WO2017104242A1 - Organic electroluminescent element material, organic electroluminescent element, display device and lighting device - Google Patents

Organic electroluminescent element material, organic electroluminescent element, display device and lighting device Download PDF

Info

Publication number
WO2017104242A1
WO2017104242A1 PCT/JP2016/080199 JP2016080199W WO2017104242A1 WO 2017104242 A1 WO2017104242 A1 WO 2017104242A1 JP 2016080199 W JP2016080199 W JP 2016080199W WO 2017104242 A1 WO2017104242 A1 WO 2017104242A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
represented
general formula
layer
Prior art date
Application number
PCT/JP2016/080199
Other languages
French (fr)
Japanese (ja)
Inventor
植田 則子
田中 達夫
大津 信也
山田 哲也
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017556384A priority Critical patent/JP6755261B2/en
Publication of WO2017104242A1 publication Critical patent/WO2017104242A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to an organic electroluminescence element material, an organic electroluminescence element, and a display device and an illumination device including the same.
  • An organic electroluminescence element (hereinafter also referred to as an organic EL element) has a structure in which an organic layer for generating light emission is sandwiched between a cathode and an anode.
  • the organic layer is composed of a single layer or a plurality of layers, and generally includes at least a light emitting layer containing an organic light emitting substance.
  • Organic EL element When a voltage is applied between the electrodes of the organic EL element, electrons are injected from the cathode and holes are injected from the anode into the light emitting layer interposed between the electrodes. Electrons and holes are recombined in the vicinity of the light emitting layer to generate excitons.
  • An organic EL element is a light emitting element using light emitted when such excitons are deactivated.
  • Organic EL devices are self-luminous, have a wide viewing angle, and are thin-film all-solid-state devices. They are suitable for miniaturization and low power consumption, and are used for next-generation flat displays and lighting. Is expected.
  • a technique for controlling the position of the emission center within a precise range in the organic layer is important. Therefore, conventionally, a technique of stacking a hole transport layer, an electron transport layer, etc. together with a light emitting layer between electrodes, and a technique of using two components of a light emitting dopant as an organic light emitting material and a host compound in the light emitting layer. Etc. are used.
  • a host compound applied to the light emitting layer is required to have high carrier transportability, excellent thermal stability, film formation stability, and the like. It is also desirable that the combined use with phosphorescent dopants having high excited triplet energy (T 1 energy) and various T 1 energies is not restricted.
  • Patent Document 1 discloses a compound having a structure in which a carbazole ring is combined with a dibenzofuran ring, a dibenzothiophene ring, or the like. According to such a compound having a structure in which a plurality of aromatic heterocycles are combined, the drive voltage of the organic EL element can be lowered. Further, when the aromatic heterocycle is combined, a high glass transition temperature (Tg) and a high T 1 energy are exhibited.
  • Patent Document 2 discloses a compound having a structure in which a plurality of carbazole rings or a carbazole ring and another nitrogen-containing heterocyclic ring are combined. Patent Document 3 also discloses a carbazole ring and a dibenzofuran ring. And compounds having a structure in combination with a dibenzothiophene ring or the like.
  • an object of the present invention is to provide an organic electroluminescence element material, an organic electroluminescence element, a display device, and a lighting device that can lower the driving voltage of the element and have good stability.
  • a 1 and A 2 represent a condensed aromatic heterocyclic ring composed of the same ring
  • L represents a divalent linking group
  • HAr represents a nitrogen-containing heterocyclic group or an electron-withdrawing group.
  • R 1 and R 2 each independently represent a substituent different from HAr.
  • s and t are each independently an integer of 0 or more, and u is an integer of 1 or more.
  • An organic electroluminescent device material characterized by being localized in an aromatic heterocycle and having an electron density distribution of HOMO and LUMO of a condensed aromatic heterocycle represented by A 1 of 7% or less .
  • L is the following general formula (2), [In the formula, * represents a binding site with A 1, and ** represents a binding site with A 2 .
  • L 1 and L 3 are each independently a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted fluorene group, a substituted or unsubstituted dibenzothiophene group, or a substituted or unsubstituted group
  • L 2 represents a single bond, a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms, an ether group, a thioether group, or any one of the following general formulas (3) to (7).
  • n is an integer of 0 to 3. However, when n is 2 or more, L 2 and L 3 may be the same or different from each other.
  • * represents a binding site.
  • R 3 and R 4 each independently represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  • the compound represented by the general formula (8) is represented by the following general formula (9), [Wherein, HAr, R 1 , R 2 , Y, L 2 , L 3 , n, s 1 , s 2 , u 1, u 2, t 1 and t 2 have the same meaning as in the above general formula.
  • the compound represented by the general formula (9) is represented by the following general formula (10), [Wherein, s3 is an integer of 0 to 4, and s4 is an integer of 0 to 3.
  • HAr, R 1 , R 2 , Y, L 2 , L 3 , n, t1 and t2 are as defined in the above general formula. 6.
  • the compound represented by the general formula (8) is represented by the following general formula (11), [Wherein, HAr, R 1 , R 2 , Y, L 2 , L 3 , n, s 1 , s 2 , u 1, u 2, t 1 and t 2 have the same meaning as in the above general formula.
  • the compound represented by the general formula (11) is represented by the following general formula (12), [Wherein, s3 is an integer of 0 to 4, and s4 is an integer of 0 to 3.
  • HAr, R 1 , R 2 , Y, L 2 , L 3 , n, t1 and t2 are as defined in the above general formula.
  • the organic electroluminescence device material according to any one of 1 to 8, wherein the HAr is any one of the following general formulas (13) to (21).
  • * represents a binding site.
  • Each R independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, or a substituted or unsubstituted phenyl; Represents a group or a substituted or unsubstituted pyridyl group. ]
  • An organic electroluminescence device comprising the organic electroluminescence device material according to any one of 1 to 11 above in an organic layer interposed between an anode and a cathode.
  • the light emitting layer further contains a phosphorescent dopant, and the HOMO energy level of the phosphorescent dopant is from ⁇ 5.30 eV to ⁇ 4.5 eV.
  • the organic electroluminescent element of description is from ⁇ 5.30 eV to ⁇ 4.5 eV.
  • a display device comprising the organic electroluminescence element according to any one of 12 to 14.
  • An illumination device comprising the organic electroluminescence element according to any one of 12 to 14.
  • an organic electroluminescence element material an organic electroluminescence element, a display device, and an illumination device that can reduce the driving voltage of the element and have good stability.
  • an organic electroluminescence element, a display device, and a lighting device are provided in which external extraction quantum efficiency and half-life are improved, stability with time is excellent, and driving voltage and voltage increase during driving are suppressed. .
  • FIG. 3 is a schematic diagram of a passive matrix type full-color display device. Schematic of a lighting device. The schematic diagram of an illuminating device.
  • the organic EL element material according to the present invention is represented by the following general formula (1).
  • This compound has a charge transport ability and is a material suitable as a host compound used in combination with a light emitting dopant in a light emitting layer of an organic EL element.
  • a 1 and A 2 each represent a condensed aromatic heterocycle composed of the same ring. That is, A 1 is a condensed aromatic heterocycle, and A 2 is a condensed aromatic heterocycle having the same main skeleton as A 1 except for the substituent.
  • L represents a divalent linking group.
  • HAr is a substituent that exhibits an electron-withdrawing property with respect to the condensed aromatic heterocyclic ring represented by A 1 , and represents a nitrogen-containing heterocyclic group or an acyclic electron-withdrawing group.
  • R 1 and R 2 each independently represent a substituent different from HAr.
  • R 1 and R 2 are other substituents excluding the nitrogen-containing heterocyclic group and the electron-withdrawing group represented by HAr.
  • s and t are each independently an integer of 0 or more.
  • U is an integer of 1 or more, and at least one or more HAr is bonded to the condensed aromatic heterocycle represented by A 1 .
  • the electron density distribution of LUMO is localized in the linking group represented by L, and 60% or more of the electron density distribution of HOMO It is characterized by being localized in the condensed aromatic heterocycle represented by A 2 .
  • the electron density distribution of HOMO and the electron density distribution of LUMO distributed in the condensed aromatic heterocycle represented by A 1 are characterized by being 7% or less in proportion to the electron density distribution of the whole molecule. . That is, in the compound represented by the general formula (1), the LUMO electron density distribution and the HOMO electron density distribution are localized and distributed in a partial region of the whole molecule.
  • the LUMO or HOMO distribution state (localized state) in the compound represented by the general formula (1) can be obtained from the electron density distribution when the structure is optimized by molecular orbital calculation.
  • the LUMO electron density distribution and the HOMO electron density distribution are derived using B3LYP as a functional and 6-31G * as a basis function in a molecular orbital calculation for structural optimization and electron density analysis.
  • As software for molecular orbital calculation for example, Gaussian 09 (Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010.) manufactured by Gaussian in the United States can be used.
  • the means for performing molecular orbital calculation is not limited to this.
  • Y% or more of the electron density distribution of HOMO is localized in the condensed aromatic heterocyclic ring (A 2 ) means that when the total probability distribution of HOMO in the whole molecule is 100%, It means that Y% or more is unevenly distributed in the condensed aromatic heterocycle (A 2 ).
  • the total probability distribution of LUMO in the entire molecule is derived by calculating the molecular orbital by molecular orbital calculation, squaring the coefficient of the orbital corresponding to LUMO for all atoms constituting the molecule, and adding them up.
  • the probability distribution of LUMO localized in a partial region of the whole molecule is derived by squaring the orbital coefficient corresponding to LUMO for only atoms constituting the region and adding them up. . It can be said that the ratio of the latter calculated value to the former calculated value indirectly represents the LUMO distribution state.
  • FIG. 1A and FIG. 1B are conceptual diagrams for explaining the mechanism of action of the organic EL element material according to the present invention.
  • FIG. 1A is a diagram showing a molecular structure and HOMO-LUMO electron density distribution in a conventional host compound
  • FIG. 1B is a diagram showing a molecular structure and HOMO-LUMO electron density distribution in an organic EL device material according to the present invention. is there.
  • the charge injected from the electrode moves by hopping conduction between molecules in the organic layer.
  • the charge transport is carried out by, for example, the aromatic electrons in the aromatic ring in the compound used as the material.
  • the mobility of hopping conduction is greatly influenced by the charge state of the molecule, the three-dimensional structure, and the like.
  • the donor property or acceptor property of a molecule that transmits and receives charges is more prominent, the interaction between the molecules becomes stronger, and the mobility of hopping conduction tends to increase.
  • the three-dimensional structures of the molecules that transfer and receive charges are similar to each other, the intermolecular distance is shortened and the interaction between the molecules is strengthened, so that the mobility of hopping conduction tends to increase.
  • Conventionally known host compounds that is, host compounds with a structure combining fused aromatic heterocycles such as carbazole derivatives, carbazole rings, dibenzofuran rings, and dibenzothiophene rings are linked to similar condensed aromatic heterocycles.
  • Has a structured For example, an example of a conventional host compound can be represented as shown in FIG. 1A.
  • A is a condensed aromatic heterocycle such as a carbazole ring
  • L is a divalent linking group.
  • the plurality of condensed aromatic heterocycles represented by A are composed of rings having the same main skeleton excluding substituents, and the linking group represented by L is aromatic
  • the structure includes an aromatic ring. It can be said that a host compound having a structure in which rings having such planarity are combined has a three-dimensional structure suitable for interaction between molecules. That is, since the glass transition temperature is increased and the mobility of hopping conduction is increased, it can be said that the organic EL element is suitable for low voltage driving.
  • the conventional host compound has a highly symmetrical molecular skeleton, and has a structure in which the environment in which each of the plurality of condensed aromatic heterocycles (A) is placed is similar to each other.
  • the linking group (L) can be made into a LUMO site having a high electron accepting property.
  • any of the condensed aromatic heterocycles (A) becomes a HOMO site having a high electron donating property. This is because the electron density distribution of HOMO is distributed dispersively in each of the condensed aromatic heterocycles (A) located symmetrically.
  • the host compound when the conventional host compound is excited in a state where the molecules are laminated, the host compound easily exchanges electrons with each other and forms an undesired excimer with high frequency. Although the formed excimer usually returns quickly to the ground state, it is inevitable that charges are wasted due to the formation of the excimer. Therefore, the internal quantum efficiency of the organic EL element is reduced, and the luminous efficiency of the organic EL element is reduced. The light emission life is impaired.
  • a condensed aromatic heterocyclic ring represented by A 1 and a condensed aromatic heterocyclic ring represented by A 2 are formed of the same ring.
  • a substituent (HAr) that exhibits an electron-withdrawing property is bonded only to the condensed aromatic heterocycle represented by A 1 .
  • the condensed aromatic heterocycle represented by A 2 is preferentially converted to HOMO. Can function as a site.
  • the LUMO energy level is a condensed aromatic group represented by A 1 and A 2.
  • a linking group (L) deeper than the LUMO energy level in the heterocyclic ring may be used.
  • the energy level of HOMO is shallower than the energy level of HOMO in the linking group represented by L. While using the condensed aromatic heterocycle (A 2 ), the electron withdrawing property of the substituent (HAr) exhibiting electron withdrawing property may be increased, or the number of substitutions of the substituent (HAr) with electron withdrawing property may be increased. .
  • condensed aromatic heterocycle represented by A 1 and A 2 in the general formula examples include indole ring, benzimidazole ring, benzoxazole ring, benzthiazole ring, quinoline ring, quinazoline ring, quinoxaline ring, and phthalazine.
  • the condensed aromatic heterocyclic ring represented by A 1 and A 2 in the general formula those having a HOMO energy level of less than ⁇ 5.30 eV are preferable, and a carbazole ring, a dibenzofuran ring or a dibenzothiophene ring is preferable.
  • a carbazole ring is more preferred.
  • the HOMO energy level of the carbazole ring is about ⁇ 5.44 eV
  • the HOMO energy level of the dibenzofuran ring is about ⁇ 6.01 eV
  • the HOMO energy level of the dibenzothiophene ring is about ⁇ 5.82 eV.
  • the condensed aromatic heterocycle represented by A 1 and A 2 is a carbazole ring
  • the fused aromatic heterocycle represented by A 1 and the fused aromatic heterocycle represented by A 2 are composed of the same ring, but the bonding position to L, R 1 or R 2
  • the type of the substituent and the bonding position represented may not be the same.
  • nitrogen-containing heterocyclic group represented by HAr in the general formula a nitrogen-containing 5-membered aromatic heterocyclic ring, a nitrogen-containing 6-membered aromatic heterocyclic ring and the like can be used. These nitrogen-containing heterocyclic groups may have a substituent or may not have a substituent. These nitrogen-containing heterocyclic groups may be monocyclic, or a 5-membered to 6-membered ring may be further condensed to form a polycyclic fused ring. Moreover, with respect to the condensed aromatic heterocycle represented by A1, one of these rings may be substituted, or a plurality of kinds may be substituted.
  • nitrogen-containing 5-membered aromatic heterocycle examples include a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, an oxazole ring, an oxadiazole ring, and a thiazole ring.
  • nitrogen-containing 6-membered aromatic heterocycle examples include a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, and a triazine ring.
  • the nitrogen-containing heterocyclic group represented by HAr includes indole ring, benzimidazole ring, benzoxazole ring, benzthiazole ring, quinoline ring, quinazoline ring, quinoxaline ring, phthalazine ring, carbazole ring, azacarbazole ring (carbazole) One or more carbon atoms constituting the ring are substituted with nitrogen atoms), dibenzocarbazole ring, indolocarbazole ring, acridine ring, phenazine ring, benzoquinoline ring, phenanthridine ring, phenanthroline ring, cyclazine ring, Other multi-membered nitrogen-containing aromatic heterocycles such as a quindrine ring, a tepenidine ring, a quinindrin ring, a triphenodioxazine ring, a triphenodithiazine ring,
  • the electron-withdrawing group represented by HAr includes a cyano group, a nitro group, an alkylphosphino group, an arylphosphino group, an acyl group, a fluoroalkyl group, a pentafluorosulfanyl group, and a group consisting of a halogen atom. At least one or more substituents selected from the above can be used.
  • the alkyl phosphino group include a dimethyl phosphino group, a diethyl phosphino group, a dicyclohexyl phosphino group, and the like.
  • Examples of the arylphosphino group include a diphenylphosphino group and a dinaphthylphosphino group.
  • Examples of the acyl group include an acetyl group, an ethylcarbonyl group, and a propylcarbonyl group.
  • Examples of the fluoroalkyl group include a trifluoromethyl group and a pentafluoroethyl group.
  • a halogen atom a fluorine atom, a bromine atom, etc. are mentioned, for example.
  • substituent represented by R 1 or R 2 in the general formula other substituents other than the nitrogen-containing heterocyclic ring and the electron-withdrawing group can be used.
  • substituent represented by R ⁇ 1 > or R ⁇ 2 > 1 type of substituents may be substituted and multiple types of substituents may be substituted.
  • the substituent represented by R 1 or R 2 is particularly preferably a substituent that does not exhibit electron withdrawing property with respect to the condensed aromatic heterocycle represented by A 1 and A 2 .
  • the substituent represented by R 2 is more preferably a substituent that exhibits an electron donating property with respect to the condensed aromatic heterocyclic ring represented by A 2 .
  • Preferred forms of the substituent represented by R 1 or R 2 in the general formula include an alkyl group (for example, methyl group, ethyl group, etc.), a cycloalkyl group (for example, cyclopentyl group, cyclohexyl group, etc.), an alkoxy group (for example, Methoxy group, ethoxy group, propyloxy group, etc.), amide group (eg, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, etc.), amino group (eg, amino group, ethylamino) Group, dimethylamino group and the like), hydroxy group and the like.
  • an alkyl group for example, methyl group, ethyl group, etc.
  • a cycloalkyl group for example, cyclopentyl group, cyclohexyl group, etc.
  • an alkoxy group for
  • it may be a monocyclic aromatic hydrocarbon ring group or aromatic heterocyclic group, or a polycyclic condensed aromatic hydrocarbon ring group or condensed aromatic heterocyclic group excluding a nitrogen-containing heterocyclic group.
  • these substituents may have an arbitrary substituent as described later.
  • the divalent linking group represented by L in the general formula is preferably a group represented by the following general formula (2).
  • the LUMO energy level of the linking group represented by the general formula (2) is preferably deeper than the LUMO energy level of the condensed aromatic heterocycle represented by A 1 and A 2 .
  • L 1 and L 3 are each independently a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenyl group (such as 1,1′-biphenyl-diyl group), a substituted or unsubstituted fluorene group (9H-fluorene) -Diyl group, etc.), substituted or unsubstituted dibenzothiophene group (dibenzothiophene-diyl group), or substituted or unsubstituted dibenzofuran group (dibenzofuran-diyl group), L 2 is a single bond, substituted or unsubstituted It represents a substituted alkylene group having 1 to 5 carbon atoms, an ether group, a thioether group, or a substituent represented by any one of the following general formulas (3) to (7). n
  • R 3 and R 4 each independently represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  • alkylene group having 1 to 5 carbon atoms represented by L 2 in the general formula examples include a methylene group, an ethylene group, a trimethylene group, and a tetramethylene group. These alkylene groups may have a branch.
  • Examples of the alkyl group represented by R 3 or R 4 in the general formula include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a t-butyl group, and a pentyl group. Hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group and the like.
  • Examples of the aryl group represented by R 3 or R 4 in the general formula include a phenyl group, a p-chlorophenyl group, a mesityl group, a tolyl group, a xylyl group, a naphthyl group, an anthryl group, an azulenyl group, an acenaphthenyl group, and a fluorenyl group.
  • Phenanthryl group indenyl group, pyrenyl group, biphenylyl group and the like.
  • Examples of the substituent bonded to A 1 , A 2 , HAr, L 1 , L 2 , L 3 , R 3 , R 4 and the like in the general formula include, for example, an alkyl group (for example, a methyl group, an ethyl group, etc.), cyclo Alkyl groups (for example, cyclopentyl group, cyclohexyl group, etc.), alkenyl groups (for example, vinyl group, allyl group, etc.), alkynyl groups (for example, ethynyl group, propargyl group, etc.), aromatic hydrocarbon ring groups (for example, phenyl group) P-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, etc.), alkoxy group (eg methoxy group, ethoxy group, propyloxy group etc.), cycloalkoxy group (eg cyclopent
  • the more preferable form of the organic EL element material according to the present invention is represented by the following general formula (8).
  • the linking group L has a structure similar to the condensed aromatic heterocycle (carbazole ring) represented by A 1 and A 2 as represented by the general formula (8), the interaction between molecules is more strongly enhanced. can do.
  • Y represents O or S.
  • s1, s2, u1, u2, t1, and t2 are each independently an integer of 0 to 4, and satisfy 0 ⁇ s1 + u1 ⁇ 4, 0 ⁇ s2 + u2 ⁇ 4, and 1 ⁇ u1 + u2 ⁇ 8.
  • HAr, R 1 , R 2 , L 2 , L 3 and n are as defined in the above general formula.
  • the compound represented by the general formula (8) may be a compound represented by the following general formula (9).
  • the condensed aromatic heterocyclic ring (carbazole ring) represented by A 1 is bonded to the 3-position (6-position) of the condensed aromatic heterocyclic ring corresponding to L 1.
  • HAr, R 1 , R 2, Y, L 2, L 3, n, s1, s2, u1, u2, t1 and t2 are the same meanings as in the general formula.
  • the compound represented by the general formula (9) is preferably a compound represented by the following general formula (10).
  • the compound in which the substituent represented by HAr is bonded to the 3-position (6-position) of the condensed aromatic heterocyclic ring (carbazole ring) represented by A 1 is It is relatively easy to synthesize. From the viewpoint of avoiding the influence on the electron density distribution and the inhibition of interaction between molecules due to steric hindrance, R 1 and R 2 may be further substituted.
  • s3 is an integer of 0 to 4
  • s4 is an integer of 0 to 3.
  • R 1 , R 2 , Y, L 2 , L 3 , n, t1 and t2 are as defined in the above general formula.
  • the compound represented by the general formula (8) may be a compound represented by the following general formula (11).
  • the condensed aromatic heterocyclic ring (carbazole ring) represented by A 1 is bonded to the 1-position (8-position) of the condensed aromatic heterocyclic ring corresponding to L 1.
  • HAr, R 1 , R 2 , Y, L 2 , L 3 , n, s 1 , s 2 , u 1, u 2, t 1 and t 2 have the same meaning as in the general formula.
  • the compound represented by the general formula (11) is preferably a compound represented by the following general formula (12).
  • the compound in which the substituent represented by HAr is bonded to the 3-position (6-position) of the condensed aromatic heterocyclic ring (carbazole ring) represented by A 1 is It is relatively easy to synthesize. From the viewpoint of avoiding the influence on the electron density distribution and the inhibition of interaction between molecules due to steric hindrance, R 1 and R 2 may be further substituted.
  • s3 is an integer of 0 to 4
  • s4 is an integer of 0 to 3.
  • R 1 , R 2 , Y, L 2 , L 3 , n, t1 and t2 are as defined in the above general formula.
  • the substituent represented by HAr in the general formula is a nitrogen-containing 5-membered aromatic heterocyclic ring only, a nitrogen-containing 6-membered aromatic heterocyclic ring only, or an electron withdrawing It consists only of sex groups.
  • the electron withdrawing group is particularly preferably at least one selected from the group consisting of a cyano group, a nitro group, a diphenylphosphino group, an acetyl group, a trifluoromethyl group, and a pentafluorosulfanyl group.
  • the substituent represented by HAr is a group exhibiting such an electron-withdrawing property
  • the electron density of HOMO of the condensed aromatic heterocyclic ring represented by A 1 can be effectively reduced.
  • Excimer formation in the state can be more reliably suppressed.
  • the organic EL element This is advantageous for improving the light emission lifetime.
  • a more preferable form of the nitrogen-containing 5-membered aromatic heterocycle and the nitrogen-containing 6-membered aromatic heterocycle represented by HAr in the general formula is represented by any one of the following general formulas (13) to (21).
  • These nitrogen-containing heterocyclic groups have a HOMO energy level lower than that of the condensed aromatic heterocyclic ring represented by A 1 (such as a carbazole ring) and a high T 1 energy applicable to blue phosphorescence. And have. Further, the synthesis can be performed relatively easily.
  • * represents a binding site.
  • Each R independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, or a substituted or unsubstituted phenyl; Represents a group or a substituted or unsubstituted pyridyl group.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a t-butyl group, and a pentyl group. Is mentioned.
  • Examples of the cycloalkyl group having 3 to 10 carbon atoms represented by R include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like.
  • intermediate 1 3-bromo-carbazole, copper (II) oxide, dipivaloylmethane (DPM), and potassium phosphate were put into an aprotic solvent under a nitrogen stream, and at 130 ° C. for 5 hours. Stir. And after adding a saturated salt solution and an organic solvent to remove insoluble matters, the organic phase is concentrated under reduced pressure, and purification is performed to obtain an intermediate 2.
  • Intermediate 3 is obtained by dissolving 3-nitro-carbazole and palladium / carbon in ethanol and reducing the mixture with heating and stirring in a hydrogen atmosphere.
  • intermediate 4 is obtained by reacting intermediate 3 with benzoic acid chloride and amidation.
  • intermediate 5 is obtained by reacting intermediate 4 with an inorganic acid chloride such as POCl 3 and chlorinating.
  • intermediate 6 is obtained by adding 5-phenyltetrazole to intermediate 5 and heating to reflux in toluene for 2 hours.
  • the intermediate 6, the intermediate 1, the copper oxide (II), dipivaloylmethane (DPM), and potassium phosphate are charged into DMSO under a nitrogen stream and stirred at 160 ° C. for 2 hours. And after adding a saturated salt solution and an organic solvent to remove insoluble matters, the organic phase is concentrated under reduced pressure and purified to obtain Compound Example 2.
  • a copper compound such as copper iodide (I) is substituted for copper (II) oxide
  • a ligand such as picolinic acid is substituted for dipivaloylmethane
  • potassium carbonate is substituted for potassium phosphate.
  • a suitable aprotic solvent can be used as the base and the solvent. The obtained compound can be confirmed by 1 H-NMR spectrum, MS spectrum or the like.
  • the element configuration of the organic EL element can be, for example, the following laminated structure.
  • Anode / light emitting layer / cathode (2) Anode / light emitting layer / electron transport layer / cathode (3) Anode / hole transport layer / light emitting layer / cathode (4) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (6) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ( 7) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode (8) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode (8) Anode / hole injection layer / hole injection layer / hole
  • the light emitting layer is a layer in which electrons and holes are injected from an electrode or an adjacent layer, and light is emitted by deactivation of excitons generated by recombination thereof. However, the position where light emission occurs may be within the light emitting layer or at the interface between the light emitting layer and the adjacent layer.
  • the light emitting layer preferably contains a light emitting dopant and a host compound.
  • the total thickness of the light emitting layer is not particularly limited. However, from the viewpoints of ensuring the uniformity of the layer to be formed, preventing the application of unnecessary high voltage during light emission, and improving the stability of the emission color with respect to the drive current, it is preferably 2 nm to 5 ⁇ m. The range is adjusted, more preferably in the range of 2 to 500 nm, still more preferably in the range of 5 to 200 nm.
  • the host compound is a compound that mainly takes charge injection and transport in the light emitting layer and does not substantially generate observable light emission.
  • the phosphorescence quantum yield is defined as a compound having a concentration of less than 0.1 at 25 ° C.
  • the phosphorescence quantum yield of the host compound is preferably less than 0.01.
  • the organic EL device material is preferably used as a host compound. At this time, other conventionally known host compounds may be used in combination.
  • the host compound preferably has a mass ratio in the layer of 20% or more among the compounds contained in the light emitting layer. Moreover, it is preferable that the excited state energy of a host compound is higher than the excited state energy of the light emission dopant contained in the same layer.
  • a low molecular compound may be sufficient and the high molecular compound which has a repeating unit may be sufficient. Further, it may be a compound having a reactive group such as a vinyl group or an epoxy group.
  • the host compound has a hole transporting capability or an electron transporting capability, prevents a long wavelength of light emission, and further stabilizes the organic EL element to operate at a high temperature or to generate heat during element driving.
  • Tg is preferably 90 ° C. or higher, and more preferably 120 ° C. or higher.
  • the glass transition temperature (Tg) is a value determined by a method based on JIS K 7121-2012 using DSC (Differential Scanning Colorimetry).
  • 2007/063796 International Publication No. 2007/063754, International Publication No. 2004/107822, WO 2005/030900, WO 2006/114966, WO 2009/086028, WO 2009/003898, WO 2012/023947, JP 2008- No. 074939, JP-A-2007-254297, European Patent No. 2034538, and the like.
  • Luminescent dopant As the light emitting dopant, either a fluorescent light emitting dopant or a phosphorescent light emitting dopant can be used. However, it is preferable that a phosphorescent dopant is included in the organic EL element, and it is more preferable that the phosphorescent dopant is included in the same light emitting layer as the organic EL element material.
  • HOMO energy level of the phosphorescent dopant is preferably ⁇ 5.30 eV or more and ⁇ 4.5 eV or less. Specific examples of the metal complex having such an energy level include those described in International Publication No. 2015/87739.
  • the HOMO energy level of the organic EL element material can be made sufficiently deep by selecting a condensed aromatic heterocyclic ring or the like. Therefore, when a phosphorescent dopant having such an energy level is used in combination, this phosphorescent dopant is mainly responsible for the transport of holes, not the organic EL element material. Therefore, it is possible to suppress the generation of excitons on the host compound, and it is possible to extend the lifetime of the organic EL element by reducing the generation of excimer and non-radiation deactivation.
  • the concentration of the light-emitting dopant in the light-emitting layer can be arbitrarily determined based on the specific light-emitting dopant used and the requirements of the device to which the organic EL element is applied. For example, it may be contained at a uniform concentration in the thickness direction of the light emitting layer, or may be contained with an arbitrary concentration distribution.
  • the light emitting dopant a plurality of types may be used in combination in a single light emitting layer. Moreover, you may use multiple types together in a different light emitting layer in an organic EL element. Further, dopants having different molecular structures may be used in combination, or a fluorescent luminescent dopant and a phosphorescent dopant may be used in combination.
  • the emission color derived from the luminescent dopant is shown in FIG. 5.16 on page 108 of the “New Color Science Handbook” (edited by the Japan Society of Color Science, University of Tokyo Press, 1985), with a spectral radiance meter CS-1000 (Konica Minolta). It is determined by the color when the result measured by (made by Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • a plurality of kinds of light emitting dopants may be used in combination, and white light emission may be generated by synthesizing each other's light emission colors. For example, a combination of complementary colors such as blue and orange, or three primary colors may be combined.
  • a phosphorescent dopant is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.). Defined as being 01 or more compounds.
  • the phosphorescence quantum yield of the phosphorescence dopant is preferably 0.1 or more.
  • the phosphorescence quantum yield can be measured by the method described in Spectra II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7.
  • the phosphorescence quantum yield in a solution can be measured using various solvents.
  • the phosphorescent quantum yield may be 0.01 or more in any solvent.
  • an organometallic complex having Ir as a central metal as a phosphorescent dopant.
  • metal-carbon bonds metal-nitrogen bonds, metal-oxygen bonds and metal-sulfur bonds. It is more preferable to use an organometallic complex containing at least one coordination mode.
  • fluorescent dopant is a compound that can emit light from an excited singlet.
  • Examples of the fluorescent dopant include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, coumarin derivatives, pyran derivatives, Examples include cyanine derivatives, croconium derivatives, squalium derivatives, oxobenzoanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, rare earth complex compounds, and the like.
  • the fluorescent dopant a substance using delayed fluorescence may be used.
  • Specific examples of the light-emitting dopant using delayed fluorescence include compounds described in the following documents. However, it is not limited to these compounds.
  • International Publication No. 2011/156793 Japanese Unexamined Patent Application Publication No. 2011-213643, Japanese Unexamined Patent Application Publication No. 2010-93181, and the like.
  • the electron transport layer is made of a material having a function of transporting electrons and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • the electron transport layer may be composed of a single layer or a plurality of layers.
  • the total layer thickness of the electron transport layer is not particularly limited. Usually, it is in the range of 2 nm to 5 ⁇ m, preferably 2 to 500 nm, more preferably 5 to 200 nm.
  • the electron mobility of the electron transport layer is preferably 10 ⁇ 5 cm 2 / Vs or more.
  • any material may be used as long as it has either an electron injection property or a transport property, or a hole barrier property.
  • nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, Triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, dibenzofuran derivatives, dibenzothiophenes Derivatives, silole derivatives, aromatic hydrophos, pyridine derivatives, pyrimidine
  • a metal complex having a quinolinol skeleton, a dibenzoquinolinol skeleton or the like as a ligand for example, tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol).
  • metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transport material.
  • distyrylpyrazine derivatives exemplified as the material for the light emitting layer can also be used as an electron transport material, and inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as an electron transport material.
  • inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as an electron transport material.
  • materials obtained by introducing these materials into the polymer chain, or materials using these materials as the main chain of the polymer can also be used.
  • the electron transport layer may be a high-n (electron rich) electron transport layer by doping a doping material as a guest material.
  • the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides.
  • Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004) and the like.
  • the material for the electron transport layer include compounds described in the following documents. However, it is not limited to these compounds.
  • Examples of the material for the electron transport layer include pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, and benzimidazole derivatives.
  • the hole blocking layer is a layer having a function of an electron transporting layer in a broad sense, and is preferably made of a material having a function of transporting electrons and a small ability to transport holes. By blocking holes while transporting electrons, the recombination probability of electrons and holes can be improved.
  • the layer thickness of the hole blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the hole blocking layer can be formed in the same manner as the electron transport layer, but is preferably provided adjacent to the cathode side of the light emitting layer.
  • materials used for the electron transport layer are preferably used.
  • a material used as a host compound is also preferably used for the hole blocking layer.
  • the electron injection layer (also referred to as “cathode buffer layer”) is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • the details of the electron injection layer are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Organic EL devices and their industrialization front line (issued by NTT Corporation on November 30, 1998)”. It is described in. Details of the electron injection layer are also described in JP-A-6-325871, JP-A-9-17574, and JP-A-10-74586.
  • the electron injection layer may be provided as necessary, and may be present between the cathode and the light emitting layer or between the cathode and the electron transport layer.
  • the electron injection layer is preferably a very thin film, and the layer thickness is preferably in the range of 0.1 to 5 nm depending on the material.
  • membrane in which a constituent material exists intermittently may be sufficient.
  • Examples of the material for the electron injection layer include metals represented by strontium and aluminum, alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, and the like, magnesium fluoride, calcium fluoride, and the like. And alkaline earth metal compounds, metal oxides typified by aluminum oxide, metal complexes typified by lithium 8-hydroxyquinolate (Liq), and the like. It is also possible to use a material for the electron transport layer.
  • the hole transport layer is made of a material having a function of transporting holes and may have a function of transmitting holes injected from the anode to the light emitting layer.
  • the hole transport layer may be composed of a single layer or a plurality of layers.
  • the total layer thickness of the hole transport layer is not particularly limited. Usually, it is in the range of 5 nm to 5 ⁇ m, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
  • any material may be used as long as it has either a hole injecting property or a transporting property or an electron barrier property. be able to.
  • Examples of the triarylamine derivative include a benzidine type typified by ⁇ -NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine linking core part.
  • hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as hole transport materials.
  • a hole transport layer having a high p property doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material or an inorganic compound such as p-type-Si, p-type-SiC, or the like as described in a book (Appl. Phys. Lett., 80 (2002), p. 139) is used. You can also. Further, ortho-metalated organometallic complexes having Ir or Pt as the central metal as typified by Ir (ppy) 3 are also preferably used.
  • a triarylamine derivative a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, a polymer material or an oligomer in which an aromatic amine is introduced into the main chain or side chain, and the like are also preferably used.
  • the material for the hole transport layer further include compounds described in the following documents. However, it is not limited to these compounds. Appl. Phys. Lett. 69, 2160 (1996); Lumin. , 72-74,985 (1997), Appl. Phys. Lett. 78, 673 (2001), Appl. Phys. Lett. , 90, 183503 (2007), Appl. Phys. Lett. , 90, 183503 (2007), Appl. Phys. Lett. 51, 913 (1987), Synth. Met. , 87, 171 (1997), Synth. Met. 91, 209 (1997), Synth. Met. 111, 421 (2000), SID Symposium Digest, 37, 923 (2006), J.
  • the electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons. By blocking electrons while transporting holes, the probability of recombination of electrons and holes can be improved.
  • the layer thickness of the electron blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the electron blocking layer can be formed similarly to the structure of the hole transport layer, but is preferably provided adjacent to the anode side of the light emitting layer.
  • materials used for the electron blocking layer are preferably used.
  • a material used as a host compound is also preferably used for the electron blocking layer.
  • the hole injection layer (also referred to as “anode buffer layer”) is a layer provided between the anode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • anode buffer layer For the hole injection layer, see “Organic EL devices and their industrialization front line (issued by NTT Corporation on November 30, 1998)”, Volume 2, Chapter 2, “Electrode Materials” (pages 123-166). It is described in detail. Details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like.
  • the hole injection layer may be provided as necessary and may exist between the anode and the light emitting layer or between the anode and the hole transport layer.
  • Examples of the material for the hole injection layer include materials used for the hole transport layer.
  • materials used for the hole transport layer include materials used for the hole transport layer.
  • phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives, metal oxides typified by vanadium oxide, amorphous carbon as described in JP-T-2003-519432, JP-A-2006-135145, etc.
  • the above organic layer may further contain other additives.
  • the additive content include halogen elements such as bromine, iodine, and chlorine, halogenated compounds, alkali metals such as Pd, Ca, and Na, alkaline earth metals, transition metal compounds, complexes, and salts. .
  • the content of the additive content can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, and more preferably 50 ppm or less with respect to the total mass% of the contained layer. Is more preferable. However, the present invention is not limited to this range depending on the purpose of improving the transportability of electrons and holes, the purpose of favoring the energy transfer of excitons, and the like.
  • Method for forming organic layer As a method for forming the organic layer, a known film forming method can be used. For example, a dry method such as a vacuum evaporation method may be used, or a wet method (also referred to as a wet process) may be used, but a wet method is more preferable.
  • a dry method such as a vacuum evaporation method may be used, or a wet method (also referred to as a wet process) may be used, but a wet method is more preferable.
  • wet methods include spin coating, casting, ink jet, printing, die coating, blade coating, roll coating, spray coating, curtain coating, and Langmuir Blodgett (LB). is there. Among these, it is easy to obtain a homogeneous thin film and is highly suitable for production by a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method because it has high productivity. The method is preferred.
  • liquid medium for dissolving or dispersing the organic layer material examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, mesitylene, and cyclohexylbenzene.
  • Aromatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO can be used.
  • a dispersion method such as ultrasonic dispersion, high shear force dispersion, media dispersion, or the like can be used.
  • the vapor deposition conditions vary depending on the type of compound used, but generally, the boat heating temperature is 50 to 450 ° C., the degree of vacuum is 10 ⁇ 6 to 10 ⁇ 2 Pa, and the vapor deposition rate is 0. The range is 01 to 50 nm / second, the substrate temperature is ⁇ 50 to 300 ° C., and the layer thickness is 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more, preferably 4.5 eV or more) is preferably used.
  • an electrode substance include a conductive transparent material such as a metal such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • a conductive transparent material such as a metal such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • a thin film may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required (100 ⁇ m or more) Degree), a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • a wet film forming method such as a printing method or a coating method can also be used.
  • the transmittance is preferably greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, it is usually in the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • cathode As the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this from the viewpoint of durability against electron injection and oxidation for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance can be further improved.
  • a transparent or semi-transparent cathode can be produced by forming a film on the conductive transparent material mentioned in the description of the anode.
  • the support substrate also referred to as a base material or a support
  • an appropriate material such as glass or plastic can be used.
  • the support substrate may be transparent or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate include glass, quartz, and a transparent resin film.
  • a particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, Arton (trade name, manufactured by JSR) or Appel (
  • the surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992. , And a relative humidity (90 ⁇ 2)%) of 0.01 g / (m 2 ⁇ 24 h) or less is preferable as a gas barrier film. Further, oxygen measured by a method according to JIS K 7126-1987 A high gas barrier film having a permeability of 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less and a water vapor permeability of 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less is preferable.
  • the material for forming the gas barrier film may be any material that has a function of suppressing intrusion of substances that cause deterioration of elements such as moisture and oxygen.
  • examples of such a material include silicon oxide, silicon dioxide, silicon nitride and the like.
  • a film formed of these inorganic materials may be provided so as to form a laminated structure with a film formed of an organic material from the viewpoint of improving the fragility of the film.
  • the stacking order of the inorganic layer and the organic layer is not particularly limited.
  • Examples of the gas barrier film forming method include a vacuum deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, an atmospheric pressure plasma polymerization method, and a plasma CVD method.
  • Method, laser CVD method, thermal CVD method, coating method and the like can be used.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction quantum efficiency at room temperature of light emission of the organic EL element is preferably 1% or more, and more preferably 5% or more.
  • external extraction quantum efficiency (%) number of photons emitted to the outside of the organic EL element / number of electrons flowed to the organic EL element ⁇ 100.
  • a hue improving filter such as a color filter may be used in combination, or a color conversion filter for converting the emission color from the organic EL element into multiple colors may be used in combination.
  • sealing method for sealing the organic EL element for example, a method of adhering a sealing member, an electrode, and a support substrate with an adhesive can be exemplified.
  • a sealing member it should just be arrange
  • transparency and electrical insulation are not particularly limited.
  • Specific examples of the material for the sealing member include a glass plate, a polymer plate / film, and a metal plate / film.
  • Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film or a metal film can be preferably used because the organic EL element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and a method according to JIS K 7129-1992.
  • the measured water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)%) is preferably that of 1 ⁇ 10 -3 g / (m 2 / 24h) or less.
  • sandblasting, chemical etching, or the like can be used.
  • the adhesive examples include a photo-curing adhesive or a thermosetting adhesive having a reactive vinyl group such as an acrylic acid oligomer and a methacrylic acid oligomer, and a moisture curable adhesive such as 2-cyanoacrylate. It is done.
  • thermosetting adhesives such as epoxy-based adhesives, and chemically curable (two-component mixed) adhesives.
  • hot-melt adhesives such as polyamide, polyester, and polyolefin can be used.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an element that can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • a laminated structure of these inorganic layers and layers made of organic materials it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials.
  • the method of forming these films There are no particular limitations on the method of forming these films. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • this gap can be evacuated.
  • a hygroscopic compound can be enclosed in the gap.
  • Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • Etc. metal oxides
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, etc.
  • these anhydrous salts are particularly suitable.
  • a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer interposed therebetween.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc. as used for the sealing can be used. It is preferable to use it.
  • An organic EL element emits light inside a layer having a refractive index higher than that of air (within a refractive index of about 1.6 to 2.1), and is about 15% to 20% of light generated in the light emitting layer. It is generally said that it can only be taken out.
  • Light incident on the interface between the transparent support substrate and air at an angle ⁇ greater than the critical angle causes total reflection and is not extracted outside the device, and at the angle greater than the critical angle, the interface between the transparent transparent electrode and the transparent support substrate.
  • the light incident on the interface between the light emitting layer and the transparent electrode causes total reflection and is guided in the transparent electrode and the light emitting layer, and escapes in the side direction of the element.
  • a method for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (for example, US Pat. No. 4,774,435), collecting on the substrate.
  • a method for improving efficiency by imparting light properties for example, Japanese Patent Laid-Open No. Sho 63-314795
  • a method for forming a reflective surface on the side surface of an element for example, Japanese Patent Laid-Open No. 1-220394
  • a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the light emitters (for example, Japanese Patent Application Laid-Open No.
  • the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less, preferably 1.35 or less. More preferred.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium.
  • the method of introducing a diffraction grating into an interface that causes total reflection or in any medium is characterized in that the effect of improving the light extraction efficiency is high.
  • the diffraction grating has a property that the direction of light can be changed to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction.
  • the interlayer By introducing such a diffraction grating into any layer of the light emitting layer, the transparent electrode, the substrate, etc., or in the medium (in the transparent substrate or the transparent electrode), among the light generated from the light emitting layer, the interlayer It is possible to diffract light that cannot be emitted due to total reflection or the like and to extract the light.
  • the diffraction grating to be introduced preferably has a two-dimensional periodic refractive index. Since emitted light is randomly generated in all directions in the light emitting layer, a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction can only diffract light traveling in a specific direction. In other words, the light extraction efficiency cannot be improved effectively. On the other hand, when the refractive index distribution is a two-dimensional distribution, light traveling in a plurality of directions can be diffracted, so that the light extraction efficiency can be effectively improved.
  • the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL element is processed on the light extraction side of the support substrate (substrate), for example, so as to provide a microlens array-like structure, or combined with a so-called condensing sheet, for example, in a specific direction, It is possible to increase the brightness in a specific direction by condensing light in the front direction with respect to the element light emitting surface.
  • the microlens array there may be mentioned a two-dimensional array of quadrangular pyramids having a side of 30 ⁇ m and a vertex angle of 90 degrees on the light extraction side of the substrate. One side is preferably within a range of 10 to 100 ⁇ m. If it is in such a range, the effect of diffraction will not occur and it will rarely be colored or become too thick.
  • the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited may be used.
  • the shape of the prism sheet for example, the base material may be formed by forming a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element according to the present invention may be a tandem type organic EL element in which a plurality of light emitting units having the element configurations as exemplified in the above (1) to (8) are stacked.
  • the element configuration of the tandem organic EL element can be, for example, the following stacked structure.
  • the element configuration of the tandem organic EL element is not limited to the above (I) to (II), and the number of light emitting units can be any number of two or more.
  • the individual configurations of the plurality of light emitting units may be the same as or different from each other.
  • the intermediate layer is a layer having a function of supplying electrons to the adjacent layer on the anode side and holes to the adjacent layer on the cathode side.
  • the intermediate layer is also called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, and an intermediate insulating layer.
  • the intermediate layer may be, for example, ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, CuAlO 2 , CuGaO 2 , SrCu.
  • Conductive inorganic compound layers such as 2 O 2 , LaB 6 , RuO 2 and Al, two-layer films such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , multilayer films such as TiO 2 / ZrN / TiO 2 , fullerenes such as C60, conductive organic layers such as oligothiophene, metal phthalocyanines, It can be formed as a conductive organic compound layer such as metal-free phthalocyanines, metal porphyrins and metal-free porphyrins.
  • JP2008-07 414 JP is a Japanese 2007-059848, JP 2003-272860, JP 2003-045676, JP-WO 2005/094130 and the like.
  • the organic EL element material according to the present invention can be contained in any organic layer interposed between the anode and the cathode.
  • the organic layer interposed between the anode and the cathode includes a light emitting layer, an electron transport layer, a hole transport layer, an electron transport layer exemplified in the above (1) to (8), Each layer includes a hole injection layer, an electron injection layer, a hole blocking layer, and an electron blocking layer.
  • the organic EL element material according to the present invention may be contained in any one of the organic layers interposed between the anode and the cathode, or may be contained in a plurality of layers. However, since the organic EL device material according to the present invention is useful as a host compound, it is particularly preferable to contain it in at least the light emitting layer. Note that the tandem organic EL element may be included in a part of the light emitting unit or may be included in a plurality.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • light sources include lighting devices (home lighting, interior lighting), clock backlights, liquid crystal backlights, signboard advertising light sources, traffic light sources, optical storage media light sources, electrophotographic copying machine light sources, Examples include a light source of an optical communication processor and a light source of an optical sensor.
  • the organic EL element of the present invention may have a resonator structure, or light emission may be utilized by causing laser oscillation.
  • the organic EL element of the present invention can be used for a display device.
  • the display device may be a single color display device or a multicolor display device.
  • a multicolor display device will be described as an example of a display device including the organic EL element of the present invention.
  • a multicolor display device can be formed by providing a shadow mask only when forming a light emitting layer and forming a film by vapor deposition, casting, spin coating, ink jet, printing, or the like on one surface. When patterning is performed only on the light emitting layer, for example, an inkjet method, a printing method, or the like may be used.
  • the configuration of the organic EL element provided in the display device can take various configurations including the example of the element configuration described above.
  • a DC voltage is applied to the multicolor display device, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode.
  • an AC voltage is applied, light emission can be observed only when the anode is in the + state and the cathode is in the-state.
  • the AC waveform to be applied is not particularly limited.
  • the multicolor display device can be used as, for example, a display device, a display, or various light sources.
  • Examples of the display device and display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in an automobile.
  • these driving methods either a simple matrix (passive matrix) method or an active matrix method may be used.
  • FIG. 2 is a schematic view showing an example of a display device composed of organic EL elements. This corresponds to a perspective view of a display device that displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and a wiring unit that electrically connects the display unit A and the control unit B. Etc. are provided.
  • the control unit B sends a scanning signal and an image data signal to each of the plurality of pixels based on external image information. Then, the pixels for each scanning line are sequentially emitted according to the image data signal by the scanning signal, and the image information is displayed on the display unit A.
  • FIG. 3 is a schematic diagram of a display device using an active matrix method.
  • the display unit A has a plurality of pixels 3, a plurality of scanning lines 5, and a plurality of data lines 6 on the substrate. As shown in FIG. 3, the emitted light L from each pixel 3 is extracted in the direction of the white arrow.
  • the scanning line 5 and the data line 6 in the wiring part are each made of a conductive material.
  • the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions.
  • the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data.
  • Full color display is possible by appropriately arranging each of the pixels whose emission color is red, the pixels which are green and the pixels which are blue in color on the substrate.
  • FIG. 4 is a schematic diagram showing a pixel circuit.
  • the pixel 3 includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • organic EL elements 10 of emission colors of red, green and blue are used.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied from the capacitor 13 and the driving transistor.
  • To 12 gates are provided.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10.
  • the organic EL element 10 is supplied with current from the power supply line 7 in accordance with the potential of the image data signal applied to the gate.
  • the controller B sequentially scans and the scanning signal moves to the next scanning line 5
  • the driving of the switching transistor 11 is turned off.
  • the capacitor 13 holds the charged image data signal potential.
  • the driving of the driving transistor 12 is kept on, and the light emission of the organic EL element 10 continues until the next scanning signal is applied.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light. That is, the light emission of the organic EL element 10 is performed for each of the plurality of pixels 3 by providing the switching transistor 11 and the driving transistor 12 as active elements for each of the organic EL elements 10 of the plurality of pixels 3.
  • Such a light emission method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on and off a predetermined light emission amount by a binary image data signal. Also good. Further, the potential of the capacitor 13 may be continuously maintained until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied. Note that the light emission method of the display device according to the present invention is not limited to the active matrix method, and may be a passive matrix method in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
  • FIG. 5 is a schematic view of a passive matrix display device.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the scanning signal of the scanning line 5 is applied by sequential scanning, the pixels 3 connected to the applied scanning line 5 emit light according to the image data signal.
  • the passive matrix method it is not necessary to provide an active element in the pixel 3, and the manufacturing cost can be reduced.
  • the organic EL element of the present invention can be used for a lighting device.
  • a lighting device including the organic EL element of the present invention will be described with reference to the drawings.
  • FIG. 6 shows a schematic diagram of the illumination device.
  • FIG. 7 shows a cross-sectional view of the lighting device.
  • the illumination device can be formed by, for example, covering the organic EL element 101 according to the present invention with a glass cover 102 or the like. That is, the pair of electrodes 105 and 107 and the organic layer 106 are sealed with a glass cover 102 or the like, the interior space 108 is filled with nitrogen gas or the like, a water capturing agent 109 or the like is installed, the organic layer 106 or the like. It can be set as the form which aims at prevention of deterioration.
  • Comparative Compounds 1 to 3 used in the examples are as follows. Comparative compound 1 is disclosed in International Publication No. 2011/004639, Comparative Compound 2 is disclosed in JP-A No. 2014-118410, and Comparative Compound 3 is disclosed in International Publication No. 2014/13721.
  • the structural formulas of the materials of the organic EL elements used in the examples and the electron density distribution of the A 1 site, A 2 site, and L site of the host compound are as follows.
  • Example 1 As Example 1, organic EL elements 1-1 to 1-15 having an element structure of anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode were prepared. Produced.
  • organic EL device 1-1 As a support substrate for the organic EL element, a glass substrate of 100 mm ⁇ 100 mm ⁇ 1.1 mm was used. Patterning was performed on this support substrate having a 100 nm film of ITO (indium tin oxide) as an anode (NA45 manufactured by NH Techno Glass). Then, after ultrasonic cleaning with isopropyl alcohol and drying with dry nitrogen gas, UV ozone cleaning was performed for 5 minutes.
  • ITO indium tin oxide
  • NA45 anode
  • each of the resistance heating boats made of molybdenum of the vacuum evaporation apparatus has HT-1 as the material of the hole injection layer, HT-2 as the material of the hole transport layer, Comparative compound 1 as the host compound, DP-1 as the light emitting dopant, 200 mg of ET-1 as the material for the hole blocking layer and 200 mg of ET-2 as the material for the electron transport layer were respectively added.
  • the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa.
  • HT-1 was deposited on the anode at a deposition rate of 0.1 nm / second to form a 10 nm thick hole injection layer.
  • HT-2 was deposited on the hole injection layer at a deposition rate of 0.1 nm / second to form a hole transport layer having a thickness of 30 nm.
  • Comparative Compound 1 was co-deposited on the hole transport layer at a deposition rate of 0.1 nm / second and DP-1 at a deposition rate of 0.01 nm / second to form a light-emitting layer having a thickness of 40 nm.
  • ET-1 was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to form a 10 nm thick hole blocking layer.
  • ET-2 was deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to form an electron transport layer having a thickness of 30 nm.
  • lithium fluoride was deposited on the electron transport layer to form an electron injection layer having a thickness of 0.5 nm.
  • aluminum was vapor-deposited on the electron injection layer, the cathode with a thickness of 110 nm was formed, and it was set as the organic EL element 1-1.
  • the produced organic EL element was used for evaluation as a form of a lighting device as shown in FIGS. That is, an epoxy-based photocurable adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied around a glass plate having a thickness of 300 ⁇ m, and the glass plate is brought into close contact with the supporting substrate of the organic EL element from the cathode side.
  • the illumination device was sealed by irradiating UV from the side of the plate and curing the adhesive.
  • the external extraction quantum efficiency ( ⁇ ) is the luminance of light emitted immediately after the organic EL element is turned on at room temperature (about 23 ° C.) under a constant current condition of 2.5 mA / cm 2. It was calculated by measuring [cd / m 2 ]. Note that CS-1000 (manufactured by Konica Minolta Co., Ltd.) was used for measurement of light emission luminance.
  • organic EL devices 1-4 to 1-11 using a compound in which HAr is a nitrogen-containing heterocyclic group as a host compound are organic EL devices 1 to 1-11 using a compound in which HAr is an electron-withdrawing group as a host compound.
  • Half life is improved from 12 to 1-15. This is thought to be due to the fact that the molecule was stabilized by ⁇ - ⁇ interaction due to HAr becoming an aromatic ring.
  • the organic EL device material according to the present invention can provide an organic electroluminescence device that can reduce the driving voltage and has good stability. Accordingly, it is possible to realize an organic EL element, a display device, and a lighting device that have favorable light emission efficiency and light emission life and can be driven at a low voltage.
  • a substituent represented by HAr in the general formula it can be said that a nitrogen-containing heterocyclic group is more preferable than an electron-withdrawing group from the viewpoint of emission lifetime and the like.
  • Example 2 As Example 2, organic EL devices 2-1 to 2-19 having device configurations of anode / first hole transport layer / second hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode were prepared. did.
  • organic EL element 2-1 As a support substrate for the organic EL element, a glass substrate of 100 mm ⁇ 100 mm ⁇ 1.1 mm was used. Patterning was performed on this support substrate having a 100 nm film of ITO (indium tin oxide) as an anode (NA45 manufactured by NH Techno Glass). Then, after ultrasonic cleaning with isopropyl alcohol and drying with dry nitrogen gas, UV ozone cleaning was performed for 5 minutes.
  • ITO indium tin oxide
  • NA45 anode
  • each resistance heating boat made of molybdenum of the vacuum evaporation apparatus has HT-2 as the material for the hole transport layer, Comparative compound 1 as the host compound, 200 mg of ET-1 as the material for the electron transport layer, and DP- 100 mg of 2 was added.
  • the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa.
  • HT-2 was deposited on the first hole transport layer at a deposition rate of 0.1 nm / second to form a 20 nm second hole transport layer.
  • Comparative Compound 1 was co-deposited on the second hole transport layer at a deposition rate of 0.1 nm / second and DP-2 at a deposition rate of 0.006 nm / second to form a light-emitting layer having a thickness of 40 nm. .
  • ET-1 was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to form an electron transport layer having a thickness of 30 nm.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • lithium fluoride was deposited on the electron transport layer to form an electron injection layer having a thickness of 0.5 nm.
  • aluminum was vapor-deposited on the electron injection layer, the cathode with a thickness of 110 nm was formed, and it was set as the organic EL element 2-1.
  • Table 8 shows the above evaluation results.
  • the results of the external extraction quantum efficiency, half-life, driving voltage, and voltage increase during driving are shown as relative values with the organic EL element 2-1 being 100.
  • the external extraction quantum efficiency and the half-life are both improved, while the drive voltage and the voltage increase during driving are suppressed. I understand that.
  • the stability over time is also improved.
  • HAr is an electron withdrawing as in the above-described examples.
  • the half-life is improved over the organic EL devices 2-15 to 2-18 using a compound which is a functional group as a host compound.
  • the organic EL device material according to the present invention can provide an organic electroluminescence device that can reduce the driving voltage and has good stability. Accordingly, it is possible to realize an organic EL element, a display device, and a lighting device that have favorable light emission efficiency and light emission life and can be driven at a low voltage.
  • a substituent represented by HAr in the general formula it can be said that a nitrogen-containing heterocyclic group is more preferable than an electron-withdrawing group from the viewpoint of emission lifetime and the like.
  • Example 3 has an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode device structure, and an organic material in which a plurality of types of host compounds are used in combination. EL elements 3-1 to 3-12 were produced.
  • organic EL element 3-1 As a support substrate for the organic EL element, a glass substrate of 100 mm ⁇ 100 mm ⁇ 1.1 mm was used. Patterning was performed on this support substrate having a 100 nm film of ITO (indium tin oxide) as an anode (NA45 manufactured by NH Techno Glass). Then, after ultrasonic cleaning with isopropyl alcohol and drying with dry nitrogen gas, UV ozone cleaning was performed for 5 minutes.
  • ITO indium tin oxide
  • NA45 anode
  • each of the resistance heating boats made of molybdenum of the vacuum deposition apparatus has HT-1 as the material of the hole injection layer, HT-2 as the material of the hole transport layer, Comparative compound 1 as the host compound, DP-3 as the light emitting dopant, 200 mg of ET-1 as the material for the hole blocking layer and 200 mg of ET-2 as the material for the electron transport layer were respectively added.
  • the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa.
  • HT-1 was deposited on the anode at a deposition rate of 0.1 nm / second to form a 10 nm thick hole injection layer.
  • HT-2 was deposited on the hole injection layer at a deposition rate of 0.1 nm / second to form a hole transport layer having a thickness of 30 nm.
  • Comparative Compound 1 was co-deposited on the hole transport layer at a deposition rate of 0.1 nm / second and DP-3 at a deposition rate of 0.01 nm / second to form a light-emitting layer having a thickness of 40 nm.
  • ET-1 was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to form a 10 nm thick hole blocking layer.
  • ET-2 was deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to form an electron transport layer having a thickness of 30 nm.
  • lithium fluoride was deposited on the electron transport layer to form an electron injection layer having a thickness of 0.5 nm.
  • aluminum was vapor-deposited on the electron injection layer, and a cathode having a thickness of 110 nm was formed to obtain an organic EL element 3-1.
  • Organic EL devices 3-3 to 3-12 were prepared in the same manner as in the production of the organic EL device 3-2 except that the comparative compound 2 was changed to the comparative compound 3 or each of the above compound examples (see Table 9). .
  • the external extraction quantum efficiency and the half-life are both improved, while the drive voltage and the voltage increase during driving are suppressed. You can see that.
  • the stability over time is also improved.
  • HAr is an electron withdrawing as in the above embodiment.
  • the half-life is improved compared to the organic EL device 3-10 and the organic EL device 3-12 in which a compound which is a functional group is used as a host compound.
  • the organic EL element material according to the present invention when included, it can be said that the driving voltage can be lowered and an organic electroluminescence element having good stability can be provided. Accordingly, it is possible to realize an organic EL element, a display device, and a lighting device that have favorable light emission efficiency and light emission life and can be driven at a low voltage.
  • a substituent represented by HAr in the general formula it can be said that a nitrogen-containing heterocyclic group is more preferable than an electron-withdrawing group from the viewpoint of emission lifetime and the like.

