JP7127914B1 - 通信計画装置、衛星、および衛星システム - Google Patents

通信計画装置、衛星、および衛星システム Download PDF

Info

Publication number
JP7127914B1
JP7127914B1 JP2022025953A JP2022025953A JP7127914B1 JP 7127914 B1 JP7127914 B1 JP 7127914B1 JP 2022025953 A JP2022025953 A JP 2022025953A JP 2022025953 A JP2022025953 A JP 2022025953A JP 7127914 B1 JP7127914 B1 JP 7127914B1
Authority
JP
Japan
Prior art keywords
satellite
communication
relay
unplanned
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022025953A
Other languages
English (en)
Other versions
JP2023122313A (ja
Inventor
晃大 永田
悟 常間地
Original Assignee
株式会社ワープスペース
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ワープスペース filed Critical 株式会社ワープスペース
Priority to JP2022025953A priority Critical patent/JP7127914B1/ja
Priority to JP2022127024A priority patent/JP7211651B1/ja
Application granted granted Critical
Publication of JP7127914B1 publication Critical patent/JP7127914B1/ja
Priority to PCT/JP2023/006444 priority patent/WO2023163039A1/ja
Publication of JP2023122313A publication Critical patent/JP2023122313A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Radio Relay Systems (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】衛星間光通信において予め決定された通信スケジュールにない通信機会をオンデマンドで設定することにより、フレキシブルな通信を実現するための技術を提供することである。【解決手段】本開示の一態様は、光通信部を有する衛星と地球局との間の通信を中継する中継衛星の軌道を予測する軌道予測部と、予測した前記軌道に基づいて、前記衛星と前記地球局との間で予め計画されていない通信である非計画通信が生じる可能性がある非計画通信期間において、前記光通信部が前記中継衛星を指向追尾するように前記光通信部を制御する制御情報を作成する作成部と、を備える。【選択図】図10

