for example, the light emitting surface By condensing in the front direction, the luminance in a specific direction can be increased.

マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10〜100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。   As an example of the microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are two-dimensionally arranged on the light extraction side of the substrate. One side is preferably 10 to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.

集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。   As the condensing sheet, for example, a sheet that is put into practical use in an LED backlight of a liquid crystal display device can be used. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used. As the shape of the prism sheet, for example, the base material may be formed by forming a △ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 μm, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.

また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。   Moreover, in order to control the light emission angle from a light emitting element, you may use together a light diffusing plate and a film with a condensing sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.

《有機EL素子の作製方法》
本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法を説明する。
<< Method for producing organic EL element >>
As an example of the method for producing the organic EL device of the present invention, a method for producing an organic EL device comprising an anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.

まず適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10〜200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ陽極を作製する。   First, a desired electrode material, for example, a thin film made of an anode material is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably 10 to 200 nm, thereby producing an anode.

次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層の有機化合物薄膜を形成させる。   Next, an organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a hole blocking layer, which are organic EL element materials, is formed thereon.

これら各層の形成方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、本発明においてはスピンコート法、インクジェット法、印刷法等の塗布法による成膜が好ましい。   As a method for forming each of these layers, there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method) and the like as described above, but it is easy to obtain a homogeneous film and it is difficult to generate pinholes. In view of the above, film formation by a coating method such as a spin coating method, an ink jet method, or a printing method is preferable in the present invention.

本発明に係る化合物を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。   Examples of the liquid medium for dissolving or dispersing the compound according to the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, mesitylene, and cyclohexyl. Aromatic hydrocarbons such as benzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used. Moreover, as a dispersion method, it can disperse | distribute by dispersion methods, such as an ultrasonic wave, high shear force dispersion | distribution, and media dispersion | distribution.

これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。   After these layers are formed, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably 50 to 200 nm, and a cathode is provided. Thus, a desired organic EL element can be obtained.

また、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光が観測できる。また、交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。   In addition, it is also possible to reverse the production order and produce the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order. When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the anode as + and the cathode as-polarity. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.

《用途》
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
<Application>
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources. For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.

本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。   In the organic EL element of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like as needed during film formation. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the device may be patterned. Can do.

本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。   The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with the total CS-1000 (manufactured by Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.

また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000Cd/m2でのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることを言う。Further, when the organic EL element of the present invention is a white element, white means that the chromaticity in the CIE1931 color system at 1000 Cd / m 2 is X when the 2-degree viewing angle front luminance is measured by the above method. = 0.33 ± 0.07 and Y = 0.33 ± 0.1.

以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

《有機EL素子1−1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上に、ITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
<< Production of Organic EL Element 1-1 >>
After patterning on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode, this ITO transparent electrode is provided. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.

この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間加熱し、膜厚20nmの第1正孔輸送層を設けた。   On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. After the film formation by spin coating, the film was heated at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 20 nm.

この基板を窒素雰囲気下に移し、第1正孔輸送層上に50mgの正孔輸送材料1を10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により製膜した。窒素雰囲気下、180秒間紫外光を照射し、光重合・架橋を行い、膜厚約25nmの第2正孔輸送層とした。   This substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg of the hole transport material 1 dissolved in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. In a nitrogen atmosphere, ultraviolet light was irradiated for 180 seconds to carry out photopolymerization and crosslinking to form a second hole transport layer having a thickness of about 25 nm.

この第2正孔輸送層上に、100mgの比較ホスト1と10mgの比較ドーパント1を10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により製膜した後、60℃で1時間真空乾燥を行い、膜厚約50nmの発光層とした。   On this second hole transport layer, a solution prepared by dissolving 100 mg of comparative host 1 and 10 mg of comparative dopant 1 in 10 ml of toluene was formed by spin coating at 1000 rpm for 30 seconds, and then at 60 ° C. It vacuum-dried for 1 hour, and was set as the light emitting layer with a film thickness of about 50 nm.

次にこの発光層上に、50mgの電子輸送材料1を10mlのn−ブタノールに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により製膜し、60℃で1時間真空乾燥を行い、膜厚約25nmの電子輸送層とした。   Next, a solution obtained by dissolving 50 mg of the electron transport material 1 in 10 ml of n-butanol was formed on this light emitting layer by spin coating at 1000 rpm for 30 seconds, and vacuum dried at 60 ° C. for 1 hour. An electron transport layer having a thickness of about 25 nm was obtained.

これを真空蒸着装置に取付け、次いで真空槽を4×10-4Paまで減圧し、陰極バッファー層としてフッ化リチウム1.0nm及び陰極としてアルミニウム110nmを蒸着して陰極を形成し、有機EL素子1−1を作製した。This is attached to a vacuum deposition apparatus, and then the vacuum chamber is decompressed to 4 × 10 −4 Pa, lithium fluoride 1.0 nm is deposited as a cathode buffer layer and aluminum 110 nm is deposited as a cathode to form a cathode, and the organic EL element 1 -1 was produced.

《有機EL素子1−2〜1−16の作製》
有機EL素子1−1の作製において、比較ホスト1と比較ドーパント1を表1に示す化合物に置き換えた以外は、有機EL素子1−1と同じ方法で1−2〜1−16を作製した。なお、比較ドーパント2は、日本分析工業製分取GPC(LC−9101、カラムAIGEL−2.5H)を用いて、分子量10、000以下の成分を除いた。
<< Production of Organic EL Elements 1-2 to 1-16 >>
In the production of the organic EL element 1-1, 1-2 to 1-16 were produced by the same method as the organic EL element 1-1 except that the comparative host 1 and the comparative dopant 1 were replaced with the compounds shown in Table 1. In addition, the comparative dopant 2 remove | excluded the component of molecular weight 10,000 or less using the Japan Analytical Industries preparative GPC (LC-9101, column AIGEL-2.5H).