Abstract

The objective of the present invention is to provide: an organic electroluminescent element material which is capable of decreasing the driving voltage of an element, while having good stability; an organic electroluminescent element; a display device; and a lighting device. An organic electroluminescent element material according to the present invention is represented by general formula (1) and is configured such that 70% of more of LUMO is localized in the L moiety and 60% or more of HOMO is localized in the A2 moiety, with HOMO and LUMO distributed in the A1 moiety being 7% or less. A display device and a lighting device according to the present invention are provided with an organic electroluminescent element which contains this organic electroluminescent element material. (In the formula, A1 and A2 represent fused aromatic heterocyclic rings that are composed of a same ring (for example, carbazole rings); L represents a divalent linking group; HAr represents a nitrogen-containing heterocyclic group or an electron-withdrawing group; each of R1 and R2 independently represents a substituent that is different from HAr; each of s and t independently represents an integer of 0 or more; and u represents an integer of 1 or more.)

Description

有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
 本発明は、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、並びに、それを具備した表示装置及び照明装置に関する。 The present invention relates to an organic electroluminescence element material, an organic electroluminescence element, and a display device and an illumination device including the same.
 有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)は、陰極と陽極との間に、発光を発生させるための有機層を挟んだ構造を有している。有機層は、単層又は複数層によって構成され、一般には、有機発光物質を含有する発光層を少なくとも含む構成とされている。 An organic electroluminescence element (hereinafter also referred to as an organic EL element) has a structure in which an organic layer for generating light emission is sandwiched between a cathode and an anode. The organic layer is composed of a single layer or a plurality of layers, and generally includes at least a light emitting layer containing an organic light emitting substance.
 有機EL素子の電極間に電圧が印加されると、電極間に介在している発光層には、陰極から電子が注入され、陽極から正孔が注入される。そして、電子と正孔とは、発光層付近において再結合して励起子を生じる。有機EL素子は、このような励起子が失活するときに放出する光を利用した発光素子である。有機EL素子は、自己発光型で視野角が広く、薄膜型の全固体素子であるといった特徴を有しており、小型化や低消費電力化に適し、次世代の平面ディスプレイや照明への利用が期待されている。 When a voltage is applied between the electrodes of the organic EL element, electrons are injected from the cathode and holes are injected from the anode into the light emitting layer interposed between the electrodes. Electrons and holes are recombined in the vicinity of the light emitting layer to generate excitons. An organic EL element is a light emitting element using light emitted when such excitons are deactivated. Organic EL devices are self-luminous, have a wide viewing angle, and are thin-film all-solid-state devices. They are suitable for miniaturization and low power consumption, and are used for next-generation flat displays and lighting. Is expected.
 有機EL素子の発光方式としては、蛍光発光方式とリン光発光方式とがある。励起三重項からのリン光発光を利用するリン光発光方式では、項間交差を加味すると、原理的には100%の内部量子効率を達成することが可能であり、励起一重項からの蛍光発光を利用する蛍光発光方式に比して約4倍の発光効率を実現できる可能性がある。そこで、近年、リン光発光方式による有機EL素子の開発が鋭意進められている。 There are a fluorescence emission method and a phosphorescence emission method as a light emission method of the organic EL element. In the phosphorescence emission method using phosphorescence emission from the excited triplet, it is possible in principle to achieve an internal quantum efficiency of 100%, considering the intersystem crossing, and fluorescence emission from the excited singlet. There is a possibility that light emission efficiency of about 4 times that of a fluorescent light emission method utilizing the above can be realized. Therefore, in recent years, development of organic EL elements using a phosphorescence emission method has been intensively advanced.
 リン光発光を室温で安定的に生じさせるためには、発光中心の位置を有機層中の精密な範囲内に制御する技術が重要である。そこで、従来、電極間に発光層と共に正孔輸送層、電子輸送層等を積層して多層化する技術や、発光層について有機発光物質としての発光ドーパントとホスト化合物との二成分を併用する技術等が用いられている。 In order to stably generate phosphorescent light emission at room temperature, a technique for controlling the position of the emission center within a precise range in the organic layer is important. Therefore, conventionally, a technique of stacking a hole transport layer, an electron transport layer, etc. together with a light emitting layer between electrodes, and a technique of using two components of a light emitting dopant as an organic light emitting material and a host compound in the light emitting layer. Etc. are used.
 一方、有機層に適用する材料についても、素子の発光効率や発光寿命に影響する諸性能についての改良が進められている。例えば、発光層に適用されるホスト化合物については、高いキャリア輸送性や、優れた熱安定性、成膜安定性等が求められている。また、励起三重項エネルギー(Tエネルギー)が高く、種々のTエネルギーを持つリン光発光性ドーパントとの併用が制約され難いことも望まれる。 On the other hand, with respect to materials applied to the organic layer, various performances affecting the light emission efficiency and the light emission lifetime of the device are being improved. For example, a host compound applied to the light emitting layer is required to have high carrier transportability, excellent thermal stability, film formation stability, and the like. It is also desirable that the combined use with phosphorescent dopants having high excited triplet energy (T 1 energy) and various T 1 energies is not restricted.
 従来、高いキャリア輸送性を備えるホスト化合物としては、CBPやmCPに代表されるカルバゾール誘導体が知られている。また、特許文献1には、カルバゾール環と、ジベンゾフラン環やジベンゾチオフェン環等とを組み合わせた構造の化合物が開示されている。このような複数の芳香族複素環が組み合わされた構造の化合物によると、有機EL素子の駆動電圧を低くすることができる。また、芳香族複素環が組み合わされることにより、高いガラス転移温度(Tg)や高いTエネルギーを示すものとなる。また、特許文献2には、複数のカルバゾール環や、カルバゾール環と他の含窒素複素環とを組み合わせた構造の化合物が開示されており、また、特許文献3にも、カルバゾール環と、ジベンゾフラン環やジベンゾチオフェン環等とを組み合わせた構造の化合物が開示されている。 Conventionally, carbazole derivatives represented by CBP and mCP are known as host compounds having high carrier transportability. Patent Document 1 discloses a compound having a structure in which a carbazole ring is combined with a dibenzofuran ring, a dibenzothiophene ring, or the like. According to such a compound having a structure in which a plurality of aromatic heterocycles are combined, the drive voltage of the organic EL element can be lowered. Further, when the aromatic heterocycle is combined, a high glass transition temperature (Tg) and a high T 1 energy are exhibited. Patent Document 2 discloses a compound having a structure in which a plurality of carbazole rings or a carbazole ring and another nitrogen-containing heterocyclic ring are combined. Patent Document 3 also discloses a carbazole ring and a dibenzofuran ring. And compounds having a structure in combination with a dibenzothiophene ring or the like.
国際公開第2011/004639号International Publication No. 2011/004639 特開2014-118410号公報JP 2014-118410 A 国際公開第2014/13721号International Publication No. 2014/13721
 しかしながら、従来知られているカルバゾール誘導体は、十分に高いTエネルギーとガラス転移温度とを兼ね備えたものとはなっていない。また、特許文献1に開示されている化合物は、Tエネルギーやガラス転移温度が高く、また、有機EL素子を低電圧で駆動させることを可能とはしているものの、励起状態においてエキシマを形成し易く、安定性が十分ではない。特許文献2に開示されている化合物や特許文献3に開示されている化合物に関しても、特に駆動時の電圧上昇、経時安定性についてはまだまだ改善の余地がある。 However, conventionally known carbazole derivatives do not have a sufficiently high T 1 energy and glass transition temperature. Moreover, the compounds disclosed in Patent Document 1, T 1 energy and the glass transition temperature is high, also, although to do with allowing to drive the organic EL element at low voltage, form the excimer in the excited state It is easy to do and stability is not enough. With regard to the compound disclosed in Patent Document 2 and the compound disclosed in Patent Document 3, there is still room for improvement in terms of voltage rise during driving and stability over time.
 そこで、本発明は、素子の駆動電圧を下げることが可能であり、安定性も良好な有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an organic electroluminescence element material, an organic electroluminescence element, a display device, and a lighting device that can lower the driving voltage of the element and have good stability.
 本発明の上記目的は、下記構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.下記一般式(1)、
Figure JPOXMLDOC01-appb-C000022
[式中、A及びAは、互いに同一の環からなる縮合芳香族複素環を表し、Lは、二価の連結基を表し、HArは、含窒素複素環基、又は、電子吸引性基を表す。R及びRは、それぞれ独立に、HArとは異なる置換基を表す。s及びtは、それぞれ独立に、0以上の整数であり、uは、1以上の整数である。]で表され、LUMOの電子密度分布の70%以上が、Lで表される連結基に局在しており、且つ、HOMOの電子密度分布の60%以上が、Aで表される縮合芳香族複素環に局在しており、Aで表される縮合芳香族複素環のHOMOの電子密度分布及びLUMOの電子密度分布が7%以下であることを特徴とする有機エレクトロルミネッセンス素子材料。
1. The following general formula (1),
Figure JPOXMLDOC01-appb-C000022
[Wherein, A 1 and A 2 represent a condensed aromatic heterocyclic ring composed of the same ring, L represents a divalent linking group, and HAr represents a nitrogen-containing heterocyclic group or an electron-withdrawing group. Represents a group. R 1 and R 2 each independently represent a substituent different from HAr. s and t are each independently an integer of 0 or more, and u is an integer of 1 or more. 70% or more of the electron density distribution of LUMO is localized in the linking group represented by L, and 60% or more of the electron density distribution of HOMO is a condensation represented by A 2 An organic electroluminescent device material characterized by being localized in an aromatic heterocycle and having an electron density distribution of HOMO and LUMO of a condensed aromatic heterocycle represented by A 1 of 7% or less .
 2.前記A及び前記Aが、カルバゾール環であることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子材料。 2. 2. The organic electroluminescence device material according to 1, wherein A 1 and A 2 are carbazole rings.
 3.前記Lが、下記一般式(2)、
Figure JPOXMLDOC01-appb-C000023
[式中、*は、Aとの結合部位を表し、**は、Aとの結合部位を表す。L及びLは、それぞれ独立に、置換若しくは無置換のフェニレン基、置換若しくは無置換のビフェニル基、置換若しくは無置換のフルオレン基、置換若しくは無置換のジベンゾチオフェン基、又は、置換若しくは無置換のジベンゾフラン基を表し、Lは、単結合、置換若しくは無置換の炭素数1~5のアルキレン基、エーテル基、チオエーテル基、又は、下記一般式(3)~(7)のいずれかで表される置換基を表す。nは、0~3の整数である。但し、nが2以上であるとき、L及びLは、互いに同一であってもよく、互いに異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
[式中、※は、結合部位を表す。R及びRは、それぞれ独立に、置換若しくは無置換のアルキル基、又は、置換若しくは無置換のアリール基を表す。]で表されることを特徴とする前記1又は前記2に記載の有機エレクトロルミネッセンス素子材料。
3. L is the following general formula (2),
Figure JPOXMLDOC01-appb-C000023
[In the formula, * represents a binding site with A 1, and ** represents a binding site with A 2 . L 1 and L 3 are each independently a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted fluorene group, a substituted or unsubstituted dibenzothiophene group, or a substituted or unsubstituted group L 2 represents a single bond, a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms, an ether group, a thioether group, or any one of the following general formulas (3) to (7). Represents a substituent. n is an integer of 0 to 3. However, when n is 2 or more, L 2 and L 3 may be the same or different from each other. ]
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
[In the formula, * represents a binding site. R 3 and R 4 each independently represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. The organic electroluminescent element material according to 1 or 2 above, which is represented by:
 4.下記一般式(8)、
Figure JPOXMLDOC01-appb-C000029
[式中、Yは、O又はSを表す。s1、s2、u1、u2、t1及びt2は、それぞれ独立に、0~4の整数であり、1≦u1+u2≦8を満たす。HAr、R、R、L、L及びnは、前記一般式においてと同義である。]で表されることを特徴とする前記3に記載の有機エレクトロルミネッセンス素子材料。
4). The following general formula (8),
Figure JPOXMLDOC01-appb-C000029
[Wherein Y represents O or S. s1, s2, u1, u2, t1, and t2 are each independently an integer of 0 to 4, and satisfy 1 ≦ u1 + u2 ≦ 8. HAr, R 1 , R 2 , L 2 , L 3 and n are as defined in the above general formula. 3. The organic electroluminescent element material according to 3 above, wherein
 5.前記一般式(8)で表される化合物が、下記一般式(9)、
Figure JPOXMLDOC01-appb-C000030
[式中、HAr、R、R、Y、L、L、n、s1、s2、u1、u2、t1及びt2は、前記一般式においてと同義である。]で表されることを特徴とする前記4に記載の有機エレクトロルミネッセンス素子材料。
5). The compound represented by the general formula (8) is represented by the following general formula (9),
Figure JPOXMLDOC01-appb-C000030
[Wherein, HAr, R 1 , R 2 , Y, L 2 , L 3 , n, s 1 , s 2 , u 1, u 2, t 1 and t 2 have the same meaning as in the above general formula. The organic electroluminescence element material according to 4, wherein the material is represented by the following formula.
 6.前記一般式(9)で表される化合物が、下記一般式(10)、
Figure JPOXMLDOC01-appb-C000031
[式中、s3は、0~4の整数であり、s4は、0~3の整数である。HAr、R、R、Y、L、L、n、t1及びt2は、前記一般式においてと同義である。]で表されることを特徴とする前記5に記載の有機エレクトロルミネッセンス素子材料。
6). The compound represented by the general formula (9) is represented by the following general formula (10),
Figure JPOXMLDOC01-appb-C000031
[Wherein, s3 is an integer of 0 to 4, and s4 is an integer of 0 to 3. HAr, R 1 , R 2 , Y, L 2 , L 3 , n, t1 and t2 are as defined in the above general formula. 6. The organic electroluminescent element material according to 5 above, wherein
 7.前記一般式(8)で表される化合物が、下記一般式(11)、
Figure JPOXMLDOC01-appb-C000032
[式中、HAr、R、R、Y、L、L、n、s1、s2、u1、u2、t1及びt2は、前記一般式においてと同義である。]で表されることを特徴とする前記4に記載の有機エレクトロルミネッセンス素子材料。
7). The compound represented by the general formula (8) is represented by the following general formula (11),
Figure JPOXMLDOC01-appb-C000032
[Wherein, HAr, R 1 , R 2 , Y, L 2 , L 3 , n, s 1 , s 2 , u 1, u 2, t 1 and t 2 have the same meaning as in the above general formula. The organic electroluminescence element material according to 4, wherein the material is represented by the following formula.
 8.前記一般式(11)で表される化合物が、下記一般式(12)、
Figure JPOXMLDOC01-appb-C000033
[式中、s3は、0~4の整数であり、s4は、0~3の整数である。HAr、R、R、Y、L、L、n、t1及びt2は、前記一般式においてと同義である。]で表されることを特徴とする前記7に記載の有機エレクトロルミネッセンス素子材料。
8). The compound represented by the general formula (11) is represented by the following general formula (12),
Figure JPOXMLDOC01-appb-C000033
[Wherein, s3 is an integer of 0 to 4, and s4 is an integer of 0 to 3. HAr, R 1 , R 2 , Y, L 2 , L 3 , n, t1 and t2 are as defined in the above general formula. 8. The organic electroluminescence element material according to 7 above, wherein
 9.前記HArが、縮環していてもよい含窒素5員芳香族複素環であることを特徴とする前記1から前記8のいずれかに記載の有機エレクトロルミネッセンス素子材料。 9. 9. The organic electroluminescence device material according to any one of 1 to 8, wherein the HAr is a nitrogen-containing 5-membered aromatic heterocyclic ring which may be condensed.
 10.前記HArが、含窒素6員芳香族複素環であることを特徴とする前記1から前記8のいずれかに記載の有機エレクトロルミネッセンス素子材料。 10. 9. The organic electroluminescence element material according to any one of 1 to 8, wherein the HAr is a nitrogen-containing 6-membered aromatic heterocyclic ring.
 11.前記HArが、下記一般式(13)~(21)のうちのいずれかであることを特徴とする前記1から前記8のいずれかに記載の有機エレクトロルミネッセンス素子材料。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
[式中、※は、結合部位を表す。Rは、それぞれ独立に、水素原子、ハロゲン原子、又は、置換若しくは無置換の炭素数1~5のアルキル基、置換若しくは無置換の炭素数3~10のシクロアルキル基、置換若しくは無置換のフェニル基、又は、置換若しくは無置換のピリジル基を表す。]
11. 9. The organic electroluminescence device material according to any one of 1 to 8, wherein the HAr is any one of the following general formulas (13) to (21).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
[In the formula, * represents a binding site. Each R independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, or a substituted or unsubstituted phenyl; Represents a group or a substituted or unsubstituted pyridyl group. ]
 12.前記1から前記11のいずれかに記載の有機エレクトロルミネッセンス素子材料を陽極と陰極との間に介在する有機層に含有していることを特徴とする有機エレクトロルミネッセンス素子。 12. 12. An organic electroluminescence device comprising the organic electroluminescence device material according to any one of 1 to 11 above in an organic layer interposed between an anode and a cathode.
 13.前記有機層が、発光層であり、前記有機エレクトロルミネッセンス素子材料が、ホスト材料として含まれていることを特徴とする前記12に記載の有機エレクトロルミネッセンス素子。 13. 13. The organic electroluminescence device as described in 12 above, wherein the organic layer is a light emitting layer, and the organic electroluminescence device material is contained as a host material.
 14.前記発光層が、さらにリン光発光性ドーパントを含有しており、前記リン光発光性ドーパントのHOMOのエネルギー準位が、-5.30eV以上-4.5eV以下であることを特徴とする前記13に記載の有機エレクトロルミネッセンス素子。 14. The light emitting layer further contains a phosphorescent dopant, and the HOMO energy level of the phosphorescent dopant is from −5.30 eV to −4.5 eV. The organic electroluminescent element of description.
 15.前記12から前記14のいずれかに記載の有機エレクトロルミネッセンス素子を具備することを特徴とする表示装置。 15. 15. A display device comprising the organic electroluminescence element according to any one of 12 to 14.
 16.前記12から前記14のいずれかに記載の有機エレクトロルミネッセンス素子を具備することを特徴とする照明装置。 16. 15. An illumination device comprising the organic electroluminescence element according to any one of 12 to 14.
 本発明によれば、素子の駆動電圧を下げることが可能であり、安定性も良好な有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置を提供することができる。詳細には、外部取り出し量子効率や半減寿命が向上し、経時安定性に優れると共に、駆動電圧や駆動時の電圧上昇が抑制された有機エレクトロルミネッセンス素子や、表示装置や、照明装置が提供される。 According to the present invention, it is possible to provide an organic electroluminescence element material, an organic electroluminescence element, a display device, and an illumination device that can reduce the driving voltage of the element and have good stability. Specifically, an organic electroluminescence element, a display device, and a lighting device are provided in which external extraction quantum efficiency and half-life are improved, stability with time is excellent, and driving voltage and voltage increase during driving are suppressed. .
従来のホスト化合物における分子構造とHOMO―LUMOの電子密度分布を示す図。The figure which shows the molecular structure and electron density distribution of HOMO-LUMO in the conventional host compound. 本発明に係る有機EL素子材料における分子構造とHOMO―LUMOの電子密度分布を示す図。The figure which shows the molecular structure in the organic EL element material which concerns on this invention, and the electron density distribution of HOMO-LUMO. 有機EL素子から構成される表示装置の一例を示した模式図。The schematic diagram which showed an example of the display apparatus comprised from an organic EL element. 図2における表示部Aの模式図。The schematic diagram of the display part A in FIG. 画素の模式図。The schematic diagram of a pixel. パッシブマトリクス方式フルカラー表示装置の模式図。FIG. 3 is a schematic diagram of a passive matrix type full-color display device. 照明装置の概略図。Schematic of a lighting device. 照明装置の模式図。The schematic diagram of an illuminating device.
 以下、本発明の一実施形態に係る有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置の構成について説明する。 Hereinafter, the configurations of an organic electroluminescence element material, an organic electroluminescence element, a display device, and an illumination device according to an embodiment of the present invention will be described.
 本発明に係る有機EL素子材料は、下記一般式(1)で表される。この化合物は、電荷輸送能を有しており、有機EL素子の発光層等において発光ドーパントと併用されるホスト化合物として好適な材料である。
Figure JPOXMLDOC01-appb-C000043
The organic EL element material according to the present invention is represented by the following general formula (1). This compound has a charge transport ability and is a material suitable as a host compound used in combination with a light emitting dopant in a light emitting layer of an organic EL element.
Figure JPOXMLDOC01-appb-C000043
 一般式(1)中、A及びAは、互いに同一の環からなる縮合芳香族複素環を表す。すなわち、Aは、縮合芳香族複素環であり、Aは、置換基を除いた主骨格がAと同一の縮合芳香族複素環である。また、Lは、二価の連結基を表す。HArは、Aで表される縮合芳香族複素環に対して電子吸引性を示す置換基であって、含窒素複素環基、又は、非環式の電子吸引性基を表す。R及びRは、それぞれ独立に、HArとは異なる置換基を表す。すなわち、R及びRは、HArで表される含窒素複素環基及び電子吸引性基を除く他の置換基である。s及びtは、それぞれ独立に、0以上の整数である。また、uは、1以上の整数であり、Aで表される縮合芳香族複素環には、少なくとも一つ以上のHArが結合している。 In the general formula (1), A 1 and A 2 each represent a condensed aromatic heterocycle composed of the same ring. That is, A 1 is a condensed aromatic heterocycle, and A 2 is a condensed aromatic heterocycle having the same main skeleton as A 1 except for the substituent. L represents a divalent linking group. HAr is a substituent that exhibits an electron-withdrawing property with respect to the condensed aromatic heterocyclic ring represented by A 1 , and represents a nitrogen-containing heterocyclic group or an acyclic electron-withdrawing group. R 1 and R 2 each independently represent a substituent different from HAr. That is, R 1 and R 2 are other substituents excluding the nitrogen-containing heterocyclic group and the electron-withdrawing group represented by HAr. s and t are each independently an integer of 0 or more. U is an integer of 1 or more, and at least one or more HAr is bonded to the condensed aromatic heterocycle represented by A 1 .
 一般式(1)で表される化合物は、LUMOの電子密度分布の70%以上が、Lで表される連結基に局在しており、且つ、HOMOの電子密度分布の60%以上が、Aで表される縮合芳香族複素環に局在しているという特徴を有している。また、Aで表される縮合芳香族複素環に分布するHOMOの電子密度分布及びLUMOの電子密度分布が、分子全体の電子密度分布に対する割合で7%以下であるという特徴を有している。すなわち、一般式(1)で表される化合物では、LUMOの電子密度分布やHOMOの電子密度分布が、分子全体のうちの一部の領域に局在して分布している。 In the compound represented by the general formula (1), 70% or more of the electron density distribution of LUMO is localized in the linking group represented by L, and 60% or more of the electron density distribution of HOMO It is characterized by being localized in the condensed aromatic heterocycle represented by A 2 . In addition, the electron density distribution of HOMO and the electron density distribution of LUMO distributed in the condensed aromatic heterocycle represented by A 1 are characterized by being 7% or less in proportion to the electron density distribution of the whole molecule. . That is, in the compound represented by the general formula (1), the LUMO electron density distribution and the HOMO electron density distribution are localized and distributed in a partial region of the whole molecule.
[電子密度分布]
 一般式(1)で表される化合物におけるLUMOやHOMOの分布状態(局在の状態)については、分子軌道計算により得られる構造最適化した際の電子密度分布から求めることができる。具体的には、LUMOの電子密度分布やHOMOの電子密度分布は、構造最適化と電子密度解析を行う分子軌道計算において、汎関数としてB3LYP、基底関数として6-31G*を用いて導かれる。分子軌道計算用ソフトウェアとしては、例えば、米国Gaussian社製のGaussian09(Revision C.01,M.J.Frisch,et al,Gaussian,Inc.,2010.)を利用することが可能である。但し、分子軌道計算を行う手段は、これに制限されるものではない。
[Electron density distribution]
The LUMO or HOMO distribution state (localized state) in the compound represented by the general formula (1) can be obtained from the electron density distribution when the structure is optimized by molecular orbital calculation. Specifically, the LUMO electron density distribution and the HOMO electron density distribution are derived using B3LYP as a functional and 6-31G * as a basis function in a molecular orbital calculation for structural optimization and electron density analysis. As software for molecular orbital calculation, for example, Gaussian 09 (Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010.) manufactured by Gaussian in the United States can be used. However, the means for performing molecular orbital calculation is not limited to this.
[電子密度分布の割合の求め方]
 一般式(1)で表される化合物におけるLUMOやHOMOの分布状態は、局在している電子密度分布の割合を数値化して把握することができる。本明細書において、LUMOの電子密度分布のX%以上が連結基(L)に局在しているとは、分子全体におけるLUMOの全確率分布を合算して100%としたときに、そのX%以上が連結基(L)に偏在していることを意味する。また、HOMOの電子密度分布のY%以上が縮合芳香族複素環(A)に局在しているとは、分子全体におけるHOMOの全確率分布を合算して100%としたときに、そのY%以上が、縮合芳香族複素環(A)に偏在していることを意味する。
[How to find the ratio of electron density distribution]
The distribution state of LUMO and HOMO in the compound represented by the general formula (1) can be grasped by quantifying the ratio of the localized electron density distribution. In this specification, that X% or more of the electron density distribution of LUMO is localized in the linking group (L) means that when the total probability distribution of LUMO in the whole molecule is 100%, % Or more means unevenly distributed in the linking group (L). Further, the fact that Y% or more of the electron density distribution of HOMO is localized in the condensed aromatic heterocyclic ring (A 2 ) means that when the total probability distribution of HOMO in the whole molecule is 100%, It means that Y% or more is unevenly distributed in the condensed aromatic heterocycle (A 2 ).
 詳細には、分子全体におけるLUMOの全確率分布は、分子軌道計算によって分子軌道を求め、分子を構成する全原子についてLUMOに相当する軌道の係数を二乗し、これらを合算することで導かれる。一方、分子全体のうちの一部の領域に局在しているLUMOの確率分布は、その領域を構成する原子のみについてLUMOに相当する軌道の係数を二乗し、これらを合算することで導かれる。前者の計算値に対する後者の計算値の割合がLUMOの分布状態を間接的に表しているといえる。HOMOについての導出方法もこれらと同様である。なお、Gaussian09においては、汎関数としてB3LYP、基底関数として6-31G*を用いた電子密度解析を行い、キーワードとして#pとpop=regularを使用して出力される分子軌道を計算に使用することができる。 Specifically, the total probability distribution of LUMO in the entire molecule is derived by calculating the molecular orbital by molecular orbital calculation, squaring the coefficient of the orbital corresponding to LUMO for all atoms constituting the molecule, and adding them up. On the other hand, the probability distribution of LUMO localized in a partial region of the whole molecule is derived by squaring the orbital coefficient corresponding to LUMO for only atoms constituting the region and adding them up. . It can be said that the ratio of the latter calculated value to the former calculated value indirectly represents the LUMO distribution state. The derivation method for HOMO is the same as these. In Gaussian 09, the electron density analysis using B3LYP as the functional and 6-31G * as the basis function is performed, and the molecular orbital output using #p and pop = regular as keywords is used for the calculation. Can do.
 ここで、本発明に係る有機EL素子材料の作用機序について説明する。 Here, the action mechanism of the organic EL element material according to the present invention will be described.
 図1A及び図1Bは、本発明に係る有機EL素子材料の作用機序について説明する概念図である。図1Aは、従来のホスト化合物における分子構造とHOMO―LUMOの電子密度分布を示す図、図1Bは、本発明に係る有機EL素子材料における分子構造とHOMO―LUMOの電子密度分布を示す図である。 FIG. 1A and FIG. 1B are conceptual diagrams for explaining the mechanism of action of the organic EL element material according to the present invention. FIG. 1A is a diagram showing a molecular structure and HOMO-LUMO electron density distribution in a conventional host compound, and FIG. 1B is a diagram showing a molecular structure and HOMO-LUMO electron density distribution in an organic EL device material according to the present invention. is there.
 有機EL素子においては、電極から注入された電荷は、有機層中の分子間をホッピング伝導することによって移動していく。この電荷の輸送を担っているのは、材料として用いられている化合物中の芳香環のΠ電子等である。有機層におけるキャリア輸送性を高くし、有機EL素子の駆動電圧を低電圧化するためには、ホッピング伝導の移動度を高くすることが望ましいとされている。 In the organic EL element, the charge injected from the electrode moves by hopping conduction between molecules in the organic layer. The charge transport is carried out by, for example, the aromatic electrons in the aromatic ring in the compound used as the material. In order to increase the carrier transport property in the organic layer and reduce the driving voltage of the organic EL element, it is desirable to increase the mobility of hopping conduction.
 一般に、ホッピング伝導の移動度は、分子の荷電状態や、立体構造等によって大きく左右される。例えば、電荷を授受する分子のドナー性ないしアクセプター性が互いに顕著であるほど、分子同士の相互作用が強くなるため、ホッピング伝導の移動度は高くなる傾向がある。また、電荷を授受する分子の立体構造が互いに類似しているほど、分子間距離は短縮され、分子同士の相互作用が強められるため、ホッピング伝導の移動度は高くなる傾向がある。 Generally, the mobility of hopping conduction is greatly influenced by the charge state of the molecule, the three-dimensional structure, and the like. For example, as the donor property or acceptor property of a molecule that transmits and receives charges is more prominent, the interaction between the molecules becomes stronger, and the mobility of hopping conduction tends to increase. In addition, as the three-dimensional structures of the molecules that transfer and receive charges are similar to each other, the intermolecular distance is shortened and the interaction between the molecules is strengthened, so that the mobility of hopping conduction tends to increase.
 従来知られているホスト化合物、すなわち、カルバゾール誘導体や、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環といった縮合芳香族複素環を組み合わせた構造のホスト化合物は、互いに類似している縮合芳香族複素環が連結された構造を有している。例えば、従来のホスト化合物の一例は、図1Aのように表すことができる。Aは、カルバゾール環等の縮合芳香族複素環であり、Lは、二価の連結基である。 Conventionally known host compounds, that is, host compounds with a structure combining fused aromatic heterocycles such as carbazole derivatives, carbazole rings, dibenzofuran rings, and dibenzothiophene rings are linked to similar condensed aromatic heterocycles. Has a structured. For example, an example of a conventional host compound can be represented as shown in FIG. 1A. A is a condensed aromatic heterocycle such as a carbazole ring, and L is a divalent linking group.
 図1Aに示される従来のホスト化合物において、Aで表される複数の縮合芳香族複素環は、置換基を除いた主骨格が互いに同一の環からなり、Lで表される連結基は、芳香族環を含む構造であることが多い。このような平面性を持つ環が組み合わされた構造のホスト化合物は、分子同士の相互作用に適した立体構造を有しているといえる。つまり、ガラス転移温度が高くなる他、ホッピング伝導の移動度も高くなるため、有機EL素子を低電圧駆動するのに適しているといえる。 In the conventional host compound shown in FIG. 1A, the plurality of condensed aromatic heterocycles represented by A are composed of rings having the same main skeleton excluding substituents, and the linking group represented by L is aromatic In many cases, the structure includes an aromatic ring. It can be said that a host compound having a structure in which rings having such planarity are combined has a three-dimensional structure suitable for interaction between molecules. That is, since the glass transition temperature is increased and the mobility of hopping conduction is increased, it can be said that the organic EL element is suitable for low voltage driving.
 しかしながら、従来のホスト化合物は、図1Aに示すように、分子骨格の対称性が高く、複数の縮合芳香族複素環(A)のそれぞれがおかれている環境が互いに近似した構造である。例えば、LUMOのエネルギー準位が縮合芳香族複素環(A)よりも深い連結基(L)を採用すれば、連結基(L)を電子受容性が高いLUMO部位とすることは可能であるものの、このとき、縮合芳香族複素環(A)のいずれもが電子供与性が高いHOMO部位となってしまう。HOMOの電子密度分布が、対称的に位置する縮合芳香族複素環(A)のそれぞれに分散的に分布しているためである。 However, as shown in FIG. 1A, the conventional host compound has a highly symmetrical molecular skeleton, and has a structure in which the environment in which each of the plurality of condensed aromatic heterocycles (A) is placed is similar to each other. For example, if a linking group (L) whose LUMO energy level is deeper than that of the condensed aromatic heterocycle (A) is employed, the linking group (L) can be made into a LUMO site having a high electron accepting property. At this time, any of the condensed aromatic heterocycles (A) becomes a HOMO site having a high electron donating property. This is because the electron density distribution of HOMO is distributed dispersively in each of the condensed aromatic heterocycles (A) located symmetrically.
 その結果、従来のホスト化合物は、分子同士で積層した状態において励起されると、ホスト化合物同士で容易にΠ電子を授受し、望まれないエキシマを高頻度で形成するようになってしまう。形成されたエキシマは、通常、速やかに基底状態に戻るものの、エキシマの形成によって電荷が浪費されることは避けられないため、有機EL素子の内部量子効率は低下し、有機EL素子の発光効率や発光寿命が損なわれることになる。 As a result, when the conventional host compound is excited in a state where the molecules are laminated, the host compound easily exchanges electrons with each other and forms an undesired excimer with high frequency. Although the formed excimer usually returns quickly to the ground state, it is inevitable that charges are wasted due to the formation of the excimer. Therefore, the internal quantum efficiency of the organic EL element is reduced, and the luminous efficiency of the organic EL element is reduced. The light emission life is impaired.
 そこで、本発明に係る有機EL素子材料では、図1Bに示すように、互いに同一の環からなるAで表される縮合芳香族複素環とAで表される縮合芳香族複素環とが連結された分子骨格において、Aで表される縮合芳香族複素環のみに対して電子吸引性を示す置換基(HAr)を結合させるものとする。電子吸引性を示す置換基(HAr)によって、Aで表される縮合芳香族複素環のHOMOの電子密度を低下させることにより、Aで表される縮合芳香族複素環を優先的にHOMO部位として機能させることができる。 Therefore, in the organic EL device material according to the present invention, as shown in FIG. 1B, a condensed aromatic heterocyclic ring represented by A 1 and a condensed aromatic heterocyclic ring represented by A 2 are formed of the same ring. In the linked molecular skeleton, a substituent (HAr) that exhibits an electron-withdrawing property is bonded only to the condensed aromatic heterocycle represented by A 1 . By reducing the electron density of the HOMO of the condensed aromatic heterocycle represented by A 1 by the substituent (HAr) exhibiting electron withdrawing property, the condensed aromatic heterocycle represented by A 2 is preferentially converted to HOMO. Can function as a site.
