JP6750913B1 - 宇宙航行体 - Google Patents

宇宙航行体 Download PDF

Info

Publication number
JP6750913B1
JP6750913B1 JP2019233438A JP2019233438A JP6750913B1 JP 6750913 B1 JP6750913 B1 JP 6750913B1 JP 2019233438 A JP2019233438 A JP 2019233438A JP 2019233438 A JP2019233438 A JP 2019233438A JP 6750913 B1 JP6750913 B1 JP 6750913B1
Authority
JP
Japan
Prior art keywords
satellite
spacecraft
optical communication
camera
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019233438A
Other languages
English (en)
Other versions
JP2021103820A (ja
Inventor
衆治 林
衆治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FOUNDATION FOR GLOBAL HEALTH CARE
Original Assignee
THE FOUNDATION FOR GLOBAL HEALTH CARE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FOUNDATION FOR GLOBAL HEALTH CARE filed Critical THE FOUNDATION FOR GLOBAL HEALTH CARE
Priority to JP2019233438A priority Critical patent/JP6750913B1/ja
Application granted granted Critical
Publication of JP6750913B1 publication Critical patent/JP6750913B1/ja
Priority to US17/788,086 priority patent/US20230040954A1/en
Priority to PCT/JP2020/045943 priority patent/WO2021131719A1/ja
Publication of JP2021103820A publication Critical patent/JP2021103820A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/34Guiding or controlling apparatus, e.g. for attitude control using gravity gradient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1007Communications satellites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1021Earth observation satellites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1021Earth observation satellites
    • B64G1/1028Earth observation satellites using optical means for mapping, surveying or detection, e.g. of intelligence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1085Swarms and constellations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/28Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/66Arrangements or adaptations of apparatus or instruments, not otherwise provided for
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/118Arrangements specific to free-space transmission, i.e. transmission through air or vacuum specially adapted for satellite communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/661Transmitting camera control signals through networks, e.g. control via the Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G3/00Observing or tracking cosmonautic vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Signal Processing (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Chemical & Material Sciences (AREA)
  • Multimedia (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】光通信をする宇宙航行体において、宇宙航行体の大型化を防ぎつつも、移動する通信相手の捕捉又は追尾を可能とする。【解決手段】開示の宇宙航行体10は、前記宇宙航行体10の姿勢を制御する姿勢制御アクチュエータ80と、他の宇宙航行体からの光通信信号を受信する撮像装置50と、前記撮像装置50によって得られた画像における前記光通信信号の位置に基づいて、前記姿勢制御アクチュエータ80を制御する姿勢コントローラ70と、を備える。【選択図】図1

