JP6752556B2 - 熱電対の取り付け構造及び熱電対の取り付け方法 - Google Patents

熱電対の取り付け構造及び熱電対の取り付け方法 Download PDF

Info

Publication number
JP6752556B2
JP6752556B2 JP2015152624A JP2015152624A JP6752556B2 JP 6752556 B2 JP6752556 B2 JP 6752556B2 JP 2015152624 A JP2015152624 A JP 2015152624A JP 2015152624 A JP2015152624 A JP 2015152624A JP 6752556 B2 JP6752556 B2 JP 6752556B2
Authority
JP
Japan
Prior art keywords
thermocouple
platinum
chip
bonded
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015152624A
Other languages
English (en)
Other versions
JP2017032406A (ja
Inventor
堯民 古屋
堯民 古屋
登 石黒
登 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuya Metal Co Ltd
Original Assignee
Furuya Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuya Metal Co Ltd filed Critical Furuya Metal Co Ltd
Priority to JP2015152624A priority Critical patent/JP6752556B2/ja
Priority to PCT/JP2016/071840 priority patent/WO2017022565A1/ja
Publication of JP2017032406A publication Critical patent/JP2017032406A/ja
Application granted granted Critical
Publication of JP6752556B2 publication Critical patent/JP6752556B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、熱電対の取り付け構造に関し、特に強化白金系熱電対を用いて、白金、白金合金又は酸化物分散強化白金を用いて形成された器具の所定箇所の温度を測るときに、断線トラブルが生じにくい熱電対の取り付け構造に関する。
白金を用いる熱電対としては、例えば、正極(プラス極)に白金ロジウム合金(ロジウム13%)からなる素線と負極に純白金からなる素線を用いたR熱電対、正極に白金ロジウム合金(ロジウム10%)からなる素線と負極に純白金からなる素線を用いたS熱電対がある。
これらの熱電対は、白金製ガラス溶解用装置の温度測定に用いられている。そして、熱電対の先端を溶接したのち、溶接部の近傍に白金板を補強材として用い、熱電対の素線の一部を覆うように配置して、白金板の4隅を溶接して固定する熱電対の取り付け構造の開示がある(例えば特許文献1を参照)。特許文献1には、この技術によって装置の測定部位に熱電対の先端を直接溶接して取り付けたとしても、熱電対の断線が確実に防止できると記載されている。
特開2011−158424号公報
特許文献1に記載される技術では、白金製のガラス溶融炉の温度計測にPt対Pt‐Rh合金の熱電対が利用されている。しかし、この熱電対には高温で長時間使用されると劣化して断線してしまうという問題があり、これを避けることができなかった。
そこで、熱電対そのものの強度を上げるため、強化白金系熱電対とよばれる従来よりも高強度な熱電対が開発されている。しかし、熱電対の素線に介在物を入れて強度を向上させた熱電対であるため、溶融にて接合を行うと、大きく強度劣化して使用できないという問題があった。
そこで、本発明の目的は、強化白金系熱電対を用いた熱電対の取り付け構造において、溶融による強度劣化を生じさせずに高寿命の熱電対接合を実現することである。
本発明者らは、強化白金系熱電対の接合方法として、溶融法ではなく、拡散接合、すなわち熱拡散現象を採用して測温接点を接合することで、強化白金系熱電対の強度が保たれることを見出し、本発明を完成させた。すなわち、本発明に係る熱電対の取り付け構造は、白金、白金合金又は酸化物分散強化白金を用いて形成された器具と、強化白金系熱電対と、前記器具の測定対象部位に固定されている取り付け部と、を有する熱電対の取り付け構造において、前記取り付け部は、白金系材料からなるチップを有し、該チップが前記強化白金系熱電対の測温接点を覆った状態となっており、前記強化白金系熱電対は大気中1100℃にて10MPaの応力をかけたときの破断時間が100時間以上の高温強度を有し、