 すなわち、LUMOの電子密度分布をLで表される連結基に局在させると共に、HOMOの電子密度分布をAで表される縮合芳香族複素環に局在させることで、励起状態における同種の分子同士の電子移動反応を低減させることができる。そのため、互いに類似している縮合芳香族複素環が組み合わされた分子構造によって、高いガラス転移温度、高いTエネルギー、良好なキャリア伝導性が実現されていながら、励起状態における安定性も良好な有機EL素子材料が得られる。ひいては、発光効率や発光寿命が良好な有機EL素子や、これを具備する表示装置や照明装置を提供することができる。 That is, by localizing the electron density distribution of LUMO to the linking group represented by L and localizing the electron density distribution of HOMO to the condensed aromatic heterocycle represented by A 2 , Electron transfer reaction between molecules can be reduced. Therefore, organic structures with high stability in the excited state are realized while a high glass transition temperature, high T 1 energy, and good carrier conductivity are realized by a molecular structure in which condensed aromatic heterocycles similar to each other are combined. An EL element material is obtained. As a result, it is possible to provide an organic EL element having good light emission efficiency and light emission lifetime, and a display device and a lighting device including the organic EL element.
 本発明に係る有機EL素子材料において、LUMOの電子密度分布をLで表される連結基に局在させるためには、LUMOのエネルギー準位が、A及びAで表される縮合芳香族複素環におけるLUMOのエネルギー準位よりも深い連結基(L)を用いればよい。また、HOMOの電子密度分布をAで表される縮合芳香族複素環に局在させるためには、HOMOのエネルギー準位が、Lで表される連結基におけるHOMOのエネルギー準位よりも浅い縮合芳香族複素環(A)を用いると共に、電子吸引性を示す置換基(HAr)の電子吸引性を高くする、或いは、電子吸引性を示す置換基(HAr)の置換数を増やせばよい。 In the organic EL device material according to the present invention, in order to localize the LUMO electron density distribution to the linking group represented by L, the LUMO energy level is a condensed aromatic group represented by A 1 and A 2. A linking group (L) deeper than the LUMO energy level in the heterocyclic ring may be used. Further, in order to localize the electron density distribution of HOMO in the condensed aromatic heterocyclic ring represented by A 2 , the energy level of HOMO is shallower than the energy level of HOMO in the linking group represented by L. While using the condensed aromatic heterocycle (A 2 ), the electron withdrawing property of the substituent (HAr) exhibiting electron withdrawing property may be increased, or the number of substitutions of the substituent (HAr) with electron withdrawing property may be increased. .
 一般式においてA及びAで表される縮合芳香族複素環としては、具体的には、インドール環、ベンズイミダゾール環、ベンズオキサゾール環、ベンズチアゾール環、キノリン環、キナゾリン環、キノキサリン環、フタラジン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ジベンゾカルバゾール環、インドロカルバゾール環、アクリジン環、フェナジン環、ベンゾキノリン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジオキサジン環、トリフェノジチアジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジベンゾフラン環、ジベンゾチオフェン環、ジベンゾシロール環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラチオフェン環、アントラジフラン環、アントラジチオフェン環、チエノチオフェン環、チアントレン環、フェノキサチイン環等を用いることができる。 Specific examples of the condensed aromatic heterocycle represented by A 1 and A 2 in the general formula include indole ring, benzimidazole ring, benzoxazole ring, benzthiazole ring, quinoline ring, quinazoline ring, quinoxaline ring, and phthalazine. Ring, carbazole ring, azacarbazole ring (one or more of the carbon atoms constituting the carbazole ring is substituted with a nitrogen atom), dibenzocarbazole ring, indolocarbazole ring, acridine ring, phenazine ring, benzoquinoline ring, Nantridine ring, phenanthroline ring, cyclazine ring, quindrine ring, tepenidine ring, quinindrine ring, triphenodioxazine ring, triphenodithiazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, dibenzofuran ring, dibenzothiophene ring, dibenzosilol ring , Benzodifuran ring, benzodithiophene ring, naphthofuran ring, naphthothiophene ring, naphthodifuran ring, naphthodithiophene ring, anthrafuran ring, anthrathiophene ring, anthradifuran ring, anthradithiophene ring, thienothiophene ring, thianthrene ring, phenoxy A satiin ring or the like can be used.
 一般式においてA及びAで表される縮合芳香族複素環としては、HOMOのエネルギー準位が、-5.30eV未満であるものが好ましく、カルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環が好ましく、カルバゾール環がより好ましい。カルバゾール環のHOMOのエネルギー準位は約-5.44eV、ジベンゾフラン環のHOMOのエネルギー準位は約-6.01eV、ジベンゾチオフェン環のHOMOのエネルギー準位は約-5.82eVである。特に、A及びAで表される縮合芳香族複素環がカルバゾール環であると、成膜性と共に、より高いキャリア輸送性やTエネルギーを得ることができる。なお、Aで表される縮合芳香族複素環とAで表される縮合芳香族複素環とは、互いに同一の環によって構成されるが、Lに対する結合位置や、R又はRで表される置換基の種類及び結合位置は、互いに同一でなくてもよい。 As the condensed aromatic heterocyclic ring represented by A 1 and A 2 in the general formula, those having a HOMO energy level of less than −5.30 eV are preferable, and a carbazole ring, a dibenzofuran ring or a dibenzothiophene ring is preferable. A carbazole ring is more preferred. The HOMO energy level of the carbazole ring is about −5.44 eV, the HOMO energy level of the dibenzofuran ring is about −6.01 eV, and the HOMO energy level of the dibenzothiophene ring is about −5.82 eV. In particular, when the condensed aromatic heterocycle represented by A 1 and A 2 is a carbazole ring, it is possible to obtain higher carrier transportability and T 1 energy as well as film forming properties. The fused aromatic heterocycle represented by A 1 and the fused aromatic heterocycle represented by A 2 are composed of the same ring, but the bonding position to L, R 1 or R 2 The type of the substituent and the bonding position represented may not be the same.
 一般式においてHArで表される含窒素複素環基としては、含窒素5員芳香族複素環、含窒素6員芳香族複素環等を用いることができる。これらの含窒素複素環基は、置換基を有していてもよいし、置換基を有していなくてもよい。また、これらの含窒素複素環基は、単環であってもよいし、5員環ないし6員環が更に縮環して多環縮合環を形成していてもよい。また、Aで表される縮合芳香族複素環に対しては、これらの環のうち一種が置換していてもよいし、複数種が置換していてもよい。 As the nitrogen-containing heterocyclic group represented by HAr in the general formula, a nitrogen-containing 5-membered aromatic heterocyclic ring, a nitrogen-containing 6-membered aromatic heterocyclic ring and the like can be used. These nitrogen-containing heterocyclic groups may have a substituent or may not have a substituent. These nitrogen-containing heterocyclic groups may be monocyclic, or a 5-membered to 6-membered ring may be further condensed to form a polycyclic fused ring. Moreover, with respect to the condensed aromatic heterocycle represented by A1, one of these rings may be substituted, or a plurality of kinds may be substituted.
 含窒素5員芳香族複素環としては、具体的には、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、オキサゾール環、オキサジアゾール環、チアゾール環等が挙げられる。また、含窒素6員芳香族複素環としては、具体的には、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環等が挙げられる。なお、HArで表される含窒素複素環基としては、インドール環、ベンズイミダゾール環、ベンズオキサゾール環、ベンズチアゾール環、キノリン環、キナゾリン環、キノキサリン環、フタラジン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ジベンゾカルバゾール環、インドロカルバゾール環、アクリジン環、フェナジン環、ベンゾキノリン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジオキサジン環、トリフェノジチアジン環、フェナントラジン環、アントラジン環、ペリミジン環等のその他の多員の含窒素芳香族複素環を用いることもできる。 Specific examples of the nitrogen-containing 5-membered aromatic heterocycle include a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, an oxazole ring, an oxadiazole ring, and a thiazole ring. Specific examples of the nitrogen-containing 6-membered aromatic heterocycle include a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, and a triazine ring. The nitrogen-containing heterocyclic group represented by HAr includes indole ring, benzimidazole ring, benzoxazole ring, benzthiazole ring, quinoline ring, quinazoline ring, quinoxaline ring, phthalazine ring, carbazole ring, azacarbazole ring (carbazole) One or more carbon atoms constituting the ring are substituted with nitrogen atoms), dibenzocarbazole ring, indolocarbazole ring, acridine ring, phenazine ring, benzoquinoline ring, phenanthridine ring, phenanthroline ring, cyclazine ring, Other multi-membered nitrogen-containing aromatic heterocycles such as a quindrine ring, a tepenidine ring, a quinindrin ring, a triphenodioxazine ring, a triphenodithiazine ring, a phenanthrazine ring, an anthrazine ring, and a perimidine ring can also be used.
 一般式においてHArで表される電子吸引性基としては、シアノ基、ニトロ基、アルキルホスフィノ基、アリールホスフィノ基、アシル基、フルオロアルキル基、及び、ペンタフルオロスルファニル基、ハロゲン原子からなる群より選択される少なくとも1種以上の置換基を用いることができる。アルキルホスフィノ基としては、例えば、ジメチルホスフィノ基、ジエチルホスフィノ基、ジシクロヘキシルホスフィノ基等が挙げられる。また、アリールホスフィノ基としては、例えば、ジフェニルホスフィノ基、ジナフチルホスフィノ基等が挙げられる。また、アシル基としては、例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基等が挙げられる。また、フルオロアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基等が挙げられる。また、ハロゲン原子としては、例えば、フッ素原子、臭素原子等が挙げられる。 In the general formula, the electron-withdrawing group represented by HAr includes a cyano group, a nitro group, an alkylphosphino group, an arylphosphino group, an acyl group, a fluoroalkyl group, a pentafluorosulfanyl group, and a group consisting of a halogen atom. At least one or more substituents selected from the above can be used. Examples of the alkyl phosphino group include a dimethyl phosphino group, a diethyl phosphino group, a dicyclohexyl phosphino group, and the like. Examples of the arylphosphino group include a diphenylphosphino group and a dinaphthylphosphino group. Examples of the acyl group include an acetyl group, an ethylcarbonyl group, and a propylcarbonyl group. Examples of the fluoroalkyl group include a trifluoromethyl group and a pentafluoroethyl group. Moreover, as a halogen atom, a fluorine atom, a bromine atom, etc. are mentioned, for example.
 一般式においてR又はRで表される置換基としては、含窒素複素環及び電子吸引性基を除く他の置換基を用いることができる。なお、R又はRで表される置換基としては、一種の置換基が置換されていてもよいし、複数種の置換基が置換されていてもよい。R又はRで表される置換基としては、特に、A及びAで表される縮合芳香族複素環に対して電子吸引性を示さない置換基が好ましい。さらに、Rで表される置換基としては、A2で表される縮合芳香族複素環に対して電子供与性を示す置換基がより好ましい。 As the substituent represented by R 1 or R 2 in the general formula, other substituents other than the nitrogen-containing heterocyclic ring and the electron-withdrawing group can be used. In addition, as a substituent represented by R < 1 > or R < 2 >, 1 type of substituents may be substituted and multiple types of substituents may be substituted. The substituent represented by R 1 or R 2 is particularly preferably a substituent that does not exhibit electron withdrawing property with respect to the condensed aromatic heterocycle represented by A 1 and A 2 . Further, the substituent represented by R 2 is more preferably a substituent that exhibits an electron donating property with respect to the condensed aromatic heterocyclic ring represented by A 2 .
 一般式においてR又はRで表される置換基の好ましい形態は、アルキル基(例えば、メチル基、エチル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基等)、ヒドロキシ基等である。或いは、含窒素複素環基を除いた、単環の芳香族炭化水素環基若しくは芳香族複素環基、又は、多環の縮合芳香族炭化水素環基若しくは縮合芳香族複素環基であってもよい。さらに、これらの置換基は、後記するような任意の置換基を有していてもよい。 Preferred forms of the substituent represented by R 1 or R 2 in the general formula include an alkyl group (for example, methyl group, ethyl group, etc.), a cycloalkyl group (for example, cyclopentyl group, cyclohexyl group, etc.), an alkoxy group (for example, Methoxy group, ethoxy group, propyloxy group, etc.), amide group (eg, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, etc.), amino group (eg, amino group, ethylamino) Group, dimethylamino group and the like), hydroxy group and the like. Alternatively, it may be a monocyclic aromatic hydrocarbon ring group or aromatic heterocyclic group, or a polycyclic condensed aromatic hydrocarbon ring group or condensed aromatic heterocyclic group excluding a nitrogen-containing heterocyclic group. Good. Furthermore, these substituents may have an arbitrary substituent as described later.
 一般式においてLで表される二価の連結基としては、下記一般式(2)で表される基が好ましい。一般式(2)で表される連結基のLUMOのエネルギー準位は、A及びAで表される縮合芳香族複素環におけるLUMOのエネルギー準位よりも深いことが好ましい。 The divalent linking group represented by L in the general formula is preferably a group represented by the following general formula (2). The LUMO energy level of the linking group represented by the general formula (2) is preferably deeper than the LUMO energy level of the condensed aromatic heterocycle represented by A 1 and A 2 .
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 一般式(2)中、*は、Aとの結合部位を表し、**は、Aとの結合部位を表す。L及びLは、それぞれ独立に、置換若しくは無置換のフェニレン基、置換若しくは無置換のビフェニル基(1,1’-ビフェニル-ジイル基等)、置換若しくは無置換のフルオレン基(9H-フルオレン-ジイル基等)、置換若しくは無置換のジベンゾチオフェン基(ジベンゾチオフェン-ジイル基)、又は、置換若しくは無置換のジベンゾフラン基(ジベンゾフラン-ジイル基)を表し、Lは、単結合、置換若しくは無置換の炭素数1~5のアルキレン基、エーテル基、チオエーテル基、又は、下記一般式(3)~(7)のいずれかで表される置換基を表す。nは、0~3の整数である。但し、nが2以上であるとき、L及びLは、互いに同一であってもよく、互いに異なっていてもよい。 In general formula (2), * represents a binding site with A 1, and ** represents a binding site with A 2 . L 1 and L 3 are each independently a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenyl group (such as 1,1′-biphenyl-diyl group), a substituted or unsubstituted fluorene group (9H-fluorene) -Diyl group, etc.), substituted or unsubstituted dibenzothiophene group (dibenzothiophene-diyl group), or substituted or unsubstituted dibenzofuran group (dibenzofuran-diyl group), L 2 is a single bond, substituted or unsubstituted It represents a substituted alkylene group having 1 to 5 carbon atoms, an ether group, a thioether group, or a substituent represented by any one of the following general formulas (3) to (7). n is an integer of 0 to 3. However, when n is 2 or more, L 2 and L 3 may be the same or different from each other.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 一般式(3)~(7)中、※は、結合部位を表す。R及びRは、それぞれ独立に、置換若しくは無置換のアルキル基、又は、置換若しくは無置換のアリール基を表す。 In general formulas (3) to (7), * represents a binding site. R 3 and R 4 each independently represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
 一般式においてLで表される炭素数1~5のアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基等が挙げられる。これらのアルキレン基は、分枝を有していてもよい。 Examples of the alkylene group having 1 to 5 carbon atoms represented by L 2 in the general formula include a methylene group, an ethylene group, a trimethylene group, and a tetramethylene group. These alkylene groups may have a branch.
 一般式においてR又はRで表されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等が挙げられる。 Examples of the alkyl group represented by R 3 or R 4 in the general formula include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a t-butyl group, and a pentyl group. Hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group and the like.
 一般式においてR又はRで表されるアリール基としては、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。 Examples of the aryl group represented by R 3 or R 4 in the general formula include a phenyl group, a p-chlorophenyl group, a mesityl group, a tolyl group, a xylyl group, a naphthyl group, an anthryl group, an azulenyl group, an acenaphthenyl group, and a fluorenyl group. Phenanthryl group, indenyl group, pyrenyl group, biphenylyl group and the like.
 一般式においてA、A、HAr、L、L、L、R、R等に結合する置換基としては、例えば、アルキル基(例えば、メチル基、エチル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基等)等が挙げられる。なお、これらの置換基は、これらの置換基によってさらに置換されていてもよい。 Examples of the substituent bonded to A 1 , A 2 , HAr, L 1 , L 2 , L 3 , R 3 , R 4 and the like in the general formula include, for example, an alkyl group (for example, a methyl group, an ethyl group, etc.), cyclo Alkyl groups (for example, cyclopentyl group, cyclohexyl group, etc.), alkenyl groups (for example, vinyl group, allyl group, etc.), alkynyl groups (for example, ethynyl group, propargyl group, etc.), aromatic hydrocarbon ring groups (for example, phenyl group) P-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, etc.), alkoxy group (eg methoxy group, ethoxy group, propyloxy group etc.), cycloalkoxy group (eg cyclopentyloxy group, Cyclohexyloxy group etc.), aryloxy group (eg phenoxy group etc.), alkylthio group (eg methylthio group, Ruthio group, propylthio group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxy) Carbonyl group, butyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (eg, aminosulfonyl group, methylaminosulfonyl group, etc.), acyl group (eg, Acetyl group, ethylcarbonyl group, propylcarbonyl group, etc.), acyloxy group (eg, acetyloxy group, ethylcarbonyloxy group, etc.), amide group (eg, methylcarbonylamino group, ethylcarbonylamino group, etc.) Group, dimethylcarbonylamino group, propylcarbonylamino group, etc.), carbamoyl group (eg, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, etc.), ureido group (eg, methylureido group, Ethylureido group etc.), sulfinyl group (eg methylsulfinyl group, ethylsulfinyl group etc.), alkylsulfonyl group (eg methylsulfonyl group, ethylsulfonyl group etc.), arylsulfonyl group (eg phenylsulfonyl group, naphthylsulfonyl group) Etc.), amino group (eg, amino group, ethylamino group, dimethylamino group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom, etc.), fluorinated hydrocarbon group (eg, fluoromethyl group, trimethyl group) Fluoromethyl , Pentafluoroethyl group, a pentafluorophenyl group), a cyano group, a nitro group, hydroxy group, a mercapto group, a silyl group (e.g., trimethylsilyl group, and a triisopropylsilyl group), and the like. In addition, these substituents may be further substituted with these substituents.
 本発明に係る有機EL素子材料のより好ましい形態は、下記一般式(8)で表される。一般式(8)で表されるように連結基Lが、A及びAで表される縮合芳香族複素環(カルバゾール環)に類似する構造であると、分子同士の相互作用をより強くすることができる。 The more preferable form of the organic EL element material according to the present invention is represented by the following general formula (8). When the linking group L has a structure similar to the condensed aromatic heterocycle (carbazole ring) represented by A 1 and A 2 as represented by the general formula (8), the interaction between molecules is more strongly enhanced. can do.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 一般式(8)中、Yは、O又はSを表す。s1、s2、u1、u2、t1及びt2は、それぞれ独立に、0~4の整数であり、0≦s1+u1≦4、0≦s2+u2≦4、1≦u1+u2≦8を満たす。HAr、R、R、L、L及びnは、前記一般式においてと同義である。 In general formula (8), Y represents O or S. s1, s2, u1, u2, t1, and t2 are each independently an integer of 0 to 4, and satisfy 0 ≦ s1 + u1 ≦ 4, 0 ≦ s2 + u2 ≦ 4, and 1 ≦ u1 + u2 ≦ 8. HAr, R 1 , R 2 , L 2 , L 3 and n are as defined in the above general formula.
 一般式(8)で表される化合物は、下記一般式(9)で表される化合物であってよい。一般式(9)で表されるように、Aで表される縮合芳香族複素環(カルバゾール環)が、Lに相当する縮合芳香族複素環の3位(6位)に結合している化合物は、合成が比較的容易である。 The compound represented by the general formula (8) may be a compound represented by the following general formula (9). As represented by the general formula (9), the condensed aromatic heterocyclic ring (carbazole ring) represented by A 1 is bonded to the 3-position (6-position) of the condensed aromatic heterocyclic ring corresponding to L 1. Some compounds are relatively easy to synthesize.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 一般式(9)中、HAr、R、R、Y、L、L、n、s1、s2、u1、u2、t1及びt2は、前記一般式においてと同義である。 In the general formula (9), HAr, R 1 , R 2, Y, L 2, L 3, n, s1, s2, u1, u2, t1 and t2 are the same meanings as in the general formula.
 一般式(9)で表される化合物は、下記一般式(10)で表される化合物であることが好ましい。一般式(10)で表されるように、HArで表される置換基が、Aで表される縮合芳香族複素環(カルバゾール環)の3位(6位)に結合している化合物は、合成が比較的容易である。電子密度分布への影響や、分子同士の相互作用の立体障害による阻害等を避ける観点からは、さらにRやRを無置換としてもよい。 The compound represented by the general formula (9) is preferably a compound represented by the following general formula (10). As represented by the general formula (10), the compound in which the substituent represented by HAr is bonded to the 3-position (6-position) of the condensed aromatic heterocyclic ring (carbazole ring) represented by A 1 is It is relatively easy to synthesize. From the viewpoint of avoiding the influence on the electron density distribution and the inhibition of interaction between molecules due to steric hindrance, R 1 and R 2 may be further substituted.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 一般式(10)中、s3は、0~4の整数であり、s4は、0~3の整数である。HAr、R、R、Y、L、L、n、t1及びt2は、前記一般式においてと同義である。 In the general formula (10), s3 is an integer of 0 to 4, and s4 is an integer of 0 to 3. HAr, R 1 , R 2 , Y, L 2 , L 3 , n, t1 and t2 are as defined in the above general formula.
 一般式(8)で表される化合物は、下記一般式(11)で表される化合物であってもよい。一般式(11)で表されるように、Aで表される縮合芳香族複素環(カルバゾール環)が、Lに相当する縮合芳香族複素環の1位(8位)に結合している化合物は、合成が比較的容易である。 The compound represented by the general formula (8) may be a compound represented by the following general formula (11). As represented by the general formula (11), the condensed aromatic heterocyclic ring (carbazole ring) represented by A 1 is bonded to the 1-position (8-position) of the condensed aromatic heterocyclic ring corresponding to L 1. Some compounds are relatively easy to synthesize.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 一般式(11)中、HAr、R、R、Y、L、L、n、s1、s2、u1、u2、t1及びt2は、前記一般式においてと同義である。 In the general formula (11), HAr, R 1 , R 2 , Y, L 2 , L 3 , n, s 1 , s 2 , u 1, u 2, t 1 and t 2 have the same meaning as in the general formula.
 一般式(11)で表される化合物は、下記一般式(12)で表される化合物であることが好ましい。一般式(12)で表されるように、HArで表される置換基が、Aで表される縮合芳香族複素環(カルバゾール環)の3位(6位)に結合している化合物は、合成が比較的容易である。電子密度分布への影響や、分子同士の相互作用の立体障害による阻害等を避ける観点からは、さらにRやRを無置換としてもよい。 The compound represented by the general formula (11) is preferably a compound represented by the following general formula (12). As represented by the general formula (12), the compound in which the substituent represented by HAr is bonded to the 3-position (6-position) of the condensed aromatic heterocyclic ring (carbazole ring) represented by A 1 is It is relatively easy to synthesize. From the viewpoint of avoiding the influence on the electron density distribution and the inhibition of interaction between molecules due to steric hindrance, R 1 and R 2 may be further substituted.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 一般式(12)中、s3は、0~4の整数であり、s4は、0~3の整数である。HAr、R、R、Y、L、L、n、t1及びt2は、前記一般式においてと同義である。 In the general formula (12), s3 is an integer of 0 to 4, and s4 is an integer of 0 to 3. HAr, R 1 , R 2 , Y, L 2 , L 3 , n, t1 and t2 are as defined in the above general formula.
 本発明に係る有機EL素子材料のより好ましい形態は、一般式においてHArで表される置換基が、含窒素5員芳香族複素環のみ、含窒素6員芳香族複素環のみ、又は、電子吸引性基のみからなる。電子吸引性基としては、特に、シアノ基、ニトロ基、ジフェニルホスフィノ基、アセチル基、トリフルオロメチル基、及び、ペンタフルオロスルファニル基からなる群より選択される少なくとも1種以上が好ましい。HArで表される置換基が、このような電子吸引性を示す基であると、Aで表される縮合芳香族複素環のHOMOの電子密度を効果的に低下させることができるので、励起状態におけるエキシマの形成をより確実に抑制することができる。また、含窒素5員芳香族複素環や含窒素6員芳香族複素環であると、電子吸引性基である場合と比較して分子の安定性が高くなる傾向があるため、有機EL素子の発光寿命等を向上させるのに有利である。 In a more preferred form of the organic EL device material according to the present invention, the substituent represented by HAr in the general formula is a nitrogen-containing 5-membered aromatic heterocyclic ring only, a nitrogen-containing 6-membered aromatic heterocyclic ring only, or an electron withdrawing It consists only of sex groups. The electron withdrawing group is particularly preferably at least one selected from the group consisting of a cyano group, a nitro group, a diphenylphosphino group, an acetyl group, a trifluoromethyl group, and a pentafluorosulfanyl group. When the substituent represented by HAr is a group exhibiting such an electron-withdrawing property, the electron density of HOMO of the condensed aromatic heterocyclic ring represented by A 1 can be effectively reduced. Excimer formation in the state can be more reliably suppressed. In addition, since a nitrogen-containing 5-membered aromatic heterocycle or a nitrogen-containing 6-membered aromatic heterocycle tends to have higher molecular stability than an electron-withdrawing group, the organic EL element This is advantageous for improving the light emission lifetime.
 一般式においてHArで表される含窒素5員芳香族複素環及び含窒素6員芳香族ヘテロ環のより好ましい形態は、下記一般式(13)~(21)のいずれかで表される。これらの含窒素複素環基は、Aで表される縮合芳香族複素環(カルバゾール環等)よりも低いHOMOのエネルギー準位と、青色リン光発光にも適用可能な程度の高いTエネルギーとを有している。また、合成も比較的容易に行うことができる。 A more preferable form of the nitrogen-containing 5-membered aromatic heterocycle and the nitrogen-containing 6-membered aromatic heterocycle represented by HAr in the general formula is represented by any one of the following general formulas (13) to (21). These nitrogen-containing heterocyclic groups have a HOMO energy level lower than that of the condensed aromatic heterocyclic ring represented by A 1 (such as a carbazole ring) and a high T 1 energy applicable to blue phosphorescence. And have. Further, the synthesis can be performed relatively easily.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 一般式(13)~(21)中、※は、結合部位を表す。Rは、それぞれ独立に、水素原子、ハロゲン原子、又は、置換若しくは無置換の炭素数1~5のアルキル基、置換若しくは無置換の炭素数3~10のシクロアルキル基、置換若しくは無置換のフェニル基、又は、置換若しくは無置換のピリジル基を表す。 In general formulas (13) to (21), * represents a binding site. Each R independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, or a substituted or unsubstituted phenyl; Represents a group or a substituted or unsubstituted pyridyl group.
 Rで表される炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、ペンチル基等が挙げられる。 Examples of the alkyl group having 1 to 5 carbon atoms represented by R include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a t-butyl group, and a pentyl group. Is mentioned.
 Rで表される炭素数3~10のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。 Examples of the cycloalkyl group having 3 to 10 carbon atoms represented by R include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like.
 以下、本発明に係る有機EL素子材料の具体例を示す。但し、本発明は、これらの化合物に限定されるものではない。 Hereinafter, specific examples of the organic EL element material according to the present invention will be shown. However, the present invention is not limited to these compounds.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
[一般式(1)で表される構造を有する化合物の合成例]
 以下、本発明に係る有機EL素子材料の合成方法について、上記した具体例のうちの化合物例52及び化合物例2を例にとって説明する。但し、本発明に係る有機EL素子材料の合成方法は、これらに制限されるものではない。
[Synthesis Example of Compound having Structure Represented by General Formula (1)]
Hereinafter, the method for synthesizing the organic EL element material according to the present invention will be described using Compound Example 52 and Compound Example 2 among the above-described specific examples as examples. However, the method for synthesizing the organic EL element material according to the present invention is not limited thereto.
《化合物例52の合成》
Figure JPOXMLDOC01-appb-C000068
<< Synthesis of Compound Example 52 >>
Figure JPOXMLDOC01-appb-C000068
 はじめに、窒素気流下、秤量した2-ブロモ-6-ヨード-ジベンゾフラン、カルバゾール、酸化銅(II)、ジピバロイルメタン(DPM)、リン酸カリウムを非プロトン性溶媒中に投入し、100℃で10時間攪拌する。そして、飽和食塩水、有機溶媒を投入して不溶物を除去した後、有機相を減圧濃縮し、精製を行うと中間体1が得られる。 First, under a nitrogen stream, weighed 2-bromo-6-iodo-dibenzofuran, carbazole, copper (II) oxide, dipivaloylmethane (DPM), and potassium phosphate into an aprotic solvent, and 100 ° C. For 10 hours. And after adding a saturated salt solution and an organic solvent to remove insoluble matters, the organic phase is concentrated under reduced pressure, and purification is performed to obtain an intermediate 1.
 続いて、窒素気流下、中間体1、3-ブロモ-カルバゾール、酸化銅(II)、ジピバロイルメタン(DPM)、リン酸カリウムを非プロトン性溶媒中に投入し、130℃で5時間攪拌する。そして、飽和食塩水、有機溶媒を投入して不溶物を除去した後、有機相を減圧濃縮し、精製を行うと中間体2が得られる。 Subsequently, intermediate 1, 3-bromo-carbazole, copper (II) oxide, dipivaloylmethane (DPM), and potassium phosphate were put into an aprotic solvent under a nitrogen stream, and at 130 ° C. for 5 hours. Stir. And after adding a saturated salt solution and an organic solvent to remove insoluble matters, the organic phase is concentrated under reduced pressure, and purification is performed to obtain an intermediate 2.
 さらに、窒素気流下、中間体2、1H-ベンズイミダゾ―ル、酸化銅(II)、ジピバロイルメタン(DPM)、リン酸カリウムをDMSO中に投入し、160℃で2時間攪拌する。そして、飽和食塩水、有機溶媒を投入して不溶物を除去した後、有機相を減圧濃縮し、精製を行うと化合物例52が得られる。 Further, intermediate 2, 1H-benzimidazole, copper (II) oxide, dipivaloylmethane (DPM), and potassium phosphate are added into DMSO under a nitrogen stream, and stirred at 160 ° C. for 2 hours. And after adding a saturated salt solution and an organic solvent to remove insoluble matters, the organic phase is concentrated under reduced pressure and purified to obtain Compound Example 52.
《化合物例2の合成》
Figure JPOXMLDOC01-appb-C000069
<< Synthesis of Compound Example 2 >>
Figure JPOXMLDOC01-appb-C000069
 3-ニトロ-カルバゾール、パラジウム/炭素をエタノール中に溶解し、水素雰囲気下、加熱攪拌しながら還元することで中間体3が得られる。次いで、中間体3に安息香酸クロリドを反応させてアミド化することで中間体4が得られる。さらに、中間体4にPOCl等の無機酸塩化物を反応させて塩素化することで中間体5が得られる。そして、中間体5に5-フェニルテトラゾールを加えてトルエン中で2時間加熱還流することで中間体6が得られる。 Intermediate 3 is obtained by dissolving 3-nitro-carbazole and palladium / carbon in ethanol and reducing the mixture with heating and stirring in a hydrogen atmosphere. Next, intermediate 4 is obtained by reacting intermediate 3 with benzoic acid chloride and amidation. Further, intermediate 5 is obtained by reacting intermediate 4 with an inorganic acid chloride such as POCl 3 and chlorinating. Then, intermediate 6 is obtained by adding 5-phenyltetrazole to intermediate 5 and heating to reflux in toluene for 2 hours.
 続いて、窒素気流下、中間体6、前記の中間体1、酸化銅(II)、ジピバロイルメタン(DPM)、リン酸カリウムをDMSO中に投入し、160℃で2時間攪拌する。そして、飽和食塩水、有機溶媒を投入して不溶物を除去した後、有機相を減圧濃縮し、精製を行うと化合物例2が得られる。 Subsequently, the intermediate 6, the intermediate 1, the copper oxide (II), dipivaloylmethane (DPM), and potassium phosphate are charged into DMSO under a nitrogen stream and stirred at 160 ° C. for 2 hours. And after adding a saturated salt solution and an organic solvent to remove insoluble matters, the organic phase is concentrated under reduced pressure and purified to obtain Compound Example 2.
 これらの合成方法においては、酸化銅(II)に代えてヨウ化銅(I)等の銅化合物、ジピバロイルメタンに代えてピコリン酸等の配位子、リン酸カリウムに代えて炭酸カリウム等の塩基、溶媒として適宜の非プロトン性溶媒を用いることが可能である。得られる化合物については、H-NMRスペクトル、MSスペクトル等により確認することができる。 In these synthesis methods, a copper compound such as copper iodide (I) is substituted for copper (II) oxide, a ligand such as picolinic acid is substituted for dipivaloylmethane, and potassium carbonate is substituted for potassium phosphate. A suitable aprotic solvent can be used as the base and the solvent. The obtained compound can be confirmed by 1 H-NMR spectrum, MS spectrum or the like.
<有機エレクトロルミネッセンス素子>
 以下、本発明に係る有機EL素子の素子構成と各構成要素について説明する。有機EL素子の素子構成は、例えば、次のような積層構造とすることができる。
(1)陽極/発光層/陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(8)陽極/正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 但し、有機EL素子の素子構成は、前記の(1)~(8)に制限されるものではなく、従来知られている適宜の構成をとることができる。例えば、発光層は、単一の層で構成してもよいし、複数の発光層を積層した構成としてもよい。
<Organic electroluminescence device>
Hereinafter, the element configuration and each component of the organic EL element according to the present invention will be described. The element configuration of the organic EL element can be, for example, the following laminated structure.
(1) Anode / light emitting layer / cathode (2) Anode / light emitting layer / electron transport layer / cathode (3) Anode / hole transport layer / light emitting layer / cathode (4) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (6) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ( 7) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (8) Anode / hole injection layer / hole transport layer / electron blocking layer / light emitting layer / hole Blocking layer / electron transporting layer / electron injecting layer / cathode However, the element structure of the organic EL element is not limited to the above (1) to (8), and has a conventionally known appropriate structure. Can do. For example, the light emitting layer may be composed of a single layer or a structure in which a plurality of light emitting layers are stacked.
[発光層]
 発光層は、電極又は隣接層から電子と正孔とが注入され、これらの再結合により生じる励起子の失活によって発光を生じさせる層である。但し、発光を生じる位置は、発光層の層内であっても、発光層と隣接層との界面であってもよい。発光層は、発光ドーパントと、ホスト化合物とを含有することが好ましい。
[Light emitting layer]