Description

本開示は、通信計画装置、衛星、および衛星システムに関する。
ユーザ企業などの事業者が運用する衛星(例えば、観測衛星、通信衛星など)と地球局とが、中継衛星を介して通信する技術が検討されている。当該技術において、衛星と中継衛星とが光通信によって衛星間通信を行う衛星間光通信の利用が検討されている。
これまで検討されている衛星間光通信では、中継衛星と衛星との間の通信は、中高度軌道を周回する中継衛星と低軌道を周回する衛星との位置関係に基づき事前に設定された通信計画(以下、通信スケジュール、スケジューリングなどと言う)に従って行われる。中継衛星は、事前に設定されたスケジュールに従って所定の衛星と通信接続を確立し、当該衛星との間でデータを送受信する。
衛星間光通信では、既知の宇宙空間光通信技術を適用可能である。例えば、特開2001-203641号公報は、空間光通信において補足追尾及び指向が可能な空間光伝送装置について開示している。また、特開2016-100855号公報は、自由空間光通信においてデータと制御情報とを重畳して伝送する送受信装置について開示している。
特開2001-203641号公報 特開2016-100855号公報
従来の衛星間光通信では、中継衛星と衛星とは、各衛星を運用する事業者が事前に設定した通信スケジュールに定められた時間帯にしか通信を実行することができず、通信機会に関するフレキシビリティを欠いている。このため、通信スケジュールに設定されていない期間においては、衛星を運用する事業者がすぐに衛星と通信して衛星からデータを取得することを所望しても、そのニーズに対応できないという課題がある。
本開示は、衛星間光通信において予め決定された通信スケジュールにない通信機会をオンデマンドで設定可能とすることにより、フレキシブルな通信を実現する技術を提供することを目的とする。
本開示の一態様は、光通信部を有する衛星と地球局との間の通信を中継する中継衛星の軌道を予測する軌道予測部と、予測した前記軌道に基づいて、前記衛星と前記地球局との間で予め計画されていない通信である非計画通信が生じる可能性がある非計画通信期間に亘って、前記光通信部が前記中継衛星を指向追尾するように前記光通信部を制御する制御情報を作成する作成部と、を備える。
本開示によれば、衛星間光通信において予め決定された通信スケジュールにない通信機会をオンデマンドで設定することを可能とし、フレキシブルな通信を実現するための技術を提供することができる。
本開示の一実施の形態における衛星と中継衛星とを示す概略図である。 本開示の一実施の形態における地球局と衛星との通信可能範囲を示す概略図である。 本開示の一実施の形態における中継衛星を介した地球局と衛星との通信を示す概略図である。 本開示の一実施の形態における衛星及び中継衛星のハードウェア構成を示すブロック図である。 本開示の一実施の形態における通信計画装置のハードウェア構成を示すブロック図である。 本開示の一実施の形態における衛星の機能ブロック構成を示すブロック図である。 本開示の一実施の形態における中継衛星の機能ブロック構成を示すブロック図である。 本開示の一実施の形態における通信計画装置の機能ブロック構成を示すブロック図である。 本開示の一実施例による非計画通信の開始手順を示す概略図である。 本開示の一実施の形態において非計画通信準備完了状態となる前の衛星システムの動作例を示すシーケンス図である。 本開示の一実施の形態において非計画通信の開始時における衛星システムの動作例を示すシーケンス図である。
以下、図面を参照して本開示の一実施の形態としての衛星システムについて説明する。
[衛星システム]
図1に示されるように、衛星システム10は、地球局50、衛星100、中継衛星200、及び通信計画装置300を有する。図1には、3つの衛星100と2つの中継衛星200が示されているが、本開示はこれに限定されない。衛星100の数は1つであってもよいし、3以外の複数であってもよい。中継衛星200の数は1つであってもよいし、2以外の複数であってもよい。また、地球上を周回する中継衛星200との通信を常時確保するために、地球上の複数の国または地域に地球局50が複数あってもよい。
本実施の形態では、衛星100と中継衛星200とは、異なる軌道で地球を周回している。例えば、衛星100が観測衛星である場合、複数の衛星100を利用して地球全域を観測できるように、複数の衛星100に衛星コンステレーションを構築させて、所定の配置で周回させてもよい。
衛星100は、限定することなく、観測衛星、通信衛星など、所定の機能を備え、所定の高度の軌道を周回する人工衛星である。
中継衛星200は、限定することなく、地球局50と衛星100との間のデータ送受信のための中継局として機能する。本実施の形態において、中継衛星200は、衛星100より高度が高い軌道を周回している。典型的には、中継衛星200は、複数の衛星100をカバーすることができる。
例えば、衛星100は低軌道(LEO:Low Earth Orbit)を周回する。低軌道は、例えば、地表から約20km~2,000kmの高度に位置する。また、例えば、中継衛星200は中高度軌道(MEO:Medium Earth Orbit)を周回する。中高度軌道は、例えば、地表から約1,000km~36,0000kmの高度に位置する。これにより、地球局50から見て、衛星100及び中継衛星200の位置は、時間によって変化する。また、衛星100と中継衛星200との相対位置も、時間によって変化する。
地球局50は、衛星100と直接、または中継衛星200を介して通信する通信局である。また、地球局50が複数ある場合、中継衛星運用事業者30は、ある地球局50_1(図示せず)を、中継衛星200を介した衛星100との通信には使用せず、中継衛星200との通信のみに使用しても良い。図1に示す例では、地球局50は地上に設置されているが、本開示における地球局はこれに限定されない。本開示における地球局は、例えば、成層圏などに構築された非地上系ネットワーク(NTN:Non-Terrestrial Network)の通信局であってもよい。地球局50は、例えば、中継衛星運用事業者30、衛星運用事業者40、及び通信計画装置300と、インターネットなどのネットワーク20を介して通信接続されうる。地球局50が衛星100から取得した情報は、インターネットを介して中継衛星運用事業者30、衛星運用事業者40、及び/又は通信計画装置300に渡される。
図2に示されるように、地球局50による衛星100との通信可能範囲は、地球局50の可視範囲によって規定される。図2に示す例では、地球局50は、通信可能範囲内に存在する衛星100_2とは通信可能である一方、通信不可範囲内に存在する衛星100_1とは通信不可である。
一方、図3に示されるように、地球局50は、通信可能範囲内に存在する中継衛星200を利用して、中継衛星200を介して通信不可範囲内に存在する衛星100_1と通信することが可能になる。
通信計画装置300は、衛星100と中継衛星200との衛星間光通信に関する通信計画を行う装置である。通信計画装置300は、例えばPC(Personal Computer)などのコンピュータである。通信計画装置300は、例えば中継衛星運用事業者30により管理及び/又は運営される。通信計画装置300の詳細については、後述する。
[本開示の概略]
中継衛星200を介した地球局50と衛星100との通信は、通常は予め設定された通信スケジュールに基づいて行われる。通信スケジュールは、中継衛星運用事業者30及び/又は衛星運用事業者40によって事前に設定された、地球局50と衛星100とが中継衛星200を介した通信を行う時刻又は時間帯を示すスケジュールである。通信スケジュールは、例えば現在時刻より後の所定時刻から所定期間分、予め設定され、衛星システム10全体で共有される。
所定期間は、例えば24時間、又は48時間などに設定される。通信スケジュールは、当該所定期間における衛星100及び中継衛星200の予測軌道に基づいて設定される。本実施の形態では、ある衛星100の通信スケジュールは、通信を行う時間(時間帯または時刻)と、複数存在する中継衛星200のうち、どの中継衛星200に通信を中継させるかを示す情報と、を含んで設定される。
本明細書において、通信スケジュールに従った通信、すなわち予め計画された通信を、計画通信と記載する。そして、通信スケジュールに従った計画通信が行われる期間を、計画通信期間と記載する。
