JP6736777B2 - Molybdenum material and manufacturing method thereof - Google Patents

Molybdenum material and manufacturing method thereof Download PDF

Info

Publication number
JP6736777B2
JP6736777B2 JP2019540120A JP2019540120A JP6736777B2 JP 6736777 B2 JP6736777 B2 JP 6736777B2 JP 2019540120 A JP2019540120 A JP 2019540120A JP 2019540120 A JP2019540120 A JP 2019540120A JP 6736777 B2 JP6736777 B2 JP 6736777B2
Authority
JP
Japan
Prior art keywords
relative density
sample
mass
confirmed
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019540120A
Other languages
Japanese (ja)
Other versions
JPWO2019188713A1 (en
Inventor
諒広 吉田
諒広 吉田
角倉 孝典
孝典 角倉
瀧田 朋広
朋広 瀧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALMT Corp
Original Assignee
ALMT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALMT Corp filed Critical ALMT Corp
Publication of JPWO2019188713A1 publication Critical patent/JPWO2019188713A1/en
Application granted granted Critical
Publication of JP6736777B2 publication Critical patent/JP6736777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • B22F3/1258Container manufacturing
    • B22F3/1291Solid insert eliminated after consolidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms

Description

この発明は、モリブデン素材に関する。本出願は、2018年3月29日に出願した日本特許出願である特願2018−063888号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 This invention relates to a molybdenum material. This application claims priority based on Japanese Patent Application No. 2018-063888, which is a Japanese patent application filed on March 29, 2018. All contents described in the Japanese patent application are incorporated herein by reference.

従来、モリブデン素材は、たとえば、特開2007−169789号公報および特開2007−113033号公報に開示されている。 Conventionally, molybdenum materials have been disclosed in, for example, Japanese Patent Laid-Open Nos. 2007-169789 and 2007-113033.

特開2007−169789号公報JP, 2007-169789, A 特開2007−113033号公報JP 2007-113033 A

本発明の一態様に係るモリブデン素材は、直径75mm以上、長さが250mm以上のモリブデン素材で、モリブデン素材の相対密度は99.5%以上である。 A molybdenum material according to one embodiment of the present invention is a molybdenum material having a diameter of 75 mm or more and a length of 250 mm or more, and the relative density of the molybdenum material is 99.5% or more.

図1は、容器に充填されたモリブデン粉末を示す断面図である。FIG. 1 is a cross-sectional view showing molybdenum powder filled in a container. 図2は、HIPで圧縮された、容器およびモリブデン粉末を示す断面図である。FIG. 2 is a cross-sectional view showing a HIP-compressed container and molybdenum powder. 図3は、容器から取り出されたモリブデン焼結体の断面図である。FIG. 3 is a cross-sectional view of the molybdenum sintered body taken out from the container. 図4は、モリブデン素材から切り出された円板の斜視図である。FIG. 4 is a perspective view of a disk cut out from a molybdenum material. 図5は、円板から試験片を取り出す部分を示す斜視図である。FIG. 5 is a perspective view showing a portion where the test piece is taken out from the disc.

[本開示が解決しようとする課題]
従来のモリブデン素材では、大体積のものを得ることができなかった。
そこでこの発明は上記の問題を解決するためになされたものである。
[Problems to be solved by the present disclosure]
With the conventional molybdenum material, it was not possible to obtain a large volume.
Therefore, the present invention has been made to solve the above problems.

[本発明の実施形態の説明]
(1)実施態様の概要
本発明の一態様に係るモリブデン素材は、直径75mm以上、長さが250mm以上のモリブデン素材で、前記モリブデン素材の相対密度は99.5%以上である。
[Description of Embodiments of the Present Invention]
(1) Outline of Embodiment A molybdenum material according to one embodiment of the present invention is a molybdenum material having a diameter of 75 mm or more and a length of 250 mm or more, and the relative density of the molybdenum material is 99.5% or more.

好ましくは、モリブデン素材の相対密度が99.9%以上である。 The relative density of the molybdenum material is preferably 99.9% or more.

本発明の一形態においては、モリブデン素材は、モリブデンを99.9質量%以上含有する。 In one embodiment of the present invention, the molybdenum material contains molybdenum in an amount of 99.9% by mass or more.