《有機EL素子の評価》
以下のようにして、作製した有機EL素子1−1〜1−16の評価を行い、その結果を表1に示す。
<< Evaluation of organic EL elements >>
The produced organic EL elements 1-1 to 1-16 were evaluated as follows, and the results are shown in Table 1.

(外部取り出し量子効率)
作製した有機EL素子について、23℃、乾燥窒素ガス雰囲気下で2.5mA/cm2定電流を印加した時の外部取り出し量子効率(%)を測定した。なお、測定には同様に分光放射輝度計CS−1000(コニカミノルタ製)を用いた。
(External quantum efficiency)
About the produced organic EL element, the external extraction quantum efficiency (%) when a 2.5 mA / cm 2 constant current was applied in a dry nitrogen gas atmosphere at 23 ° C. was measured. For the measurement, a spectral radiance meter CS-1000 (manufactured by Konica Minolta) was used in the same manner.

表1の外部取り出し量子効率の測定結果は、有機EL素子1−2の測定値を100とした時の相対値で表した。   The measurement results of the external extraction quantum efficiency in Table 1 are expressed as relative values when the measurement value of the organic EL element 1-2 is 100.

(寿命)
2.5mA/cm2の一定電流で駆動したときに、輝度が発光開始直後の輝度(初期輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間(τ0.5)として寿命の指標とした。なお、測定には分光放射輝度計CS−1000(コニカミノルタ製)を用いた。
(lifespan)
When driving at a constant current of 2.5 mA / cm 2 , the time required for the luminance to drop to half of the luminance immediately after the start of light emission (initial luminance) was measured, and this was calculated as the half-life time (τ 0.5). As an index of life. For the measurement, a spectral radiance meter CS-1000 (manufactured by Konica Minolta) was used.

表1の寿命の測定結果は、有機EL素子1−2を1とした時の相対値で表した。   The lifetime measurement results in Table 1 are expressed as relative values when the organic EL element 1-2 is set to 1.

表1より、比較の有機EL素子に比べて、本発明の有機EL素子は、発光効率が高く、発光寿命が長いことが明らかである。   From Table 1, it is clear that the organic EL element of the present invention has higher luminous efficiency and longer emission lifetime than the comparative organic EL element.

実施例2
《有機EL素子2−1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上に、ITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 2
<< Preparation of Organic EL Element 2-1 >>
After patterning on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode, this ITO transparent electrode is provided. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.

この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間加熱し、膜厚20nmの第1正孔輸送層を設けた。   On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. After the film formation by spin coating, the film was heated at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 20 nm.

この基板を窒素雰囲気下に移し、第1正孔輸送層上に50mgの正孔輸送材料1を10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により製膜した。窒素雰囲気下、180秒間紫外光を照射し、光重合・架橋を行い、膜厚約25nmの第2正孔輸送層とした。   This substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg of the hole transport material 1 dissolved in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. In a nitrogen atmosphere, ultraviolet light was irradiated for 180 seconds to carry out photopolymerization and crosslinking to form a second hole transport layer having a thickness of about 25 nm.

この第2正孔輸送層上に、100mgの比較ホスト1と10mgの比較ドーパント3を10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により製膜した後、60℃で1時間真空乾燥を行い、膜厚約50nmの発光層とした。   On this second hole transport layer, a solution prepared by dissolving 100 mg of comparative host 1 and 10 mg of comparative dopant 3 in 10 ml of toluene was formed by spin coating at 1000 rpm for 30 seconds, and then at 60 ° C. It vacuum-dried for 1 hour, and was set as the light emitting layer with a film thickness of about 50 nm.

次にこの発光層上に、50mgの電子輸送材料1を10mlのn−ブタノールに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により製膜し、60℃で1時間真空乾燥を行い、膜厚約25nmの電子輸送層とした。   Next, a solution obtained by dissolving 50 mg of the electron transport material 1 in 10 ml of n-butanol was formed on this light emitting layer by spin coating at 1000 rpm for 30 seconds, and vacuum dried at 60 ° C. for 1 hour. An electron transport layer having a thickness of about 25 nm was obtained.

これを真空蒸着装置に取付け、次いで真空槽を4×10-4Paまで減圧し、陰極バッファー層としてフッ化リチウム1.0nm及び陰極としてアルミニウム110nmを蒸着して陰極を形成し、有機EL素子2−1を作製した。This is attached to a vacuum deposition apparatus, and then the vacuum chamber is decompressed to 4 × 10 −4 Pa, lithium fluoride 1.0 nm is deposited as a cathode buffer layer and aluminum 110 nm is deposited as a cathode to form a cathode, and the organic EL element 2 -1 was produced.