前記強化白金系熱電対の素線の線径が0.1mm以上2.0mm以下であり、前記測温接点が、前記素線同士の接触部分及び前記素線と前記チップとの接触部分のうち少なくともいずれか一方を有し、かつ、前記接触部分の少なくとも1ヵ所が拡散接合されていることを特徴とする。
本発明に係る熱電対の取り付け構造では、前記測温接点は、
(1)前記強化白金系熱電対の正極が前記チップと拡散接合され、負極が該チップと拡散接合され、かつ、前記正極と前記負極とが拡散接合されていないか、
(2)前記強化白金系熱電対の正極と負極とが拡散接合されているか、又は、
(3)前記強化白金系熱電対の正極が前記チップと拡散接合され、負極が該チップと拡散接合され、かつ、前記正極と前記負極とが拡散接合されているか、のいずれか一つの形態をとることが好ましい。取り付け部がチップ付き構造となることで、拡散接合された測温接点がより強固に器具に取り付けられる。
本発明に係る熱電対の取り付け構造では、前記チップは向かい合う面を有し、該向かい合う面は、前記強化白金系熱電対の測温接点を挟み込んでおり、前記チップが前記器具に固定されていることが好ましい。チップが熱電対の測温接点を挟みこむことで、機械的に強固に熱電対がチップに取り付けられることとなる。また、チップと器具との接触面積を最大化することが可能となるため、チップはさらに強固に器具に取り付けられることとなる。
本発明に係る熱電対の取り付け構造では、前記チップはスリットの形状を有し、前記向かい合う面は、該スリットの内側面であることが好ましい。チップがこのような構造をとることでチップに熱電対の素線を挟み込む作業が容易になる。さらに、向かい合う面同士が1個のチップにあるため、ばらばらにならない。さらに、チップを機械的にかしめるときに、スリットがつぶれる動きが生じるため、熱電対をより強い力で挟み込むことが可能となる。
本発明に係る熱電対の取り付け構造では、前記チップは、前記器具に拡散接合されていることが好ましい。接合した部分の強度劣化を生じさせることがない。また、測温接点を拡散接合する作業と同時にチップの器具への接合作業が可能となる。
本発明に係る熱電対の取り付け構造では、前記器具と前記チップとの間に0.01mm以上0.5mm以下の厚さの白金箔が挟み込まれており、かつ、当接し合う面同士が拡散接合されていることが好ましい。器具とチップとの隙間を白金箔が埋めることができるため、接合強度を高めることができる。
本発明に係る熱電対の取り付け構造では、前記器具と前記チップとの間に、0.3mm以上2.0mm以下の厚みの白金系材料からなる板が挟み込まれており、かつ、当接し合う面同士が拡散接合されていることが好ましい。器具とチップとの間に板が入れられていることにより、取り付け部の強度を高めることができる。
本発明に係る熱電対の取り付け構造では、前記板は、前記器具に拡散接合されていることが好ましい。接合した部分の強度劣化を生じさせることがない。また、測温接点を拡散接合する作業と同時に板の器具への接合作業が可能となる。
本発明に係る熱電対の取り付け構造では、前記チップと前記板との間、又は、前記器具と前記板との間、又は、その両方の間に0.01mm以上0.5mm以下の厚さの白金箔が挟み込まれており、かつ、当接し合う面同士が拡散接合されていることが好ましい。チップと板との間、又は、器具と板との間、又は、その両方の間の隙間を白金箔が埋めることができるため、接合強度を高めることができる。
本発明に係る熱電対の取り付け構造では、前記強化白金系熱電対の正極又は負極の少なくともいずれか一方は、白金箔に巻かれた状態で拡散接合されていることが好ましい。熱電対の素線の周りの隙間を白金箔が埋めることができるため、接合強度を高めることができる。
本発明に係る強化白金系熱電対の正極又は負極の少なくともいずれか一方は、金属元素またはガス元素を含有するか、或いは、酸化物、窒化物、炭化物又は硼化物のうち少なくともいずれか一種を含有することが好ましい。溶融による強度劣化を生じさせずに強化白金系熱電対素線の強度が維持される。
本発明に係る熱電対の取り付け構造では、前記器具は、ガラス溶融ライン用器具、ガラス溶融炉、溶解槽、脱泡層、清澄槽、攪拌槽又は連結パイプである形態を含む。
本発明に係る熱電対の取り付け方法は、本発明に係る熱電対の取り付け構造における該熱電対の取り付け方法であって、前記測温接点となる部分を機械的接合し、該部分を加圧した状態で、1000℃以上の温度に加熱して熱拡散させて拡散接合する工程を有することを特徴とする。拡散接合させたい部分を一度に接合させることが可能となり、作業性に優れる。
本発明によれば、強化白金系熱電対を用いた熱電対の取り付け構造において、溶融による強度劣化を生じさせずに高寿命の熱電対接合を実現することである。