本発明の一形態においては、モリブデン素材は、チタンを0.3質量%以上1.5質量%以下、ジルコニウムを0.03質量%以上0.1質量%以下、かつ、炭素を0.01質量%以上0.3質量%以下含有し、残部がモリブデンおよび不可避不純物からなる。 In one embodiment of the present invention, the molybdenum material is such that titanium is 0.3 mass% or more and 1.5 mass% or less, zirconium is 0.03 mass% or more and 0.1 mass% or less, and carbon is 0.01 mass%. % Or more and 0.3 mass% or less, and the balance is molybdenum and inevitable impurities.

モリブデン素材の製造方法は、好ましくは、熱間等方圧加圧法を用いて外径40mm以下の第1の芯合金を作製する工程(1)と、第1の芯合金より大きな径の管に第1の芯合金を配置する工程(2)と、第1の芯合金の周囲の管内にモリブデン粉末を配置した後に熱間等方圧加圧法で圧縮する工程(3)と、圧縮後の管を除去して第1の芯合金よりも大径の第2の芯合金を形成する工程(4)と、工程(2)から(4)を繰り返す工程とを備える。 The method for producing a molybdenum material is preferably a step (1) of producing a first core alloy having an outer diameter of 40 mm or less by using a hot isostatic pressing method, and a tube having a diameter larger than that of the first core alloy. A step (2) of arranging the first core alloy, a step (3) of arranging molybdenum powder in the tube around the first core alloy and then compressing it by a hot isostatic pressing method, and a tube after compression Is removed to form a second core alloy having a diameter larger than that of the first core alloy, and a step of repeating steps (2) to (4).

(2)先行文献との対比
特許文献1では、実施例において、粒径4.1μmのW粉末を200MPaのプレス圧で、CIP(Cold Isostatic Pressing(冷間等方圧加工法))を用いてプレスし、温度が2250℃の水素雰囲気中で焼結することにより、相対密度が92%である焼結ロッドを得ている。次工程において、1750℃の温度、195MPaの圧力で3時間かけて、HIP(Hot Isostatic Pressing(熱間等方圧加圧法))を用いてプレスすることで、相対密度97.9%の焼結ロッドにしている。このロッドに対してラジアル鍛造加工機を用いて成形度が67%の成形を施すことで、ロッド全体の平均相対密度が99.66%、相対コア密度が99.63%のタングステンロッドを得ている。このロッドを1800℃の温度で4時間焼鈍した後における、結晶粒径、すなわち1mmあたりの平均結晶粒数は、ロッドの中心部で約800、周辺部で約850となっている。
(2) Comparison with Prior Document In Patent Document 1, in the Examples, W powder having a particle size of 4.1 μm is pressed at a pressure of 200 MPa by using CIP (Cold Isostatic Pressing). By pressing and sintering in a hydrogen atmosphere at a temperature of 2250° C., a sintered rod having a relative density of 92% is obtained. In the next step, by pressing using HIP (Hot Isostatic Pressing (hot isostatic pressing)) at a temperature of 1750° C. and a pressure of 195 MPa for 3 hours, sintering with a relative density of 97.9% is performed. I have a rod. By subjecting this rod to a forming process with a forming degree of 67% using a radial forging machine, a tungsten rod with an average relative density of the entire rod of 99.66% and a relative core density of 99.63% was obtained. There is. After annealing this rod at a temperature of 1800° C. for 4 hours, the crystal grain size, that is, the average number of crystal grains per 1 mm 2 is about 800 at the center of the rod and about 850 at the periphery.

特許文献2では、実施例において、平均粒径が45μm以下のMo粉末を軟鉄缶に充填した後に、400℃の温度で加熱しながら真空脱気して封止する。この軟鉄缶を、1250℃の温度、148MPaの圧力で5時間かけて、HIPを用いてプレスすることで、相対密度99.8%のMo焼結体にしている。このMo焼結体を、長さ380mm、幅110mm、厚さ8.1mmの板状に切り出し、700℃に加熱した後、200℃を下回らない温度範囲で厚さが4.6mmになるまで圧延による塑性加工を行なっている。 In Patent Document 2, in an example, a soft iron can is filled with Mo powder having an average particle size of 45 μm or less, and then vacuum degassing is performed while heating at a temperature of 400° C. to seal the can. This soft iron can is pressed with HIP at a temperature of 1250° C. and a pressure of 148 MPa for 5 hours to obtain a Mo sintered body having a relative density of 99.8%. This Mo sintered body is cut into a plate shape having a length of 380 mm, a width of 110 mm, and a thickness of 8.1 mm, heated to 700° C., and then rolled to a thickness of 4.6 mm in a temperature range not lower than 200° C. Plastic working by.