《有機EL素子2−2〜2−24の作製》
有機EL素子2−1の作製において、比較ホスト1と比較ドーパント3を表2に示す化合物に置き換えた以外は,有機EL素子2−1と同じ方法で2−2〜2−24を作製した。なお、比較ドーパント4は、日本分析工業製分取GPC(LC−9101、カラムAIGEL−2.5H)を用いて、分子量10,000以下の成分を除いた。
<< Production of Organic EL Elements 2-2 to 2-24 >>
In the production of the organic EL element 2-1, 2-2 to 2-24 were produced in the same manner as the organic EL element 2-1, except that the comparative host 1 and the comparative dopant 3 were replaced with the compounds shown in Table 2. In addition, the comparative dopant 4 remove | excluded the component of molecular weight 10,000 or less using the Japan Analytical Industries preparative GPC (LC-9101, column AIGEL-2.5H).

《有機EL素子の評価》
以下のようにして、作製した有機EL素子2−1〜2−24の評価を行い、その結果を表2に示す。
<< Evaluation of organic EL elements >>
The produced organic EL elements 2-1 to 2-24 were evaluated as follows, and the results are shown in Table 2.

(外部取り出し量子効率)
作製した有機EL素子について、23℃、乾燥窒素ガス雰囲気下で2.5mA/cm2定電流を印加した時の外部取り出し量子効率(%)を測定した。なお測定には同様に分光放射輝度計CS−1000(コニカミノルタ製)を用いた。
(External quantum efficiency)
About the produced organic EL element, the external extraction quantum efficiency (%) when a 2.5 mA / cm 2 constant current was applied in a dry nitrogen gas atmosphere at 23 ° C. was measured. In addition, the spectral radiance meter CS-1000 (made by Konica Minolta) was similarly used for the measurement.

表2の外部取り出し量子効率の測定結果は、有機EL素子2−2の測定値を100とした時の相対値で表した。   The measurement results of the external extraction quantum efficiency in Table 2 are expressed as relative values when the measured value of the organic EL element 2-2 is 100.

(寿命)
2.5mA/cm2の一定電流で駆動したときに、輝度が発光開始直後の輝度(初期輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間(τ0.5)として寿命の指標とした。なお、測定には分光放射輝度計CS−1000(コニカミノルタ製)を用いた。
(lifespan)
When driving at a constant current of 2.5 mA / cm 2 , the time required for the luminance to drop to half of the luminance immediately after the start of light emission (initial luminance) was measured, and this was calculated as the half-life time (τ 0.5). As an index of life. For the measurement, a spectral radiance meter CS-1000 (manufactured by Konica Minolta) was used.

表2の寿命の測定結果は、有機EL素子2−2を1とした時の相対値で表した。   The lifetime measurement results in Table 2 are expressed as relative values when the organic EL element 2-2 is 1.

表2より、比較の有機EL素子に比べて、本発明の有機EL素子は、発光効率が高く、発光寿命が長いことが明らかである。   From Table 2, it is clear that the organic EL element of the present invention has higher luminous efficiency and longer emission lifetime than the comparative organic EL element.

実施例3
《有機EL素子3−1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上に、ITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 3
<< Production of Organic EL Element 3-1 >>
After patterning on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode, this ITO transparent electrode is provided. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.

この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間加熱し、膜厚20nmの第1正孔輸送層を設けた。   On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. After the film formation by spin coating, the film was heated at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 20 nm.

この基板を窒素雰囲気下に移し、第1正孔輸送層上に50mgの正孔輸送材料1を10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により製膜した。窒素雰囲気下、180秒間紫外光を照射し、光重合・架橋を行い、膜厚約25nmの第2正孔輸送層とした。   This substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg of the hole transport material 1 dissolved in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. In a nitrogen atmosphere, ultraviolet light was irradiated for 180 seconds to carry out photopolymerization and crosslinking to form a second hole transport layer having a thickness of about 25 nm.

この第2正孔輸送層上に、100mgの比較ホスト1と10mgの比較ドーパント5を10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により製膜した後、60℃で1時間真空乾燥を行い、膜厚約50nmの発光層とした。   On this second hole transport layer, a solution prepared by dissolving 100 mg of comparative host 1 and 10 mg of comparative dopant 5 in 10 ml of toluene was formed by spin coating at 1000 rpm for 30 seconds, and then at 60 ° C. It vacuum-dried for 1 hour, and was set as the light emitting layer with a film thickness of about 50 nm.

次に、この発光層上に50mgの電子輸送材料1を10mlのn−ブタノールに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により製膜し、60℃で1時間真空乾燥を行い、膜厚約25nmの電子輸送層とした。   Next, a solution of 50 mg of the electron transport material 1 dissolved in 10 ml of n-butanol is formed on this light emitting layer by spin coating at 1000 rpm for 30 seconds, and vacuum dried at 60 ° C. for 1 hour. An electron transport layer having a thickness of about 25 nm was obtained.

これを真空蒸着装置に取付け、次いで真空槽を4×10-4Paまで減圧し、陰極バッファー層としてフッ化リチウム1.0nm及び陰極としてアルミニウム110nmを蒸着して陰極を形成し、有機EL素子3−1を作製した。This was attached to a vacuum deposition apparatus, and then the vacuum chamber was depressurized to 4 × 10 −4 Pa. Lithium fluoride 1.0 nm was deposited as a cathode buffer layer and aluminum 110 nm was deposited as a cathode to form a cathode. Organic EL element 3 -1 was produced.