The light emitting layer is a layer in which electrons and holes are injected from an electrode or an adjacent layer, and light is emitted by deactivation of excitons generated by recombination thereof. However, the position where light emission occurs may be within the light emitting layer or at the interface between the light emitting layer and the adjacent layer. The light emitting layer preferably contains a light emitting dopant and a host compound.
 発光層の層厚の総和は、特に制限されるものではない。但し、形成する層の均質性を確保し、発光時に不必要な高電圧を印加するのを防止し、駆動電流に対する発光色の安定性を向上させる等の観点からは、好ましくは2nm~5μmの範囲、より好ましくは2~500nmの範囲、さらに好ましくは5~200nmの範囲に調整する。 The total thickness of the light emitting layer is not particularly limited. However, from the viewpoints of ensuring the uniformity of the layer to be formed, preventing the application of unnecessary high voltage during light emission, and improving the stability of the emission color with respect to the drive current, it is preferably 2 nm to 5 μm. The range is adjusted, more preferably in the range of 2 to 500 nm, still more preferably in the range of 5 to 200 nm.
(ホスト化合物)
 ホスト化合物は、発光層において主に電荷の注入及び輸送を担い、観測可能な程度の発光を実質的には生じない化合物である。具体的には、リン光量子収率が、25℃において0.1未満の化合物であると定義される。ホスト化合物のリン光量子収率は、好ましくは0.01未満である。本発明に係る有機EL素子においては、前記の有機EL素子材料が、ホスト化合物として好適に用いられる。このとき、従来知られている他のホスト化合物を併用してもよい。
(Host compound)
The host compound is a compound that mainly takes charge injection and transport in the light emitting layer and does not substantially generate observable light emission. Specifically, the phosphorescence quantum yield is defined as a compound having a concentration of less than 0.1 at 25 ° C. The phosphorescence quantum yield of the host compound is preferably less than 0.01. In the organic EL device according to the present invention, the organic EL device material is preferably used as a host compound. At this time, other conventionally known host compounds may be used in combination.
 ホスト化合物は、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。また、ホスト化合物の励起状態エネルギーは、同一層内に含有される発光ドーパントの励起状態エネルギーよりも高いことが好ましい。 The host compound preferably has a mass ratio in the layer of 20% or more among the compounds contained in the light emitting layer. Moreover, it is preferable that the excited state energy of a host compound is higher than the excited state energy of the light emission dopant contained in the same layer.
 本発明に係る有機EL素子において併用することができる他のホスト化合物の種類は、特に制限されるものではない。低分子化合物であってもよいし、繰り返し単位を有する高分子化合物であってもよい。また、ビニル基やエポキシ基のような反応性基を有する化合物であってもよい。 The types of other host compounds that can be used in combination in the organic EL device according to the present invention are not particularly limited. A low molecular compound may be sufficient and the high molecular compound which has a repeating unit may be sufficient. Further, it may be a compound having a reactive group such as a vinyl group or an epoxy group.
 ホスト化合物は、正孔輸送能又は電子輸送能を有しつつ、かつ発光の長波長化を防ぎ、さらに、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点からは、高いガラス転移温度(Tg)を有することが好ましい。具体的には、Tgが90℃以上であることが好ましく、120℃以上であることがより好ましい。なお、ガラス転移温度(Tg)は、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012に準拠した方法により求められる値とする。 The host compound has a hole transporting capability or an electron transporting capability, prevents a long wavelength of light emission, and further stabilizes the organic EL element to operate at a high temperature or to generate heat during element driving. Preferably has a high glass transition temperature (Tg). Specifically, Tg is preferably 90 ° C. or higher, and more preferably 120 ° C. or higher. The glass transition temperature (Tg) is a value determined by a method based on JIS K 7121-2012 using DSC (Differential Scanning Colorimetry).
 本発明に係る有機EL素子において併用することができる他のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。但し、これらの化合物に制限されるものではない。特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許公開第2003/0175553号明細書、米国特許公開第2006/0280965号明細書、米国特許公開第2005/0112407号明細書、米国特許公開第2009/0017330号明細書、米国特許公開第2009/0030202号明細書、米国特許公開第2005/0238919号明細書、国際公開第2001/039234号、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008-074939号公報、特開2007-254297号公報、欧州特許第2034538号明細書等である。 Specific examples of other host compounds that can be used in combination in the organic EL device according to the present invention include compounds described in the following documents. However, it is not limited to these compounds. JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445 gazette, 2002-343568 gazette, 2002-141173 gazette, 2002-352957 gazette, 2002-203683 gazette, 2002-363227 gazette, 2002-231453 gazette, No. 003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-260861, No. 2002-280183, No. 2002-299060, No. 2002. -302516, 2002-305083, 2002-305084, 2002-308837, US 2003/0175553, US 2006/0280965, US Publication No. 2005/0112407, United States Patent Publication No. 2009/0017330, United States Patent Publication No. 2009/0030202, United States Patent Publication No. 2005/0238919, International Publication No. 2001/039234. International Publication No. 2009/021126, International Publication No. 2008/056746, International Publication No. 2004/093207, International Publication No. 2005/089025, International Publication No. 2007/063796, International Publication No. 2007/063754, International Publication No. 2004/107822, WO 2005/030900, WO 2006/114966, WO 2009/086028, WO 2009/003898, WO 2012/023947, JP 2008- No. 074939, JP-A-2007-254297, European Patent No. 2034538, and the like.
(発光ドーパント)
 発光ドーパントとしては、蛍光発光性ドーパント及びリン光発光性ドーパントのいずれを用いることも可能である。但し、有機EL素子中にリン光発光性ドーパントが含まれていることが好ましく、前記の有機EL素子材料と同一の発光層にリン光発光性ドーパントが含まれていることがより好ましい。
(Luminescent dopant)
As the light emitting dopant, either a fluorescent light emitting dopant or a phosphorescent light emitting dopant can be used. However, it is preferable that a phosphorescent dopant is included in the organic EL element, and it is more preferable that the phosphorescent dopant is included in the same light emitting layer as the organic EL element material.
 リン光発光性ドーパントのHOMOのエネルギー準位は、-5.30eV以上-4.5eV以下であることが好ましい。このようなエネルギー準位を有する金属錯体の具体例としては、国際公開2015/87739号に記載のもの等が挙げられる。前記の有機EL素子材料のHOMOのエネルギー準位については、縮合芳香族複素環の選択等によって十分に深くすることが可能である。そのため、このようなエネルギー準位を有するリン光発光性ドーパントを併用した場合には、前記の有機EL素子材料ではなく、このリン光発光性ドーパントが正孔の輸送を主に担うことになる。したがって、励起子がホスト化合物上で生成するのを抑制することができ、エキシマの生成や無輻射の失活を低減して有機EL素子を長寿命化することができる。 HOMO energy level of the phosphorescent dopant is preferably −5.30 eV or more and −4.5 eV or less. Specific examples of the metal complex having such an energy level include those described in International Publication No. 2015/87739. The HOMO energy level of the organic EL element material can be made sufficiently deep by selecting a condensed aromatic heterocyclic ring or the like. Therefore, when a phosphorescent dopant having such an energy level is used in combination, this phosphorescent dopant is mainly responsible for the transport of holes, not the organic EL element material. Therefore, it is possible to suppress the generation of excitons on the host compound, and it is possible to extend the lifetime of the organic EL element by reducing the generation of excimer and non-radiation deactivation.
 発光層中の発光ドーパントの濃度については、使用される特定の発光ドーパント及び有機EL素子が適用されるデバイスの必要条件等に基いて、任意に決定することができる。例えば、発光層の層厚方向に対して均一な濃度で含有されていてもよいし、任意の濃度分布を有して含有されていてもよい。 The concentration of the light-emitting dopant in the light-emitting layer can be arbitrarily determined based on the specific light-emitting dopant used and the requirements of the device to which the organic EL element is applied. For example, it may be contained at a uniform concentration in the thickness direction of the light emitting layer, or may be contained with an arbitrary concentration distribution.
 発光ドーパントとしては、単一の発光層中において複数種を併用してもよい。また、有機EL素子中において異なる発光層に複数種を併用してもよい。また、分子構造の異なるドーパント同士を組み合わせて用いてもよいし、蛍光発光性ドーパントとリン光発光性ドーパントとを組み合わせて用いてもよい。 As the light emitting dopant, a plurality of types may be used in combination in a single light emitting layer. Moreover, you may use multiple types together in a different light emitting layer in an organic EL element. Further, dopants having different molecular structures may be used in combination, or a fluorescent luminescent dopant and a phosphorescent dopant may be used in combination.
 なお、発光ドーパントに由来する発光色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図5.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。 The emission color derived from the luminescent dopant is shown in FIG. 5.16 on page 108 of the “New Color Science Handbook” (edited by the Japan Society of Color Science, University of Tokyo Press, 1985), with a spectral radiance meter CS-1000 (Konica Minolta). It is determined by the color when the result measured by (made by Co., Ltd.) is applied to the CIE chromaticity coordinates.
 発光ドーパントは、複数種を併用し、互いの発光色の合成によって白色発光が生じるように組み合わせてもよい。例えば、青と橙等の補色の関係で組み合わせたり、三原色を組み合わせたりしてよい。白色発光は、用途にもよるが、2度視野角正面輝度において1000cd/mでのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。 A plurality of kinds of light emitting dopants may be used in combination, and white light emission may be generated by synthesizing each other's light emission colors. For example, a combination of complementary colors such as blue and orange, or three primary colors may be combined. Depending on the application, white light emission has a chromaticity of x = 0.39 ± 0.09 and y = 0.38 ± 0.08 in the CIE1931 color system at 1000 cd / m 2 at a front angle luminance of 2 ° viewing angle. It is preferable that it exists in the area | region.
(リン光ドーパント)
 リン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義される。リン光ドーパントのリン光量子収率は、好ましくは0.1以上である。
(Phosphorescent dopant)
A phosphorescent dopant is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.). Defined as being 01 or more compounds. The phosphorescence quantum yield of the phosphorescence dopant is preferably 0.1 or more.
 リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法によって測定することができる。溶液中でのリン光量子収率は、種々の溶媒を用いて測定することができる。リン光ドーパントについてリン光量子収率は、任意の溶媒のいずれかにおいて0.01以上が達成されればよい。 The phosphorescence quantum yield can be measured by the method described in Spectra II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. The phosphorescence quantum yield in a solution can be measured using various solvents. With respect to the phosphorescent dopant, the phosphorescent quantum yield may be 0.01 or more in any solvent.
 本発明に係る有機EL素子において用いることができるリン光ドーパントの具体例としては、以下の文献に記載されている化合物が挙げられる。但し、これらの化合物に制限されるものではない。Nature,395,151(1998)、Appl.Phys.Lett.,78,1622(2001)、Adv.Mater.,19,739(2007)、Chem.Mater.,17,3532(2005)、Adv.Mater.,17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許公開第2006/835469号、米国特許公開第2006/0202194号明細書、米国特許公開第2007/0087321号明細書、米国特許公開第2005/0244673号明細書、Inorg.Chem.,40,1704(2001)、Chem.Mater.,16,2480(2004)、Adv.Mater.,16,2003(2004)、Angew.Chem.lnt.Ed.,2006,45,7800、Appl.Phys.Lett.,86,153505(2005)、Chem.Lett.,34,592(2005)、Chem.Commun.,2906(2005)、Inorg.Chem.,42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許公開第2009/0108737号明細書、米国特許公開第2009/0039776号明細書、米国特許第6921915号明細書、米国特許第6687266号明細書、米国特許公開第2007/0190359号明細書、米国特許公開第2006/0008670号明細書、米国特許公開第2009/0165846号明細書、米国特許公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許公開第2006/0263635号明細書、米国特許公開第2003/0138657号明細書、米国特許公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew.Chem.lnt.Ed.,47,1(2008)、Chem.Mater.,18,5119(2006)、Inorg.Chem.,46,4308(2007)、Organometallics,23,3745(2004)、Appl.Phys.Lett.,74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許公開第2006/0251923号明細書、米国特許公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許公開第2007/0190359号明細書、米国特許公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許公開第2006/098120号明細書、米国特許公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許公開第2012/228583号明細書、米国特許公開第2012/212126号明細書、特開2012-069737号公報、特開2012-195554号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等である。 Specific examples of phosphorescent dopants that can be used in the organic EL device according to the present invention include compounds described in the following documents. However, it is not limited to these compounds. Nature, 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. , 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. , 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Publication No. 2006/835469, US Patent Publication No. 2006/020202194. U.S. Patent Publication No. 2007/0087321, U.S. Patent Publication No. 2005/0244673, Inorg. Chem. , 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. , 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. , 34, 592 (2005), Chem. Commun. , 2906 (2005), Inorg. Chem. , 42, 1248 (2003), International Publication No. 2009/050290, International Publication No. 2002/015645, International Publication No. 2009/000673, US Patent Publication No. 2002/0034656, and US Pat. No. 7,332,232. US Patent Publication No. 2009/0108737, US Patent Publication No. 2009/0039776, US Patent No. 6921915, US Patent No. 6,687,266, US Patent Publication No. 2007/0190359, US Patent Publication No. 2006/0008670, US Patent Publication No. 2009/0165846, US Patent Publication No. 2008/0015355, US Pat. No. 7,250,226, US Pat. No. 7,396,598, US Patent Publication No. 2006 0263635 Pat, U.S. Patent Publication No. 2003/0138657, U.S. Patent Publication No. 2003/0152802, U.S. Patent No. 7090928, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. , 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics, 23, 3745 (2004), Appl. Phys. Lett. , 74, 1361 (1999), International Publication No. 2002/002714, International Publication No. 2006/009024, International Publication No. 2006/056418, International Publication No. 2005/019373, International Publication No. 2005/123873, International Publication. 2005/123873, International Publication No. 2007/004380, International Publication No. 2006/082742, U.S. Publication No. 2006/0251923, U.S. Publication No. 2005/0260441, U.S. Pat. No. 7,393,599. , U.S. Pat. No. 7,534,505, U.S. Pat. No. 7,445,855, U.S. Patent Publication No. 2007/0190359, U.S. Patent Publication No. 2008/0297033, U.S. Pat. No. 7,338,722, U.S. Pat. Release 200 No. 034984, U.S. Pat. No. 7,279,704, U.S. Patent Publication No. 2006/098120, U.S. Patent Publication No. 2006/103874, WO 2005/076380, WO 2010/032663. No., International Publication No. 2008/140115, International Publication No. 2007/052431, International Publication No. 2011/134013, International Publication No. 2011/157339, International Publication No. 2010/086089, International Publication No. 2009/113646, WO2012 / 020327, WO2011 / 051404, WO2011 / 004639, WO2011 / 073149, US2012 / 2285853, US2012 / 1221212 Specification, JP 2012-069737 A, JP 2012-195554 A, JP 2009-114086 A, JP 2003-81988 A, JP 2002-302671 A, JP 2002-363552 A. Such as a gazette.
 本発明に係る有機EL素子においては、リン光ドーパントとしてIrを中心金属に有する有機金属錯体を用いることが好ましく、金属-炭素結合、金属-窒素結合、金属-酸素結合及び金属-硫黄結合のうちの少なくとも一つの配位様式を含む有機金属錯体を用いることがより好ましい。 In the organic EL device according to the present invention, it is preferable to use an organometallic complex having Ir as a central metal as a phosphorescent dopant. Among metal-carbon bonds, metal-nitrogen bonds, metal-oxygen bonds and metal-sulfur bonds. It is more preferable to use an organometallic complex containing at least one coordination mode.
(蛍光ドーパント)
 蛍光ドーパントは、励起一重項からの発光が可能な化合物である。
(Fluorescent dopant)
A fluorescent dopant is a compound that can emit light from an excited singlet.
 蛍光ドーパントとしては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン誘導体、ピラン誘導体、シアニン誘導体、クロコニウム誘導体、スクアリウム誘導体、オキソベンゾアントラセン誘導体、フルオレセイン誘導体、ローダミン誘導体、ピリリウム誘導体、ペリレン誘導体、ポリチオフェン誘導体、希土類錯体系化合物等が挙げられる。 Examples of the fluorescent dopant include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, coumarin derivatives, pyran derivatives, Examples include cyanine derivatives, croconium derivatives, squalium derivatives, oxobenzoanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, rare earth complex compounds, and the like.
 蛍光ドーパントとしては、遅延蛍光を利用したものを用いてもよい。遅延蛍光を利用した発光ドーパントの具体例としては、以下の文献に記載されている化合物が挙げられる。但し、これらの化合物に制限されるものではない。国際公開第2011/156793号、特開2011-213643号公報、特開2010-93181号公報等である。 As the fluorescent dopant, a substance using delayed fluorescence may be used. Specific examples of the light-emitting dopant using delayed fluorescence include compounds described in the following documents. However, it is not limited to these compounds. International Publication No. 2011/156793, Japanese Unexamined Patent Application Publication No. 2011-213643, Japanese Unexamined Patent Application Publication No. 2010-93181, and the like.
[電子輸送層]
 電子輸送層は、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。電子輸送層は、単層で構成してもよいし、複数層で構成してもよい。電子輸送層の総層厚は、特に制限されるものではない。通常は2nm~5μmの範囲、好ましくは2~500nm、より好ましくは5~200nmである。電子輸送層の層厚を厚くすると電圧が上昇しやすくなるため、特に層厚が厚い場合においては、電子輸送層の電子移動度は10-5cm/Vs以上であることが好ましい。
[Electron transport layer]
The electron transport layer is made of a material having a function of transporting electrons and may have a function of transmitting electrons injected from the cathode to the light emitting layer. The electron transport layer may be composed of a single layer or a plurality of layers. The total layer thickness of the electron transport layer is not particularly limited. Usually, it is in the range of 2 nm to 5 μm, preferably 2 to 500 nm, more preferably 5 to 200 nm. When the layer thickness of the electron transport layer is increased, the voltage is likely to increase. Particularly, when the layer thickness is thick, the electron mobility of the electron transport layer is preferably 10 −5 cm 2 / Vs or more.
 電子輸送層の材料としては、電子の注入性若しくは輸送性、又は、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン等)等が挙げられる。 As a material for the electron transport layer, any material may be used as long as it has either an electron injection property or a transport property, or a hole barrier property. Can do. For example, nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, Triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, dibenzofuran derivatives, dibenzothiophenes Derivatives, silole derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenylene, etc.) and the like.
 また、電子輸送層の材料としては、配位子にキノリノール骨格、ジベンゾキノリノール骨格等を有する金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等や、これらの金属錯体の中心金属が、In、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も用いることができる。その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、n型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。また、これらの材料を高分子鎖に導入した材料や、これらの材料を高分子の主鎖とした材料を用いることもできる。 As the material for the electron transport layer, a metal complex having a quinolinol skeleton, a dibenzoquinolinol skeleton or the like as a ligand, for example, tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol). ) Aluminum, Tris (5,7-dibromo-8-quinolinol) aluminum, Tris (2-methyl-8-quinolinol) aluminum, Tris (5-methyl-8-quinolinol) aluminum, Bis (8-quinolinol) zinc (Znq Etc., and metal complexes in which the central metal of these metal complexes is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb. In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transport material. Further, the distyrylpyrazine derivatives exemplified as the material for the light emitting layer can also be used as an electron transport material, and inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as an electron transport material. In addition, materials obtained by introducing these materials into the polymer chain, or materials using these materials as the main chain of the polymer can also be used.
 電子輸送層は、ゲスト材料としてドープ材をドープして、n性の高い(電子リッチ)電子輸送層としてもよい。ドープ材としては、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。 The electron transport layer may be a high-n (electron rich) electron transport layer by doping a doping material as a guest material. Examples of the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides. Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004) and the like.
 電子輸送層の材料の具体例としては、以下の文献に記載されている化合物が挙げられる。但し、これらの化合物に制限されるものではない。米国特許第6528187号明細書、米国特許第7230107号明細書、米国特許公開第2005/0025993号明細書、米国特許公開第2004/0036077号明細書、米国特許公開第2009/0115316号明細書、米国特許公開第2009/0101870号明細書、米国特許公開第2009/0179554号明細書、国際公開第2003/060956号、国際公開第2008/132085号、Appl.Phys.Lett.,75,4(1999)、Appl.Phys.Lett.,79,449(2001)、Appl.Phys.Lett.,81,162(2002)、Appl.Phys.Lett.,81,162(2002)、Appl.Phys.Lett.,79,156(2001)、米国特許第7964293号明細書、米国特許公開第2009/030202号明細書、国際公開第2004/080975号、国際公開第2004/063159号、国際公開第2005/085387号、国際公開第2006/067931号、国際公開第2007/086552号、国際公開第2008/114690号、国際公開第2009/069442号、国際公開第2009/066779号、国際公開第2009/054253号、国際公開第2011/086935号、国際公開第2010/150593号、国際公開第2010/047707号、EP2311826号、特開2010-251675号公報、特開2009-209133号公報、特開2009-124114号公報、特開2008-277810号公報、特開2006-156445号公報、特開2005-340122号公報、特開2003-45662号公報、特開2003-31367号公報、特開2003-282270号公報、国際公開第2012/115034号等である。 Specific examples of the material for the electron transport layer include compounds described in the following documents. However, it is not limited to these compounds. US Pat. No. 6,528,187, US Pat. No. 7,230,107, US Patent Publication No. 2005/0025993, US Patent Publication No. 2004/0036077, US Patent Publication No. 2009/0115316, US Patent Publication No. 2009/0101870, United States Patent Publication No. 2009/0179554, International Publication No. 2003/060956, International Publication No. 2008/132805, Appl. Phys. Lett. , 75, 4 (1999), Appl. Phys. Lett. 79, 449 (2001), Appl. Phys. Lett. 81, 162 (2002), Appl. Phys. Lett. 81, 162 (2002), Appl. Phys. Lett. 79,156 (2001), U.S. Patent No. 7964293, U.S. Patent Publication No. 2009/030202, International Publication No. 2004/080975, International Publication No. 2004/063159, International Publication No. 2005/085387. , International Publication No. 2006/067931, International Publication No. 2007/085652, International Publication No. 2008/114690, International Publication No. 2009/066942, International Publication No. 2009/066779, International Publication No. 2009/054253, International Publication No. JP 2011/086935, WO 2010/150593, WO 2010/047707, EP 2311826, JP 2010-251675, JP 2009-209133, JP 2009-124114, Special JP 2008-277810 A, JP 2006-156445 A, JP 2005-340122 A, JP 2003-45662 A, JP 2003-31367 A, JP 2003-282270 A, International Publication 2012. / 115034.
 電子輸送層の材料としては、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体が挙げられる Examples of the material for the electron transport layer include pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, and benzimidazole derivatives.
[正孔阻止層]
 正孔阻止層は、広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなる。電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
[Hole blocking layer]
The hole blocking layer is a layer having a function of an electron transporting layer in a broad sense, and is preferably made of a material having a function of transporting electrons and a small ability to transport holes. By blocking holes while transporting electrons, the recombination probability of electrons and holes can be improved.
 正孔阻止層の層厚は、好ましくは3~100nmの範囲、より好ましくは5~30nmの範囲である。正孔阻止層は、電子輸送層の構成と同様に形成することができるが、発光層の陰極側に隣接して設けることが好ましい。正孔阻止層の材料としては、電子輸送層に用いられる材料が好ましく用いられる。また、ホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。 The layer thickness of the hole blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm. The hole blocking layer can be formed in the same manner as the electron transport layer, but is preferably provided adjacent to the cathode side of the light emitting layer. As the material for the hole blocking layer, materials used for the electron transport layer are preferably used. A material used as a host compound is also preferably used for the hole blocking layer.
[電子注入層]
 電子注入層(「陰極バッファー層」ともいう。)は、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層である。電子注入層については、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。また、電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されている。電子注入層は必要に応じて設け、陰極と発光層との間、又は、陰極と電子輸送層との間に存在させてもよい。電子注入層はごく薄い膜であることが好ましく、素材にもよるがその層厚は0.1~5nmの範囲が好ましい。また、構成材料が断続的に存在する不均一な膜であってもよい。
[Electron injection layer]
The electron injection layer (also referred to as “cathode buffer layer”) is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. The details of the electron injection layer are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Organic EL devices and their industrialization front line (issued by NTT Corporation on November 30, 1998)”. It is described in. Details of the electron injection layer are also described in JP-A-6-325871, JP-A-9-17574, and JP-A-10-74586. The electron injection layer may be provided as necessary, and may be present between the cathode and the light emitting layer or between the cathode and the electron transport layer. The electron injection layer is preferably a very thin film, and the layer thickness is preferably in the range of 0.1 to 5 nm depending on the material. Moreover, the nonuniform film | membrane in which a constituent material exists intermittently may be sufficient.
 電子注入層の材料としては、例えば、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、電子輸送層の材料を用いることも可能である。 Examples of the material for the electron injection layer include metals represented by strontium and aluminum, alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, and the like, magnesium fluoride, calcium fluoride, and the like. And alkaline earth metal compounds, metal oxides typified by aluminum oxide, metal complexes typified by lithium 8-hydroxyquinolate (Liq), and the like. It is also possible to use a material for the electron transport layer.
[正孔輸送層]
 正孔輸送層は、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。正孔輸送層は、単層で構成してもよいし、複数層で構成してもよい。正孔輸送層の総層厚は、特に制限されるものではない。通常は5nm~5μmの範囲であり、より好ましくは2~500nmであり、さらに好ましくは5~200nmである。
[Hole transport layer]
The hole transport layer is made of a material having a function of transporting holes and may have a function of transmitting holes injected from the anode to the light emitting layer. The hole transport layer may be composed of a single layer or a plurality of layers. The total layer thickness of the hole transport layer is not particularly limited. Usually, it is in the range of 5 nm to 5 μm, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
 正孔輸送層の材料としては、正孔の注入性若しくは輸送性、又は、電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えば、PEDOT/PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。トリアリールアミン誘導体としては、α-NPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。さらに不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 As a material for the hole transport layer, any material may be used as long as it has either a hole injecting property or a transporting property or an electron barrier property. be able to. For example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives , Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polyvinyl carbazole, polymer materials or oligomers with aromatic amines introduced into the main chain or side chain, polysilane, conductive And polymer (for example, PEDOT / PSS, aniline copolymer, polyaniline, polythiophene, etc.). Examples of the triarylamine derivative include a benzidine type typified by α-NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine linking core part. In addition, hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as hole transport materials. Furthermore, a hole transport layer having a high p property doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
 また、正孔輸送層の材料としては、特開平11-251067号公報、J.Huang et.al.著文献(Appl.Phys.Lett.,80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料やp型-Si、p型-SiC等の無機化合物を用いることもできる。さらにIr(ppy)に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。また、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー等も好ましく用いられる。 As materials for the hole transport layer, JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material or an inorganic compound such as p-type-Si, p-type-SiC, or the like as described in a book (Appl. Phys. Lett., 80 (2002), p. 139) is used. You can also. Further, ortho-metalated organometallic complexes having Ir or Pt as the central metal as typified by Ir (ppy) 3 are also preferably used. Further, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, a polymer material or an oligomer in which an aromatic amine is introduced into the main chain or side chain, and the like are also preferably used.
 正孔輸送層の材料の具体例としては、以下の文献に記載されている化合物がさらに挙げられる。但し、これらの化合物に制限されるものではない。Appl.Phys.Lett.,69,2160(1996)、J.Lumin.,72-74,985(1997)、Appl.Phys.Lett.,78,673(2001)、Appl.Phys.Lett.,90,183503(2007)、Appl.Phys.Lett.,90,183503(2007)、Appl.Phys.Lett.,51,913(1987)、Synth.Met.,87,171(1997)、Synth.Met.,91,209(1997)、Synth.Met.,111,421(2000)、SID Symposium Digest,37,923(2006)、J.Mater.Chem.,3,319(1993)、Adv.Mater.,6,677(1994)、Chem.Mater.,15,3148(2003)、米国特許公開第2003/0162053号明細書、米国特許公開第2002/0158242号明細書、米国特許公開第2006/0240279号明細書、米国特許公開第2008/0220265号明細書、米国特許第5061569号明細書、国際公開第2007/002683号、国際公開第2009/018009号、EP650955、米国特許公開第2008/0124572号明細書、米国特許公開第2007/0278938号明細書、米国特許公開第2008/0106190号明細書、米国特許公開第2008/0018221号明細書、国際公開第2012/115034号、特表2003-519432号公報、特開2006-135145号公報、米国特許出願番号13/585981号等である。 Specific examples of the material for the hole transport layer further include compounds described in the following documents. However, it is not limited to these compounds. Appl. Phys. Lett. 69, 2160 (1996); Lumin. , 72-74,985 (1997), Appl. Phys. Lett. 78, 673 (2001), Appl. Phys. Lett. , 90, 183503 (2007), Appl. Phys. Lett. , 90, 183503 (2007), Appl. Phys. Lett. 51, 913 (1987), Synth. Met. , 87, 171 (1997), Synth. Met. 91, 209 (1997), Synth. Met. 111, 421 (2000), SID Symposium Digest, 37, 923 (2006), J. Am. Mater. Chem. 3,319 (1993), Adv. Mater. 6, 677 (1994), Chem. Mater. , 15, 3148 (2003), US Patent Publication No. 2003/0162053, US Patent Publication No. 2002/0158242, US Patent Publication No. 2006/0240279, US Patent Publication No. 2008/0220265. U.S. Patent No. 5061569, International Publication No. 2007/002683, International Publication No. 2009/018009, EP650955, U.S. Patent Publication No. 2008/0124572, U.S. Patent Publication No. 2007/0278938, US Patent Publication No. 2008/0106190, US Patent Publication No. 2008/0018221, International Publication No. 2012/115034, Japanese Translation of PCT International Application No. 2003-519432, Japanese Patent Application Laid-Open No. 2006-135145, US Patent Application Number 13/5 , And the like No. 5981.
[電子阻止層]
 電子阻止層は、広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなる。正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
[Electron blocking layer]
The electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons. By blocking electrons while transporting holes, the probability of recombination of electrons and holes can be improved.
 電子阻止層の層厚は、好ましくは3~100nmの範囲、より好ましくは5~30nmの範囲である。電子阻止層は、正孔輸送層の構成と同様に形成することができるが、発光層の陽極側に隣接して設けることが好ましい。電子阻止層の材料としては、正孔輸送層に用いられる材料が好ましく用いられる。また、ホスト化合物として用いられる材料も電子阻止層に好ましく用いられる。 The layer thickness of the electron blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm. The electron blocking layer can be formed similarly to the structure of the hole transport layer, but is preferably provided adjacent to the anode side of the light emitting layer. As the material for the electron blocking layer, materials used for the hole transport layer are preferably used. A material used as a host compound is also preferably used for the electron blocking layer.
[正孔注入層]