Description

本開示は、人工衛星などの宇宙航行体に関し、特に光通信をする宇宙航行体に関する。
特許文献1は、衛星間通信にレーザ光を用いることを開示している。特許文献1に記載の人工衛星は、通信相手方からのレーザビームを通信相手方の移動に応じて捕捉し続ける追尾動作をするよう構成されている。特許文献1において、捕捉・追尾動作は、フォトダイオードによってレーザビームの入射方向を検出し、指向制御ミラーを制御することによって行われる。
特開平08−079184号公報
通信相手の捕捉等の動作を、指向制御ミラーの制御によって実現する場合、指向制御ミラーを通信相手の移動に応じで動作させる機構を、宇宙航行体に設ける必要があり、宇宙航行体が大型化する。
しかも、宇宙航行体が超小型衛星のような比較的小型の衛星である場合、大きさの制約上、通信相手方追尾のための機構を備えるのが非常に困難なこともある。
したがって、光通信をする宇宙航行体において、宇宙航行体の大型化を防ぎつつも、移動する通信相手の捕捉又は追尾を可能とすることが望まれる。
本開示の一形態において、宇宙航行体は、光通信信号を受信するために撮像された画像における前記光通信信号の位置に基づいて、前記宇宙航行体の姿勢を制御する。更なる詳細は、後述の実施形態として説明される。
図1は、超小型衛星の斜視図である。 図2は、超小型衛星のブロック図である。 図3は、超小型衛星の正面図である。 図4は、衛星間通信を用いた地上局間通信の説明図である。 図5は、衛星の捕捉を説明する画像である。 図6は、衛星間通信手順を示すフローチャートである。
<1.宇宙航行体の概要>
(1)実施形態に係る宇宙航行体は、例えば、人工衛星又は惑星間航行体である。人工衛星は、例えば、通信衛星、放送衛星、気象観測衛星、地球観測衛星、測位衛星であるが、その種類は特に限定されない。人工衛星は、商業用途であってもよいし、研究用途であってもよく、その用途は特に限定されない。人工衛星の大きさも、特に限定されないが、小型衛星であってもよいし、超小型衛星であってもよい。ここで、小型衛星とは、重量が500kg以下のものとし、超小型衛星とは、重量が100kg以下のものとする。超小型衛星は、50kg以下であるのが好ましく、10kg以下であるのがより好ましく、5kg以下であるのがさらに好ましい。
超小型衛星は、例えば、1UのCubeSatであってもよいし、1.5UのCubeSatであってもよいし、2UのCubeSatであってもよいし、3UのCubeSatであってもよい。超小型衛星は、例えば、1PのPocketSatであってもよいし、1.5PのPocketSatであってもよいし、2PのPocketSatであってもよい。
実施形態に係る宇宙航行体は、宇宙航行体の姿勢を制御する姿勢制御アクチュエータを備える。姿勢制御は、人工衛星のスピンを抑制するデスピン制御、又は、人工衛星を所望の向きに指向させる指向制御を含むことができる。デスピン制御又は指向制御等を確実に行うため、姿勢制御は、3軸姿勢制御であるのが好ましいが2軸姿勢制御であってもよい。3軸姿勢制御とは、人工衛星におけるロール軸、ピッチ軸、ヨー軸の3軸で姿勢を制御することである。2軸姿勢制御とは、3軸のうちのいずれか2軸を制御することである。
姿勢制御アクチュエータは、宇宙航行体における3軸又は2軸の姿勢制御をする。姿勢制御アクチュエータは、例えば、磁気トルカを有する。磁気トルカは、例えば、3軸磁気トルカである。3軸の姿勢制御は、2軸磁気トルカとその補完する1軸の駆動装置、例えば、モーメンタムホイルの組み合わせで行ってもよい。磁気トルカは、小型であるため、超小型衛星の姿勢制御に適している。姿勢制御アクチュエータは、磁気トルカに限られず、例えば、スラスタであってもよい。スラスタも3軸姿勢制御を行える。また、3軸モーメンタムホイルとの組み合わせでも、3軸の姿勢制御は行える。
実施形態に係る宇宙航行体は、他の宇宙航行体からの光通信信号を受信する撮像装置を備える。宇宙航行体が撮像装置を備えることで、他の宇宙航行体からの光通信信号を受信できる。これにより、宇宙航行体間通信(例えば衛星間通信)が達成される。光通信信号は、例えば、LEDから出力される。光通信信号は、例えば、可視光信号である。
LEDから出力される光は、レーザ光に比べて光の放射角が広いため、送信側の宇宙航行体の姿勢制御の精度が低くても、光通信信号を所望の送信先へ送信することができる。また、画像を得る撮像装置は、比較的広い領域を撮像するため、受信側の宇宙航行体の姿勢制御の精度が低くても、所望の送信元からの光通信信号を受信することができる。したがって、LEDによる光通信信号の送信と、撮像装置による光通信信号の受信と、を組み合わせた場合、姿勢制御の精度が低くても、安定的な通信が可能になる。光通信信号は、LED光に変えて、レーザ光であってもよい。レーザ光源(光送信器)は、放射角が広いレーザ光源、又は放射角が広げる拡散機構を備えたレーザ光源であるのが好ましい。
実施形態に係る宇宙航行体は、姿勢コントローラを備える。姿勢コントローラは、前記撮像装置によって得られた画像における前記光通信信号の位置に基づいて、前記姿勢制御アクチュエータを制御する。このように、撮像装置は、光通信信号の受信に用いられるほか、宇宙航行体の姿勢制御に用いられる画像の取得にも用いられる。姿勢コントローラは、宇宙航行体自体の姿勢を制御することで、光通信信号の捕捉又は追尾を行うことができる。このため、宇宙航行体に備わった姿勢制御アクチュエータを、光通信信号の捕捉又は追尾を機構として用いることができ、光通信信号の捕捉又は追尾のための機構を別途設ける必要がなく、仮に設けても簡素なもので足りる。したがって、宇宙航行体の大型化を防ぎつつも、移動する通信相手の捕捉又は追尾が可能である。
(2)宇宙航行体は、前記宇宙航行体の姿勢を、天体から作用する重力によって、前記天体に対して鉛直方向に安定させるための重力安定システムを更に備えるのが好ましい。
(3)前記宇宙航行体は、第1方向と、前記第1方向に直交する第2方向と、前記第1方向及び前記第2方向に直交する第3方向と、を有する。前記第1方向は、前記重力安定システムによって、前記天体に対して鉛直方向に向けられ、前記姿勢コントローラは、前記光通信信号が前記撮像装置の視野内に収まる姿勢を前記宇宙航行体がとるように、前記第2方向及び前記第3方向の向きを制御するよう構成されているのが好ましい。
(4)前記撮像装置は、第1画角での撮像と、前記第1画角よりも小さい第2画角での撮像と、が行えるように構成されているのが好ましい。宇宙航行体は、前記第1画角での撮像によって前記光通信信号を受信する第1モードと、前記第2画角での撮像によって前記光通信信号を受信する第2モードと、に切り替える通信コントローラを更に備えるのが好ましい。