《有機EL素子3−2〜3−8の作製》
有機EL素子3−1の作製において、比較ホスト1と比較ドーパント5を表3に示す化合物に置き換えた以外は、有機EL素子3−1と同じ方法で3−2〜3−8を作製した。なお、比較ドーパント6は、日本分析工業製分取GPC(LC−9101、カラムAIGEL−2.5H)を用いて、分子量10,000以下の成分を除いた。
<< Production of Organic EL Elements 3-2 to 3-8 >>
In the production of the organic EL element 3-1, 3-2 to 3-8 were produced in the same manner as the organic EL element 3-1, except that the comparative host 1 and the comparative dopant 5 were replaced with the compounds shown in Table 3. In addition, the comparative dopant 6 remove | excluded the component of molecular weight 10,000 or less using the Japan Analytical Industries preparative GPC (LC-9101, column AIGEL-2.5H).

《有機EL素子の評価》
以下のようにして、作製した有機EL素子3−1〜3−8の評価を行い、その結果を表3に示す。
<< Evaluation of organic EL elements >>
The produced organic EL elements 3-1 to 3-8 were evaluated as follows, and the results are shown in Table 3.

(外部取り出し量子効率)
作製した有機EL素子について、23℃、乾燥窒素ガス雰囲気下で2.5mA/cm2定電流を印加した時の外部取り出し量子効率(%)を測定した。なお、測定には同様に分光放射輝度計CS−1000(コニカミノルタ製)を用いた。
(External quantum efficiency)
About the produced organic EL element, the external extraction quantum efficiency (%) when a 2.5 mA / cm 2 constant current was applied in a dry nitrogen gas atmosphere at 23 ° C. was measured. For the measurement, a spectral radiance meter CS-1000 (manufactured by Konica Minolta) was used in the same manner.

表3の外部取り出し量子効率の測定結果は、有機EL素子3−2の測定値を100とした時の相対値で表した。   The measurement results of the external extraction quantum efficiency in Table 3 are expressed as relative values when the measurement value of the organic EL element 3-2 is 100.

(寿命)
2.5mA/cm2の一定電流で駆動したときに、輝度が発光開始直後の輝度(初期輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間(τ0.5)として寿命の指標とした。なお、測定には分光放射輝度計CS−1000(コニカミノルタ製)を用いた。
(lifespan)
When driving at a constant current of 2.5 mA / cm 2 , the time required for the luminance to drop to half of the luminance immediately after the start of light emission (initial luminance) was measured, and this was calculated as the half-life time (τ 0.5). As an index of life. For the measurement, a spectral radiance meter CS-1000 (manufactured by Konica Minolta) was used.

表3の寿命の測定結果は、有機EL素子3−2を1とした時の相対値で表した。   The lifetime measurement results in Table 3 are expressed as relative values when the organic EL element 3-2 is set to 1.

表3より、比較の有機EL素子に比べて、本発明の有機EL素子は、発光効率が高く、発光寿命が長いことが明らかである。   From Table 3, it is clear that the organic EL element of the present invention has higher luminous efficiency and longer emission lifetime than the comparative organic EL element.

実施例4
《有機ELフルカラー表示装置の作製》
図1は有機ELフルカラー表示装置の概略構成図を示す。陽極としてガラス基板101上にITO透明電極(102)を100nm製膜した基板(NHテクノグラス社製NA45)に100μmのピッチでパターニングを行った後、このガラス基板上でITO透明電極の間に非感光性ポリイミドの隔壁103(幅20μm、厚さ2.0μm)をフォトリソグラフィーで形成させた。ITO電極上ポリイミド隔壁の間に下記組成の正孔注入層組成物を、インクジェットヘッド(エプソン社製;MJ800C)を用いて吐出注入し、紫外光を180秒間照射し、60℃、10分間の乾燥処理により膜厚40nmの正孔注入層104を作製した。
Example 4
<< Production of organic EL full-color display device >>
FIG. 1 shows a schematic configuration diagram of an organic EL full-color display device. After patterning at a pitch of 100 μm on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by forming a 100 nm ITO transparent electrode (102) on a glass substrate 101 as an anode, non-between the ITO transparent electrodes on this glass substrate A photosensitive polyimide partition 103 (width 20 μm, thickness 2.0 μm) was formed by photolithography. A hole injection layer composition having the following composition is ejected and injected between polyimide partition walls on the ITO electrode using an inkjet head (manufactured by Epson Corporation; MJ800C), irradiated with ultraviolet light for 180 seconds, and dried at 60 ° C. for 10 minutes. A hole injection layer 104 having a thickness of 40 nm was produced by the treatment.

この正孔注入層上に、各々下記の青色発光層組成物、緑色発光層組成物、赤色発光層組成物を同様にインクジェットヘッドを使用して吐出注入した後、60℃、10分間乾燥処理し、それぞれの発光層(105B、105G、105R)を形成させた。最後に発光層105を覆うように、陰極としてAl(106)を真空蒸着して有機EL素子を作製した。   On the hole injection layer, the following blue light-emitting layer composition, green light-emitting layer composition, and red light-emitting layer composition were similarly discharged and injected using an inkjet head, and then dried at 60 ° C. for 10 minutes. Each light emitting layer (105B, 105G, 105R) was formed. Finally, Al (106) was vacuum-deposited as a cathode so as to cover the light emitting layer 105, and an organic EL element was produced.

作製した有機EL素子はそれぞれの電極に電圧を印加することにより、各々青色、緑色、赤色の発光を示し、フルカラー表示装置として利用できることがわかった。   It was found that the produced organic EL element exhibited blue, green, and red light emission by applying a voltage to each electrode, and could be used as a full-color display device.