一方、計画通信期間以外の期間において、衛星運用事業者40又は中継衛星運用事業者30が、地球局50と衛星100との間の即時通信を所望することがある。具体例を挙げると、衛星100が観測衛星である場合に、地球上のある地域で地震、津波、噴火、火災などの自然災害、又はテロなどのイベントが生じたとすると、衛星運用事業者40は衛星100によるイベント発生地の観測データを即座に取得したいと考えることがある。このような場合、衛星運用事業者40は、予め決定された通信スケジュールにない通信機会を中継衛星運用事業者30に要求し、中継衛星200を介した衛星100と地球局50との通信をオンデマンドで設定する必要がある。
本実施の形態では、このように予め設定された計画通信期間以外の期間における、予め決定された通信スケジュールにない衛星間光通信の機会をオンデマンドで設定する技術について詳細に説明する。以下の説明において、計画通信期間以外の期間に行われる、衛星100と中継衛星200との予め決定された通信スケジュールにない通信を、非計画通信と記載する。また、衛星100が中継衛星200から予め計画されていない非計画通信を要求する信号を受信する可能性がある期間を、非計画通信期間と記載する。
[衛星及び中継衛星のハードウェア構成]
衛星100及び中継衛星200は、例えば、図4に例示するハードウェア構成を有する。衛星100及び中継衛星200はそれぞれ、コマンド&データハンドリング系101、ミッション系102、通信系103、機構・熱構造系104、姿勢制御系105、及び電源系106に分類されるハードウェアを有している。
コマンド&データハンドリング系101は、受信したコマンドを処理すると共に、当該衛星の状態データ、ミッションデータなどを処理する。例えば、コマンド&データハンドリング系101は、データ処理用の処理回路を有し、当該処理回路を利用して、後述される各種機能部を実現する。
ミッション系102は、各衛星に特有の機能(ミッション)を実現する。例えば、当該衛星が地球観測衛星である場合、ミッション系102は、センサとデータ処理装置などから構成されうる。また、当該衛星が通信衛星である場合、ミッション系102は、データ中継用のアンテナ、通信機器などから構成されうる。
通信系103は、地球局50からの指令(コマンド)を受信すると共に、衛星の状態、衛星による観測データ、テレメトリなどを地球局50に送信する通信機器、アンテナなどから構成されうる。また、衛星100の通信系103は、衛星の周囲を撮像するカメラを有し、宇宙空間などの非地上領域を撮像すると共に、衛星間光通信のためのビーコン光及び通信光を受光及び発光する光通信系103Aを備える。例えば、カメラは常時、所定のフレームレート(例えば、30fps)で衛星の周囲の非地上領域を撮像し、撮像した非地上領域の画像フレームをコマンド&データハンドリング系101などににわたす。
機構・熱構造系104は、衛星本体、太陽電池パネルなどの可動展開物、及び衛星内温度の安定化及び排熱を行う機構から構成される。
姿勢制御系105は、衛星の位置及び/又は姿勢を測定するセンサ、衛星の高度及び/又は姿勢を変える推進器などから構成され、衛星の軌道上の位置及び/又は姿勢を制御する。
電源系106は、衛星において使用される電力を制御及び管理する。例えば、電源系106は、太陽電池で発電された電力をバッテリに充電したり、衛星内の各系に必要とされる電力を供給したりする。
なお、上述したハードウェア構成は単なる一例であり、本開示に係る衛星100及び中継衛星200は、他の適切なハードウェア構成により実現されてもよい。また、上述した各系のグルーピングは単なる一例であり、他のグルーピングによって衛星100及び中継衛星200のハードウェア構成が説明されてもよい。例えば、衛星のミッションに応じて同一の機器・機構が異なる系に分類されてもよい。例えば、中継衛星200は、光通信によるデータ中継を主たるミッションとするため、光通信機(例えば、カメラ、光伝送装置など)及びデータ中継機器は、ミッション系102に分類されてもよい。他方、衛星100は、地球観測などをミッションとするため、観測用の各種センサとデータ処理装置などがミッション系102に分類され、中継衛星200との光通信機(例えば、カメラ、光伝送装置など)が通信系103に分類されてもよい。
[通信計画装置300のハードウェア構成]
次に、図5を参照して、通信計画装置300を構成するコンピュータ1000のハードウェア構成について説明する。図2は、コンピュータ1000のハードウェア構成の一例を示す図である。
コンピュータ1000は、キーボードやマウス、タッチパッドなどの入力装置1001、ディスプレイやスピーカーなどの出力装置1002、CPU(Central Processing Unit)1003、ROM(Read Only Memory)1004、RAM(Random Access Memory)1005、ハードディスク装置やSSD(Solid State Drive)などの記憶装置1006、DVD-ROM(Digital Versatile Disk Read Only Memory)やUSB(Universal Serial Bus)メモリなどの記録媒体から情報を読み取る読取装置1007、ネットワークを介して通信を行う送受信装置1008を備え、各部はバス1009により接続される。
そして、読取装置1007は、通信計画装置300の機能を実現するためのプログラムを記録した記録媒体からそのプログラムを読み取り、記憶装置1006に記憶させる。あるいは、送受信装置1008が、ネットワークに接続されたシステム装置と通信を行い、システム装置からダウンロードした通信計画装置300の機能を実現するためのプログラムを記憶装置1006に記憶させる。
そして、CPU1003が、記憶装置1006に記憶されたプログラムをRAM1005にコピーし、そのプログラムに含まれる命令をRAM1005から順次読み出して実行することにより、通信計画装置300の機能が実現される。
[衛星のソフトウェア構成]
次に、図6を参照して、本開示の一実施の形態に係る衛星100の機能ブロック構成について説明する。
図6に示されるように、衛星100は、通信部110、光通信部120、及び指向追尾部130を有する。各機能ブロックの処理は、上述したハードウェア構成が含む系の何れか、ハードウェア構成が含む系を制御するソフトウェア、又はそれらの組み合わせによって実現されうる。
通信部110は、地球局50との通信を行う。これにより、衛星100が地球局50の通信可能範囲にある間、衛星100と地球局50との間でデータ送受信が可能となる。通信部110は、地球局50から、計画通信期間における中継衛星200との計画通信のための通信スケジュール情報、及び、非計画通信期間において中継衛星200を指向追尾するための制御情報を受信する。制御情報の詳細については後述する。
光通信部120は、中継衛星200との衛星間光通信を行う。光通信部120は、ビーコン光検出部121と、通信確立部122と、通信実行部123と、を有する。
ビーコン光検出部121は、計画通信期間において、中継衛星200との衛星間光通信の開始時に、中継衛星200が通信スケジュールに基づいて送信したビーコン光を検出する。ビーコン光検出部121は、さらに、非計画通信期間において、中継衛星200が地球局50から受信した通信要求に応じて送信したビーコン光を検出する。ビーコン光検出部121は、衛星100が有するカメラが撮像した中継衛星200を含む領域の画像から、光信号を取得し、画像処理によってビーコン光候補となる輝点を抽出し、抽出した輝点の判定処理に基づいてビーコン光を検出する。または、ビーコン光検出部121は、後述の指向追尾部130により指向追尾している特定の中継衛星200から直接受信したビーコン光を検出してもよい。この場合、衛星100がカメラを有する必要がなく、衛星100の製造コストを抑えることができる。
通信確立部122は、ビーコン光検出部121が自衛星に対する通信要求を含むビーコン光を検出すると、中継衛星200との通信確立手順を開始する。例えば、通信確立部122は、ビーコン光に含まれる通信要求に対する応答を示す応答信号を中継衛星200に送信し、中継衛星200と衛星100との間で予め規定された通信確立手順に従って通信接続を確立する。応答信号には、例えば衛星100の識別子と中継衛星200の識別子などが含まれる。
通信実行部123は、中継衛星200との通信接続が確立されると、通信光を使用して中継衛星200と衛星間光通信を実行する。なお、何らかの理由で通信を確立できなかった場合、光通信部120は、既定回数リトライを実行する。リトライしても通信を確立できなかった場合、衛星100は、通信を確立できなかったことを示す情報を、地球局50を介して中継衛星運用事業者30及び/又は衛星運用事業者40に通知してもよい。