(5)前記第1モードは、前記光通信信号を第1通信速度で受信をするモードであり、前記第2モードは、前記光通信信号を、前記第1通信速度よりも速い第2通信速度で受信可能なモードであるのが好ましい。
(6) 前記撮像装置は、前記第1画角を有する第1カメラと、前記第2画角を有する第2カメラと、を備え、前記第2カメラは、前記第1カメラの視野内に存在する視野を有するのが好ましい。
(7)前記撮像装置は、前記宇宙航行体の第1面に設けられた第1撮像部と、前記宇宙航行体における前記第1面の反対面である第2面に設けられた第2撮像部と、を備え、前記第1撮像部及び前記第2撮像部は、それぞれ、前記第1画角を有する第1カメラと、前記第2画角を有する第2カメラと、を備えるのが好ましい。
<2.宇宙航行体の例>
図1、図2、及び図3は、宇宙航行体の一例としての超小型衛星10を示している。実施形態の超小型衛星10は、地球周回軌道上を周回する。図1及び図3において、衛星10の軌道に接する方向をXとし、衛星10から地球の中心に向かう方向をZとし、X及びZと直交する方向をYとする。Z方向を地球方向ともいう。
さらに、図1には、衛星10におけるx軸、y軸、z軸を示している。z軸は、衛星10の地球指向面11a及びその反対面11bに直交する軸である。地球指向面11aは、衛星10において、地球に向くべき面である。なお、図1の衛星10において、後述のブーム15Aを除く部分は、立方体形状であり、その表面に、地球指向面11aを含む6つの面11a,11b,12a,12b,12c,12dを有する。
地球指向面11aには、地球の地上局との無線通信のためのアンテナ30が設けられる。アンテナ30は、衛星10に内蔵された無線通信機100に接続されている。無線通信機100は、無線周波数の信号を生成し、その信号をアンテナ30から地上局へ送信する。無線通信機100は、地上局から送信された信号を受信することもできる。無線通信は、例えば、Ku帯のような高周波領域が用いられるのが好ましい。なお、ここでは、無線通信は、電波による通信を指し、光通信は含まない。
以下では、z軸をヨー軸ともいい、z軸方向をヨー方向ともいう。z軸(地球指向面11a)が、地球の中心に向いている場合、z軸方向はZ方向と一致する。x軸は、z軸方向がZ方向と一致しているときにX方向と一致する軸である。y軸は、z軸方向がZ方向と一致しているときにY方向と一致する軸である。x軸をロール軸ともいい、x軸方向をロール方向ともいう。また、y軸をピッチ軸ともいい、y軸方向をピッチ方向ともいう。
図1に示す衛星10は、例えば、2UのCubeSatである。実施形態の衛星10は、重量及び大きさの増大を回避するため、推進装置を有しない。
衛星10は、地上局との通信のほか、他の衛星との衛星間通信(宇宙航行体間通信)を行うことができる。衛星間通信は、光通信、好ましくは可視光通信により行われる。
実施形態の衛星10は、通信ネットワークに用いられる。通信ネットワークは、遠隔医療システムのために用いられる。遠隔医療システムは、医師が、遠隔地にいる患者に対して、手術、治療、診断などをするために用いられる。通信ネットワークは、地球周回軌道を投入された複数の衛星10群によって構成される。複数の衛星10群は、地上局間通信において、地上局間を中継するために用いられる。複数の衛星10群は、同一高度の地球周回軌道に位置することができ、例えば、高度500kmの軌道上にある。各衛星10間の距離は、例えば、100km程度である。複数の衛星は、同一の軌道面上に存在していてもよいし、異なる軌道面上に存在していてもよい。衛星10間の距離(通信距離)をほぼ一定に保つ等の目的のため、衛星10は、推進装置を有していてもよい。推進装置は、小型のものが好ましい。小型の推進装置は、例えば、水推進エンジンである。水推進エンジンは、水を推進剤として用いるエンジンである。水推進エンジンは、そのエンジン内部の真空空間で水を蒸発させ、発生した水蒸気を高速で排出することで、推進力を発生させる。
実施形態に係る衛星10では、重力安定システム(微重力安定システム)15と姿勢制御アクチュエータ80との組み合わせが、衛星10の姿勢安定化に用いられる。重力安定システム15は、重力傾斜安定方式によって構造的に衛星10を安定させる。重力傾斜安定方式は、地球などの天体から衛星10に作用する重力によって、衛星10の長手方向が天体に向くように、衛星10を安定させる方式である。
実施形態の重力安定システム15は、衛星10に長手方向を形成する部材を備える。衛星に長手方向を形成する部材は、例えば、地球指向面11aの反対面11bに設けられたブーム15Aである。ブーム15Aの先端15Bには、重りが設けられているのが好ましい。衛星10は、ブーム15Aの先端15Bが、地球方向(Z方向)の反対方向を向くように安定する。なお、ブーム15Aは、地球指向面11aに設けられていてもよく、その場合、ブーム15Aの先端15Bは、地球方向(Z方向)を向く。
重力安定システム15を備えていることで、地球指向面11aに設けられたアンテナ30を、安定的に地球に向けることができる。したがって、衛星と地上局との間の無線通信に適した衛星10の姿勢が得られる。
なお、ブーム15Aは、衛星10が軌道へ投入される前は、折り畳まれており、軌道へ投入された後に、伸展するよう構成されているのが好ましい。
重力安定システム15によって、衛星10における1軸(z軸)が、地球方向(Z方向)に固定される。衛星10の残り2軸(x軸及びy軸)は、姿勢制御アクチュエータ80を含む制御系によって制御される。このように、姿勢制御アクチュエータ80による姿勢制御が、重力安定システム15を補完することで、衛星10の姿勢が3次元的に安定する。
衛星10における3軸のうち、1軸(z軸)は重力安定システム15によって安定化されるため、姿勢制御アクチュエータ80は、2軸での姿勢制御をする機構、例えば2軸磁気トルカ、で足りる。ただし、姿勢制御アクチュエータ80を3軸にすることで、衛星10の自転を抑制するのが容易になる。
衛星10は、x軸に直交する第1面12a及び第2面12bと、y軸に直交する第3面12c及び第4面12dを有する。実施形態では、これら4つの面12a,12b,12c,12dのうち、第1面12a及び第2面12bが、他の衛星との間で光通信を行うための通信面になっている。