(正孔注入層組成物)
正孔輸送材料1 20質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
(青色発光層組成物)
例示化合物2−6 0.7質量部
D−1 0.04質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
(緑色発光層組成物)
例示化合物2−6 0.7質量部
D−19 0.04質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
(赤色発光層組成物)
例示化合物2−6 0.7質量部
D−22 0.04質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
実施例5
《白色発光素子及び白色照明装置の作製》
陽極として100mm×100mm×1.1mmのガラス基板上に、ITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
(Hole injection layer composition)
Hole transport material 1 20 parts by mass Cyclohexylbenzene 50 parts by mass Isopropyl biphenyl 50 parts by mass (Blue light emitting layer composition)
Exemplified Compound 2-6 0.7 parts by mass D-1 0.04 parts by mass Cyclohexylbenzene 50 parts by mass Isopropylbiphenyl 50 parts by mass (green light emitting layer composition)
Exemplified Compound 2-6 0.7 parts by mass D-19 0.04 parts by mass Cyclohexylbenzene 50 parts by mass Isopropyl biphenyl 50 parts by mass (red light emitting layer composition)
Example Compound 2-6 0.7 parts by mass D-22 0.04 parts by mass Cyclohexylbenzene 50 parts by mass Isopropyl biphenyl 50 parts by mass Example 5
<< Preparation of white light emitting element and white lighting device >>
After patterning on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode, this ITO transparent electrode is provided. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.

この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、膜厚30nmの第1正孔輸送層を設けた。   On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. After the film formation by spin coating, the film was dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.

この基板を窒素雰囲気下に移し、第1正孔輸送層上に50mgの正孔輸送材料1を10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により製膜した。180秒間紫外光を照射し、光重合・架橋を行った後、60℃で1時間真空乾燥し第2正孔輸送層とした。   This substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg of the hole transport material 1 dissolved in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. After irradiating with ultraviolet light for 180 seconds to carry out photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to form a second hole transport layer.

次に、例示化合物2−6(60mg)、D−1(3.0mg)、D−22(0.3mg)をトルエン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により製膜した。更に真空中60℃で1時間加熱を行い、発光層とした。   Next, spin coating method was performed under the conditions of 1000 rpm and 30 seconds using a solution obtained by dissolving Exemplified Compound 2-6 (60 mg), D-1 (3.0 mg), and D-22 (0.3 mg) in 6 ml of toluene. To form a film. Furthermore, it heated at 60 degreeC in vacuum for 1 hour, and was set as the light emitting layer.

更に電子輸送材料1(20mg)をn−ブタノール6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により製膜した。更に真空中60℃で1時間加熱を行い、電子輸送層とした。   Furthermore, a film in which electron transport material 1 (20 mg) was dissolved in 6 ml of n-butanol was used to form a film by spin coating under conditions of 1000 rpm and 30 seconds. Furthermore, it heated at 60 degreeC in vacuum for 1 hour, and was set as the electron carrying layer.

続いて、この基板を真空蒸着装置の基板ホルダーに固定し、フッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、白色発光有機EL素子を作製した。   Then, this board | substrate was fixed to the substrate holder of a vacuum evaporation system, 0.5 nm of lithium fluoride and 110 nm of aluminum were vapor-deposited, the cathode was formed, and the white light emitting organic EL element was produced.

この素子に通電したところほぼ白色の光が得られ、照明装置として使用できることが分かった。なお、例示の他の化合物に置き換えても同様に白色の発光が得られることが分かった。   When this element was energized, almost white light was obtained, and it was found that it could be used as a lighting device. In addition, it turned out that white light emission is obtained similarly even if it replaces with the other compound of illustration.

Claims (13)