本実施形態に係る熱電対の取り付け状態を示す概略図であり、(a)は平面図、(b)はA−A断面である。 チップの一例を示す概略図であり、(a)は正面図、(b)は右側面図、(c)は背面図である。 別の実施形態に係る熱電対の取り付け状態を示す概略図であり、(a)は平面図、(b)はB−B断面、(c)はC−C断面図である。 B−B断面の例を示す概略図であり、(a)は熱電対の正極と負極とが拡散接合されている例、(b)は熱電対の正極がチップと拡散接合され、負極がチップと拡散接合され、かつ、正極と負極とが拡散接合されている例、(c)熱電対の正極がチップと拡散接合され、負極がチップと拡散接合され、かつ、正極と負極とが拡散接合されていない例である。 A−A断面の別例を示す概略図であり、チップと器具との間に白金箔を挟んだ例である。 A−A断面の別例を示す概略図であり、チップと器具との間に白金系材料からなる板を挟んだ例である。 A−A断面の別例を示す概略図であり、チップと器具との間に白金系材料からなる板を挟み、かつ、それらの間に白金箔を挟んだ例である。 A−A断面の別例を示す概略図であり、熱電対の素線に白金箔を巻いた例である。
次に本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。
図1を参照して、本実施形態に係る熱電対の取り付け構造について説明する。図1は、本実施形態に係る熱電対の取り付け状態を示す概略図であり、(a)は平面図、(b)はA−A断面である。本実施形態に係る熱電対の取り付け構造100は、白金、白金合金又は酸化物分散強化白金を用いて形成された器具1と、強化白金系熱電対11と、器具1の測定対象部位に固定されている取り付け部9と、を有する。ここで、取り付け部9は、白金系材料からなるチップ4を有し、チップ4が強化白金系熱電対11の測温接点10を覆った状態となっており、強化白金系熱電対11は大気中1100℃にて10MPaの応力をかけたときの破断時間が100時間以上の高温強度を有し、強化白金系熱電対の素線(正極2及び負極3の各素線)の線径が0.1mm以上2.0mm以下であり、かつ、測温接点10が、素線同士の接触部分及び素線とチップとの接触部分のうち少なくともいずれか一方を有し、かつ、接触部分の少なくとも1ヵ所が拡散接合されている。なお、図において、拡散接合している部分を符号5で示した。
器具1は 例えば、ガラス溶融ライン用器具、ガラス溶融炉、溶解槽、脱泡層、清澄槽、攪拌槽又は連結パイプである。これらの器具は、白金、白金合金又は酸化物分散強化白金を用いて形成されている。白金合金は、例えば白金‐ロジウム合金、白金‐イリジウム合金、白金‐金合金、白金‐ジルコニウム合金、白金‐イットリウム合金、白金‐サマリウム合金又は白金‐カルシウム合金である。酸化物分散強化白金は、白金または白金ロジウム合金のマトリックス中にジルコニウム酸化物、イットリウム酸化物、サマリウム酸化物、カルシウム酸化物などの分散粒子が存在する材料である。
強化白金系熱電対11は、正極が白金‐ロジウム合金素線、負極が純白金素線の組み合わせ、又は、正極が白金‐ロジウム合金素線、負極が正極とは組成の異なる白金‐ロジウム合金素線の組み合わせがある。例えば、(正極,負極)の組成が(PtRh13%、Pt)、(PtRh10%、Pt)、(PtRh30%、PtRh6%)、(PtRh40%、PtRh20%)である。強化白金系熱電対11は、上記組成を基本として、強度向上のための添加成分が加えられている。具体的には、強化白金系熱電対11の正極2又は負極3のいずれか一方又はその両方が、金属元素またはガス元素を含有するか、或いは、酸化物、窒化物、炭化物又は硼化物を含有する。素線中に存在する強化白金の白金に含有する金属元素としては、例えばロジウム、イリジウム、金、ジルコニウム、イットリウム、サマリウム、カルシウムである。素線中に存在する強化白金の白金に含有するガス元素としては、例えば窒素、酸素、炭素などである。また、素線中に存在する強化白金の白金に含有する酸化物としては、ジルコニウム酸化物、イットリウム酸化物、サマリウム酸化物、カルシウム酸化物などであり、分散粒子として存在する。そして、素線(正極2及び負極3の各素線)は、これらの添加成分によって強度が向上しているため、細い線径での使用が可能である。素線の線径は0.1mm以上2.0mm以下であり、好ましくは、0.3mm以上1.0mm以下である。本実施形態において、強化白金系熱電対11とは、素線の強度が大気中1100℃にて10MPaの応力をかけたときの破断時間が100時間以上の高温強度を有する熱電対をいう。
測温接点10は拡散接合されている。拡散接合とは、相互に接合させたい部分を押し付け合い、好ましくは機械的にかしめたのち、素線の融点未満の温度、白金系熱電対の場合では1000〜1700℃の温度、好ましくは1200〜1500℃の温度に加熱し、素線を溶融させることなく、当接し合う面同士において熱拡散を起こし、熱圧着させることである。接合部分において、溶融工程を経ていないため、強度向上のための添加成分の分散性が崩れない。よって、強度劣化が防止される。測温接点10は熱電対11の最先端部分に形成される形態に限られず、先端手前の箇所に形成される形態を含む。図1において、測温接点10として囲んだ領域は、この部分全体が測温接点となることを示している。正極の素線と負極の素線とが接合されている場合、接合部分が測温接点となる。しかし、図1で示した形態では、正極の素線と負極の素線とは直接接合されず、チップ4が介在している。よって、正極の素線と負極の素線とその間のチップを含む領域が測温接点となる。