重力安定システム15によって形成された衛星10の長手方向(ブーム15Aの長手方向)に直交する面12a,12b,12c,12dのいずれかを通信面にすることにより、姿勢制御アクチュエータ80による姿勢制御が容易になり、原理的には2軸制御で足りる。つまり、姿勢制御アクチュエータ80は、重力安定システム15によって地球指向面11a(z軸;第1方向)が地球を向いている状態で、通信面である第1面12a及び第2面12bが、同一軌道上にある他の衛星又は他の軌道上にある他の衛星を捕捉するように、衛星10のx軸(第2方向)及びy軸(第3方向)の向きを制御すればよい。なお、第3面12c及び第4面12dが通信面になってもよい。
衛星10は、光送信装置20を備える。光送信装置20は、他の衛星へ光通信信号を送信する。光送信装置20は、1又は複数のLEDを有する。図3に示すように、光送信装置20は、通信面である第1面12aに設けられた第1光送信器21と、通信面である第2面12bに設けられた第2光送信器22と、を備える。複数の通信面12a,12bに光送信器21,22を備えることで、複数の方向へ光通信信号を送信できる。
実施形態において、第1光送信器21及び第2光送信器22は、それぞれ、複数のLEDを備える。第1光送信器21及び第2光送信器22は、例えば、反射鏡を備えたLEDとして構成される。第1光送信器21及び第2光送信器22は、複数のLEDの点滅によって、光通信信号を送信する。第1光送信器21及び第2光送信器22の放射角は、例えば、10度程度に設定される。
衛星10は、光受信装置としての撮像装置50を備える。撮像装置50は、他の衛星から送信された光信号を受信する。撮像装置50は、1又は複数のカメラを有する。図3に示すように、撮像装置50は、通信面である第1面12aに設けられた第1撮像部51と、通信面である第2面12bに設けられた第2撮像部52と、を備える。複数の通信面12a,12bに撮像部51,52を備えることで、複数の方向からの光通信信号を受信できる。
実施形態においては、撮像装置50(光受信装置)及び光送信装置20が、衛星10の対向面12a,12bに設けられているため、一方の面(例えば、第1面12a)の撮像装置50によって、送信されてきた光通信信号を受信し、受信した光通信信号の中継のため、他方の面(例えば、第2面12b)に設けられた光送信装置20によって光通信信号を送信することができる。この場合、光通信信号を送信してきた衛星とは反対側にある衛星への光通信信号の中継が行える。したがって、複数の衛星10を介した遠距離通信(例えば、地球の裏側までの通信)も容易である。
実施形態においては、図1及び図2に示すように、第1撮像部51は、第1カメラ51A及び第2カメラ51Bを含む複数のカメラを備える。各カメラは、動画カメラである。第1カメラ51Aは第1画角を有し、第2カメラ51Bは、第1画角よりも小さい第2画角を有する。第2カメラ51Bは、第2カメラ51Bの視野が、第1カメラ51Aの視野内に存在するように設けられている。第1画角は、例えば、10度程度である。第2画角は、例えば、3度程度である。以下では、第1カメラ51Aを広角カメラ、第2カメラ51Bを狭角カメラということもある。
第2カメラ51Bによって撮像される画像の画素数は、第1カメラ51Aによって撮像される画像の画素数よりも少ないのが好ましい。第2カメラ51Bの画素数が少ないことで、画像読み出しなどの画像処理速度を大きくすることができる。この結果、第2カメラ51Bを用いた光通信を、第1カメラ51Aを用いた光通信よりも高速化することができる。実施形態においては、第1カメラ51Aは、後述の低速受信モードにおいて用いられ、第2カメラ51Bは、後述の高速受信モードにおいて用いられる。
第2撮像部52も、第1カメラ52A及び第2カメラ52Bを含む複数のカメラを備える。第2撮像部52の構成及び用いられ方は、第1撮像部51と同様である。
各カメラ51A,51B,52A,52Bによって得られた画像は、画像処理プロセッサ60に与えられる。画像処理プロセッサ60は、光通信及び姿勢制御のために必要とされる処理を画像に対して行う。画像処理プロセッサ60による画像処理は、画像中の光通信信号の検出を含む。
衛星10は、コントローラ70を備える。画像処理プロセッサ60によって得られた画像及び光通信信号は、コントローラ70に与えられる。実施形態のコントローラ70は、画像における光通信信号の位置に基づいて姿勢制御をする姿勢コントローラ及び光通信及び無線通信を制御する通信コントローラとして動作する。
コントローラ70は、プロセッサ71とメモリ72とを備えるコンピュータによって構成されている。プロセッサ71は、メモリ72に記憶されたコンピュータプログラム73を実行する。プログラム73は、光通信処理モジュール73a、無線通信処理モジュール73b、捕捉処理モジュール73c、姿勢制御処理モジュール73dなどの様々な処理モジュールを有する。メモリ72は、撮像装置50によって撮影された画像を保存するための領域74も有する
光通信処理モジュール73aは、光送信装置20及び撮像装置50を用いた光通信処理をプロセッサ71に実行させる命令を含む。無線通信処理モジュール73bは、無線通信機100を用いた無線通信処理をプロセッサ71に実行させる命令を含む。
衛星10における光通信は、通信速度が異なる複数の送信モードでの送信と、通信速度が異なる複数の受信モードでの受信と、を含む。各モードの切替は、光通信処理モジュール73aによって実行される。複数の送信モードは、例えば、低速送信モード(第1モード)と、高速送信モード(第2モード)と、を含む。光送信の速度は、光送信装置20における光の点滅速度の変更によって、変更される。複数の受信モードは、例えば、低速受信モード(第1モード)と、高速受信モード(第2モード)と、を含む。実施形態において、低速受信モードは、広角カメラである第1カメラ51A,52Aによって光通信信号を受信するモードであり、高速受信モードは、狭角カメラである第2カメラ51B,52Bによって光通信信号を受信するモードである。
捕捉処理モジュール73cは、画像における光通信信号の位置に基づいて、その光通信信号を送信している他の衛星を捕捉する処理をプロセッサ71に実行させる命令を含む。他の衛星の捕捉は、例えば、広角カメラである第1カメラ51A,52Aによって行われる。第1カメラ51A,52Aは、視野が広いため、他の衛星10を捕捉するのに適している。