特許文献1および2に記載の製造方法では、効率的なMo素材の製造を望む顧客要求に応えられない。また、炉材といった部品の大型化および高強度化といった需要に必要な、密度ムラの小さい大体積のMo素材を製造できない。 The manufacturing methods described in Patent Documents 1 and 2 cannot meet customer demands for efficient manufacturing of Mo materials. In addition, it is impossible to manufacture a large volume of Mo material having a small density unevenness, which is required for the demand for increasing the size and increasing the strength of parts such as furnace materials.

Mo素材を粉末冶金法、たとえば、型押後に焼結、または、HIPを用いてプレスするなどして製造した場合、焼結後の合金は内部の密度が低く外周が高くなる傾向がある。また、この内部と外周の密度ムラは、製品寸法が大きくなるほど大きくなる。この密度ムラを是正する方法として、大きな変形量を伴う塑性加工を施す場合、熱間で大きな応力をMo素材に作用させなければならなかった。 When a Mo material is manufactured by powder metallurgy, for example, sintering after pressing, or pressing using HIP, the sintered alloy tends to have a low internal density and a high outer circumference. Further, the density unevenness between the inside and the outside increases as the product size increases. As a method of correcting this density unevenness, when performing plastic working involving a large amount of deformation, it was necessary to apply a large amount of hot stress to the Mo material.

以上の理由から、Mo素材を大径化するためには、予備加熱炉および熱間塑性加工装置を大型化する必要がある。また、予備加熱炉中の非酸化雰囲気から塑性加工装置の置かれている大気雰囲気中まで速やかにMo素材を搬送しなければ、Mo素材の温度が下がり、塑性加工中にMo素材に割れが生じる問題が起こる。ところが、設備が大型化するとともにMo素材が大型化して重量が増すことにより、Mo素材の速やかな搬送が困難となる問題があった。 For the above reasons, in order to increase the diameter of the Mo material, it is necessary to upsize the preheating furnace and the hot plastic working apparatus. Further, unless the Mo material is quickly conveyed from the non-oxidizing atmosphere in the preheating furnace to the air atmosphere in which the plastic working apparatus is placed, the temperature of the Mo material is lowered and the Mo material is cracked during the plastic working. The problem arises. However, there is a problem that the equipment becomes larger and the Mo material becomes larger and the weight increases, which makes it difficult to quickly convey the Mo material.

本開示においては、一例として実施の形態に示したように、Mo焼結体を中心側から外周側に段階的に作製して全体的に高密度化することにより、これまでになかった、直径75mm以上の棒状のMo素材を得た。このMo素材を用いることにより、密度が均質な多数個の部品を取ることができる。Mo素材がターゲットの用途に用いられる場合、Mo素材の密度が均質なため、均一に消耗して消耗特性が良いウエハが多数個取れる。Mo素材がヒーターの用途に用いられる場合、電気抵抗バラツキが小さく断線しにくい発熱体が多数個取れる。Mo素材が炉材の用途に用いられる場合、均質な材料強度の部材が多数個取れる。Mo素材が抵抗溶接用電極の用途に用いられる場合、Mo素材の密度が均質なため接合条件の変動が小さい電極が多数個取れる。 In the present disclosure, as shown in the embodiment by way of example, by making a Mo sintered body stepwise from the center side to the outer peripheral side and increasing the overall density, a diameter that has never existed before is obtained. A rod-shaped Mo material of 75 mm or more was obtained. By using this Mo material, a large number of parts having a uniform density can be obtained. When the Mo material is used as a target, since the density of the Mo material is uniform, it is possible to uniformly wear and obtain a large number of wafers having good wear characteristics. When the Mo material is used for a heater, it is possible to obtain a large number of heating elements that have a small variation in electric resistance and are hard to break. When the Mo material is used for a furnace material, a large number of members having a uniform material strength can be obtained. When the Mo material is used for an electrode for resistance welding, the density of the Mo material is uniform, so that a large number of electrodes with small fluctuations in joining conditions can be obtained.