 正孔注入層(「陽極バッファー層」ともいう。)は、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層である。正孔注入層については、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されている。正孔注入層は必要に応じて設け、陽極と発光層との間、又は、陽極と正孔輸送層との間に存在させてもよい。
[Hole injection layer]
The hole injection layer (also referred to as “anode buffer layer”) is a layer provided between the anode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. For the hole injection layer, see “Organic EL devices and their industrialization front line (issued by NTT Corporation on November 30, 1998)”, Volume 2, Chapter 2, “Electrode Materials” (pages 123-166). It is described in detail. Details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. The hole injection layer may be provided as necessary and may exist between the anode and the light emitting layer or between the anode and the hole transport layer.
 正孔注入層の材料としては、例えば、正孔輸送層に用いられる材料等が挙げられる。中でも銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。 Examples of the material for the hole injection layer include materials used for the hole transport layer. Among them, phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives, metal oxides typified by vanadium oxide, amorphous carbon as described in JP-T-2003-519432, JP-A-2006-135145, etc. Preferred are conductive polymers such as polyaniline (emeraldine) and polythiophene, orthometalated complexes represented by tris (2-phenylpyridine) iridium complex, and triarylamine derivatives.
[その他の添加化合物]
 以上の有機層は、さらに他の添加含有物が含まれていてもよい。添加含有物としては、例えば、臭素、ヨウ素、塩素等のハロゲン元素や、ハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。
[Other additive compounds]
The above organic layer may further contain other additives. Examples of the additive content include halogen elements such as bromine, iodine, and chlorine, halogenated compounds, alkali metals such as Pd, Ca, and Na, alkaline earth metals, transition metal compounds, complexes, and salts. .
 添加含有物の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、500ppm以下であることがより好ましく、50ppm以下であることがさらに好ましい。但し、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的等によってはこの範囲内に制限されない。 The content of the additive content can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, and more preferably 50 ppm or less with respect to the total mass% of the contained layer. Is more preferable. However, the present invention is not limited to this range depending on the purpose of improving the transportability of electrons and holes, the purpose of favoring the energy transfer of excitons, and the like.
[有機層の形成方法]
 有機層の形成方法としては、公知の成膜方法を利用することが可能である。例えば、真空蒸着法等の乾式法を用いてもよいし、湿式法(ウェットプロセスともいう。)を用いてもよいが、湿式法を用いることがより好ましい。
[Method for forming organic layer]
As a method for forming the organic layer, a known film forming method can be used. For example, a dry method such as a vacuum evaporation method may be used, or a wet method (also referred to as a wet process) may be used, but a wet method is more preferable.
 湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、ラングミュア・ブロジェット(Langmuir Blodgett;LB)法等がある。これらの中でも、均質な薄膜が得られやすく、且つ、高生産性を有している点で、ダイコート法、ロールコート法、インクジェット法、スプレーコート法等のロールtoロール方式による製造の適性の高い方法が好ましい。 Examples of wet methods include spin coating, casting, ink jet, printing, die coating, blade coating, roll coating, spray coating, curtain coating, and Langmuir Blodgett (LB). is there. Among these, it is easy to obtain a homogeneous thin film and is highly suitable for production by a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method because it has high productivity. The method is preferred.
 有機層の材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。また、分散方法としては、超音波による分散や、高剪断力分散、メディア分散等の分散方法を用いることができる。 Examples of the liquid medium for dissolving or dispersing the organic layer material include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, mesitylene, and cyclohexylbenzene. Aromatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO can be used. Further, as a dispersion method, a dispersion method such as ultrasonic dispersion, high shear force dispersion, media dispersion, or the like can be used.
 蒸着法を用いて成膜を行う場合は、蒸着条件は使用する化合物の種類等により異なるが、一般に、ボート加熱温度50~450℃、真空度10-6~10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、層厚0.1nm~5μm、好ましくは5~200nmの範囲とする。 When film formation is performed using a vapor deposition method, the vapor deposition conditions vary depending on the type of compound used, but generally, the boat heating temperature is 50 to 450 ° C., the degree of vacuum is 10 −6 to 10 −2 Pa, and the vapor deposition rate is 0. The range is 01 to 50 nm / second, the substrate temperature is −50 to 300 ° C., and the layer thickness is 0.1 nm to 5 μm, preferably 5 to 200 nm.
[陽極]
 陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウム・スズ酸化物(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
[anode]
As the anode, an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more, preferably 4.5 eV or more) is preferably used. Specific examples of such an electrode substance include a conductive transparent material such as a metal such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
 陽極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、又は、パターン精度を余り必要としない場合は(100μm以上程度)、電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。また、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等の湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが好ましく、また、陽極としてのシート抵抗は数百Ω/□以下が好ましい。陽極の膜厚は、材料にもよるが、通常10nm~1μm、好ましくは10~200nmの範囲とする。 For the anode, a thin film may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required (100 μm or more) Degree), a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material. In addition, when a material that can be applied, such as an organic conductive compound, is used, a wet film forming method such as a printing method or a coating method can also be used. When light emission is extracted from the anode, the transmittance is preferably greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Although the film thickness of the anode depends on the material, it is usually in the range of 10 nm to 1 μm, preferably 10 to 200 nm.
[陰極]
 陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する。)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第2金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
[cathode]
As the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like. Among these, a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this from the viewpoint of durability against electron injection and oxidation, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
 陰極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度をより向上させることができる。また、陰極に金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げる導電性透明材料をその上に成膜することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the emission luminance can be further improved. Further, after forming a metal with a film thickness of 1 to 20 nm on the cathode, a transparent or semi-transparent cathode can be produced by forming a film on the conductive transparent material mentioned in the description of the anode. By applying the above, it is possible to manufacture a device in which both the anode and the cathode are transparent.
[支持基板]
 支持基板(基材、支持体等ともいう。)としては、ガラス、プラスチック等の適宜の材料を用いることができる。支持基板は、透明であってもよいし、不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。透明な支持基板としては、ガラス、石英、透明樹脂フィルム等が挙げられる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
[Support substrate]
As the support substrate (also referred to as a base material or a support), an appropriate material such as glass or plastic can be used. The support substrate may be transparent or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル又はポリアリレート類、アートン(商品名JSR社製)又はアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等のフィルムを挙げることができる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Can be mentioned.
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が0.01g/(m・24h)以下のガスバリアー性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、10-3ml/(m・24h・atm)以下、水蒸気透過度が、10-5g/(m・24h)以下の高ガスバリアー性フィルムであることが好ましい。 The surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. , And a relative humidity (90 ± 2)%) of 0.01 g / (m 2 · 24 h) or less is preferable as a gas barrier film. Further, oxygen measured by a method according to JIS K 7126-1987 A high gas barrier film having a permeability of 10 −3 ml / (m 2 · 24 h · atm) or less and a water vapor permeability of 10 −5 g / (m 2 · 24 h) or less is preferable.
 ガスバリアー膜を形成する材料としては、水分や酸素等の素子の劣化をもたらす物質の浸入を抑制する機能を有する材料であればよい。このような材料としては、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等が挙げられる。これらの無機材料によって形成される膜は、膜の脆弱性を改良する観点から、有機材料によって形成される膜との積層構造を構成するように設けてもよい。具体的には、無機材料によって形成される無機層と有機材料によって形成される有機層とを交互に複数積層させることが好ましい。但し、無機層と有機層との積層順については、特に制限されるものではない。 The material for forming the gas barrier film may be any material that has a function of suppressing intrusion of substances that cause deterioration of elements such as moisture and oxygen. Examples of such a material include silicon oxide, silicon dioxide, silicon nitride and the like. A film formed of these inorganic materials may be provided so as to form a laminated structure with a film formed of an organic material from the viewpoint of improving the fragility of the film. Specifically, it is preferable to alternately stack a plurality of inorganic layers formed of an inorganic material and organic layers formed of an organic material. However, the stacking order of the inorganic layer and the organic layer is not particularly limited.
 ガスバリアー膜の形成方法としては、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。特に、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によることが好ましい。 Examples of the gas barrier film forming method include a vacuum deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, an atmospheric pressure plasma polymerization method, and a plasma CVD method. Method, laser CVD method, thermal CVD method, coating method and the like can be used. In particular, it is preferable to use an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143.
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。有機EL素子の発光の室温における外部取り出し量子効率は、1%以上であることが好ましく、5%以上であるとより好ましい。ここで、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。また、カラーフィルター等の色相改良フィルター等を併用してもよいし、有機EL素子からの発光色を多色へ変換する色変換フィルターを併用してもよい。 Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like. The external extraction quantum efficiency at room temperature of light emission of the organic EL element is preferably 1% or more, and more preferably 5% or more. Here, external extraction quantum efficiency (%) = number of photons emitted to the outside of the organic EL element / number of electrons flowed to the organic EL element × 100. In addition, a hue improving filter such as a color filter may be used in combination, or a color conversion filter for converting the emission color from the organic EL element into multiple colors may be used in combination.
[封止]
 有機EL素子を封止する封止方法としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。封止部材の材料としては、具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。
[Sealing]
As a sealing method for sealing the organic EL element, for example, a method of adhering a sealing member, an electrode, and a support substrate with an adhesive can be exemplified. As a sealing member, it should just be arrange | positioned so that the display area | region of an organic EL element may be covered, and it may be concave plate shape or flat plate shape. Moreover, transparency and electrical insulation are not particularly limited. Specific examples of the material for the sealing member include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 封止手段としては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムはJIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が、1×10-3g/(m/24h)以下のものであることが好ましい。封止部材を凹状に加工するには、サンドブラスト加工、化学エッチング加工等を用いることができる。 As the sealing means, a polymer film or a metal film can be preferably used because the organic EL element can be thinned. Further, the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, and a method according to JIS K 7129-1992. the measured water vapor transmission rate (25 ± 0.5 ° C., relative humidity (90 ± 2)%) is preferably that of 1 × 10 -3 g / (m 2 / 24h) or less. In order to process the sealing member into a concave shape, sandblasting, chemical etching, or the like can be used.
 接着剤としては、アクリル酸系オリゴマー、メタクリル酸系オリゴマー等の反応性ビニル基を有する光硬化型接着剤又は熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型接着剤等が挙げられる。また、エポキシ系等の熱硬化型接着剤や、化学硬化型(二液混合)接着剤を挙げることができる。また、ポリアミド、ポリエステル、ポリオレフィン等のホットメルト型の接着剤を挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。但し、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 Examples of the adhesive include a photo-curing adhesive or a thermosetting adhesive having a reactive vinyl group such as an acrylic acid oligomer and a methacrylic acid oligomer, and a moisture curable adhesive such as 2-cyanoacrylate. It is done. In addition, there can be mentioned thermosetting adhesives such as epoxy-based adhesives, and chemically curable (two-component mixed) adhesives. Further, hot-melt adhesives such as polyamide, polyester, and polyolefin can be used. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned. However, since the organic EL element may be deteriorated by heat treatment, an element that can be adhesively cured from room temperature to 80 ° C. is preferable. A desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing. In addition, it is also preferable that the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. . In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can. Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials. There are no particular limitations on the method of forming these films. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。或るいは、この間隙を真空とすることも可能である。また、間隙の内部には、吸湿性化合物を封入しておくこともできる。 In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase. preferable. Alternatively, this gap can be evacuated. In addition, a hygroscopic compound can be enclosed in the gap.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられる。硫酸塩、金属ハロゲン化物及び過塩素酸類としては、これらの無水塩が特に好適である。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, etc.). As sulfates, metal halides and perchloric acids, these anhydrous salts are particularly suitable.
[保護膜、保護板]
 有機層を挟み支持基板と対向する側の前記封止膜又は前記封止用フィルムの外側に、素子の機械的強度を高めるために、保護膜又は保護板を設けてもよい。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。保護膜や保護板の材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
[Protective film, protective plate]
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer interposed therebetween. In particular, when sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material for the protective film and the protective plate, the same glass plate, polymer plate / film, metal plate / film, etc. as used for the sealing can be used. It is preferable to use it.
[光取り出し向上技術]
 有機EL素子は、空気よりも屈折率の高い(屈折率1.6~2.1程度の範囲内)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないと、一般的にいわれている。臨界角以上の角度θで透明支持基板と空気との界面に入射する光は、全反射を起こして素子外部に取り出されないし、臨界角以上の角度で透明透明電極と透明支持基板との界面や、発光層と透明電極との界面に入射する光は、全反射を起こして透明電極や発光層の層内を導波し、素子の側面方向に逃げるためである。
[Light extraction improvement technology]
An organic EL element emits light inside a layer having a refractive index higher than that of air (within a refractive index of about 1.6 to 2.1), and is about 15% to 20% of light generated in the light emitting layer. It is generally said that it can only be taken out. Light incident on the interface between the transparent support substrate and air at an angle θ greater than the critical angle causes total reflection and is not extracted outside the device, and at the angle greater than the critical angle, the interface between the transparent transparent electrode and the transparent support substrate. In addition, the light incident on the interface between the light emitting layer and the transparent electrode causes total reflection and is guided in the transparent electrode and the light emitting layer, and escapes in the side direction of the element.
 光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(例えば、特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)などが挙げられる。これらの中でも、平坦層を導入する方法や、回折格子を形成する方法が特に好適である。 As a technique for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (for example, US Pat. No. 4,774,435), collecting on the substrate. A method for improving efficiency by imparting light properties (for example, Japanese Patent Laid-Open No. Sho 63-314795), a method for forming a reflective surface on the side surface of an element (for example, Japanese Patent Laid-Open No. 1-220394), a substrate, A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the light emitters (for example, Japanese Patent Application Laid-Open No. Sho 62-172691), and a lower refractive index than the substrate between the substrate and the light emitter. (For example, Japanese Patent Laid-Open No. 2001-202827), and a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside) Kaihei 11- No. 83751 publication), and the like. Among these, a method of introducing a flat layer and a method of forming a diffraction grating are particularly suitable.
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折率は一般に1.5~1.7程度の範囲内であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましく、1.35以下であることがより好ましい。 When a low refractive index medium is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower. Become. Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less, preferably 1.35 or less. More preferred.
 低屈折率媒質の厚さは、媒質中の波長の2倍以上とすることが好ましい。このように低屈折率媒質の厚さが光の波長よりも長いと、エバネッセントで染み出した電磁波が基板側に入り込み難くなるので、光の取り出しの効率が低下するのを防止することができる。全反射を起こす界面、又は、いずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。回折格子は、1次の回折や、2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を有している。このような回折格子を、発光層、透明電極、基板等のいずれかの層間、又は、媒質中(透明基板内や透明電極内)に導入することによって、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を回折させて外に取り出すことができる。 The thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. When the thickness of the low refractive index medium is longer than the wavelength of light in this way, the electromagnetic wave that has exuded by evanescent becomes difficult to enter the substrate side, so that it is possible to prevent the light extraction efficiency from being lowered. The method of introducing a diffraction grating into an interface that causes total reflection or in any medium is characterized in that the effect of improving the light extraction efficiency is high. The diffraction grating has a property that the direction of light can be changed to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction. By introducing such a diffraction grating into any layer of the light emitting layer, the transparent electrode, the substrate, etc., or in the medium (in the transparent substrate or the transparent electrode), among the light generated from the light emitting layer, the interlayer It is possible to diffract light that cannot be emitted due to total reflection or the like and to extract the light.
 導入する回折格子は、二次元的な周期屈折率を持っていることが好ましい。発光光は、発光層においてあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折させることができず、光の取り出し効率を効果的に向上させることができない。これに対して、屈折率分布を二次元的な分布にすると、複数の方向に進む光をそれぞれ回折させることができるので、光の取り出し効率を効果的に向上させることができる。回折格子を導入する位置としては、いずれかの層間、又は、媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が好ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2~3倍程度の範囲内が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、二次元的に配列が繰り返されることが好ましい。 The diffraction grating to be introduced preferably has a two-dimensional periodic refractive index. Since emitted light is randomly generated in all directions in the light emitting layer, a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction can only diffract light traveling in a specific direction. In other words, the light extraction efficiency cannot be improved effectively. On the other hand, when the refractive index distribution is a two-dimensional distribution, light traveling in a plurality of directions can be diffracted, so that the light extraction efficiency can be effectively improved. The position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated. At this time, the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium. The arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
[集光シート]
 有機EL素子は、支持基板(基板)の光取出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工を施したり、又は、いわゆる集光シートと組み合わせたりすることにより、特定方向、例えば、素子発光面に対し正面方向に集光して、特定方向上の輝度を高めることができる。マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列するもの等が挙げられる。一辺は10~100μmの範囲内が好ましい。このような範囲であれば、回折の効果が発生して色付いたり、厚さが厚くなり過ぎたりすることは少ない。
[Condenser sheet]
The organic EL element is processed on the light extraction side of the support substrate (substrate), for example, so as to provide a microlens array-like structure, or combined with a so-called condensing sheet, for example, in a specific direction, It is possible to increase the brightness in a specific direction by condensing light in the front direction with respect to the element light emitting surface. As an example of the microlens array, there may be mentioned a two-dimensional array of quadrangular pyramids having a side of 30 μm and a vertex angle of 90 degrees on the light extraction side of the substrate. One side is preferably within a range of 10 to 100 μm. If it is in such a range, the effect of diffraction will not occur and it will rarely be colored or become too thick.
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとしては、例えば、住友スリーエム社製輝度上昇フィルム(BEF)などを用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。また、有機EL素子からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)などを用いることができる。 As the condensing sheet, it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited may be used. As the shape of the prism sheet, for example, the base material may be formed by forming a △ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 μm, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used. Moreover, in order to control the light emission angle from an organic EL element, you may use a light-diffusion plate and a film together with a condensing sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
<タンデム型有機EL素子>
 本発明に係る有機EL素子は、前記の(1)~(8)に例示されるような素子構成の発光ユニットが複数積層してなるタンデム型の有機EL素子としてもよい。タンデム型の有機EL素子の素子構成は、例えば、次のような積層構造とすることができる。
(I)陽極/第1発光ユニット/第2発光ユニット/第3発光ユニット/陰極
(II)陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
 なお、タンデム型の有機EL素子の素子構成は、前記の(I)~(II)に制限されるものではなく、発光ユニットを2個以上の任意の個数とすることができる。複数の発光ユニットの個々の構成については、互いに同一であってもよいし、互いに異なっていてもよい。
<Tandem type organic EL device>
The organic EL element according to the present invention may be a tandem type organic EL element in which a plurality of light emitting units having the element configurations as exemplified in the above (1) to (8) are stacked. The element configuration of the tandem organic EL element can be, for example, the following stacked structure.
(I) Anode / first light emitting unit / second light emitting unit / third light emitting unit / cathode (II) anode / first light emitting unit / intermediate layer / second light emitting unit / intermediate layer / third light emitting unit / cathode The element configuration of the tandem organic EL element is not limited to the above (I) to (II), and the number of light emitting units can be any number of two or more. The individual configurations of the plurality of light emitting units may be the same as or different from each other.
[中間層]
 中間層は、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層である。中間層は、一般に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれている。
[Middle layer]
The intermediate layer is a layer having a function of supplying electrons to the adjacent layer on the anode side and holes to the adjacent layer on the cathode side. In general, the intermediate layer is also called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, and an intermediate insulating layer.
 中間層は、例えば、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜や、C60等のフラーレン類、オリゴチオフェン等の導電性有機物層や、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等として形成することができる。 The intermediate layer may be, for example, ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, CuAlO 2 , CuGaO 2 , SrCu. Conductive inorganic compound layers such as 2 O 2 , LaB 6 , RuO 2 and Al, two-layer films such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , multilayer films such as TiO 2 / ZrN / TiO 2 , fullerenes such as C60, conductive organic layers such as oligothiophene, metal phthalocyanines, It can be formed as a conductive organic compound layer such as metal-free phthalocyanines, metal porphyrins and metal-free porphyrins.
 本発明に係る有機EL素子に適用することができるタンデム型の素子の具体例としては、以下の文献に記載されている形態が挙げられる。但し、これらの形態に制限されるものではない。米国特許第6337492号明細書、米国特許第7420203号明細書、米国特許第7473923号明細書、米国特許第6872472号明細書、米国特許第6107734号明細書、米国特許第6337492号明細書、国際公開第2005/009087号、特開2006-228712号公報、特開2006-24791号公報、特開2006-49393号公報、特開2006-49394号公報、特開2006-49396号公報、特開2011-96679号公報、特開2005-340187号公報、特許第4711424号公報、特許第3496681号公報、特許第3884564号公報、特許第4213169号公報、特開2010-192719号公報、特開2009-076929号公報、特開2008-078414号公報、特開2007-059848号公報、特開2003-272860号公報、特開2003-045676号公報、国際公開第2005/094130号等である。 Specific examples of the tandem type element that can be applied to the organic EL element according to the present invention include forms described in the following documents. However, it is not limited to these forms. US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734, US Pat. No. 6,337,492, International Publication No. 2005/009087, JP 2006-228712 A, JP 2006-24791 A, JP 2006-49393 A, JP 2006-49394 A, JP 2006-49396 A, JP 2011-2011 A. No. 96679, JP-A-2005-340187, JP-B-4711424, JP-A-34096681, JP-A-3848564, JP-A-4421169, JP-A-2010-192719, JP-A-2009-076929. Gazette, JP2008-07 414 JP is a Japanese 2007-059848, JP 2003-272860, JP 2003-045676, JP-WO 2005/094130 and the like.
 本発明に係る有機EL素子材料は、陽極と陰極との間に介在する有機層のいずれに含有させることも可能である。なお、本明細書において、陽極と陰極との間に介在する有機層には、前記の(1)~(8)で例示される発光層、電子輸送層、正孔輸送層、電子輸送層、正孔注入層、電子注入層、正孔阻止層、電子阻止層等の各層が含まれる。 The organic EL element material according to the present invention can be contained in any organic layer interposed between the anode and the cathode. In this specification, the organic layer interposed between the anode and the cathode includes a light emitting layer, an electron transport layer, a hole transport layer, an electron transport layer exemplified in the above (1) to (8), Each layer includes a hole injection layer, an electron injection layer, a hole blocking layer, and an electron blocking layer.
 本発明に係る有機EL素子材料は、陽極と陰極との間に介在する各有機層のいずれか一層に含有させてもよいし、複数層に含有させてもよい。但し、本発明に係る有機EL素子材料は、ホスト化合物として有用であるため、少なくとも発光層に含有させることが特に好ましい。なお、タンデム型の有機EL素子においては、発光ユニットの一部に含有させてもよいし、複数に含有させてもよい。 The organic EL element material according to the present invention may be contained in any one of the organic layers interposed between the anode and the cathode, or may be contained in a plurality of layers. However, since the organic EL device material according to the present invention is useful as a host compound, it is particularly preferable to contain it in at least the light emitting layer. Note that the tandem organic EL element may be included in a part of the light emitting unit or may be included in a plurality.
<用途>
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源としては、例えば、照明装置(家庭用照明、車内照明)、時計用バックライト、液晶用バックライト、看板広告の光源、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる。本発明の有機EL素子を光源等として用いる場合、有機EL素子に共振器構造を持たせてもよく、レーザー発振させて発光を利用してもよい。
<Application>
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources. Examples of light sources include lighting devices (home lighting, interior lighting), clock backlights, liquid crystal backlights, signboard advertising light sources, traffic light sources, optical storage media light sources, electrophotographic copying machine light sources, Examples include a light source of an optical communication processor and a light source of an optical sensor. When the organic EL element of the present invention is used as a light source or the like, the organic EL element may have a resonator structure, or light emission may be utilized by causing laser oscillation.
<表示装置>
 本発明の有機EL素子は、表示装置に用いることができる。表示装置は、単色表示装置であってもよいし、多色表示装置であってもよい。ここでは、本発明の有機EL素子を具備する表示装置の一例として、多色表示装置について説明する。多色表示装置は、発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で成膜を行うことによって形成することができる。発光層のみについてパターニングを行う場合は、例えば、インクジェット法、印刷法等を用いてもよい。
<Display device>
The organic EL element of the present invention can be used for a display device. The display device may be a single color display device or a multicolor display device. Here, a multicolor display device will be described as an example of a display device including the organic EL element of the present invention. A multicolor display device can be formed by providing a shadow mask only when forming a light emitting layer and forming a film by vapor deposition, casting, spin coating, ink jet, printing, or the like on one surface. When patterning is performed only on the light emitting layer, for example, an inkjet method, a printing method, or the like may be used.
 表示装置に具備される有機EL素子の構成は、前記の素子構成の例をはじめとして各種の構成を採ることができる。多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光を観測することができる。交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光を観測することができる。なお、印加する交流の波形は特に制限されない。 The configuration of the organic EL element provided in the display device can take various configurations including the example of the element configuration described above. When a DC voltage is applied to the multicolor display device, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. When an AC voltage is applied, light emission can be observed only when the anode is in the + state and the cathode is in the-state. The AC waveform to be applied is not particularly limited.
 多色表示装置は、例えば、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。これらの駆動方式としては、単純マトリクス(パッシブマトリクス)方式、アクティブマトリクス方式のいずれであってもよい。 The multicolor display device can be used as, for example, a display device, a display, or various light sources. Examples of the display device and display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in an automobile. As these driving methods, either a simple matrix (passive matrix) method or an active matrix method may be used.
 以下、本発明の有機EL素子を具備する表示装置の一例を図面に基いて説明する。 Hereinafter, an example of a display device including the organic EL element of the present invention will be described with reference to the drawings.
 図2は、有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う表示装置の斜視図に相当している。ディスプレイ1は、複数の画素を有する表示部Aと、画像情報に基いて表示部Aの画像走査を行う制御部Bと、表示部Aと制御部Bとの間を電気的に接続する配線部等を備えて構成されている。 FIG. 2 is a schematic view showing an example of a display device composed of organic EL elements. This corresponds to a perspective view of a display device that displays image information by light emission of an organic EL element. The display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and a wiring unit that electrically connects the display unit A and the control unit B. Etc. are provided.
 制御部Bは、複数の画素のそれぞれに外部からの画像情報に基いて走査信号と画像データ信号とを送る。そして、走査信号により走査線ごとの画素が画像データ信号に応じて順次発光し、表示部Aに画像情報が表示される。 The control unit B sends a scanning signal and an image data signal to each of the plurality of pixels based on external image information. Then, the pixels for each scanning line are sequentially emitted according to the image data signal by the scanning signal, and the image information is displayed on the display unit A.