姿勢制御処理モジュール73dは、通信相手として捕捉された他の衛星が、カメラ51A,51B,52A,52Bの視野内(撮像された画像内)に捉えた状態が維持されるように、衛星10自身の姿勢を調整するよう姿勢制御アクチュエータ80を制御する処理をプロセッサ71に実行させる命令を含む。実施形態においては、コントローラ70は、狭角カメラである第2カメラ51B,52Bの視野内に、他の衛星が収まるように、衛星10の姿勢を制御する。
通信相手として捕捉された他の衛星が、カメラ51A,51B,52A,52Bの視野内(撮像された画像内)に捉えた状態が維持されることで、いずれかのカメラ51A,51B,52A,52Bによって、他の衛星からの光通信信号を受信できる。
図4は、複数の衛星A,B,C,Dによる衛星間通信を用いた地上局間通信の例を示している。図4に示す衛星A,B,C,Dは、それぞれ、実施形態に係る衛星10である。地球上には、第1地上局X及び第2地上局Yが設けられている。例えば、第1地上局Xは、手術を行う医師が使用する遠隔手術操作装置に接続され、第2地上局Yは、患者を手術する手術ロボットに接続される。以下では、第1地上局Xから第2地上局Yへデータを送信する例について説明する。
まず、第1地上局Xは、複数の衛星A,B,C,Dにおける位置等から、送信先として衛星Bを選択し、データを無線通信信号によって衛星Bへ送信する。なお、データには、データの最終的な宛先である第2地上局Yのアドレスが、宛先アドレスとして付加されている。なお、ここでは、すべての衛星A,B,C,Dは、初期モード(第1モード)である低速送信モードかつ低速受信モードにあるものとする(図6のステップS11,ステップS21,ステップS31)。初期状態においては、各衛星A,B,C,Dの光送信装置20は、各衛星A,B,C,Dの固有IDを示す光点滅パターンを、低速送信モードにおける光通信信号として出力している。
無線通信信号を受信した衛星Bのコントローラ70は、無線通信処理モジュール73bによって無線通信信号からデータを取得する。無線通信処理モジュール73bは、そのデータを、光通信処理モジュール73aへ渡す。光通信処理モジュール73aは、そのデータの送信先(通信相手)となる衛星を決め(図6のステップS12)、その衛星へデータを光通信信号として送信する(図6のステップS16)。
ここでは、衛星Bにおいて、衛星A(の光通信信号)は、第1撮像部51の第1カメラ51Aによって撮像され、衛星C,Dは、第2撮像部の第1カメラ52Aによって撮像されているものとする。衛星Bのコントローラ70は、データの宛先である第2地上局Yの地球上における位置に基づいて、通信相手となる衛星を捕捉するために用いられる撮像部51,52を選択する。ここでは、第1撮像部51及び第2撮像部52のうち、第2撮像部52が、第2地上局Y側に向いているため、第2撮像部52が選択される。
なお、コントローラ70による第2地上局Yの位置の把握は、第2地上局Yの座標値がデータに付加されている場合には、データに付加された座標値を参照することで可能である。また、第2地上局Yのアドレスと地球上の座標との対応テーブルをコントローラ70が有しておき、データに付加された宛先アドレスから、第2地上局Yの座標を把握してもよい。
図5は、第2撮像部の第1カメラ52Aによって取得された画像D11,D12を示している。画像D11は、通信相手となる他の衛星を捕捉する前の画像である。画像D11には、衛星Cからの光通信信号(光点滅)と、衛星Dからの光通信信号(光点滅)と、が映っている。衛星Bのコントローラ70は、画像D11における光通信信号の点滅パターンから、光通信信号の送信元が、それぞれ衛星C及び衛星Dであることを把握する。
通信相手となる衛星の決定の仕方は特に限定されないが、例えば、衛星Bから最も近い衛星を通信相手として決定できる。例えば、図4に示すように衛星Dよりも衛星Cのほうが衛星Bに近いため、画像D1においては、衛星Cからの光通信信号の光強度が、衛星Dからの光通信信号の光強度より高くなる。そこで、衛星Bのコントローラ70は、画像D11において光強度が最も高い衛星Cを、通信相手として決定する(図6のステップS12)。
続いて、衛星Bのコントローラ70は、衛星C(の光通信信号)が、第2撮像部52の第2カメラ52Bの視野D2内に収まるように、姿勢制御アクチュエータ80によって、衛星Bの姿勢を調整する(図6のステップS13)。図5の画像D12は、視野D2内に衛星C(の光通信信号)が入った状態を示している。
衛星Cが第2カメラ52Bの視野D2内に捕捉されると、衛星Bのコントローラ70は、通信確立リクエストを光通信信号(低速送信モードの信号)として、衛星Cへ送信する(ステップS14)。通信確立リクエストには、送信先アドレスとして衛星Cのアドレス(固有ID)が設定され、送信元アドレスとして衛星Bのアドレス(固有ID)が設定される。
衛星Cは、通信確立リクエストの光通信信号を、広角カメラである第1カメラ51Aにて受信する(低速受信モードでの受信)。なお、リクエストは、衛星Dによって受信される可能性もあるが、衛星Dは、リクエストを受信しても、そのリクエストの送信先が衛星Dではないので、そのリクエストを破棄する(ステップS32)。
衛星Cのコントローラは、受信したリクエストの送信元である衛星Bが、狭角カメラである第2カメラ51Bの視野内に捕捉されるように、衛星Cの姿勢を制御する(ステップS22)
衛星Cが、第2カメラ52Bの視野内に入ると、衛星Bのコントローラ70は、リクエストに対する応答を衛星Cへ送信する(ステップS23)。以上の手順によって、衛星B,C間に通信が確立する。通信が確立すると、衛星B,Cそれぞれのコントローラ(通信コントローラ)70は、第2モードである高速送信モードかつ高速受信モードに切り替える(ステップS15,ステップS24)。
高速送信モードになった衛星Bは、第1地上局Xから受信したデータを、光通信信号として、衛星Cへ送信する。高速受信モードである衛星Cは、第2カメラ52Bにて、光通信信号を受信する。衛星B及び衛星Cは、軌道上の運航により、相対位置が変化することがあるが、それぞれが互いに、第2カメラ51B,52Bの視野内に捕捉された状態が維持されるように姿勢制御されるため、通信確立状態を維持できる。なお、通信相手の衛星が第2カメラ51B,52Bの視野外に出てしまった場合、コントローラ70は、第1カメラ51A,52Aによる信号受信及び姿勢制御に切り替えて、再度、通信相手を捕捉する。
光通信信号によりデータを受信した衛星Cは、衛星Bと同様の手順で、衛星Dへデータを光通信信号により送信する。衛星Dは、データの宛先である第2地上局Y近傍の上空にいることを検出し、データを無線通信信号で、第2地上局Yへ送信する。以上により、衛星間通信を利用して、データが、第1地上局Xから第2地上局Yへ送信される。なお、通信が終了すると、各衛星は初期モード(第1モード)に戻る。