本実施形態において、測温接点10だけが拡散接合されている形態に限定されない。例えば、測温接点10を含む取り付け部9全体又はその一部が加圧された状態で加熱されることによって、当接し合う部分においてそれぞれ拡散接合されている形態がある。
取り付け部9は、強化白金系熱電対11の測温接点10が器具1の測定対象部位に固定されている部分である。取り付け部9が設けられる位置は、器具の底壁、側壁の下方部分であることが好ましい。これらの場所には溶融対象物が壁内に接触しているため、溶融対象物の温度を正確に測定することができる。
次に、取り付け部9がチップ4を有する形態について説明する。
チップ4は白金系材料からなり、例えば白金、白金合金又は酸化物分散強化白金からなることが好ましい。白金合金又は酸化物分散強化白金の組成は、器具1で例示した組成と同様である。チップ4は器具1と同じ組成であることがより好ましい。
チップ4は、器具1の測定対象部位にある測温接点10を覆う小片形状を有していることが好ましい。例えば、器具1の表面上に測温接点10が配置され、チップがこれを覆う小片である形態が例示される(不図示)。
図1(b)に示すように本実施形態では、チップ4は向かい合う面4a,4bを有し、向かい合う面4a,4bは、強化白金系熱電対11の測温接点10を挟み込んでおり、チップ4が器具1に固定されていることがより好ましい。チップ4が熱電対の測温接点10を挟みこむことで、機械的に強固に強化白金系熱電対11がチップ4に取り付けられることとなる。また、向かい合う面4bの反対面4cは平坦面にできるため、向かい合う面4bの反対面4cの全面積が器具1と接触可能となる。その結果、強化白金系熱電対11はさらに強固に器具1に取り付けられることとなる。
まず、図2を参照して、かしめる前のチップ4の形状について説明する。図2は、チップの一例を示す概略図であり、(a)は正面図、(b)は右側面図、(c)は背面図である。チップ4は、2本の貫通孔12を有し、さらに2本の貫通孔12を通るようにスリット13を有する。チップ4はスリットの形状を有し、向かい合う面4a,4bは、スリットの内側面であることが好ましい。向かい合う面4aを有する壁と向かい合う面4bを有する壁とはスリットの一端側の側壁を介して一体化しているため、チップ4に熱電対の素線(正極2,負極3)を挟み込む作業が容易になる。さらに、一体化によって向かい合う面4a,4b同士がばらばらにならない。スリット13の間隔は、貫通孔12の内径よりも小さいことが好ましい。貫通孔12の内径は、素線の直径よりも大きくする必要がある。スリット13の間隔は、熱電対の素線の直径よりも小さいことが好ましい。チップ4がこのような形状を有することによって、熱電対を貫通孔に通すことができ、かつ、正極と負極との接触が防止されるとともに、かしめる力を大きくしなくてもチップと素線との接触面積を高めることができる。また、スリット13を設けることで、かしめるときにスリット13の間が閉まる方向に変形シロができるので、かしめやすくなる。
図2に示したチップ4に熱電対を固定する方法及び固定状態について説明する。貫通孔12の一方には熱電対の正極の素線の先端が通され、貫通孔12の他方には熱電対の負極の素線が通される。例えば、スリット13の背面から貫通孔12に素線を通す。素線の先端は、正面の貫通孔12から突出していても、突出していなくてもよい。貫通孔12に熱電対の素線を通したのち、チップ4の平面と底面とが近付くように押しつぶすことによって、スリット13の間隔が縮み、チップ4に素線が固定される。このとき、図1(b)に示したように、貫通孔12の内壁と正極2の素線とが接触し、貫通孔12の内壁と負極3の素線とが接触し、かつ、スリット13の内面同士が接触状態となる。接触した部分は、図1(b)の符号5で示した拡散接合する部分となる。図1(b)では、スリット13は内面同士が熱圧着されており、熱圧着した部分を符号13(5)で示した。また、この形態では、正極2と負極3は接触し合わない。測温接点10は、正極2と負極3との間にチップ4が電気的に介在する形態をもつ。
次に別形態のチップ4を用いたときの取り付け状態について説明する。図3は、別の実施形態に係る熱電対の取り付け状態を示す概略図であり、(a)は平面図、(b)はB−B断面、(c)はC−C断面図である。図3に示したチップ4は、貫通孔を設けず、スリットだけが設けられている。図3(c)に示すようにスリットの一端はつながっている。貫通孔を設けていないため、スリットの内面と熱電対の素線との接触する面積は、図1の形態と比較すると小さい。しかし、かしめる力を大きくすればするほど、スリットがより多く変形し、接触する面積を大きくすることが可能である。
スリットの形状は、図2又は図4に示した断面コの字状の他、断面V字状、断面U字状がある。