(3)Mo素材の寸法
Mo素材の直径は75mm以上である。また、Mo素材の直径は300mm以下が好ましい。Mo素材の直径が75mm以上であることで、体積の大きな部品、たとえば、上述のターゲット、ヒーター、炉材または抵抗溶接用電極の用途に、Mo素材を用いることができる。好ましくは、Mo素材の直径は140mm以上である。より好ましくは、Mo素材の直径は200mm以上である。
(3) Dimensions of Mo material The diameter of the Mo material is 75 mm or more. Moreover, the diameter of the Mo material is preferably 300 mm or less. Since the Mo material has a diameter of 75 mm or more, the Mo material can be used for parts having a large volume, for example, the above-mentioned target, heater, furnace material or electrode for resistance welding. Preferably, the Mo material has a diameter of 140 mm or more. More preferably, the Mo material has a diameter of 200 mm or more.

Mo素材の直径は、75mm以上であればいくら大きくても構わないが、実使用の観点から、300mm以下が好ましい。Mo素材の直径の測定方法は、Mo素材の任意の複数箇所の直径をノギスで計測し、計測された最大径と最小径との平均値をMo素材の直径とする。 The Mo material may have any diameter as long as it is 75 mm or more, but from the viewpoint of practical use, it is preferably 300 mm or less. As a method of measuring the diameter of the Mo material, the diameters of arbitrary plural points of the Mo material are measured with a caliper, and the average value of the measured maximum diameter and minimum diameter is taken as the diameter of the Mo material.

Mo素材の直径のバラツキは、20%以内が好ましい。Mo素材の外周に形成される黒皮を機械加工で除去する際、Mo素材の直径のばらつきが20%を超えると、黒皮の除去が困難となるおそれがある。なお、「おそれがある」とは、僅かながらそのようになる可能性があることを示し、高い確率でそのようになることを意味するものではない。 The variation in the diameter of the Mo material is preferably within 20%. When the black skin formed on the outer periphery of the Mo material is removed by machining, if the variation in the diameter of the Mo material exceeds 20%, it may be difficult to remove the black skin. It should be noted that "may be" means that such a situation may occur, but does not mean that such a situation will occur with a high probability.

なお、Mo素材の形状は、円柱形状に限られず、多角形状でもよい。Mo素材が多角形状である場合、その多角形の内部にある最大面積の仮想円の直径を、Mo素材の直径とする。 The shape of the Mo material is not limited to the cylindrical shape and may be a polygonal shape. When the Mo material has a polygonal shape, the diameter of the virtual circle having the largest area inside the polygon is the diameter of the Mo material.

また、Mo素材の密度は、上記の最大面積の仮想円内の部分について測定される。
Mo素材の長さは、250mm以上である。Mo素材の長さは、1500mm以下が好ましい。Mo素材の長さが250mm以上であることにより、たとえば上述の部品をMo素材から形成する際に、1度に多数個の部品をMo素材から取ることができる。Mo素材の長さが250mm未満である場合、部品の取れ高が小さくなり、生産効率が悪くなるおそれがある。また、この実施の形態における工程を用いずとも従来工法によっても、Mo素材の中央部の密度を高めることができる。Mo素材の長さは、250mm以上であればいくら長くても構わないが、実使用の観点から1500mm以下が好ましい。
Further, the density of the Mo material is measured with respect to the portion within the virtual circle having the above-mentioned maximum area.
The length of the Mo material is 250 mm or more. The length of the Mo material is preferably 1500 mm or less. When the length of the Mo material is 250 mm or more, for example, when forming the above-mentioned parts from the Mo material, a large number of parts can be taken from the Mo material at one time. If the length of the Mo material is less than 250 mm, the take-off height of parts may be small, and production efficiency may be deteriorated. Further, the density of the central portion of the Mo material can be increased by the conventional method without using the steps in this embodiment. The Mo material may have any length as long as it is 250 mm or more, but it is preferably 1500 mm or less from the viewpoint of practical use.

Mo素材内部の相対密度は99.5%以上である。Mo素材内部の相対密度が99.5%以上である場合、Mo素材の各部分から上記の部品を多数個取った際に、部品間の密度差を小さくすることができる。好ましくは、Mo素材内部の相対密度は99.9%以上である。より好ましくは、Mo素材内部の相対密度は100%である。 The relative density inside the Mo material is 99.5% or more. When the relative density inside the Mo material is 99.5% or more, it is possible to reduce the density difference between the parts when a large number of the above parts are taken from each part of the Mo material. Preferably, the relative density inside the Mo material is 99.9% or more. More preferably, the relative density inside the Mo material is 100%.