陽極と陰極により挟まれた発光層を有する有機エレクトロルミネッセンス素子において、発光層に分子量1,000以上5,000以下であるリン光発光性ドーパントと分子量800以上3,000以下のホスト化合物を含有し、前記リン光発光性ドーパントが下記一般式(1)で表される部分構造を有し、前記ホスト化合物が下記一般式(6)、(7)または(8)で表されるカルバゾール誘導体であることを特徴とする有機エレクトロルミネッセンス素子。
(式中、Y及びYは炭素原子または窒素原子を表し、Z1はイミダゾール環またはピラゾール環を形成するのに必要な残基を表し、Z2は置換基を有さないベンゼン環を形成するのに必要な残基を表し、Mはイリジウムを表す。)
(式中、Arhは芳香環基または芳香族複素環基を表し、Rnはアルキル基、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環またはジアザカルバゾール環を表す。ZはN−Rz、OまたはSを表し、Rzはアルキル基、芳香環基または芳香族複素環基を表す。)
In an organic electroluminescence device having a light emitting layer sandwiched between an anode and a cathode, the light emitting layer contains a phosphorescent dopant having a molecular weight of 1,000 to 5,000 and a host compound having a molecular weight of 800 to 3,000. The phosphorescent dopant has a partial structure represented by the following general formula (1), and the host compound is a carbazole derivative represented by the following general formula (6), (7) or (8). An organic electroluminescence device characterized by that.
Wherein Y 1 and Y 2 represent a carbon atom or a nitrogen atom, Z 1 represents a residue necessary for forming an imidazole ring or a pyrazole ring , and Z 2 forms a benzene ring having no substituent. And M represents iridium .)
(In the formula, Arh represents an aromatic ring group or an aromatic heterocyclic group, and Rn represents an alkyl group, a benzene ring, a biphenyl ring, a naphthalene ring, an azulene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, a chrysene ring, a naphthacene ring, Triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, Pyrene ring, pyranthrene ring, anthraanthrene ring, furan ring, thiophene ring, oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, Imidazole ring, pyrazole ring, thiazole ring, Ndole ring, indazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, carbazole ring, carboline ring or diazacarbazole ring. N-Rz, O or S is represented, and Rz represents an alkyl group, an aromatic ring group or an aromatic heterocyclic group.)
前記一般式(6)、(7)または(8)で表されるカルバゾール誘導体におけるArhが、フェニル基を有してもよいカルバゾール環またはジベンゾフラン環を表すことを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。 The Arh in the carbazole derivative represented by the general formula (6), (7) or (8) represents a carbazole ring or a dibenzofuran ring which may have a phenyl group. Organic electroluminescence device. 前記リン光発光性ドーパントの分子量が、1,000以上3,000以下であることを特徴とする請求項2に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence element according to claim 2, wherein the phosphorescent dopant has a molecular weight of 1,000 or more and 3,000 or less. 前記リン光発光性ドーパントの分子量が、1,500以上3,000以下であることを特徴とする請求項3に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 3, wherein the phosphorescent dopant has a molecular weight of 1,500 or more and 3,000 or less. 前記リン光発光性ドーパントの分子量が、1,500以上2,500以下であることを特徴とする請求項4に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 4, wherein the phosphorescent dopant has a molecular weight of 1,500 or more and 2,500 or less. 前記ホスト化合物の分子量が、800以上2,000以下であることを特徴とする請求項5に記載の有機エレクトロルミネッセンス素子。 6. The organic electroluminescence device according to claim 5, wherein the host compound has a molecular weight of 800 or more and 2,000 or less. 前記ホスト化合物の分子量が、800以上1,500以下であることを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 6, wherein the host compound has a molecular weight of 800 or more and 1,500 or less. 前記ホスト化合物の分子量が、1,000以上1,500以下であることを特徴とする請求項7に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 7, wherein the host compound has a molecular weight of 1,000 or more and 1,500 or less. 前記一般式(1)で表される部分構造を有するリン光発光性ドーパントが、下記置換基群(2)から選ばれる置換基を有することを特徴とする請求項1から請求項8までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
(Arcは、芳香環基または芳香族複素環基を表す。Rmは、アルキル基、芳香環基または芳香族複素環基を表す。)
The phosphorescent dopant having a partial structure represented by the general formula (1) has a substituent selected from the following substituent group (2). The organic electroluminescent element according to claim 1.
(Arc represents an aromatic ring group or an aromatic heterocyclic group. Rm represents an alkyl group, an aromatic ring group or an aromatic heterocyclic group.)
構成層として、請求項1から請求項までのいずれか一項に記載の化合物を含む有機層を有し、該有機層がウェットプロセスによって形成されることを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescent device comprising an organic layer containing the compound according to any one of claims 1 to 9 as a constituent layer, wherein the organic layer is formed by a wet process. 白色発光することを特徴とする請求項1から請求項10までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent device according to any one of claims 1 to 10, characterized in that the white light emission. 請求項1から請求項11までのいずれか一項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。 A display device comprising the organic electroluminescence element according to any one of claims 1 to 11 . 請求項1から請求項11までのいずれか一項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。 An illuminating device comprising the organic electroluminescent element according to any one of claims 1 to 11 .
JP2009540016A 2007-11-08 2008-10-27 Organic electroluminescence element, display device and lighting device Active JP5458890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009540016A JP5458890B2 (en) 2007-11-08 2008-10-27 Organic electroluminescence element, display device and lighting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007290602 2007-11-08
JP2007290602 2007-11-08
JP2009540016A JP5458890B2 (en) 2007-11-08 2008-10-27 Organic electroluminescence element, display device and lighting device
PCT/JP2008/069442 WO2009060742A1 (en) 2007-11-08 2008-10-27 Organic electroluminescent device, display device, and illuminating device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013237016A Division JP5967057B2 (en) 2007-11-08 2013-11-15 ORGANIC ELECTROLUMINESCENCE ELEMENT AND ITS MANUFACTURING METHOD, LIGHTING DEVICE AND DISPLAY DEVICE

Publications (2)

Publication Number Publication Date
JPWO2009060742A1 JPWO2009060742A1 (en) 2011-03-24
JP5458890B2 true JP5458890B2 (en) 2014-04-02

Family

ID=40625638

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009540016A Active JP5458890B2 (en) 2007-11-08 2008-10-27 Organic electroluminescence element, display device and lighting device
JP2013237016A Active JP5967057B2 (en) 2007-11-08 2013-11-15 ORGANIC ELECTROLUMINESCENCE ELEMENT AND ITS MANUFACTURING METHOD, LIGHTING DEVICE AND DISPLAY DEVICE

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013237016A Active JP5967057B2 (en) 2007-11-08 2013-11-15 ORGANIC ELECTROLUMINESCENCE ELEMENT AND ITS MANUFACTURING METHOD, LIGHTING DEVICE AND DISPLAY DEVICE

Country Status (2)