指向追尾部130は、非計画通信期間に指向追尾すべき特定の中継衛星200の位置情報を含む制御情報に基づいて、非計画通信期間において、光通信系103A(図4参照)が特定の中継衛星200を指向追尾するように光通信部120を制御する。これにより、非計画通信期間において、光通信部120は特定の中継衛星200からのビーコン光を検出しやすくなり、短時間で非計画通信を確立させることができるようになる。
[中継衛星200のソフトウェア構成]
次に、図7を参照して、本開示の一実施の形態に係る中継衛星200のソフトウェア構成について説明する。
[中継衛星]
図7に示されるように、中継衛星200は、通信部210、及び光通信部220を有する。各ソフトウェアの機能は、上述したハードウェア構成が含む系の何れか又は組み合わせによって実現されうる。
通信部210は、地球局50との通信を行う。これにより、中継衛星200と地球局50との間でデータ送受信が可能となる。通信部210は、地球局50から、計画通信期間における中継衛星200との計画通信のための通信スケジュール情報、及び、非計画通信期間における衛星100との非計画通信の開始要求を含む通信要求情報を受信する。
光通信部220は、衛星100との衛星間光通信を行う。光通信部220は、光信号送受信部221と、通信確立部222と、通信実行部223と、を有する。
光信号送受信部221は、地球局50から受信した通信スケジュール情報又は通信要求情報に応じて衛星100にビーコン光を送信し、ビーコン光を検出した衛星100からの応答信号を受信する。例えば、ビーコン光は、衛星100との光通信接続の確立後に送信される通信光よりも指向性が低い(発散角が大きい)光信号であってもよい。この場合、ビーコン光は、通信光より相対的に広い領域に送信されるので、衛星100がビーコン光を受信することが容易になる。または、光信号送受信部221は、通信光と同程度、又はより指向性が高い(発散角が小さい)光信号を、衛星100がいる可能性がある範囲に向けて走査するようにしてもよい。
光信号送受信部221は、符号化された情報を示す所定の明滅パターンを有するビーコン光を送信してもよい。この明滅パターンにより、ビーコン光を受信した衛星100は、ビーコン光が自衛星宛てのものであるか判定することができる。
光信号送受信部221は、衛星100からの応答信号を受信すると、応答信号に含まれる、衛星100の識別子と中継衛星200の識別子に基づいて、受信した応答信号が自衛星宛ての応答信号であるか否かを判定する。
通信確立部222は、光信号送受信部221が自衛星当ての応答信号を受信すると、衛星100との通信確立手順を開始する。例えば、通信確立部222は、中継衛星200と衛星100との間で予め規定された通信確立手順に従って通信接続を確立する。
通信実行部223は、衛星100との通信接続が確立されると、通信光を使用して衛星100と衛星間光通信を実行する。なお、何らかの理由で通信を確立できなかった場合、光通信部220は、既定回数リトライを実行する。リトライしても通信を確立できなかった場合、中継衛星200は、通信を確立できなかったことを示す情報を、地球局50を介して中継衛星運用事業者30及び/又は衛星運用事業者40に通知してもよい。
[通信計画装置300の機能ブロック構成]
次に、図8を参照して、本開示の一実施の形態に係る通信計画装置300の機能ブロック構成について説明する。
図8に示すように、通信計画装置300は、通信部310、軌道予測部320、作成部330を有する。
通信部310は、ネットワーク20、及び地球局50を介して、衛星100及び/又は中継衛星200と通信を行う。これにより、通信部310は、衛星100及び/又は中継衛星200に対して各種情報を送信することができる。
軌道予測部320は、計画通信期間における、衛星100および/又は中継衛星200の軌道を予測する。軌道予測部320は、さらに、非計画通信期間における、衛星100および中継衛星200の軌道を予測する。軌道予測部320が衛星100および中継衛星200の軌道を予測するための技術については既知の技術を利用することができる。軌道予測技術の一例として、カルマンフィルタを用いたものがある。なお、軌道予測部320は、衛星100の軌道予測の情報を衛星100の衛星運用事業者40から受信してもよい。
作成部330は、衛星100と中継衛星200との間で非計画通信を行わせるために、衛星100に送信される制御情報及び中継衛星200に送信される通信要求情報を作成する。なお、制御情報は、軌道予測部320が予測した非計画通信期間における中継衛星200の軌道に基づいて、衛星100の衛星運用事業者40が作成してもよい。また、作成部330が作成した制御情報が衛星100を運用する衛星運用事業者40に送信され、衛星運用事業者40が当該制御情報を含む、衛星100全体の動作制御をするための全体制御情報をさらに作成してもよい。
作成部330は、まず、非計画通信を行わせるための準備として、衛星システム10の基準時刻における現在時刻より後の特定の時間から特定の期間を非計画通信期間として設定し、当該非計画通信期間において光通信系103Aが特定の中継衛星200を指向追尾するように衛星100の光通信部120を制御する制御情報を作成する。作成部330が作成する制御情報は、あくまで衛星100に光通信部120を制御させるための情報であって、衛星全体の動作制御をするための情報ではない。衛星100全体の動作制御をするための全体制御情報は、上述したように、衛星運用事業者40が作成すればよい。
非計画通信期間の例としては、例えば、衛星システム10の基準時刻における所望の24時間、又は48時間である。具体的には、作成部330は、衛星システム10の現在時刻が3月1日午前9時である場合に、3月1日午前12時から3月3日午前12時までの48時間を非計画通信期間と設定するなどである。これらの時刻はあくまで一例であり、適宜変更が可能である。例えば、衛星100が地球観測衛星であり、衛星運用事業者40が将来の特定の期間において衛星100からオンデマンドでデータを取得したい場合には、その特定の期間について、中継衛星運用事業者30に非計画通信期間の設定を依頼する。また、非計画通信期間は、複数の衛星100のそれぞれに対して設定できる。非計画通信期間は一度のみ設定されるものではなく、時間の経過とともに、新たな非計画通信期間を随時設定できる。例えば、3月1日午前12時から3月3日午前12時までの48時間が非計画通信期間として設定された後に、時間の経過とともに、3月3日午前12時から3月5日午前12時までの48時間が新たな非計画通信期間として設定されてもよい。
なお、作成部330が計画通信期間における衛星100および/又は中継衛星200の軌道を予測するための演算量と衛星100へ制御情報をアップリンクする頻度のバランスを取った結果、本実施の形態では、非計画通信期間を24時間、又は48時間に設定している。作成部330の演算リソースが十分に大きい場合には非計画通信期間はより長い期間に設定されてもよい。一方、作成部330が作成した制御情報、通信要求情報が地球局50を介して衛星100又は中継衛星200に送信される頻度が高くなることを許容する場合には非計画通信期間はより短い期間に設定されてもよい。衛星100や中継衛星200の軌道予測及び位置情報は、例えば、太陽系重心天体基準座標系などに基づいて演算、特定される。
作成部330は、非計画通信期間に衛星100が指向追尾すべき特定の中継衛星200の位置情報を含む制御情報を、衛星100および中継衛星200の予測された軌道に基づいて作成する。より詳細には、作成部330は、非計画通信期間の各時点における、予測された軌道に基づき推定される衛星100及び中継衛星200の相対位置に基づいて、衛星100の光通信系103Aをどの方角に指向させればよいかを特定し、特定した方角を光通信系103Aに指向させるように制御情報を作成する。
制御情報には、例えば以下のような情報が含まれればよい。すなわち、非計画通信の対象となる衛星100の識別情報(予め設定されたIDなど)、非計画通信の開始時刻(絶対時刻)、衛星100の所定間隔(例えば、1秒ごと)の予測位置座標情報およびその誤差範囲、などの情報である。なお、予測位置座標情報において、座標系は、太陽系重心天体基準座標系、地心慣性座標系、または地心地球固定座標系などが採用されればよい。
なお、本実施の形態では、中継衛星200が複数存在するため、ある衛星100と非計画通信を行いたい場合に、複数の中継衛星200の中から、当該衛星100との中継を行わせる中継衛星200を選択する必要がある。本明細書では、衛星100との中継を行わせる中継衛星200を、第1の中継衛星200_1と記載することがある。