図3では、熱電対の素線の軸方向がスリットをつなぐ壁の法線方向を向くように配置されている形態を示したが、素線の軸方向がスリットをつなぐ壁の面方向を向くように、すなわち、素線の側面からスリットを挟む形態としてもよい。
図4は、B−B断面の例を示す概略図であり、(a)は熱電対の正極と負極とが拡散接合されている例、(b)は熱電対の正極がチップと拡散接合され、負極がチップと拡散接合され、かつ、正極と負極とが拡散接合されている例、(c)熱電対の正極がチップと拡散接合され、負極がチップと拡散接合され、かつ、正極と負極とが拡散接合されていない例である。図4(c)で示した形態は、図1で示した形態と同じく、正極と負極とが拡散接合されていない。測温接点10は、正極2と負極3との間にチップ4が電気的に介在する形態をもつ。図4(a)で示した形態では、測温接点10は、正極2と負極3とが直接接合し合う形態をもつ。図4(b)で示した形態では、測温接点10は、正極2と負極3とが直接接合し合い、かつ、正極2と負極3との間にチップ4が電気的に介在する形態をもつ。図4(c)で示した形態では、正極2と負極3との間にチップ4が電気的に介在する形態をもつ。
図1では、拡散接合した後において、向かい合う面4a,4b同士が強化白金系熱電対11の正極2,負極3と接触する部分以外ではすべて接触し合う形態を示した。図4では、拡散接合した後において、向かい合う面4a,4b同士が一部接触し合う形態を示した。本実施形態は、拡散接合した後において、向かい合う面4a,4b同士が接触していない形態を包含する。例えば、図3及び図4で示した形態では、かしめが強くなるに従い、向かい合う面4a,4b同士が接触していない形態、次いで、向かい合う面4a,4b同士が一部接触し合う形態、次いで、向かい合う面4a,4b同士が熱電対と接触する部分以外ではすべて接触し合う形態となり、熱電対がより強固に固定される。
次に拡散接合について説明する。図1及び図2に示した形態では次の通りとなる。すなわち、図1(b)に示したように、測温接点10が、強化白金系熱電対11の正極2がチップ4と拡散接合され、負極3がチップ4と拡散接合され、かつ、正極2と負極3とが拡散接合されていない形態をとる。正極2、負極3がそれぞれチップ4と接触する箇所が拡散接合している箇所5となる。また、正極2及び負極3の素線は接触していないので、拡散接合していない。このように、測温接点10は、正極2と負極3とが拡散接合されている形態は必須ではなく、正極2と負極3とが接触していなくても、チップ4を介して測温接点を形成することができる。
図3及び図4に示した形態では次の通りとなる。まず第1に、図4(a)に示した通り、測温接点10が、強化白金系熱電対11の正極2と負極3とが拡散接合されている形態をとる。正極2及び負極3の素線が接触する箇所が拡散接合している箇所5となる。第2に、図4(b)に示した通り、測温接点10が、強化白金系熱電対11の正極2がチップ4と拡散接合され、負極3がチップ4と拡散接合され、かつ、正極2と負極3とが拡散接合されている形態をとる。正極2及び負極3の素線が接触する箇所が拡散接合している箇所5となるほか、正極2、負極3がそれぞれチップ4と接触する箇所が拡散接合している箇所5となる。第3に、図4(c)に示した通り、測温接点10が、強化白金系熱電対11の正極2がチップ4と拡散接合され、負極3がチップ4と拡散接合され、かつ、正極2と負極3とが拡散接合されていない形態をとる。この形態は、図1(b)と類似の形態であり、測温接点10は、正極2と負極3とが接触していなくても、チップ4を介して接点を形成することができる。図4(c)において、測温接点10として囲んだ領域は、この部分全体が測温接点となることを示している。図4(c)では正極の素線と負極の素線とその間のチップを含む領域が測温接点となる。
これらのいずれの形態においても、測温接点10は、チップ4に覆われた状態で器具1に固定されている。ここで、チップ4は、器具1に拡散接合されていることが好ましい。チップ4と器具1の間においても接合した部分の強度劣化を生じさせることがない。また、測温接点を拡散接合する作業と同時にチップの器具への接合作業が可能となる。
次に図5を参照して、箔を用いた形態について説明する。図5は、A−A断面の別例を示す概略図であり、チップと器具との間に白金箔を挟んだ例である。本実施形態では、器具1とチップ4との間に0.01mm以上0.5mm以下の厚さの白金箔6が挟み込まれており、かつ、当接し合う面同士が拡散接合されていることが好ましい。ここで、当接し合う面同士とは、器具1と白金箔6との当接面、白金箔6とチップ4との当接面である。これらの面の間に隙間があったとしてもその隙間を白金箔6で埋めることができるため、接合強度を高めることができる。白金箔6の厚さは、0.05mm以上0.1mm以下であることがより好ましい。白金箔6の組成は、純白金が好ましい。