Country Link
JP (2) JP5458890B2 (en)
WO (1) WO2009060742A1 (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8007927B2 (en) 2007-12-28 2011-08-30 Universal Display Corporation Dibenzothiophene-containing materials in phosphorescent light emitting diodes
WO2011051404A1 (en) 2009-10-28 2011-05-05 Basf Se Heteroleptic carbene complexes and use thereof in organic electronics
US9487548B2 (en) 2009-12-14 2016-11-08 Udc Ireland Limited Metal complexes comprising diazabenzimidazolocarbene ligands and the use thereof in OLEDs
JP4945645B2 (en) * 2010-01-20 2012-06-06 株式会社日立製作所 Organic light emitting layer material, organic light emitting layer forming coating liquid using organic light emitting layer material, organic light emitting element using organic light emitting layer forming coating liquid, and light source device using organic light emitting element
KR101419666B1 (en) * 2010-03-31 2014-07-15 이데미쓰 고산 가부시키가이샤 Material for organic electroluminescence element, and organic electroluminescence element using same
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
CN102439004A (en) 2010-04-20 2012-05-02 出光兴产株式会社 Bicarbazole derivative, material for organic electroluminescent element, and organic electroluminescent element using same
US8227801B2 (en) * 2010-04-26 2012-07-24 Universal Display Corporation Bicarbzole containing compounds for OLEDs
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
JP5870045B2 (en) 2011-02-07 2016-02-24 出光興産株式会社 Biscarbazole derivative and organic electroluminescence device using the same
JP6051864B2 (en) * 2011-03-14 2016-12-27 東レ株式会社 Light emitting device material and light emitting device
WO2012172482A1 (en) 2011-06-14 2012-12-20 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds
US9315724B2 (en) 2011-06-14 2016-04-19 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
CN102391308B (en) * 2011-08-05 2014-03-19 长沙理工大学 Dendritic iridium coordination compound with double-carrier transport property, application and prepared organic electrophosphorescent device
WO2013038843A1 (en) * 2011-09-12 2013-03-21 新日鉄住金化学株式会社 Organic electroluminescent element
CN103649067A (en) * 2011-09-13 2014-03-19 出光兴产株式会社 Condensed heteroaromatic derivative, material for organic electroluminescent element, and organic electroluminescent element using same
EP2804926A1 (en) 2012-01-16 2014-11-26 Merck Patent GmbH Organic metal complexes
WO2013115340A1 (en) 2012-02-03 2013-08-08 出光興産株式会社 Carbazole compound, organic electroluminescent material, and organic electroluminescent element
US9590196B2 (en) 2012-07-19 2017-03-07 Udc Ireland Limited Dinuclear metal complexes comprising carbene ligands and the use thereof in OLEDs
JP6119171B2 (en) * 2012-10-05 2017-04-26 三菱化学株式会社 Iridium complex compound, composition containing the compound and solvent, organic electroluminescent device containing the compound, display device and lighting device
JP5645984B2 (en) * 2013-02-18 2014-12-24 株式会社日立製作所 Organic light emitting layer material, organic light emitting layer forming coating liquid using organic light emitting layer material, organic light emitting element using organic light emitting layer forming coating liquid, and light source device using organic light emitting element
EP2976793B1 (en) 2013-03-20 2019-04-24 UDC Ireland Limited Use of azabenzimidazole carbene complexes in oleds
KR102098340B1 (en) 2013-04-29 2020-04-13 유디씨 아일랜드 리미티드 Transition metal complexes with carbene ligands and the use thereof in oleds
CN109438518B (en) 2013-07-02 2021-06-15 Udc 爱尔兰有限责任公司 Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
WO2015014835A1 (en) 2013-07-31 2015-02-05 Basf Se Luminescent diazabenzimidazole carbene metal complexes
KR20160100961A (en) 2013-12-20 2016-08-24 바스프 에스이 Highly efficient oled devices with very short decay times
KR102330660B1 (en) 2014-03-31 2021-11-24 유디씨 아일랜드 리미티드 Metal complexes, comprising carbene ligands having an o-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676B1 (en) 2014-08-07 2018-04-11 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP2993215B1 (en) 2014-09-04 2019-06-19 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
EP3015469B1 (en) 2014-10-30 2018-12-19 Idemitsu Kosan Co., Ltd. 5-(benzimidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016079667A1 (en) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
US10424746B2 (en) 2014-11-18 2019-09-24 Udc Ireland Limited Pt- or Pd-carbene complexes for use in organic light emitting diodes
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
EP3053918B1 (en) 2015-02-06 2018-04-11 Idemitsu Kosan Co., Ltd. 2-carbazole substituted benzimidazoles for electronic applications
EP3054498B1 (en) 2015-02-06 2017-09-20 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
EP3061759B1 (en) 2015-02-24 2019-12-25 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
EP3070144B1 (en) 2015-03-17 2018-02-28 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3072943B1 (en) 2015-03-26 2018-05-02 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3075737B1 (en) 2015-03-31 2019-12-04 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
EP3288094B1 (en) * 2015-04-24 2020-06-10 Sumitomo Chemical Company Limited Light emitting element and composition used in said light emitting element
US20180182980A1 (en) 2015-06-03 2018-06-28 Udc Ireland Limited Highly efficient oled devices with very short decay times
US20180269407A1 (en) 2015-10-01 2018-09-20 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
US20180291028A1 (en) 2015-10-01 2018-10-11 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3150604B1 (en) 2015-10-01 2021-07-14 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolylyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3150606B1 (en) 2015-10-01 2019-08-14 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
WO2017078182A1 (en) 2015-11-04 2017-05-11 Idemitsu Kosan Co., Ltd. Benzimidazole fused heteroaryls
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
WO2017109722A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them
WO2017178864A1 (en) 2016-04-12 2017-10-19 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
JP6711808B2 (en) * 2017-11-21 2020-06-17 住友化学株式会社 Light emitting device and composition used for the light emitting device
JP7404878B2 (en) 2020-01-09 2023-12-26 コニカミノルタ株式会社 Organic electroluminescent device and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033118A1 (en) * 2003-08-26 2005-04-14 Idemitsu Kosan Co., Ltd. Coordination metal compound, material for organic electroluminescence device, material for luminescent coating formation and organic electroluminescence device
WO2006126389A1 (en) * 2005-05-25 2006-11-30 Konica Minolta Holdings, Inc. Organic electroluminescent device material, organic electroluminescent device, display and illuminating device
JP2007504272A (en) * 2003-05-16 2007-03-01 イシス イノベイション リミテッド Organic phosphorescent materials and organic optoelectronic devices
JP2007184348A (en) * 2006-01-05 2007-07-19 Konica Minolta Holdings Inc Organic electroluminescence element, display device, and lighting device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4103491B2 (en) * 2002-08-07 2008-06-18 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device
GB0219987D0 (en) * 2002-08-28 2002-10-09 Isis Innovation Intramolecular interactions in organometallics
JP4427947B2 (en) * 2002-11-18 2010-03-10 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device
DE112004000350T5 (en) * 2003-03-07 2006-02-02 Dai Nippon Printing Co., Ltd. Organic compound and organic electroluminescent element
JP2004355899A (en) * 2003-05-28 2004-12-16 Konica Minolta Holdings Inc Organic electroluminescent element, illumination device, and display device
KR100718100B1 (en) * 2003-09-06 2007-05-14 삼성에스디아이 주식회사 Binuclear organometallic complex and organic electroluminescence device using the same
US8415029B2 (en) * 2004-12-29 2013-04-09 Cambridge Display Technology Limited Conjugated polymers prepared from rigid amines
JP5098177B2 (en) * 2005-01-25 2012-12-12 パイオニア株式会社 Organic compounds, charge transport materials, and organic electroluminescent devices
JP2006278651A (en) * 2005-03-29 2006-10-12 Dainippon Printing Co Ltd Organic electroluminescence element
US8778507B2 (en) * 2005-04-14 2014-07-15 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
JP2006316162A (en) * 2005-05-12 2006-11-24 Konica Minolta Holdings Inc Material for organic el device and organic el device
IL177527A (en) * 2006-08-16 2014-04-30 Rafael Advanced Defense Sys Target-seeking missile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504272A (en) * 2003-05-16 2007-03-01 イシス イノベイション リミテッド Organic phosphorescent materials and organic optoelectronic devices
WO2005033118A1 (en) * 2003-08-26 2005-04-14 Idemitsu Kosan Co., Ltd. Coordination metal compound, material for organic electroluminescence device, material for luminescent coating formation and organic electroluminescence device
WO2006126389A1 (en) * 2005-05-25 2006-11-30 Konica Minolta Holdings, Inc. Organic electroluminescent device material, organic electroluminescent device, display and illuminating device
JP2007184348A (en) * 2006-01-05 2007-07-19 Konica Minolta Holdings Inc Organic electroluminescence element, display device, and lighting device