 図3は、アクティブマトリクス方式による表示装置の模式図である。表示部Aは、基板上に、複数の画素3と、複数の走査線5と、複数のデータ線6とを有している。図3に示すように、各画素3からの発光光Lは白矢印方向へ取り出される。 FIG. 3 is a schematic diagram of a display device using an active matrix method. The display unit A has a plurality of pixels 3, a plurality of scanning lines 5, and a plurality of data lines 6 on the substrate. As shown in FIG. 3, the emitted light L from each pixel 3 is extracted in the direction of the white arrow.
 配線部の走査線5及びデータ線6は、それぞれ導電材料からなる。走査線5とデータ線6とは、互いに格子状に直交して、直交する位置で画素3に接続している。画素3は、走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。発光色が赤色である画素、緑色である画素及び青色である画素のそれぞれを適宜基板上に配列させることによって、フルカラーの表示が可能となる。 The scanning line 5 and the data line 6 in the wiring part are each made of a conductive material. The scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions. When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data. Full color display is possible by appropriately arranging each of the pixels whose emission color is red, the pixels which are green and the pixels which are blue in color on the substrate.
 図4は、画素の回路を示した概略図である。画素3は、有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサー13等を備えている。複数の画素には、赤、緑及び青の各発光色の有機EL素子10が用いられる。 FIG. 4 is a schematic diagram showing a pixel circuit. The pixel 3 includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like. For a plurality of pixels, organic EL elements 10 of emission colors of red, green and blue are used.
 図4において、スイッチングトランジスタ11のドレインには、制御部Bからデータ線6を介して画像データ信号が印加される。そして、制御部Bからスイッチングトランジスタ11のゲートに走査線5を介して走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号が、コンデンサー13と駆動トランジスタ12のゲートに伝達される。 4, an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6. When a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5, the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied from the capacitor 13 and the driving transistor. To 12 gates.
 画像データ信号の伝達により、コンデンサー13が画像データ信号の電位に応じて充電されると共に、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されている。そして、有機EL素子10には、ゲートに印加された画像データ信号の電位に応じて電源ライン7から電流が供給される。 By transmitting the image data signal, the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on. The drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10. The organic EL element 10 is supplied with current from the power supply line 7 in accordance with the potential of the image data signal applied to the gate.
 制御部Bが順次走査を行い、走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかしながら、スイッチングトランジスタ11の駆動がオフしてもコンデンサー13は充電された画像データ信号の電位を保持する。そのため、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。そして、順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。すなわち、有機EL素子10の発光は、複数の画素3のそれぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12とを設けて複数の画素3毎に行っている。このような発光方式は、アクティブマトリクス方式と呼ばれる。 When the controller B sequentially scans and the scanning signal moves to the next scanning line 5, the driving of the switching transistor 11 is turned off. However, even when the driving of the switching transistor 11 is turned off, the capacitor 13 holds the charged image data signal potential. For this reason, the driving of the driving transistor 12 is kept on, and the light emission of the organic EL element 10 continues until the next scanning signal is applied. When a scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light. That is, the light emission of the organic EL element 10 is performed for each of the plurality of pixels 3 by providing the switching transistor 11 and the driving transistor 12 as active elements for each of the organic EL elements 10 of the plurality of pixels 3. Such a light emission method is called an active matrix method.
 なお、有機EL素子10の発光は、複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフによってもよい。また、コンデンサー13の電位は、次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。なお、本発明に係る表示装置の発光方式は、アクティブマトリクス方式に制限されるものではなく、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式としてもよい。 The light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on and off a predetermined light emission amount by a binary image data signal. Also good. Further, the potential of the capacitor 13 may be continuously maintained until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied. Note that the light emission method of the display device according to the present invention is not limited to the active matrix method, and may be a passive matrix method in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
 図5は、パッシブマトリクス方式による表示装置の模式図である。図5において、複数の走査線5と、複数の画像データ線6とが、画素3を挟んで対向して格子状に設けられている。順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。パッシブマトリクス方式によると、画素3にアクティブ素子を設ける必要が無く、製造コストを低減させることができる。 FIG. 5 is a schematic view of a passive matrix display device. In FIG. 5, a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween. When the scanning signal of the scanning line 5 is applied by sequential scanning, the pixels 3 connected to the applied scanning line 5 emit light according to the image data signal. According to the passive matrix method, it is not necessary to provide an active element in the pixel 3, and the manufacturing cost can be reduced.
<照明装置>
 本発明の有機EL素子は、照明装置に用いることができる。以下、本発明の有機EL素子を具備する照明装置の一例を図面に基づいて説明する。図6は、照明装置の概略図を示している。また、図7は、照明装置の断面図を示している。照明装置は、例えば、本発明に係る有機EL素子101をガラスカバー102等で覆うことにより形成することができる。すなわち、一対の電極105,107と、有機層106とをガラスカバー102等で封止し、その内部空間108に窒素ガス等を充填し、捕水剤109等を設置して、有機層106等の劣化の防止を図る形態とすることができる。
<Lighting device>
The organic EL element of the present invention can be used for a lighting device. Hereinafter, an example of a lighting device including the organic EL element of the present invention will be described with reference to the drawings. FIG. 6 shows a schematic diagram of the illumination device. FIG. 7 shows a cross-sectional view of the lighting device. The illumination device can be formed by, for example, covering the organic EL element 101 according to the present invention with a glass cover 102 or the like. That is, the pair of electrodes 105 and 107 and the organic layer 106 are sealed with a glass cover 102 or the like, the interior space 108 is filled with nitrogen gas or the like, a water capturing agent 109 or the like is installed, the organic layer 106 or the like. It can be set as the form which aims at prevention of deterioration.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「体積%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "volume%" is represented.
 実施例で使用した比較化合物1~3の構造は、次のとおりである。なお、比較化合物1については、国際公開第2011/004639号、比較化合物2については、特開2014-118410号公報、比較化合物3については、国際公開第2014/13721号にそれぞれ開示されている。 The structures of Comparative Compounds 1 to 3 used in the examples are as follows. Comparative compound 1 is disclosed in International Publication No. 2011/004639, Comparative Compound 2 is disclosed in JP-A No. 2014-118410, and Comparative Compound 3 is disclosed in International Publication No. 2014/13721.
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
 実施例で使用した有機EL素子の材料の構造式、及び、ホスト化合物のA部位、A部位、L部位の電子密度分布は、次のとおりである。 The structural formulas of the materials of the organic EL elements used in the examples and the electron density distribution of the A 1 site, A 2 site, and L site of the host compound are as follows.
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000081
[実施例1]
 実施例1として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極の素子構成を有する有機EL素子1-1~1-15を作製した。
[Example 1]
As Example 1, organic EL elements 1-1 to 1-15 having an element structure of anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode were prepared. Produced.
(有機EL素子1-1の作製)
 有機EL素子の支持基板としては、100mm×100mm×1.1mmのガラス基板を用いた。この支持基板上に陽極としてITO(インジウム・スズ酸化物)を100nm成膜したもの(NHテクノグラス社製NA45)にパターニングを行った。その後、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥した後、UVオゾン洗浄を5分間にわたって行った。
(Preparation of organic EL device 1-1)
As a support substrate for the organic EL element, a glass substrate of 100 mm × 100 mm × 1.1 mm was used. Patterning was performed on this support substrate having a 100 nm film of ITO (indium tin oxide) as an anode (NA45 manufactured by NH Techno Glass). Then, after ultrasonic cleaning with isopropyl alcohol and drying with dry nitrogen gas, UV ozone cleaning was performed for 5 minutes.
 続いて、陽極が成膜された支持基板を市販の真空蒸着装置の基板ホルダーに固定した。真空蒸着装置のモリブデン製の各抵抗加熱ボートには、正孔注入層の材料としてHT-1、正孔輸送層の材料としてHT-2、ホスト化合物として比較化合物1、発光ドーパントとしてDP-1、正孔阻止層の材料としてET-1、電子輸送層の材料としてET-2をそれぞれ200mg投入した。 Subsequently, the support substrate on which the anode was formed was fixed to a substrate holder of a commercially available vacuum deposition apparatus. Each of the resistance heating boats made of molybdenum of the vacuum evaporation apparatus has HT-1 as the material of the hole injection layer, HT-2 as the material of the hole transport layer, Comparative compound 1 as the host compound, DP-1 as the light emitting dopant, 200 mg of ET-1 as the material for the hole blocking layer and 200 mg of ET-2 as the material for the electron transport layer were respectively added.
 続いて、真空槽を4×10-4Paまで減圧した。そして、HT-1を蒸着速度0.1nm/秒で陽極上に蒸着し、厚さ10nmの正孔注入層を形成した。 Subsequently, the vacuum chamber was depressurized to 4 × 10 −4 Pa. Then, HT-1 was deposited on the anode at a deposition rate of 0.1 nm / second to form a 10 nm thick hole injection layer.
 続いて、HT-2を蒸着速度0.1nm/秒で正孔注入層上に蒸着し、厚さ30nmの正孔輸送層を形成した。 Subsequently, HT-2 was deposited on the hole injection layer at a deposition rate of 0.1 nm / second to form a hole transport layer having a thickness of 30 nm.
 続いて、比較化合物1を蒸着速度0.1nm/秒で、DP-1を蒸着速度0.01nm/秒でそれぞれ正孔輸送層上に共蒸着し、厚さ40nmの発光層を形成した。 Subsequently, Comparative Compound 1 was co-deposited on the hole transport layer at a deposition rate of 0.1 nm / second and DP-1 at a deposition rate of 0.01 nm / second to form a light-emitting layer having a thickness of 40 nm.
 続いて、ET-1を蒸着速度0.1nm/秒で発光層上に蒸着し、厚さ10nmの正孔阻止層を形成した。 Subsequently, ET-1 was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to form a 10 nm thick hole blocking layer.
 続いて、ET-2を蒸着速度0.1nm/秒で正孔阻止層上に蒸着し、厚さ30nmの電子輸送層を形成した。 Subsequently, ET-2 was deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to form an electron transport layer having a thickness of 30 nm.
 続いて、フッ化リチウムを電子輸送層上に蒸着し、厚さ0.5nmの電子注入層を形成した。そして、アルミニウムを電子注入層上に蒸着し、厚さ110nmの陰極を形成して有機EL素子1-1とした。 Subsequently, lithium fluoride was deposited on the electron transport layer to form an electron injection layer having a thickness of 0.5 nm. And aluminum was vapor-deposited on the electron injection layer, the cathode with a thickness of 110 nm was formed, and it was set as the organic EL element 1-1.
(有機EL素子1-2~1-15の作製)
 有機EL素子1-1の作製において、比較化合物1を比較化合物2~3又は前記の化合物例のそれぞれ(表1参照)に変えた以外は同様にして有機EL素子1-2~1-15を作製した。
(Production of organic EL elements 1-2 to 1-15)
In the production of the organic EL element 1-1, the organic EL elements 1-2 to 1-15 were prepared in the same manner except that the comparative compound 1 was changed to the comparative compounds 2 to 3 or each of the above compound examples (see Table 1). Produced.
(有機EL素子1-1~1-15の評価)
 作製した有機EL素子1-1~1-15について、外部取り出し量子効率、半減寿命、駆動電圧、駆動時の電圧上昇、経時安定性の評価を行った。
(Evaluation of organic EL elements 1-1 to 1-15)
The produced organic EL devices 1-1 to 1-15 were evaluated for external extraction quantum efficiency, half life, driving voltage, voltage increase during driving, and stability over time.
 作製した有機EL素子は、図6及び図7に示すような照明装置の形態として評価に用いた。すなわち、厚さ300μmのガラス板の周囲にエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を塗布し、そのガラス板を陰極の側から有機EL素子の支持基板と密着させ、ガラス板の側からUVを照射して接着剤を硬化させることによって封止して照明装置とした。 The produced organic EL element was used for evaluation as a form of a lighting device as shown in FIGS. That is, an epoxy-based photocurable adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied around a glass plate having a thickness of 300 μm, and the glass plate is brought into close contact with the supporting substrate of the organic EL element from the cathode side. The illumination device was sealed by irradiating UV from the side of the plate and curing the adhesive.
(1)外部取り出し量子効率
 外部取り出し量子効率(η)は、有機EL素子を室温(約23℃)、2.5mA/cmの定電流条件の下で点灯させて、点灯開始直後の発光輝度[cd/m]を測定することによって算出した。なお、発光輝度の測定については、CS-1000(コニカミノルタ社製)を用いた。
(1) External extraction quantum efficiency The external extraction quantum efficiency (η) is the luminance of light emitted immediately after the organic EL element is turned on at room temperature (about 23 ° C.) under a constant current condition of 2.5 mA / cm 2. It was calculated by measuring [cd / m 2 ]. Note that CS-1000 (manufactured by Konica Minolta Co., Ltd.) was used for measurement of light emission luminance.
(2)半減寿命
 半減寿命は、有機EL素子を初期輝度1000cd/mを与える電流で定電流駆動し、初期輝度の1/2(500cd/m)になる時間を計測することによって求めた。
(2) Half-life The half-life was obtained by driving the organic EL element at a constant current with a current that gives an initial luminance of 1000 cd / m 2 and measuring the time that is half the initial luminance (500 cd / m 2 ). .
(3)駆動電圧
 駆動電圧は、有機EL素子を室温(約23℃)、2.5mA/cmの定電流条件の下で駆動したときの電圧を測定することによって求めた。
(3) Drive voltage The drive voltage was calculated | required by measuring the voltage when driving an organic EL element on constant current conditions of room temperature (about 23 degreeC) and 2.5 mA / cm < 2 >.
(4)駆動時の電圧上昇
 駆動時の電圧上昇は、有機EL素子を室温(約23℃)、2.5mA/cmの定電流条件の下で駆動し、初期駆動電圧と輝度が半減したときの駆動電圧とから下式によって算出した。
 駆動時の電圧上昇(相対値)=輝度半減時の駆動電圧-初期駆動電圧
(4) Voltage rise during driving Voltage rise during driving is due to driving the organic EL element under room temperature (about 23 ° C.) and constant current conditions of 2.5 mA / cm 2 , and the initial driving voltage and brightness are reduced by half. It was calculated by the following formula from the driving voltage at the time.
Voltage rise during driving (relative value) = Driving voltage at half brightness-Initial driving voltage
(5)経時安定性
 経時安定性は、有機EL素子を60℃、70%RHの条件で1ヶ月にわたって保存した後、保存前後における各電力効率から下式によって電力効率比を算出することによって求めた。なお、電力効率については、CS-1000(コニカミノルタ社製)によって測定した。各有機EL素子の正面輝度と輝度角度依存性とを測定し、正面輝度1000cd/mにおける測定値を採用した。
 経時安定性(%)=保存後の電力効率/保存前の電力効率×100
(5) Stability over time Stability over time is obtained by calculating the power efficiency ratio according to the following equation from each power efficiency before and after storage after storing the organic EL element at 60 ° C. and 70% RH for one month. It was. The power efficiency was measured with CS-1000 (manufactured by Konica Minolta). The front luminance and luminance angle dependency of each organic EL element were measured, and the measured value at a front luminance of 1000 cd / m 2 was adopted.
Stability over time (%) = power efficiency after storage / power efficiency before storage x 100
 以上の評価結果を表7に示す。なお、外部取り出し量子効率、半減寿命、駆動電圧、駆動時の電圧上昇のそれぞれの結果は、有機EL素子1-1を100とする相対値で示した。 The above evaluation results are shown in Table 7. The results of the external extraction quantum efficiency, half-life, driving voltage, and voltage increase during driving are shown as relative values with the organic EL element 1-1 being 100.
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-T000082
 表7に示すように、本発明に係る化合物例を用いた有機EL素子では、外部取り出し量子効率及び半減寿命がいずれも向上している一方、駆動電圧や駆動時の電圧上昇が抑制されていることが分かる。また、経時安定性についても向上がみられる。特に、HArが含窒素複素環基である化合物をホスト化合物として用いた有機EL素子1-4~1-11は、HArが電子吸引性基である化合物をホスト化合物として用いた有機EL素子1-12~1-15より半減寿命が向上している。これは、HArが芳香環になることでよりπ―π相互作用により分子が安定化したことに起因すると考えている。よって、本発明に係る有機EL素子材料によると、駆動電圧を下げることが可能であり、安定性も良好な有機エレクトロルミネッセンス素子を提供することができるといえる。したがって、発光効率、発光寿命が良好であり、低電圧で駆動することが可能な有機EL素子、表示装置及び照明装置を実現することが可能である。また、一般式においてHArで表される置換基としては、発光寿命等の観点からは、電子吸引性基よりも含窒素複素環基が好適であるといえる。 As shown in Table 7, in the organic EL device using the compound example according to the present invention, the external extraction quantum efficiency and the half-life are both improved, while the drive voltage and the voltage increase during driving are suppressed. I understand that. In addition, the stability over time is also improved. In particular, organic EL devices 1-4 to 1-11 using a compound in which HAr is a nitrogen-containing heterocyclic group as a host compound are organic EL devices 1 to 1-11 using a compound in which HAr is an electron-withdrawing group as a host compound. Half life is improved from 12 to 1-15. This is thought to be due to the fact that the molecule was stabilized by π-π interaction due to HAr becoming an aromatic ring. Therefore, it can be said that the organic EL device material according to the present invention can provide an organic electroluminescence device that can reduce the driving voltage and has good stability. Accordingly, it is possible to realize an organic EL element, a display device, and a lighting device that have favorable light emission efficiency and light emission life and can be driven at a low voltage. In addition, as a substituent represented by HAr in the general formula, it can be said that a nitrogen-containing heterocyclic group is more preferable than an electron-withdrawing group from the viewpoint of emission lifetime and the like.
[実施例2]
 実施例2として、陽極/第1正孔輸送層/第2正孔輸送層/発光層/電子輸送層/電子注入層/陰極の素子構成を有する有機EL素子2-1~2-19を作製した。
[Example 2]
As Example 2, organic EL devices 2-1 to 2-19 having device configurations of anode / first hole transport layer / second hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode were prepared. did.
(有機EL素子2-1の作製)
 有機EL素子の支持基板としては、100mm×100mm×1.1mmのガラス基板を用いた。この支持基板上に陽極としてITO(インジウム・スズ酸化物)を100nm成膜したもの(NHテクノグラス社製NA45)にパターニングを行った。その後、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥した後、UVオゾン洗浄を5分間にわたって行った。
(Preparation of organic EL element 2-1)
As a support substrate for the organic EL element, a glass substrate of 100 mm × 100 mm × 1.1 mm was used. Patterning was performed on this support substrate having a 100 nm film of ITO (indium tin oxide) as an anode (NA45 manufactured by NH Techno Glass). Then, after ultrasonic cleaning with isopropyl alcohol and drying with dry nitrogen gas, UV ozone cleaning was performed for 5 minutes.
 続いて、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS)(H.C.スタルク社製、Clevios P VP AI 4083)を純水で70%に希釈した溶液を、陽極が成膜された支持基板上に、3000rpm、30秒の条件でスピンコートした後、200℃で1時間にわたって乾燥して、20nmの第1正孔輸送層を形成した。 Subsequently, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS) (manufactured by HC Starck, Clevios P VP AI 4083) with pure water to 70% After spin-coating on a support substrate on which was formed at 3000 rpm for 30 seconds, it was dried at 200 ° C. for 1 hour to form a 20 nm first hole transport layer.
 続いて、第1正孔輸送層が成膜された支持基板を市販の真空蒸着装置の基板ホルダーに固定した。真空蒸着装置のモリブデン製の各抵抗加熱ボートには、正孔輸送層の材料としてHT-2、ホスト化合物として比較化合物1、電子輸送層の材料としてET-1をそれぞれ200mg、発光ドーパントとしてDP-2を100mg投入した。 Subsequently, the support substrate on which the first hole transport layer was formed was fixed to a substrate holder of a commercially available vacuum deposition apparatus. Each resistance heating boat made of molybdenum of the vacuum evaporation apparatus has HT-2 as the material for the hole transport layer, Comparative compound 1 as the host compound, 200 mg of ET-1 as the material for the electron transport layer, and DP- 100 mg of 2 was added.
 続いて、真空槽を4×10-4Paまで減圧した。そして、HT-2を蒸着速度0.1nm/秒で第1正孔輸送層上に蒸着し、20nmの第2正孔輸送層を形成した。 Subsequently, the vacuum chamber was depressurized to 4 × 10 −4 Pa. Then, HT-2 was deposited on the first hole transport layer at a deposition rate of 0.1 nm / second to form a 20 nm second hole transport layer.
 続いて、比較化合物1を蒸着速度0.1nm/秒で、DP-2を蒸着速度0.006nm/秒でそれぞれ第2正孔輸送層上に共蒸着し、厚さ40nmの発光層を形成した。 Subsequently, Comparative Compound 1 was co-deposited on the second hole transport layer at a deposition rate of 0.1 nm / second and DP-2 at a deposition rate of 0.006 nm / second to form a light-emitting layer having a thickness of 40 nm. .
 続いて、ET-1を蒸着速度0.1nm/秒で発光層上に蒸着し、厚さ30nmの電子輸送層を形成した。なお、蒸着時の基板温度は室温であった。 Subsequently, ET-1 was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to form an electron transport layer having a thickness of 30 nm. In addition, the substrate temperature at the time of vapor deposition was room temperature.
 続いて、フッ化リチウムを電子輸送層上に蒸着し、厚さ0.5nmの電子注入層を形成した。そして、アルミニウムを電子注入層上に蒸着し、厚さ110nmの陰極を形成して有機EL素子2-1とした。 Subsequently, lithium fluoride was deposited on the electron transport layer to form an electron injection layer having a thickness of 0.5 nm. And aluminum was vapor-deposited on the electron injection layer, the cathode with a thickness of 110 nm was formed, and it was set as the organic EL element 2-1.
(有機EL素子2-2~2-19の作製)
 有機EL素子2-1の作製において、比較化合物1を比較化合物2~3又は前記の化合物例のそれぞれ(表8参照)に変えた以外は同様にして有機EL素子2-2~2-19を作製した。
(Production of organic EL elements 2-2 to 2-19)
In the production of the organic EL element 2-1, the organic EL elements 2-2 to 2-19 were similarly prepared except that the comparative compound 1 was changed to the comparative compounds 2 to 3 or each of the compound examples described above (see Table 8). Produced.
(有機EL素子2-1~2-19の評価)
 作製した有機EL素子2-1~2-19について、実施例1においてと同様にして、外部取り出し量子効率、半減寿命、駆動電圧、駆動時の電圧上昇、経時安定性の評価を行った。
(Evaluation of organic EL elements 2-1 to 2-19)
The produced organic EL elements 2-1 to 2-19 were evaluated in the same manner as in Example 1 for external extraction quantum efficiency, half life, driving voltage, voltage increase during driving, and stability over time.
 以上の評価結果を表8に示す。なお、外部取り出し量子効率、半減寿命、駆動電圧、駆動時の電圧上昇のそれぞれの結果は、有機EL素子2-1を100とする相対値で示した。 Table 8 shows the above evaluation results. The results of the external extraction quantum efficiency, half-life, driving voltage, and voltage increase during driving are shown as relative values with the organic EL element 2-1 being 100.
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000083
 表8に示すように、本発明に係る化合物例を用いた有機EL素子では、外部取り出し量子効率及び半減寿命がいずれも向上している一方、駆動電圧や駆動時の電圧上昇が抑制されていることが分かる。また、経時安定性についても向上がみられる。特に、HArが含窒素複素環基である化合物をホスト化合物として用いた有機EL素子2-4~2-14、有機EL素子2-19は、前記の実施例においてと同様に、HArが電子吸引性基である化合物をホスト化合物として用いた有機EL素子2-15~2-18より半減寿命が向上している。よって、本発明に係る有機EL素子材料によると、駆動電圧を下げることが可能であり、安定性も良好な有機エレクトロルミネッセンス素子を提供することができるといえる。したがって、発光効率、発光寿命が良好であり、低電圧で駆動することが可能な有機EL素子、表示装置及び照明装置を実現することが可能である。また、一般式においてHArで表される置換基としては、発光寿命等の観点からは、電子吸引性基よりも含窒素複素環基が好適であるといえる。 As shown in Table 8, in the organic EL device using the compound example according to the present invention, the external extraction quantum efficiency and the half-life are both improved, while the drive voltage and the voltage increase during driving are suppressed. I understand that. In addition, the stability over time is also improved. In particular, in the organic EL elements 2-4 to 2-14 and the organic EL element 2-19 using a compound in which HAr is a nitrogen-containing heterocyclic group as a host compound, HAr is an electron withdrawing as in the above-described examples. The half-life is improved over the organic EL devices 2-15 to 2-18 using a compound which is a functional group as a host compound. Therefore, it can be said that the organic EL device material according to the present invention can provide an organic electroluminescence device that can reduce the driving voltage and has good stability. Accordingly, it is possible to realize an organic EL element, a display device, and a lighting device that have favorable light emission efficiency and light emission life and can be driven at a low voltage. In addition, as a substituent represented by HAr in the general formula, it can be said that a nitrogen-containing heterocyclic group is more preferable than an electron-withdrawing group from the viewpoint of emission lifetime and the like.
[実施例3]
 実施例3として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極の素子構成を有し、複数種のホスト化合物を併用した有機EL素子3-1~3-12を作製した。
[Example 3]
Example 3 has an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode device structure, and an organic material in which a plurality of types of host compounds are used in combination. EL elements 3-1 to 3-12 were produced.
(有機EL素子3-1の作製)
 有機EL素子の支持基板としては、100mm×100mm×1.1mmのガラス基板を用いた。この支持基板上に陽極としてITO(インジウム・スズ酸化物)を100nm成膜したもの(NHテクノグラス社製NA45)にパターニングを行った。その後、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥した後、UVオゾン洗浄を5分間にわたって行った。
(Preparation of organic EL element 3-1)
As a support substrate for the organic EL element, a glass substrate of 100 mm × 100 mm × 1.1 mm was used. Patterning was performed on this support substrate having a 100 nm film of ITO (indium tin oxide) as an anode (NA45 manufactured by NH Techno Glass). Then, after ultrasonic cleaning with isopropyl alcohol and drying with dry nitrogen gas, UV ozone cleaning was performed for 5 minutes.
 続いて、陽極が成膜された支持基板を市販の真空蒸着装置の基板ホルダーに固定した。真空蒸着装置のモリブデン製の各抵抗加熱ボートには、正孔注入層の材料としてHT-1、正孔輸送層の材料としてHT-2、ホスト化合物として比較化合物1、発光ドーパントとしてDP-3、正孔阻止層の材料としてET-1、電子輸送層の材料としてET-2をそれぞれ200mg投入した。 Subsequently, the support substrate on which the anode was formed was fixed to a substrate holder of a commercially available vacuum deposition apparatus. Each of the resistance heating boats made of molybdenum of the vacuum deposition apparatus has HT-1 as the material of the hole injection layer, HT-2 as the material of the hole transport layer, Comparative compound 1 as the host compound, DP-3 as the light emitting dopant, 200 mg of ET-1 as the material for the hole blocking layer and 200 mg of ET-2 as the material for the electron transport layer were respectively added.
 続いて、真空槽を4×10-4Paまで減圧した。そして、HT-1を蒸着速度0.1nm/秒で陽極上に蒸着し、厚さ10nmの正孔注入層を形成した。 Subsequently, the vacuum chamber was depressurized to 4 × 10 −4 Pa. Then, HT-1 was deposited on the anode at a deposition rate of 0.1 nm / second to form a 10 nm thick hole injection layer.
 続いて、HT-2を蒸着速度0.1nm/秒で正孔注入層上に蒸着し、厚さ30nmの正孔輸送層を形成した。 Subsequently, HT-2 was deposited on the hole injection layer at a deposition rate of 0.1 nm / second to form a hole transport layer having a thickness of 30 nm.
 続いて、比較化合物1を蒸着速度0.1nm/秒で、DP-3を蒸着速度0.01nm/秒でそれぞれ正孔輸送層上に共蒸着し、厚さ40nmの発光層を形成した。 Subsequently, Comparative Compound 1 was co-deposited on the hole transport layer at a deposition rate of 0.1 nm / second and DP-3 at a deposition rate of 0.01 nm / second to form a light-emitting layer having a thickness of 40 nm.
 続いて、ET-1を蒸着速度0.1nm/秒で発光層上に蒸着し、厚さ10nmの正孔阻止層を形成した。 Subsequently, ET-1 was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to form a 10 nm thick hole blocking layer.
 続いて、ET-2を蒸着速度0.1nm/秒で正孔阻止層上に蒸着し、厚さ30nmの電子輸送層を形成した。 Subsequently, ET-2 was deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to form an electron transport layer having a thickness of 30 nm.
 続いて、フッ化リチウムを電子輸送層上に蒸着し、厚さ0.5nmの電子注入層を形成した。そして、アルミニウムを電子注入層上に蒸着し、厚さ110nmの陰極を形成して有機EL素子3-1とした。 Subsequently, lithium fluoride was deposited on the electron transport layer to form an electron injection layer having a thickness of 0.5 nm. Then, aluminum was vapor-deposited on the electron injection layer, and a cathode having a thickness of 110 nm was formed to obtain an organic EL element 3-1.
(有機EL素子3-2の作製)
 有機EL素子3-1の作製において、抵抗加熱ボートに比較化合物2をさらに投入し、発光層の成膜において、比較化合物1を蒸着速度0.1nm/秒で、比較化合物2を蒸着速度0.01nm/秒で、DP-3を蒸着速度0.01nm/秒でそれぞれ正孔輸送層上に共蒸着し、厚さ40nmの発光層を形成した以外は同様にして有機EL素子3-2を作製した。
(Preparation of organic EL element 3-2)
In the production of the organic EL element 3-1, the comparative compound 2 was further added to a resistance heating boat. In the formation of the light emitting layer, the comparative compound 1 was deposited at a deposition rate of 0.1 nm / second, and the comparative compound 2 was deposited at a deposition rate of 0.1. An organic EL device 3-2 was prepared in the same manner except that DP-3 was co-deposited on the hole transport layer at a deposition rate of 0.01 nm / second at 01 nm / second to form a light-emitting layer having a thickness of 40 nm. did.
(有機EL素子3-3~3-12の作製)
 有機EL素子3-2の作製において、比較化合物2を比較化合物3又は前記の化合物例のそれぞれ(表9参照)に変えた以外は同様にして有機EL素子3-3~3-12を作製した。
(Preparation of organic EL elements 3-3 to 3-12)
Organic EL devices 3-3 to 3-12 were prepared in the same manner as in the production of the organic EL device 3-2 except that the comparative compound 2 was changed to the comparative compound 3 or each of the above compound examples (see Table 9). .
(有機EL素子3-1~3-12の評価)
 作製した有機EL素子3-1~3-12について、実施例1においてと同様にして、外部取り出し量子効率、半減寿命、駆動電圧、駆動時の電圧上昇、経時安定性の評価を行った。
(Evaluation of organic EL elements 3-1 to 3-12)
The produced organic EL elements 3-1 to 3-12 were evaluated in the same manner as in Example 1 for external extraction quantum efficiency, half life, driving voltage, voltage increase during driving, and stability over time.
 以上の評価結果を表9に示す。なお、外部取り出し量子効率、半減寿命、駆動電圧、駆動時の電圧上昇のそれぞれの結果は、有機EL素子3-1を100とする相対値で示した。 The above evaluation results are shown in Table 9. The results of the external extraction quantum efficiency, half-life, driving voltage, and voltage increase during driving are shown as relative values with the organic EL element 3-1 as 100.
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000084
 表9に示すように、本発明に係る化合物例をホスト化合物として併用した有機EL素子では、外部取り出し量子効率及び半減寿命がいずれも向上している一方、駆動電圧や駆動時の電圧上昇が抑制されていることが分かる。また、経時安定性についても向上がみられる。特に、HArが含窒素複素環基である化合物をホスト化合物として併用した有機EL素子3-4~3-9、有機EL素子3-11は、前記の実施例においてと同様に、HArが電子吸引性基である化合物をホスト化合物として併用した有機EL素子3-10、有機EL素子3-12より半減寿命が向上している。よって、本発明に係る有機EL素子材料が含まれていると、駆動電圧を下げることが可能であり、安定性も良好な有機エレクトロルミネッセンス素子を提供することができるといえる。したがって、発光効率、発光寿命が良好であり、低電圧で駆動することが可能な有機EL素子、表示装置及び照明装置を実現することが可能である。また、一般式においてHArで表される置換基としては、発光寿命等の観点からは、電子吸引性基よりも含窒素複素環基が好適であるといえる。 As shown in Table 9, in the organic EL device in which the compound example according to the present invention is used as a host compound, the external extraction quantum efficiency and the half-life are both improved, while the drive voltage and the voltage increase during driving are suppressed. You can see that. In addition, the stability over time is also improved. In particular, in the organic EL elements 3-4 to 3-9 and the organic EL element 3-11 in which a compound in which HAr is a nitrogen-containing heterocyclic group is used as a host compound, HAr is an electron withdrawing as in the above embodiment. The half-life is improved compared to the organic EL device 3-10 and the organic EL device 3-12 in which a compound which is a functional group is used as a host compound. Therefore, when the organic EL element material according to the present invention is included, it can be said that the driving voltage can be lowered and an organic electroluminescence element having good stability can be provided. Accordingly, it is possible to realize an organic EL element, a display device, and a lighting device that have favorable light emission efficiency and light emission life and can be driven at a low voltage. In addition, as a substituent represented by HAr in the general formula, it can be said that a nitrogen-containing heterocyclic group is more preferable than an electron-withdrawing group from the viewpoint of emission lifetime and the like.
1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスタ
12 駆動トランジスタ
13 コンデンサー
101 照明装置内の有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
A 表示部
B 制御部
DESCRIPTION OF SYMBOLS 1 Display 3 Pixel 5 Scan line 6 Data line 7 Power supply line 10 Organic EL element 11 Switching transistor 12 Drive transistor 13 Capacitor 101 Organic EL element 102 in an illuminating device Glass cover 105 Cathode 106 Organic EL layer 107 Glass substrate 108 with a transparent electrode Nitrogen Gas 109 Water capturing agent A Display part B Control part