次に図6を参照して、板を用いた形態について説明する。図6は、A−A断面の別例を示す概略図であり、チップと器具との間に白金系材料からなる板を挟んだ例である。本実施形態では、器具1とチップ4との間に、0.3mm以上2.0mm以下の厚みの白金系材料からなる板7が挟み込まれており、かつ、当接し合う面同士が拡散接合されていることが好ましい。ここで、当接し合う面同士とは、器具1と板7との当接面、板7とチップ4との当接面である。器具1とチップ4との間に板7が入れられていることにより、チップ4が接合している土台部分の剛性が高まり、チップ4のはがれが生じにくくなる。板7の厚さは、0.3mm以上1.0mm以下であることがより好ましい。板7の組成は、純白金、白金ロジウム合金、酸化物分散強化型白金であることが好ましい。白金ロジウム合金、酸化物分散強化型白金の組成は、器具1の場合と同様である。
板7は、器具1に拡散接合されていることが好ましい。接合した部分の強度劣化を生じさせることがない。また、測温接点10を拡散接合する作業と同時に板の器具への接合作業が可能となる。
次に図7を参照して、板及び箔を用いた形態について説明する。図7は、A−A断面の別例を示す概略図であり、チップと器具との間に白金系材料からなる板を挟み、かつ、それらの間に白金箔を挟んだ例である。本実施形態では、チップ4と板7との間、又は、器具1と板7との間、又は、その両方の間に0.01mm以上0.5mm以下の厚さの白金箔6a,6bが挟み込まれており、かつ、当接し合う面同士が拡散接合されていることが好ましい。ここで、当接し合う面同士とは、器具1と白金箔6aとの当接面、白金箔6aと板7との当接面、板7と白金箔6bとの当接面、白金箔6bとチップ4との当接面である。チップ4と板7との間、又は、器具1と板7との間、又は、その両方の間の隙間を白金箔6a,6bが埋めることができるため、接合強度を高めることができる。板7の厚さ、白金箔6a,6bの厚さ及びそれらの組成は、図5及び図6で説明した形態と同じである。
次に図8を参照して、素線に白金箔を巻いた形態について説明する。図8は、A−A断面の別例を示す概略図であり、熱電対の素線に白金箔を巻いた例である。本実施形態では、強化白金系熱電対の正極2又は負極3の少なくともいずれか一方は、白金箔8a,8bに巻かれた状態で拡散接合されていることが好ましい。白金箔8a,8bの組成は、純白金であることが好ましい。白金箔8a,8bの厚さは、0.01mm以上0.5mm以下の厚さであることが好ましく、より好ましくは、0.05mm以上0.2mm以下である。熱電対の正極2,負極3の素線の直径が貫通孔の内径よりも小さい場合、素線の周りの隙間を白金箔8で埋めることができるため、密着性が高まり、接合強度を高めることができる。ここで、正極2と巻かれた白金箔8aとは拡散接合している。負極3と巻かれた白金箔8bとは拡散接合している。そして、白金箔8a,8b同士は拡散接合せずに、白金箔8aとチップ4とが拡散接合し、白金箔8bとチップ4とが拡散接合している。白金箔は素線に一重巻されることが好ましい。白金箔は変形しやすいため、かしめたときに隙間が埋まって密着性が高まり、拡散接合が促進されやすい。この効果は一重巻で十分に得られる。
図4で示した形態において、素線に白金箔を巻いてもよい。この場合、白金箔8a,8b同士が拡散接合する形態がある。また、白金箔8a,8b同士が拡散接合し、白金箔8aとチップ4とが拡散接合し、白金箔8bとチップ4とが拡散接合する形態がある。さらに、白金箔8a,8b同士は拡散接合せずに、白金箔8aとチップ4とが拡散接合し、白金箔8bとチップ4とが拡散接合する形態がある。いずれの形態においても測温接点が形成される。
次に本実施形態に係る熱電対の取り付け構造における該熱電対の取り付け方法について説明する。図1〜図8に示したすべての形態において、まず、測温接点10となる部分を機械的接合する。具体的には、ペンチなどで、挟みつけることで、チップ4、正極2、負極3などが変形し、これに伴いそれぞれが接触し合う面積が増大する。次に、測温接点10となる部分を加圧した状態で、1000℃以上の温度に加熱して熱拡散させて拡散接合する。加熱方法はバーナーによる加熱、誘導加熱、通電加熱などがある。加熱温度は1200℃〜1500℃が好ましい。加熱方法によって、温度測定が困難な場合があるが、溶融せずに拡散接合が生じる温度であれば、特に限定されない。具体的には、チップ4、正極2、負極3、必要により白金箔6,白金箔8、白金材料からなる板7が溶融しない温度を上限として、かつ、熱拡散が生じ始める温度を下限として、作業を進めることが好ましい。
拡散接合する作業は、測温接点を拡散接合する作業と同時にチップの器具への接合作業を行う形態が好ましい。作業効率が高い。また、チップと熱電対を用いて測温接点を拡散接合する作業を先に行い、次にチップの器具への接合作業を行う形態を採用してもよい。作業効率が劣るものの、器具の形状によっては、この接合作業とした方がよい場合もある。
100 熱電対の取り付け構造
1 器具
2 正極
3 負極
4 チップ
4a,4b 向かい合う面
5 拡散接合している部分
6,6a,6b 白金箔
7 白金系材料からなる板
8,8a,8b 白金箔
9 取り付け部
10 測温接点
11 強化白金系熱電対
12 貫通孔
13 スリット