作成部330は、通信要求情報を作成する際に、予測された軌道に基づいて、非計画通信期間の各時点における地球局50、衛星100、および中継衛星200の位置関係を推定し、当該位置関係に基づいて、どの中継衛星200に中継させるかを決定する。作成部330又は衛星運用事業者40は、非計画通信期間の各時点において、衛星100から見て決定した第1の中継衛星200_1が存在する方角を導出し、衛星100に送信すべき制御情報を作成する。なお、地球局50、衛星100、および中継衛星200の位置関係は常に変化するので、時間の経過とともに、複数の中継衛星200のうち、中継させる中継衛星200を変更する必要が生じることがある。この場合、制御情報は、ある時刻の前後で異なる中継衛星が存在する方角を指向するように光通信系103Aを制御する情報である。
作成部330又は衛星運用事業者40が作成した制御情報は、地球局50を介して衛星100にアップリンクされる。制御情報を受信した衛星100は、非計画通信期間に亘って、制御情報が示す方角に光通信系103Aを向ける。制御情報が示す方角は、その時点の衛星100から見て第1の中継衛星200_1が存在する方角である。これにより、衛星100は、非計画通信期間において中継衛星200から非計画通信の開始を要求するビーコン光が送信された場合に、確実に当該ビーコン光を検出することができるようになる。制御情報は、非計画通信期間の各時点における方角を示しているので、衛星100は、非計画通信期間中、光通信系103Aを中継衛星200が存在する方角に向けて指向追尾させ続けることができる。
なお、非計画通信期間の開始時間は、衛星システム10の現在時刻から、作成部330が制御情報を作成し、制御情報が衛星100によって受信され、中継衛星200が存在する方角を光通信系103Aに指向させるまでの時間を考慮して決定されることが望ましい。
このように、作成部330が作成した制御情報が衛星100に受信されることにより、非計画通信期間における衛星100と第1の中継衛星200_1との非計画通信の準備が完了する。以下の説明において、制御情報が衛星100に送信され、第1の中継衛星200_1が存在する方角を衛星100の光通信系103Aが指向追尾している状態を、非計画通信準備完了状態と記載する。
非計画通信準備完了状態では、衛星100と第1の中継衛星200_1との非計画通信はまだ行われていない。非計画通信期間内に、衛星運用事業者40から通信計画装置300に対して、非計画通信の開始要求が送信された場合に、作成部330は、非計画通信を実際に開始させるための通信要求情報を作成する。
通信要求情報は、非計画通信の開始時間と、当該開始時間における、第1の中継衛星200_1から見た衛星100が存在する方角と、を含む。非計画通信の開始時間は、例えば衛星運用事業者40により決定される。
作成部330は、予測された軌道に基づいて推定した、非計画通信期間の各時点における地球局50、衛星100、および中継衛星200の位置関係により、第1の中継衛星200_1から見た衛星100が存在する方角を導出する。このようにして作成部330は通信要求情報を作成する。
作成部330が作成した通信要求情報は、地球局50を介して第1の中継衛星200_1にアップリンクされる。通信要求情報を受信した第1の中継衛星200_1は、非計画通信の開始期間になったら、通信要求情報に含まれる方角に向かって、光通信を開始するためのビーコン光を送信する。
非計画通信期間中は、衛星100は光通信系103Aを第1の中継衛星200_1の方角に指向追尾させているので、第1の中継衛星200_1から送信されたビーコン光は、光通信部120により受信される。これにより、第1の中継衛星200_1を介して地球局50と衛星100との非計画通信を開始させることができるようになる。
[非計画通信の開始手順]
次に、非計画通信の開始手順について説明する。
衛星運用事業者40は、特定の衛星100との非計画通信を所望する場合、非計画通信の開始要求を通信計画装置300に対して送信する。通信計画装置300は、地球局50を介して、当該衛星100と光通信可能な位置にある中継衛星200に対する通信要求情報を送信する。中継衛星200は、地球局50から通信要求情報を受信すると、衛星100が周回する軌道上にビーコン光を送信する。当該ビーコン光は、例えば、中継衛星200の識別子と通信相手の衛星100の識別子とが符号化されたパルス形式の光信号であってもよい。
衛星100は、ビーコン光を受信すると、内容を解析し、自らが通信相手として中継衛星200から要求されていると判定すると、ビーコン光の送信元の中継衛星200との通信接続を確立するための応答信号を返送する。これにより、衛星100と中継衛星200との光通信が確立し、中継衛星200を介して地球局50と衛星100との非計画通信が開始される。
図9には、地球局50と、複数の衛星100_1,100_2,100_3,100_4のうちの衛星100_3との非計画通信を希望する場合の非計画通信の開始手順の概要が示されている。
地球局50は、衛星100_3との通信を要求する通信要求情報を中継衛星200に送信する。通信要求情報には、中継衛星200から見た衛星100_3の方角を示す情報が含まれており、中継衛星200は、当該方角に向けてビーコン光を送信する。
衛星100_3は、中継衛星200が送信したビーコン光を受信する。ここで、衛星100_3は、制御情報により、光通信部120に中継衛星200が存在する方角を指向追尾するよう光通信系103Aを制御させている。このため、衛星100_3は、中継衛星200が送信したビーコン光を容易に受信し、検出することができる。
衛星100_3は、中継衛星200からのビーコン光を検出すると、ビーコン光に符号化された中継衛星200の識別子と要求されている通信相手の識別子とを抽出する。衛星100_3は、抽出した通信相手の識別子が自らの識別子と一致するか判定する。本例では、衛星100_3の識別子がビーコン光に含まれているため、衛星100_3は、自らが通信相手として要求されていると判断し、中継衛星200との通信確立手順に移行する。所定の通信確立手順に従って衛星100_3と中継衛星200との間の通信接続が確立されると、衛星100_3と中継衛星200とは、光通信によってデータを送受信する。また、ビーコン光は、中継衛星200の識別子を含まない特定の点滅パターンであっても良く、その場合、ビーコン光を検出した衛星100は、点滅パターンからビーコン光が所定の中継衛星から送出されたものであることを判別してもよい。
このような手順により、所望のタイミングで、中継衛星200を介した地球局50と衛星100との非計画通信を開始させることができる。
[動作例]
以上、衛星システム10に含まれる各機能ブロックの処理について説明した。次に、非計画通信期間の始まる前、及び非計画通信期間中における、衛星システム10の動作例について説明する。
<非計画通信準備完了状態となる前の衛星システム10の動作例>
図10を参照して、非計画通信準備完了状態となる前の衛星システム10の各構成の動作例について説明する。
ステップS1において、通信計画装置300は、非計画通信期間を設定する。
ステップS2において、通信計画装置300は、非計画通信期間における衛星100及び中継衛星200の軌道予測を行う。
ステップS3において、通信計画装置300は、非計画通信期間の各時点において中継を行わせる中継衛星200を決定する。
ステップS4において、通信計画装置300は、衛星100から見た中継衛星200の方角を導出する。
ステップS5において、通信計画装置300は、非計画通信期間の各時点における中継衛星200の方角を衛星100の光通信系103Aに指向させる制御情報を作成する。
ステップS6において、通信計画装置300は、制御情報を地球局50に対して送信する。
ステップS7において、地球局50は、制御情報を衛星100に送信(アップリンク)する。ステップS7において、地球局50は、予め計画された計画通信を用いて、中継衛星200を介して制御情報を衛星100に送信(アップリンク)してもよいし、衛星100が地球局50の通信可能範囲内に来るのを待って、制御情報を中継衛星200を介さずに衛星100に直接アップリンクしてもよい。
ステップS8において、衛星100は、制御情報に従い、光通信系103Aに中継衛星200を指向追尾させる。これにより、衛星システム10は非計画通信準備完了状態となる。
<非計画通信の開始時における衛星システム10の動作例>