Claims (16)

  1.  下記一般式(1)、
    Figure JPOXMLDOC01-appb-C000001
    [式中、A及びAは、互いに同一の環からなる縮合芳香族複素環を表し、Lは、二価の連結基を表し、HArは、含窒素複素環基、又は、電子吸引性基を表す。R及びRは、それぞれ独立に、HArとは異なる置換基を表す。s及びtは、それぞれ独立に、0以上の整数であり、uは、1以上の整数である。]
    で表され、
     LUMOの電子密度分布の70%以上が、Lで表される連結基に局在しており、且つ、HOMOの電子密度分布の60%以上が、Aで表される縮合芳香族複素環に局在しており、Aで表される縮合芳香族複素環のHOMOの電子密度分布及びLUMOの電子密度分布が7%以下であることを特徴とする有機エレクトロルミネッセンス素子材料。
    The following general formula (1),
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, A 1 and A 2 represent a condensed aromatic heterocyclic ring composed of the same ring, L represents a divalent linking group, and HAr represents a nitrogen-containing heterocyclic group or an electron-withdrawing group. Represents a group. R 1 and R 2 each independently represent a substituent different from HAr. s and t are each independently an integer of 0 or more, and u is an integer of 1 or more. ]
    Represented by
    More than 70% of the electron density distribution of LUMO is localized in the linking group represented by L, and more than 60% of the electron density distribution of HOMO is in the condensed aromatic heterocycle represented by A 2. An organic electroluminescent device material characterized in that the HOMO electron density distribution and LUMO electron density distribution of the condensed aromatic heterocycle represented by A 1 are 7% or less.
  2.  前記A及び前記Aが、カルバゾール環であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子材料。 2. The organic electroluminescent element material according to claim 1, wherein A 1 and A 2 are carbazole rings.
  3.  前記Lが、下記一般式(2)、
    Figure JPOXMLDOC01-appb-C000002
    [式中、*は、Aとの結合部位を表し、**は、Aとの結合部位を表す。L及びLは、それぞれ独立に、置換若しくは無置換のフェニレン基、置換若しくは無置換のビフェニル基、置換若しくは無置換のフルオレン基、置換若しくは無置換のジベンゾチオフェン基、又は、置換若しくは無置換のジベンゾフラン基を表し、Lは、単結合、置換若しくは無置換の炭素数1~5のアルキレン基、エーテル基、チオエーテル基、又は、下記一般式(3)~(7)のいずれかで表される置換基を表す。nは、0~3の整数である。但し、nが2以上であるとき、L及びLは、互いに同一であってもよく、互いに異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    [式中、※は、結合部位を表す。R及びRは、それぞれ独立に、置換若しくは無置換のアルキル基、又は、置換若しくは無置換のアリール基を表す。]
    で表されることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子材料。
    L is the following general formula (2),
    Figure JPOXMLDOC01-appb-C000002
    [In the formula, * represents a binding site with A 1, and ** represents a binding site with A 2 . L 1 and L 3 are each independently a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted fluorene group, a substituted or unsubstituted dibenzothiophene group, or a substituted or unsubstituted group L 2 represents a single bond, a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms, an ether group, a thioether group, or any one of the following general formulas (3) to (7). Represents a substituent. n is an integer of 0 to 3. However, when n is 2 or more, L 2 and L 3 may be the same or different from each other. ]
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    [In the formula, * represents a binding site. R 3 and R 4 each independently represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. ]
    The organic electroluminescent element material according to claim 1, wherein the organic electroluminescent element material is represented by:
  4.  下記一般式(8)、
    Figure JPOXMLDOC01-appb-C000008
    [式中、Yは、O又はSを表す。s1、s2、u1、u2、t1及びt2は、それぞれ独立に、0~4の整数であり、1≦u1+u2≦8を満たす。HAr、R、R、L、L及びnは、前記一般式においてと同義である。]
    で表されることを特徴とする請求項3に記載の有機エレクトロルミネッセンス素子材料。
    The following general formula (8),
    Figure JPOXMLDOC01-appb-C000008
    [Wherein Y represents O or S. s1, s2, u1, u2, t1, and t2 are each independently an integer of 0 to 4, and satisfy 1 ≦ u1 + u2 ≦ 8. HAr, R 1 , R 2 , L 2 , L 3 and n are as defined in the above general formula. ]
    The organic electroluminescence element material according to claim 3, which is represented by:
  5.  前記一般式(8)で表される化合物が、下記一般式(9)、
    Figure JPOXMLDOC01-appb-C000009
    [式中、HAr、R、R、Y、L、L、n、s1、s2、u1、u2、t1及びt2は、前記一般式においてと同義である。]
    で表されることを特徴とする請求項4に記載の有機エレクトロルミネッセンス素子材料。
    The compound represented by the general formula (8) is represented by the following general formula (9),
    Figure JPOXMLDOC01-appb-C000009
    [Wherein, HAr, R 1 , R 2 , Y, L 2 , L 3 , n, s 1 , s 2 , u 1, u 2, t 1 and t 2 have the same meaning as in the above general formula. ]
    The organic electroluminescence element material according to claim 4, wherein
  6.  前記一般式(9)で表される化合物が、下記一般式(10)、
    Figure JPOXMLDOC01-appb-C000010
    [式中、s3は、0~4の整数であり、s4は、0~3の整数である。HAr、R、R、Y、L、L、n、t1及びt2は、前記一般式においてと同義である。]
    で表されることを特徴とする請求項5に記載の有機エレクトロルミネッセンス素子材料。
    The compound represented by the general formula (9) is represented by the following general formula (10),
    Figure JPOXMLDOC01-appb-C000010
    [Wherein, s3 is an integer of 0 to 4, and s4 is an integer of 0 to 3. HAr, R 1 , R 2 , Y, L 2 , L 3 , n, t1 and t2 are as defined in the above general formula. ]
    The organic electroluminescence element material according to claim 5, which is represented by:
  7.  前記一般式(8)で表される化合物が、下記一般式(11)、
    Figure JPOXMLDOC01-appb-C000011
    [式中、HAr、R、R、Y、L、L、n、s1、s2、u1、u2、t1及びt2は、前記一般式においてと同義である。]
    で表されることを特徴とする請求項4に記載の有機エレクトロルミネッセンス素子材料。
    The compound represented by the general formula (8) is represented by the following general formula (11),
    Figure JPOXMLDOC01-appb-C000011
    [Wherein, HAr, R 1 , R 2 , Y, L 2 , L 3 , n, s 1 , s 2 , u 1, u 2, t 1 and t 2 have the same meaning as in the above general formula. ]
    The organic electroluminescence element material according to claim 4, wherein
  8.  前記一般式(11)で表される化合物が、下記一般式(12)、
    Figure JPOXMLDOC01-appb-C000012
    [式中、s3は、0~4の整数であり、s4は、0~3の整数である。HAr、R、R、Y、L、L、n、t1及びt2は、前記一般式においてと同義である。]
    で表されることを特徴とする請求項7に記載の有機エレクトロルミネッセンス素子材料。
    The compound represented by the general formula (11) is represented by the following general formula (12),
    Figure JPOXMLDOC01-appb-C000012
    [Wherein, s3 is an integer of 0 to 4, and s4 is an integer of 0 to 3. HAr, R 1 , R 2 , Y, L 2 , L 3 , n, t1 and t2 are as defined in the above general formula. ]
    The organic electroluminescence element material according to claim 7, which is represented by:
  9.  前記HArが、縮環していてもよい含窒素5員芳香族複素環であることを特徴とする請求項1から請求項8のいずれか一項に記載の有機エレクトロルミネッセンス素子材料。 The organic electroluminescent element material according to any one of claims 1 to 8, wherein the HAr is a nitrogen-containing 5-membered aromatic heterocyclic ring which may be condensed.
  10.  前記HArが、含窒素6員芳香族複素環であることを特徴とする請求項1から請求項8のいずれか一項に記載の有機エレクトロルミネッセンス素子材料。 The organic electroluminescent element material according to any one of claims 1 to 8, wherein the HAr is a nitrogen-containing 6-membered aromatic heterocyclic ring.
  11.  前記HArが、下記一般式(13)~(21)のうちのいずれかであることを特徴とする請求項1から請求項8のいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
    Figure JPOXMLDOC01-appb-C000021
    [式中、※は、結合部位を表す。Rは、それぞれ独立に、水素原子、ハロゲン原子、又は、置換若しくは無置換の炭素数1~5のアルキル基、置換若しくは無置換の炭素数3~10のシクロアルキル基、置換若しくは無置換のフェニル基、又は、置換若しくは無置換のピリジル基を表す。]
    9. The organic electroluminescent element material according to claim 1, wherein the HAr is any one of the following general formulas (13) to (21).
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
    Figure JPOXMLDOC01-appb-C000021
    [In the formula, * represents a binding site. Each R independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, or a substituted or unsubstituted phenyl; Represents a group or a substituted or unsubstituted pyridyl group. ]
  12.  請求項1から請求項11のいずれか一項に記載の有機エレクトロルミネッセンス素子材料を陽極と陰極との間に介在する有機層に含有していることを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescent device comprising the organic electroluminescent device material according to any one of claims 1 to 11 in an organic layer interposed between an anode and a cathode.
  13.  前記有機層が、発光層であり、前記有機エレクトロルミネッセンス素子材料が、ホスト材料として含まれていることを特徴とする請求項12に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to claim 12, wherein the organic layer is a light emitting layer, and the organic electroluminescent element material is included as a host material.
  14.  前記発光層が、さらにリン光発光性ドーパントを含有しており、
     前記リン光発光性ドーパントのHOMOのエネルギー準位が、-5.30eV以上-4.5eV以下であることを特徴とする請求項13に記載の有機エレクトロルミネッセンス素子。
    The light emitting layer further contains a phosphorescent dopant,
    14. The organic electroluminescence device according to claim 13, wherein the phosphorescent dopant has a HOMO energy level of −5.30 eV to −4.5 eV.
  15.  請求項12から請求項14のいずれか一項に記載の有機エレクトロルミネッセンス素子を具備することを特徴とする表示装置。 A display device comprising the organic electroluminescence element according to any one of claims 12 to 14.
  16.  請求項12から請求項14のいずれか一項に記載の有機エレクトロルミネッセンス素子を具備することを特徴とする照明装置。 An illuminating device comprising the organic electroluminescence element according to any one of claims 12 to 14.
PCT/JP2016/080199 2015-12-15 2016-10-12 Organic electroluminescent element material, organic electroluminescent element, display device and lighting device WO2017104242A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017556384A JP6755261B2 (en) 2015-12-15 2016-10-12 Organic electroluminescence element material, organic electroluminescence element, display device and lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015244002 2015-12-15
JP2015-244002 2015-12-15