Mo素材内部の相対密度が99.5%未満である場合、部品同士間の密度ムラが大きく、部品特性にばらつきが生じるおそれがある。 When the relative density inside the Mo material is less than 99.5%, the density unevenness between the components is large, and the component characteristics may vary.

Mo素材内部の相対密度の測定方法は、以下の通りである。なお、以下においては、Mo素材の相対密度を、単に、相対密度と称する場合もある。得られた棒状のMo素材について、Mo素材の長手方向の両端部および中心部の計3ヶ所から、厚さ30mmの円板を切り出す。評価場所として、切り出した各円板の直径方向における、表面近傍、中心、および、表面近傍と中心との中間位置、の計3ヶ所から、10×10×10mmの試験片を切り出し、アルキメデス法にてMo素材の相対密度の測定を行なう。具体的には、Mo素材の組成、Mo素材の組成から計算される真密度、試験片の体積、および、試験片の質量から、Mo素材の相対密度を計算する。試験片の体積は、水を入れたビーカーに試験片を入れた際の水面上昇分の体積とする。試験片の質量は、電子天秤で測定する。 The method for measuring the relative density inside the Mo material is as follows. In the following, the relative density of the Mo material may be simply referred to as the relative density. With respect to the obtained rod-shaped Mo material, a disk having a thickness of 30 mm is cut out from a total of three locations on both ends and the center of the Mo material in the longitudinal direction. As an evaluation site, a test piece of 10×10×10 mm was cut out from a total of three places, in the diametrical direction of each cut-out disk, in the vicinity of the surface, the center, and the intermediate position between the vicinity of the surface and the center, and the Archimedes method was applied. Then, the relative density of the Mo material is measured. Specifically, the relative density of the Mo material is calculated from the composition of the Mo material, the true density calculated from the composition of the Mo material, the volume of the test piece, and the mass of the test piece. The volume of the test piece is the volume of the water surface rise when the test piece is placed in a beaker containing water. The mass of the test piece is measured by an electronic balance.

Mo素材の相対密度は、以下の式で求められる。
Mo素材の相対密度=(試験片の質量/試験片の体積)/真密度
真密度は、Mo素材の組成によって決定される。
The relative density of the Mo material is calculated by the following formula.
Relative density of Mo material=(mass of test piece/volume of test piece)/true density The true density is determined by the composition of the Mo material.

Mo素材は、Moを99.9質量%以上含有していてもよい。この場合、Moの含有率が99.9質量%未満であるMo素材に比較して、Mo素材の機械加工性および塑性加工性を向上することができる。 The Mo material may contain 99.9 mass% or more of Mo. In this case, the ma workability and plastic workability of the Mo material can be improved as compared with the Mo material having a Mo content of less than 99.9% by mass.

Mo素材は、Tiを0.3質量%以上1.5質量%以下、Zrを0.03質量%以上0.1質量%以下、かつ、Cを0.01質量%以上0.3質量%以下含有し、残部がMo、不可避不純物および不可避ガス不純物で構成されていてもよい。この場合、Moの含有率が99.9質量%以上であるMo素材に比較して、Mo素材の機械強度を高くすることができる。 As for the Mo material, Ti is 0.3% by mass or more and 1.5% by mass or less, Zr is 0.03% by mass or more and 0.1% by mass or less, and C is 0.01% by mass or more and 0.3% by mass or less. It may be contained, and the balance may be composed of Mo, unavoidable impurities and unavoidable gas impurities. In this case, the mechanical strength of the Mo material can be increased as compared with the Mo material having a Mo content of 99.9 mass% or more.

不可避不純物は、たとえば、Al、Ca、Cr、Cu、Fe、Mg、Mn、Ni、Pb、Sn、Si、Na、KおよびWのうち少なくとも1種類を含んでいる。不可避ガス不純物は、たとえば、NおよびOのうち少なくとも1種類を含んでいる。Mo素材における不可避不純物の総量の質量含有率は、0.1質量%以下が好ましい。Mo素材における不可避ガス不純物の総量の質量含有率は、0.01質量%以下が好ましい。 The unavoidable impurities include, for example, at least one of Al, Ca, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn, Si, Na, K and W. The unavoidable gas impurities include, for example, at least one of N and O. The mass content of the total amount of unavoidable impurities in the Mo material is preferably 0.1 mass% or less. The mass content of the total amount of unavoidable gas impurities in the Mo material is preferably 0.01 mass% or less.