図11を参照して、非計画通信の開始時における衛星システム10の動作例について説明する。
ステップS11において、通信計画装置300は、非計画通信期間中に、衛星運用事業者40などから非計画通信の開始要求を受信する。
ステップS12において、通信計画装置300は、要求された非計画通信の開始時間を決定する。通信計画装置300は、例えば衛星運用事業者40が開始時間を指定してきた場合には当該時間を開始時間としてもよいし、非計画通信の通信要求情報の作成に要する時間、中継衛星200へのアップリンクに要する時間、及び中継衛星200における通信準備に要する時間などを考慮して開始時間を決定してもよい。
ステップS13において、通信計画装置300は、予測された軌道に基づいて、要求された非計画通信を中継させる第1の中継衛星200_1を決定する。
ステップS14において、通信計画装置300は、予測された軌道に基づいて、非計画通信の開始時間における、第1の中継衛星200_1から見た衛星100の方角を導出する。
ステップS15において、通信計画装置300は、第1の中継衛星200_1に対し、衛星100の位置情報を含む通信要求情報を作成する。
ステップS16において、通信計画装置300は、通信要求情報を地球局50に対して送信する。
ステップS17において、地球局50は、通信要求情報を第1の中継衛星200_1にアップリンクする。
ステップS18において、第1の中継衛星200_1は、通信要求情報に基づいて、衛星100に対し光通信の開始のためのビーコン光を送信する。
ステップS19において、第1の中継衛星200_1と衛星100との間で、衛星間光通信が確立する。
ステップS110において、第1の中継衛星200_1を介して、地球局50と衛星100との間で、非計画通信が行われる。
なお、図11に示す例では、ステップS16およびステップS17において、通信計画装置300が作成した通信要求情報を、地球局50を介して第1の中継衛星200_1に送信している。しかしながら、衛星100との通信は行わず、中継衛星200との通信を行う他の地球局50_1を介して、通信計画装置300が作成した通信要求情報が中継衛星200に送信されてもよい。
<作用、効果>
以上説明したように、本開示に係る衛星システム10によれば、通信計画装置300が、予め計画されていない非計画通信が行われる可能性がある非計画通信期間において地球局50と衛星100との通信をどの中継衛星200に中継させるかを予め決定し、衛星100の光通信系103Aに決定した中継衛星200を指向追尾させるように衛星100の光通信部120を制御する制御情報を作成する。この制御情報により、衛星100は、非計画通信期間中、中継を行わせる中継衛星200が存在する方角を指向し続けることができる。
これにより、実際に非計画通信が開始され、中継衛星200から衛星100に向かって衛星間光通信を確立させるためのビーコン光が送信されたとき、衛星100は即座に送信されたビーコン光を受信し、中継衛星200との光通信を確立させることができる。
このような構成により、衛星100が、非計画通信期間において中継衛星200から衛星100に向けて送信されたビーコン光を受信できるようになる。
従来技術のように全ての通信が計画通信であることを前提とする場合、衛星100は計画された通信時間の直前のみ(例えば通信開始の1分前など)、中継衛星200からのビーコン光を受信するために光通信系103Aが中継衛星200の方角を向くように制御すれば良く、したがって、衛星100は消費電力の削減のために通信期間以外は光通信系103Aの向きを制御する必要はない。したがって、予め計画された計画通信しか行うことができない衛星システムの場合、計画通信時間以外の時間は、衛星が中継衛星からのビーコン光を受信する準備をしていないため、計画されていない非計画通信を確実に行うことは非常に困難である。仮に地球局50が非計画通信を要求する信号を中継衛星200に送信したとしても、中継衛星200は予定されていない非計画通信のために衛星100と光通信を確立させることが困難であるため、目的の衛星100が地球局50の通信可能範囲内に存在しない場合、地球局50は、当該衛星100が通信可能範囲に来るのを待つ時間が必要となる。
また、仮に中継衛星200が地球局50より非計画通信を受信し、衛星100に対してビーコン光を送信できたとしても、衛星100がビーコン光を送信するために中継衛星200を常に捕捉していない場合、衛星100の光通信系103Aがビーコン光を受信できる可能性は極めて低く、衛星間光通信を確立できない可能性が極めて高い。
一方、本開示に係る衛星システム10では、予め非計画通信が生じる可能性がある期間を設定しておき、その期間中は衛星100の光通信部120には光通信系103Aが中継衛星200を指向追尾するよう制御させているので、中継衛星200が非計画通信を要求する通信要求情報に基づいて即座にビーコン光を衛星100に送信した場合に、衛星100が確実にビーコン光を受信して中継衛星200との間で確実に光通信を確立できる可能性を高めることができる。
なお、以上の説明に関して更に以下の付記を開示する。
(付記1)
光通信部を有する衛星と地球局との間の通信を中継する中継衛星の軌道を予測する軌道予測部と、
予測した前記軌道に基づいて、前記衛星と前記地球局との間で予め計画されていない通信である非計画通信が生じる可能性がある非計画通信期間において、前記光通信部が前記中継衛星を指向追尾するように前記光通信部を制御する制御情報を作成する作成部と、
を備える、通信計画装置。
(付記2)
前記作成部は、予測した前記軌道に基づいて、前記非計画通信期間において、複数の前記中継衛星のうち、前記非計画通信を中継させる第1の中継衛星を時間帯毎に特定し、前記光通信部が前記時間帯毎に前記第1の中継衛星を指向するように前記制御情報を作成する、
付記1に記載の通信計画装置。
(付記3)
前記作成部は、前記地球局から前記衛星に対し、前記非計画通信の要求があった場合に、前記衛星の予測位置を含む通信要求情報を作成する、
付記1または2に記載の通信計画装置。
(付記4)
中継衛星を介して地球局との通信を行う衛星であって、
前記衛星と前記地球局との間で予め計画されていない通信である非計画通信が生じる可能性がある非計画通信期間において、前記非計画通信を中継する前記中継衛星の位置を特定する位置特定情報を受信する通信部と、
前記中継衛星との光通信を行う光通信部と、
前記位置特定情報に基づいて、前記非計画通信期間において、前記光通信部に前記中継衛星を指向追尾させる指向部と、
を備える、衛星。
(付記5)
地球局と、
光通信部を有する衛星と、
前記地球局と前記衛星との通信を中継する中継衛星と、
前記衛星および前記中継衛星の軌道を予測し、予測した前記軌道に基づいて、予め計画されていない通信である非計画通信が生じる可能性がある非計画通信期間において、前記光通信部が前記中継衛星を指向追尾するように前記衛星を制御する制御情報を作成する通信計画装置と、
を備え、
前記衛星は、前記制御情報に基づいて、前記光通信部を前記中継衛星に指向追尾させる、
衛星システム。
[変形例]
以上、本開示の実施の形態について詳述したが、本開示は上述した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本開示の要旨の範囲内において、種々の変形・変更が可能である。
上述した実施の形態では、制御情報が、衛星100から見た中継衛星が存在する位置又は方角を示す情報を含む例について説明した。しかしながら、本開示では、例えば衛星100が複数の中継衛星200の軌道予測データを予め保持しており、衛星100が当該軌道予測データに基づいて、制御情報が示す中継衛星200位置又は方角を自ら推定してもよい。
同様に、上述した実施の形態では、通信要求情報が、第1の中継衛星200_1から見た衛星100が存在する位置又は方角を示す情報を含む例について説明した。しかしながら、本開示では、例えば中継衛星200が複数の衛星の軌道予測データを予め保持しており、中継を行う対象となる衛星100の軌道予測データに基づいて、通信要求情報が示す衛星100の位置又は方角を自ら推定してもよい。
10 衛星システム
20 ネットワーク
30 中継衛星運用事業者
40 衛星運用事業者
50 地球局
100 衛星
120 光通信部
121 ビーコン光検出部
122 通信確立部
123 通信実行部
130 指向追尾部
200 中継衛星
210 通信部
220 光通信部
221 光信号送受信部
222 通信確立部
223 通信実行部
300 通信計画装置
310 通信部
320 軌道予測部
330 作成部