<3.付記>
<3.1 付記1>
本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。例えば、第1撮像部51及び第2撮像部52は、それぞれ単一のカメラによって構成されてもよい。その場合、カメラは、画角(視野)を変更可能であるのが好ましい。また、大きい画角は、他の衛星の捕捉を容易にする。小さい画角は、捕捉された他の衛星からの光通信信号の受信に好適である。大きい画角の場合、同一の軌道面に存在する他の衛星だけでなく、他の軌道面に存在する他の衛星を捕捉するのも容易になる。また、他の軌道面に存在する他の衛星へ光通信信号を送信する場合、送信される光通信信号の放射角も広い方が好ましい。
また、複数の受信モードの切替において、カメラの画角を変更することなく、光通信のために読み出される画像領域を変更してもよい。例えば、低速受信モードでは、カメラによって得られた画像全体から光通信信号を検出し、高速受信モードでは、捕捉された光通信信号近傍の画像領域から光通信信号を検出してもよい。他の衛星の捕捉後は、画像全体の画素を読み出さなくても、光通信信号近傍の画像領域の画素だけを読み出すことで、光通信信号を検出できる。光通信信号が検出される画像領域を小さくすることで、光通信信号の検出のための画像読み出し時間及び画像処理時間を小さくすることができ、より高速な信号を受信することができる。
撮像装置50に用いられるカメラは、カラーカメラであってもよいし、モノクロカメラであってもよい。モノクロカメラでは、色を検出する必要がないため、感度をカラーカメラの3倍以上にすることができる。
また、前述の例では、通信相手として、衛星Bに最も近い衛星Cを選択したが、通信相手としては、光強度が所定値(高速な光通信を行うのに十分な光強度)以上ある衛星のうち、最も光強度が低い衛星を選択してもよい。この場合、例えば、衛星Bの通信相手として衛星Dが選択されることもある。
通信相手である衛星(例えば、衛星Bに対して衛星C)の方向に別の光源(たとえば、明るい星)が重畳したときに通信出来なくなるのを避けるため、(各衛星から送られるデータに疑似ランダム信号を重畳させ、同じ疑似ランダムパターンを持つ信号だけを検出してもよい。また、別の光源の重畳の対策として、光を高速に点滅させ(例えば100kHzで点滅させ)て、その点滅の上にデータを低いレート(例えば10kHz)で重ねる方法(=副搬送波を使う方法)を採用してもよい。なお、衛星の背景から入射する光が衛星からの光に比べて極めて強い時は、受信側の感度が著しく低下するので、通信を中断する、あるいは別の衛星との通信に切り替えるなどの操作を行うのが好ましい。
他の衛星の認識及び通信相手となる衛星の選択には、衛星の外観形状が用いられてもよい。例えば、個々の衛星が、各衛星固有の識別子として機能する特徴的な形状を有している場合、衛星のコントローラ70は、その特徴的な形状を画像認識することによって、個々の衛星を識別してもよい。
通信相手となる衛星の選択には、画像認識された衛星の大きさが用いられてもよい。認識される衛星の大きさは、衛星間の距離に応じて変化する。したがって、衛星間の距離に基づいて、通信相手となる衛星を選択したい場合、画像認識された衛星の大きさに基づいて、通信相手となる衛星を選択することができる。例えば、最も近い他の衛星を通信相手として選択したい場合、最も大きく認識される衛星を、通信相手とすればよい。
通信相手からの光信号を受信する撮像装置50は、光信号の波長以外の波長を有する光をカットするフィルタを備えることができる。この場合、光信号以外の光がノイズになることを抑制できる。
通信のための光信号は、可視光に限られず、例えば、可視光よりも長波長側の光であってもよい。また、通信のための光信号は、複数の異なる波長それぞれに送信データが載せられていてもよい。
<3.2 付記2>
宇宙航行体は、光通信信号を送信する光送信装置20を備え、前記光送信装置20は、光通信信号の放射角を変更可能に構成されているのが好ましい。光通信信号の放射角は、コントローラ70によって変更される。放射角を変更するため、光送信装置20は、複数のレンズを備えることができる。光送信装置20において、光の送信に用いられるレンズが切り替えられることで、光通信信号の放射角が変化する。放射角を狭くすることで、受信側における光の強度が上がり、より高速の通信が可能になる。また、放射角を広くすると、広い範囲へ光通信信号を送信できる。
<3.3 付記3>
撮像装置50(第1カメラ51A,第2カメラ51B,第1カメラ52A,第2カメラ52B)及び光送信装置(第1光送信器21,第2光送信器22)の少なくともいずれか一方は、向きを変更可能に衛星10に設けられていてもよい。向きが変更可能であると、異なる軌道面上にある他の衛星との間の通信が容易になる。実施形態においては、他の衛星の捕捉には、衛星10自体の姿勢制御も用いられるため、他の衛星の捕捉のために、撮像装置50及び光送信装置20の向きを変更する機構を設けても、小型で済む。
2以上の通信面12a,12bそれぞれに撮像装置及び光送信装置が設けられている場合、少なくとも1つの通信面12aに設けられた撮像装置及び光送信装置は、向きが変更不能に設けられ、少なくとも一つの他の通信面12bに設けられた撮像装置光送信装置は、向きが変更可能に設けられているのが好ましい。一つの通信面12bに設けられた撮像装置が、画角の広い第1カメラ52Aと、画角の狭い第2カメラ52Bと、を備える場合、第2カメラ52Bの向きが変更可能であれば、第1カメラ52Aは向きが変更不能であってもよい。
10 :超小型衛星
11a :地球指向面
11b :反対面
12a :第1面(通信面)
12b :第2面(通信面)
12c :第3面
12d :第4面
15 :重力安定システム
15A :ブーム
15B :先端
20 :光送信装置
21 :第1光送信器
22 :第2光送信器
30 :アンテナ
50 :撮像装置
51 :第1撮像部
51A :第1カメラ
51B :第2カメラ
52 :第2撮像部
52A :第1カメラ
52B :第2カメラ
60 :画像処理プロセッサ
70 :コントローラ
71 :プロセッサ
72 :メモリ
73 :コンピュータプログラム
73a :光通信処理モジュール
73b :無線通信処理モジュール
73c :捕捉処理モジュール
73d :姿勢制御処理モジュール
74 :領域
80 :姿勢制御アクチュエータ
100 :無線通信機