Also Published As

Publication number Publication date
JPWO2009060742A1 (en) 2011-03-24
JP2014068027A (en) 2014-04-17
WO2009060742A1 (en) 2009-05-14
JP5967057B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
JP5967057B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT AND ITS MANUFACTURING METHOD, LIGHTING DEVICE AND DISPLAY DEVICE
JP5018891B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5359869B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5181676B2 (en) Organic electroluminescence element, display device and lighting device
JP5765223B2 (en) MANUFACTURING METHOD FOR ORGANIC ELECTROLUMINESCENT ELEMENT, AND LIGHTING DEVICE AND DISPLAY DEVICE PROVIDED WITH ORGANIC ELECTROLUMINESCENT ELEMENT
JP5691170B2 (en) Method for manufacturing organic electroluminescence element
JP5593696B2 (en) Method for manufacturing organic electroluminescence device
JP5103781B2 (en) COMPOUND, ORGANIC ELECTROLUMINESCENT ELEMENT CONTAINING THE COMPOUND, AND LIGHTING DEVICE
JP5724204B2 (en) Organic electroluminescence element, display device, and lighting device
JP5531446B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, DISPLAY DEVICE AND LIGHTING DEVICE
JP5088025B2 (en) ORGANIC ELECTROLUMINESCENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5201054B2 (en) Organic electroluminescent material, organic electroluminescent element, blue phosphorescent light emitting element, display device and lighting device
JP5076899B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, ITS MANUFACTURING METHOD, DISPLAY DEVICE AND LIGHTING DEVICE HAVING THE ORGANIC ELECTROLUMINESCENT ELEMENT
JP5560517B2 (en) Organic electroluminescence element, display device and lighting device
WO2010032663A1 (en) Organic electroluminescent element, display device, lighting device, and organic electroluminescent element material
JP5186736B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JPWO2008090795A1 (en) Organic electroluminescence element, display device and lighting device
JP5652083B2 (en) Organic electroluminescence element, display device and lighting device
JP5629970B2 (en) Organic electroluminescence element, display device and lighting device
JP2008210941A (en) Organic electroluminescent element, display unit, and lighting fixture
JP5741373B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, AND LIGHTING DEVICE
JPWO2009008263A1 (en) ORGANIC ELECTROLUMINESCENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP2011187783A (en) Organic electroluminescent device, display device, and lighting apparatus
JP2011009517A (en) Organic electroluminescent element
JP2011181660A (en) Organic electroluminescence element, display device, lighting device, and organic electroluminescence element material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110418

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Ref document number: 5458890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250