Claims (5)

  1. 光通信部を有する衛星と地球局との間の通信を中継する中継衛星の軌道を予測する軌道予測部と、
    予測した前記軌道に基づいて、前記衛星と前記地球局との間で予め計画されていない通信である非計画通信が生じる可能性がある非計画通信期間に亘って、前記光通信部が前記中継衛星を指向追尾するように前記光通信部を制御する制御情報を作成する作成部と、
    を備える、通信計画装置。
  2. 前記作成部は、予測した前記軌道に基づいて、前記非計画通信期間において、複数の前記中継衛星のうち、前記非計画通信を中継させる第1の中継衛星を時間帯毎に特定し、前記光通信部が前記時間帯毎に前記第1の中継衛星を指向するように前記制御情報を作成する、
    請求項1に記載の通信計画装置。
  3. 前記作成部は、前記地球局から前記衛星に対し、前記非計画通信の要求があった場合に、前記衛星の予測位置を含む通信要求情報を作成する、
    請求項1または2に記載の通信計画装置。
  4. 中継衛星を介して地球局との通信を行う衛星であって、
    前記衛星と前記地球局との間で予め計画されていない通信である非計画通信が生じる可能性がある非計画通信期間に亘って、前記非計画通信を中継する前記中継衛星の位置を特定する位置特定情報を受信する通信部と、
    前記中継衛星との光通信を行う光通信部と、
    前記位置特定情報に基づいて、前記非計画通信期間に亘って、前記光通信部に前記中継衛星を指向追尾させる指向部と、
    を備える、衛星。
  5. 地球局と、
    光通信部を有する衛星と、
    前記地球局と前記衛星との通信を中継する中継衛星と、
    前記中継衛星の軌道を予測し、予測した前記軌道に基づいて、予め計画されていない通信である非計画通信が生じる可能性がある非計画通信期間に亘って、前記光通信部が前記中継衛星を指向追尾するように前記衛星を制御する制御情報を作成する通信計画装置と、
    を備え、
    前記衛星は、前記制御情報に基づいて、前記光通信部を前記中継衛星に指向追尾させる、
    衛星システム。
JP2022025953A 2022-02-22 2022-02-22 通信計画装置、衛星、および衛星システム Active JP7127914B1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022025953A JP7127914B1 (ja) 2022-02-22 2022-02-22 通信計画装置、衛星、および衛星システム
JP2022127024A JP7211651B1 (ja) 2022-02-22 2022-08-09 衛星運用装置、衛星運用方法、衛星装置、および衛星運用システム
PCT/JP2023/006444 WO2023163039A1 (ja) 2022-02-22 2023-02-22 通信計画装置、衛星、および衛星システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022025953A JP7127914B1 (ja) 2022-02-22 2022-02-22 通信計画装置、衛星、および衛星システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022127024A Division JP7211651B1 (ja) 2022-02-22 2022-08-09 衛星運用装置、衛星運用方法、衛星装置、および衛星運用システム