Publications (1)

Publication Number Publication Date
WO2017104242A1 true WO2017104242A1 (en) 2017-06-22

Family

ID=59056031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080199 WO2017104242A1 (en) 2015-12-15 2016-10-12 Organic electroluminescent element material, organic electroluminescent element, display device and lighting device

Country Status (2)

Country Link
JP (1) JP6755261B2 (en)
WO (1) WO2017104242A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190230A1 (en) * 2018-03-28 2019-10-03 주식회사 엘지화학 Compound and organic light emitting diode comprising same
US11145825B2 (en) * 2018-04-27 2021-10-12 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including i he same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079678A1 (en) * 2009-01-09 2010-07-15 コニカミノルタホールディングス株式会社 Organic electroluminescent element, display device, and lighting device
WO2013035275A1 (en) * 2011-09-09 2013-03-14 出光興産株式会社 Nitrogen-containing heteroaromatic ring compound
JP2013149880A (en) * 2012-01-23 2013-08-01 Konica Minolta Inc Organic electroluminescent element, display device and luminaire
WO2015140073A1 (en) * 2014-03-17 2015-09-24 Idemitsu Kosan Co., Ltd. New dibenzofurans and dibenzothiophenes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079678A1 (en) * 2009-01-09 2010-07-15 コニカミノルタホールディングス株式会社 Organic electroluminescent element, display device, and lighting device
WO2013035275A1 (en) * 2011-09-09 2013-03-14 出光興産株式会社 Nitrogen-containing heteroaromatic ring compound
JP2013149880A (en) * 2012-01-23 2013-08-01 Konica Minolta Inc Organic electroluminescent element, display device and luminaire
WO2015140073A1 (en) * 2014-03-17 2015-09-24 Idemitsu Kosan Co., Ltd. New dibenzofurans and dibenzothiophenes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190230A1 (en) * 2018-03-28 2019-10-03 주식회사 엘지화학 Compound and organic light emitting diode comprising same
US11145825B2 (en) * 2018-04-27 2021-10-12 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including i he same

Also Published As

Publication number Publication date
JP6755261B2 (en) 2020-09-16
JPWO2017104242A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
CN109155370B (en) Material for organic electroluminescent element, display device, and lighting device
JP6754185B2 (en) Organic functional materials for organic electroluminescence devices, display devices, lighting devices and electronic devices
WO2017018326A1 (en) Organic electroluminescent element, display device, and illumination device
CN109378396B (en) Organic electroluminescent element, display device, lighting device, pi-conjugated compound, and light-emitting thin film
WO2016017684A1 (en) Organic electroluminescent element material, organic electroluminescent element, light-emitting thin film, display device and illumination device
KR20170128517A (en) π conjugated compound, organic electroluminescent device material, luminescent material, luminescent thin film, organic electroluminescent device, display device and lighting device
JP2017126606A (en) Electronic device material, organic electroluminescent element, display device, and illuminating device
JP6319319B2 (en) Organic electroluminescence element, display device and lighting device
JP6011542B2 (en) Organic electroluminescence element, display device and lighting device
JP2016036022A (en) Organic electroluminescent device material, organic electroluminescent device, charge-transferable thin film, display and illuminating apparatus
WO2016181772A1 (en) Π-conjugated compound, organic electroluminescence element material, light-emitting thin film, organic electroluminescence element, display device, and illumination device
WO2016143508A1 (en) Organic electroluminescent element and organic electroluminescent element material
JP2014111549A (en) Iridium complex, organic electroluminescent element material, and organic electroluminescent element using the same
WO2017115753A1 (en) Bridged compound, organic electroluminescence element material, organic electroluminescence element, display device, and illumination device
WO2016181773A1 (en) Π-conjugated compound, organic electroluminescence element material, light-emitting material, light-emitting thin film, organic electroluminescence element, display device, and illumination device
CN107534092B (en) Material for organic electroluminescent element, display device, and lighting device
JP2016210728A (en) π-CONJUGATED TYPE COMPOUND, ORGANIC ELECTROLUMINESCENCE ELEMENT MATERIAL, LUMINESCENT THIN FILM, ORGANIC ELECTROLUMINESCENCE ELEMENT, DISPLAY DEVICE, AND ILLUMINATION DEVICE
WO2016056562A1 (en) Iridium complex, organic electroluminescence material, organic electroluminescence element, display device, and illumination device
JP5998989B2 (en) Organic electroluminescence element, display device and lighting device
WO2013114966A1 (en) Iridium complex compound, material for organic electroluminescence element, organic electroluminescence element, lighting device, and display device
JP6755261B2 (en) Organic electroluminescence element material, organic electroluminescence element, display device and lighting device
WO2018168292A1 (en) Organic electroluminescent element material, organic electroluminescent element, display device, lighting device, and compound
JP2017031184A (en) Iridium complex, organic electroluminescent element material and organic electroluminescence element using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556384

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875227

Country of ref document: EP

Kind code of ref document: A1