Claims (13)

  1. 白金、白金合金又は酸化物分散強化白金を用いて形成された器具と、強化白金系熱電対と、前記器具の測定対象部位に固定されている取り付け部と、を有する熱電対の取り付け構造において、
    前記取り付け部は、白金系材料からなるチップを有し、該チップが前記強化白金系熱電対の測温接点を覆った状態となっており、
    前記強化白金系熱電対は大気中1100℃にて10MPaの応力をかけたときの破断時間が100時間以上の高温強度を有し、
    前記強化白金系熱電対の素線の線径が0.1mm以上2.0mm以下であり、
    前記測温接点が、前記素線同士の接触部分及び前記素線と前記チップとの接触部分のうち少なくともいずれか一方を有し、かつ、
    前記接触部分の少なくとも1ヵ所が拡散接合されていることを特徴とする熱電対の取り付け構造。
  2. 記測温接点は、
    (1)前記強化白金系熱電対の正極が前記チップと拡散接合され、負極が該チップと拡散接合され、かつ、前記正極と前記負極とが拡散接合されていないか、
    (2)前記強化白金系熱電対の正極と負極とが拡散接合されているか、又は、
    (3)前記強化白金系熱電対の正極が前記チップと拡散接合され、負極が該チップと拡散接合され、かつ、前記正極と前記負極とが拡散接合されているか、のいずれか一つの形態をとることを特徴とする請求項1に記載の熱電対の取り付け構造。
  3. 前記チップは向かい合う面を有し、
    該向かい合う面は、前記強化白金系熱電対の測温接点を挟み込んでおり、前記チップが前記器具に固定されていることを特徴とする請求項2に記載の熱電対の取り付け構造。
  4. 前記チップはスリットの形状を有し、
    前記向かい合う面は、該スリットの内側面であることを特徴とする請求項3に記載の熱電対の取り付け構造。
  5. 前記チップは、前記器具に拡散接合されていることを特徴とする請求項2〜4のいずれか一つに記載の熱電対の取り付け構造。
  6. 前記器具と前記チップとの間に0.01mm以上0.5mm以下の厚さの白金箔が挟み込まれており、かつ、当接し合う面同士が拡散接合されていることを特徴とする請求項2〜4のいずれか一つに記載の熱電対の取り付け構造。
  7. 前記器具と前記チップとの間に、0.3mm以上2.0mm以下の厚みの白金系材料からなる板が挟み込まれており、かつ、当接し合う面同士が拡散接合されていることを特徴とする請求項2〜4のいずれか一つに記載の熱電対の取り付け構造。
  8. 前記板は、前記器具に拡散接合されていることを特徴とする請求項7に記載の熱電対の取り付け構造。
  9. 前記チップと前記板との間、又は、前記器具と前記板との間、又は、その両方の間に
    0.01mm以上0.5mm以下の厚さの白金箔が挟み込まれており、かつ、当接し合う面同士が拡散接合されていることを特徴とする請求項7に記載の熱電対の取り付け構造。
  10. 前記強化白金系熱電対の正極又は負極の少なくともいずれか一方は、白金箔に巻かれた状態で拡散接合されていることを特徴とする請求項1〜9のいずれか一つに記載の熱電対の取り付け構造。
  11. 前記強化白金系熱電対の正極又は負極の少なくともいずれか一方は、金属元素又はガス元素を含有するか、或いは、酸化物、窒化物、炭化物又は硼化物のうち少なくともいずれか一種を含有することを特徴とする請求項1〜10のいずれか一つに記載の熱電対の取り付け構造。
  12. 前記器具は、ガラス溶融ライン用器具、ガラス溶融炉、溶解槽、脱泡層、清澄槽、攪拌槽又は連結パイプであることを特徴とする請求項1〜11のいずれか一つに記載の熱電対の取り付け構造。
  13. 請求項1〜12のいずれか一つに記載の熱電対の取り付け構造における該熱電対の取り付け方法であって、
    前記測温接点となる部分を機械的接合し、該部分を加圧した状態で、1000℃以上の温度に加熱して熱拡散させて拡散接合する工程を有することを特徴とする熱電対の取り付け方法。
JP2015152624A 2015-07-31 2015-07-31 熱電対の取り付け構造及び熱電対の取り付け方法 Active JP6752556B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015152624A JP6752556B2 (ja) 2015-07-31 2015-07-31 熱電対の取り付け構造及び熱電対の取り付け方法
PCT/JP2016/071840 WO2017022565A1 (ja) 2015-07-31 2016-07-26 熱電対の取り付け構造及び熱電対の取り付け方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015152624A JP6752556B2 (ja) 2015-07-31 2015-07-31 熱電対の取り付け構造及び熱電対の取り付け方法