Publications (2)

Publication Number Publication Date
JP7127914B1 true JP7127914B1 (ja) 2022-08-30
JP2023122313A JP2023122313A (ja) 2023-09-01

Family

ID=83103218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022025953A Active JP7127914B1 (ja) 2022-02-22 2022-02-22 通信計画装置、衛星、および衛星システム

Country Status (2)

Country Link
JP (1) JP7127914B1 (ja)
WO (1) WO2023163039A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126876A (ja) 2006-11-22 2008-06-05 Mitsubishi Electric Corp 観測衛星群管制システム、観測衛星、地上局、及び観測衛星群管制方法
JP2015524629A (ja) 2012-07-13 2015-08-24 レイセオン カンパニー 高帯域光通信中継アーキテクチャ
WO2018016471A1 (ja) 2016-07-19 2018-01-25 三菱電機株式会社 人工衛星の自律運用計画システムおよび人工衛星の運用計画装置
WO2020250707A1 (ja) 2019-06-12 2020-12-17 ソニー株式会社 衛星システムの撮像方法、および、送信装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214415A (ja) * 1996-02-08 1997-08-15 Toshiba Corp 光通信システム
JP6750913B1 (ja) * 2019-12-24 2020-09-02 一般財団法人グローバルヘルスケア財団 宇宙航行体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126876A (ja) 2006-11-22 2008-06-05 Mitsubishi Electric Corp 観測衛星群管制システム、観測衛星、地上局、及び観測衛星群管制方法
JP2015524629A (ja) 2012-07-13 2015-08-24 レイセオン カンパニー 高帯域光通信中継アーキテクチャ
WO2018016471A1 (ja) 2016-07-19 2018-01-25 三菱電機株式会社 人工衛星の自律運用計画システムおよび人工衛星の運用計画装置
WO2020250707A1 (ja) 2019-06-12 2020-12-17 ソニー株式会社 衛星システムの撮像方法、および、送信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
山本静夫、高畑博樹,光データ中継システム プロジェクト移行審査の結果について,科学技術・学術審議会、研究計画・評価分科会、宇宙開発利用部会 第25回資料 [online],資料25-1,日本,総務省,2016年02月02日,pages.1-33,[検索日2022.03.15]、インターネット<URL:https://www.mext.go.jp/b_menu/shingi/gijyutu/gijyutu2/059/shiryo/__icsFiles/afieldfile/2016/02/17/1365278_1.pdf>

Also Published As

Publication number Publication date
WO2023163039A1 (ja) 2023-08-31
JP2023122313A (ja) 2023-09-01

Similar Documents

Publication Publication Date Title
CN107923963B (zh) 用于调度定位信号传输和操作自定位装置的方法和系统
US9400329B2 (en) System for mapping and tracking ground targets
JP2008126876A (ja) 観測衛星群管制システム、観測衛星、地上局、及び観測衛星群管制方法
US11881927B2 (en) Multi-pathway satellite communication systems and methods
EP2402926A1 (en) Mobile object imaging system, mobile object, ground-based station device, and method for imaging mobile object
EP3042151B1 (en) Interactive remote guidance system for seaborne vessels
EP3542263A1 (en) Orchestration of software application deployment in a satellite platform
WO2016142045A1 (en) Tracking in an indoor environment
US10797785B1 (en) Real-time communication between satellites and mobile devices
US10948603B2 (en) Real-time communication between satellites and mobile devices
JP7127914B1 (ja) 通信計画装置、衛星、および衛星システム
JP7211651B1 (ja) 衛星運用装置、衛星運用方法、衛星装置、および衛星運用システム
JP2023122540A (ja) 衛星運用装置
CN110299938A (zh) 一种适用于低轨卫星的地面测控资源调度方法
JP4494819B2 (ja) 宇宙通信転送衛星
US10587335B1 (en) Direct-to-user Earth observation satellite system
KR20030067482A (ko) 내장된 디지타이제이션 시스템
KR20080050962A (ko) 복수의 위성을 관제하기 위한 위성 관제 시스템 및 그 방법
JP7030152B2 (ja) 照明通信システムおよび照明通信システムの制御方法
KR20090038734A (ko) 정지 위성 및 이동 위성의 통합 위성 관제 시스템 및 그방법
US11888519B1 (en) Optical communication satellite cross-connect
JP2565087B2 (ja) ランデブ・ドッキング制御装置
CN114567407B (zh) 一种适配多种卫星功能模块的复用光应用控制方法
WO2023062731A1 (ja) 飛翔体追跡方法、飛翔体追跡システム、衛星コンステレーションおよび地上システム
Kim et al. Development of Formation Flying CubeSats and Operation Systems for the CANYVAL-C Mission: Launch and Lessons Learned

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220810

R150 Certificate of patent or registration of utility model

Ref document number: 7127914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150