Mo素材におけるTiの質量含有率が1.5質量%を超えると、十分な密度のMo素材を得られないおそれがある。Mo素材におけるTiの質量含有率が0.3質量%未満であると、純Moを超える強度を有するMo素材を得られないおそれがある。なお、純Moとは、Moの質量含有率が、99.9質量%以上であるモリブデン材料である。 When the mass content of Ti in the Mo material exceeds 1.5 mass %, there is a possibility that a Mo material having a sufficient density cannot be obtained. If the mass content of Ti in the Mo material is less than 0.3% by mass, it may not be possible to obtain a Mo material having a strength exceeding pure Mo. The pure Mo is a molybdenum material having a Mo mass content of 99.9 mass% or more.

Mo素材におけるZrの質量含有率が0.1質量%を超えると、十分な密度のMo素材を得られないおそれがある。Mo素材におけるZrの質量含有率が0.03質量%未満であると、純Moを超える強度を有するMo素材を得られないおそれがある。 If the mass content of Zr in the Mo material exceeds 0.1% by mass, there is a possibility that a Mo material having a sufficient density cannot be obtained. If the mass content of Zr in the Mo material is less than 0.03 mass %, it may not be possible to obtain a Mo material having a strength exceeding pure Mo.

Mo素材におけるCの質量含有率が0.3質量%を超えると、十分な密度のMo素材を得られないおそれがある。Mo素材におけるCの質量含有率が0.01質量%未満であると、純Moを超える強度を有するMo素材を得られないおそれがある。 If the mass content of C in the Mo material exceeds 0.3 mass %, it may not be possible to obtain a Mo material having a sufficient density. When the mass content of C in the Mo material is less than 0.01% by mass, it may not be possible to obtain a Mo material having a strength exceeding pure Mo.

Mo素材における不可避不純物の総量の質量含有率が、0.1質量%を超えると、十分な密度および安定した特性を有するMo素材を得られないおそれがある。Mo素材における不可避ガス不純物の総量の質量含有率が、0.01質量%を超えると、十分な密度および安定した特性を有するMo素材を得られないおそれがある。 If the mass content of the total amount of unavoidable impurities in the Mo material exceeds 0.1% by mass, it may not be possible to obtain a Mo material having sufficient density and stable properties. If the mass content of the total amount of unavoidable gas impurities in the Mo material exceeds 0.01% by mass, it may not be possible to obtain a Mo material having sufficient density and stable characteristics.

金属元素の組成の測定方法は、JIS H1404(2001)のICP(誘導結合プラズマ発光分光法)である。ICPによる金属元素の測定装置は、島津製作所製のICPS−8100である。Cの測定装置は、堀場製作所製のEMIA−920−V2である。OおよびNの測定装置は、LECO社製のON−836である。 The method for measuring the composition of the metal element is ICP (inductively coupled plasma emission spectroscopy) of JIS H1404 (2001). The measuring device for metal elements by ICP is ICPS-8100 manufactured by Shimadzu Corporation. The measuring device for C is EMIA-920-V2 manufactured by Horiba. The measuring device for O and N is ON-836 manufactured by LECO.

Mo素材の室温における破断強度は400MPa以上であることが好ましく、Mo素材の1000℃における破断強度は50MPa以上であることが好ましい。これらの破断強度を満たさない場合、たとえば、Mo素材が炉材の用途に用いられた際、使用中に変形するおそれがある。 The breaking strength of the Mo material at room temperature is preferably 400 MPa or more, and the breaking strength of the Mo material at 1000° C. is preferably 50 MPa or more. If these breaking strengths are not satisfied, for example, when the Mo material is used for a furnace material, it may be deformed during use.

Mo素材に含まれる、直径30μm以上の空孔の数は0個/cm、直径30μm未満の空孔の数は200個/cm以下であることが好ましい。Included in the Mo material, it is preferable that the number of diameter 30μm or more holes 0 / cm 2, the number of holes having a diameter of less than 30μm is 200 / cm 2 or less.