Publications (2)

Publication Number Publication Date
JP2017032406A JP2017032406A (ja) 2017-02-09
JP6752556B2 true JP6752556B2 (ja) 2020-09-09

Family

ID=57943889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015152624A Active JP6752556B2 (ja) 2015-07-31 2015-07-31 熱電対の取り付け構造及び熱電対の取り付け方法

Country Status (2)

Country Link
JP (1) JP6752556B2 (ja)
WO (1) WO2017022565A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7308699B2 (ja) 2019-09-03 2023-07-14 東京エレクトロン株式会社 熱電対構造、熱処理装置及び熱電対構造の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2469807A1 (fr) * 1979-11-07 1981-05-22 Commissariat Energie Atomique Procede de realisation d'une jonction entre deux fils metalliques de dimension tres reduite et dispositifs de mesure realises a partir de cette jonction
WO2008088433A1 (en) * 2006-12-21 2008-07-24 Corning Incorporated Thermocouple circuit and method and system for forming same
JP4938871B2 (ja) * 2010-02-03 2012-05-23 田中貴金属工業株式会社 熱電対の取付構造
JP5308499B2 (ja) * 2011-11-11 2013-10-09 田中貴金属工業株式会社 白金系熱電対
JP6182662B2 (ja) * 2013-03-22 2017-08-16 ウオーターズ・テクノロジーズ・コーポレイシヨン 熱電対列示差走査熱量計センサ

Also Published As

Publication number Publication date
WO2017022565A1 (ja) 2017-02-09
JP2017032406A (ja) 2017-02-09

Similar Documents

Publication Publication Date Title
US8092086B2 (en) Temperature sensor
JP2015076208A (ja) 電線の端子接合構造及び抵抗溶接用電極、電線の端子接合方法
JP6752556B2 (ja) 熱電対の取り付け構造及び熱電対の取り付け方法
JP5659274B1 (ja) 金属導体と金属端子の接続方法
JP4938871B2 (ja) 熱電対の取付構造
JP6821384B2 (ja) 白金温度センサ素子
JP4485010B2 (ja) セラミック素子と電極の組立体
JP5221595B2 (ja) 温度センサ
JP6152463B1 (ja) 熱電対
US20210379686A1 (en) Welding Method For Connecting A First Connector To A Second Connector, The Use Of The Welding Method, And A Welded Connection
WO2021200154A1 (ja) 電子部品、リード部の接続構造及びリード部の接続方法
CN110560825B (zh) 传感器元件
JP5519590B2 (ja) 温度センサの製造方法及び温度センサ
JP2008270168A (ja) セラミックヒータ
JP2001284781A (ja) 熱圧着用ヒーターチップ及びその製造方法
JP2006210138A (ja) セラミックヒータ
JP4685593B2 (ja) 熱圧着用端子
JP5651550B2 (ja) 温度センサ及び温度センサの製造方法
JPWO2018203475A1 (ja) 温度センサ及び温度センサを備えた装置
JP3150476U (ja) 先端固着型シース熱電対及びその取付構造
JP6204566B2 (ja) ヒータおよびグロープラグ
JP2017126523A (ja) ヒータ
JP6708386B2 (ja) ヒータ
JP6659289B2 (ja) ヒータ
JPH01233332A (ja) 熱電対

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200819

R150 Certificate of patent or registration of utility model

Ref document number: 6752556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250