Claims (7)

  1. 宇宙航行体であって、
    前記宇宙航行体の姿勢を制御する姿勢制御アクチュエータと、
    他の宇宙航行体からの光通信信号を受信する撮像装置と、
    前記撮像装置によって得られた画像における前記光通信信号の位置に基づいて、前記姿勢制御アクチュエータを制御する姿勢コントローラと、
    を備える宇宙航行体。
  2. 前記宇宙航行体の姿勢を、天体から作用する重力によって、前記天体に対して鉛直方向に安定させるための重力安定システムを更に備える
    請求項1に記載の宇宙航行体。
  3. 前記宇宙航行体は、第1方向と、前記第1方向に直交する第2方向と、前記第1方向及び前記第2方向に直交する第3方向と、を有し、
    前記第1方向は、前記重力安定システムによって、前記天体に対して鉛直方向に向けられ、
    前記姿勢コントローラは、前記光通信信号が前記撮像装置の視野内に収まる姿勢を前記宇宙航行体がとるように、前記第2方向及び前記第3方向の向きを制御するよう構成されている
    請求項2に記載の宇宙航行体。
  4. 前記撮像装置は、第1画角での撮像と、前記第1画角よりも小さい第2画角での撮像と、が行えるように構成され、
    前記第1画角での撮像によって前記光通信信号を受信する第1モードと、前記第2画角での撮像によって前記光通信信号を受信する第2モードと、に切り替える通信コントローラを更に備える
    請求項1から請求項3のいずれか1項に記載の宇宙航行体。
  5. 前記第1モードは、前記光通信信号を第1通信速度で受信をするモードであり、
    前記第2モードは、前記光通信信号を、前記第1通信速度よりも速い第2通信速度で受信可能なモードである
    請求項4に記載の宇宙航行体。
  6. 前記撮像装置は、前記第1画角を有する第1カメラと、前記第2画角を有する第2カメラと、を備え、
    前記第2カメラは、前記第1カメラの視野内に存在する視野を有する。
    請求項4又は請求項5に記載の宇宙航行体。
  7. 前記撮像装置は、前記宇宙航行体の第1面に設けられた第1撮像部と、前記宇宙航行体における前記第1面の反対面である第2面に設けられた第2撮像部と、を備え、
    前記第1撮像部及び前記第2撮像部は、それぞれ、前記第1画角を有する第1カメラと、前記第2画角を有する第2カメラと、を備える
    請求項4又は請求項5に記載の宇宙航行体。
JP2019233438A 2019-12-24 2019-12-24 宇宙航行体 Active JP6750913B1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019233438A JP6750913B1 (ja) 2019-12-24 2019-12-24 宇宙航行体
US17/788,086 US20230040954A1 (en) 2019-12-24 2020-12-09 Spacecraft, communication method, and communication system
PCT/JP2020/045943 WO2021131719A1 (ja) 2019-12-24 2020-12-09 宇宙航行体、通信方法及び通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019233438A JP6750913B1 (ja) 2019-12-24 2019-12-24 宇宙航行体

Publications (2)

Publication Number Publication Date
JP6750913B1 true JP6750913B1 (ja) 2020-09-02
JP2021103820A JP2021103820A (ja) 2021-07-15

Family

ID=72240874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019233438A Active JP6750913B1 (ja) 2019-12-24 2019-12-24 宇宙航行体

Country Status (3)

Country Link
US (1) US20230040954A1 (ja)
JP (1) JP6750913B1 (ja)
WO (1) WO2021131719A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11063667B1 (en) * 2020-07-30 2021-07-13 Raytheon BBN Technologies, Corp. Systems, devices, and methods for optical communication
JP7150126B1 (ja) * 2021-12-28 2022-10-07 株式会社ワープスペース 中継衛星及びデータ中継方法
JP7127914B1 (ja) * 2022-02-22 2022-08-30 株式会社ワープスペース 通信計画装置、衛星、および衛星システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728061A (en) * 1985-03-20 1988-03-01 Space Industries, Inc. Spacecraft operable in two alternative flight modes
CA2306838C (en) * 1997-10-27 2002-10-22 Discovery Semiconductors, Inc. Integrated circuit microsatellite
JP2001349945A (ja) * 2000-06-08 2001-12-21 Communication Research Laboratory 移動体レーザ通信用の光学捕捉方法および光学追尾方法
US8213803B2 (en) * 2008-05-29 2012-07-03 The Boeing Company Method and system for laser based communication
US9809328B2 (en) * 2014-04-22 2017-11-07 Massachusetts Institute Of Technology Attitude determination using infrared earth horizon sensors
WO2016022579A2 (en) * 2014-08-05 2016-02-11 Massachusetts Institute Of Technology Design of a free-space optical communication module for small satellites
US10158427B2 (en) * 2017-03-13 2018-12-18 Bae Systems Information And Electronic Systems Integration Inc. Celestial navigation using laser communication system
US10581525B2 (en) * 2018-01-22 2020-03-03 California Institute Of Technology Method and apparatus for omnidirectional optical communication
US10277321B1 (en) * 2018-09-06 2019-04-30 Bae Systems Information And Electronic Systems Integration Inc. Acquisition and pointing device, system, and method using quad cell

Also Published As

Publication number Publication date
JP2021103820A (ja) 2021-07-15
US20230040954A1 (en) 2023-02-09
WO2021131719A1 (ja) 2021-07-01

Similar Documents

Publication Publication Date Title
WO2021131719A1 (ja) 宇宙航行体、通信方法及び通信システム
US8115994B2 (en) Scanning wide field telescope and method
US10158427B2 (en) Celestial navigation using laser communication system
EP3684694B1 (en) Offload adjustment for satellite image diversity
US11168984B2 (en) Celestial navigation system and method
JP2783522B2 (ja) 衛星焦点平面アレイイメージ装置
US7657183B2 (en) Method and apparatus for hemispherical retargeting
EP2588917B1 (en) Line of sight stabilization system
CN109891778B (zh) 组合成像与激光通信系统、方法和卫星
JP2008137439A (ja) 監視衛星
CN108557114A (zh) 一种分布式遥感卫星
CN113424012B (zh) 具有网络连接瞄准镜以允许多个其他装置同时跟踪目标的车载装置
US10763967B2 (en) Communications relay satellite with a single-axis gimbal
US6347010B1 (en) Periscope using common optical path to have stabilized panoramic view
JP6583642B2 (ja) 宇宙航行体、宇宙航行体用コントローラ、制御方法及びコンピュータプログラム
US20080004758A1 (en) Apparatus and method for tracking an orbital body relative to a planetary body using a single sensor
Medina et al. Artificial vision assisted ground fine pointing system for experimental optical link for CubeSat communications
KR20210062324A (ko) 3축 짐벌 구조를 이용한 공중 촬영 장치 및 이의 제어 방법
JP6775234B2 (ja) 宇宙航行体
JP2009103656A (ja) 観測衛星システム
JP6289305B2 (ja) 結像光学装置及び飛翔体
JP2020001696A5 (ja)
US20220390965A1 (en) Mobile platform vision sensor systems and methods
RU2247684C2 (ru) Способ трехосной ориентации космического аппарата в орбитальной системе координат
CN220368714U (zh) 一种用于制作量子卫星地面站指向模型的系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191225

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191225

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200807

R150 Certificate of patent or registration of utility model

Ref document number: 6750913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250