Mo素材に含まれる空孔の数の測定方法は、以下の通りである。得られた棒状のMo素材について、直径方向における中心および表面近傍の各々の位置から、厚さが15mm、直径が10mmの円板状の試料を切り出す。試料の切断面を研磨し、研磨面の表面粗さ(Rz)を0.2μm以下にする。研磨方法としては、たとえば、切断面を180番〜2000番の耐水ペーパを用いて研磨した後、粒度が1μm〜3μmであるダイヤモンド懸濁液を用いてバフ研磨する。 The method for measuring the number of holes contained in the Mo material is as follows. With respect to the obtained rod-shaped Mo material, a disk-shaped sample having a thickness of 15 mm and a diameter of 10 mm is cut out from each position in the diameter direction at the center and in the vicinity of the surface. The cut surface of the sample is polished so that the surface roughness (Rz) of the polished surface is 0.2 μm or less. As a polishing method, for example, the cut surface is polished with No. 180 to No. 2000 water-resistant paper, and then buffed with a diamond suspension having a particle size of 1 μm to 3 μm.

試料の研磨面をオリンパス製の実体顕微鏡SZ40を用いて観察し、最大径の空孔の位置を確認する。試料の研磨面において最大径の空孔の位置を含む抽出範囲を、キーエンス製のマイクロスコープVHX−6000を用いて1000倍で観察し、空孔の最大径を測定する。空孔の最大径は、観察された空孔の内接円の直径とする。抽出範囲は、直径が10mmである試料の研磨面の中心から半径4mmの円内とする。さらに、抽出範囲を100倍に拡大しつつ、マトリックスとコントラストが異なるものを全てボイドと判定して抽出してコンタミネーション解析し、空孔の数を計測する。このとき、空孔の最大径が1000倍で観察したときの測定値と一致するように抽出パラメータを調整した状態で、空孔の数を計測する。 The polished surface of the sample is observed using a stereoscopic microscope SZ40 manufactured by Olympus to confirm the position of the hole having the maximum diameter. The extraction range including the position of the pore with the largest diameter on the polished surface of the sample is observed at 1000 times using a microscope VHX-6000 manufactured by Keyence, and the maximum diameter of the pore is measured. The maximum diameter of the holes is the diameter of the inscribed circle of the observed holes. The extraction range is within a circle having a radius of 4 mm from the center of the polished surface of the sample having a diameter of 10 mm. Further, while expanding the extraction range by 100 times, all those having a contrast different from that of the matrix are determined as voids, extracted, and subjected to contamination analysis to measure the number of holes. At this time, the number of pores is measured in a state where the extraction parameters are adjusted so that the maximum diameter of the pores matches the measurement value when observed at 1000 times.

Mo素材に、直径30μm以上の空孔が含まれる場合、および、直径30μm未満の空孔の数が200個/cmを超える場合、たとえば、Mo素材がターゲットの用途に用いられた際、スパッタにより形成された膜の厚さのばらつきが大きくなるおそれがある。When the Mo material contains pores with a diameter of 30 μm or more, and when the number of pores with a diameter of less than 30 μm exceeds 200/cm 2 , for example, when the Mo material is used for a target application, sputtering is performed. There is a possibility that the variation in the thickness of the film formed by will increase.

[本発明の実施形態の詳細な説明]
以下、本発明を実施例に基づいて説明する。
[Detailed Description of Embodiments of the Present Invention]
Hereinafter, the present invention will be described based on examples.

(実施例1)
(1)Mo素材であるMo焼結体の製造工程
(1−1)原料
原料として、フィッシャー法によるFSSS粒径が4.0μmであるMo粉末を用いた。Fsss粒径は、3μm以上10μm以下が好ましい。Fsss粒径が10μmを超えると、全体的にMo焼結体の密度があがらないおそれがある。Fsss粒径が3μm未満であると、Mo焼結体の中心部の密度があがらないおそれがある。原料粉末は、純Mo粉末を用いた。
(Example 1)
(1) Manufacturing Step of Mo Sintered Body as Mo Material (1-1) Raw Material As a raw material, Mo powder having an FSSS particle size of 4.0 μm by the Fischer method was used. The Fsss particle size is preferably 3 μm or more and 10 μm or less. If the Fsss particle size exceeds 10 μm, the density of the Mo sintered body may not increase as a whole. If the Fsss particle size is less than 3 μm, the density of the central portion of the Mo sintered body may not increase. Pure Mo powder was used as the raw material powder.

(1−2)芯合金
実施例1においては、表1に示す試料番号1〜3および101のMo素材を作製した。
(1-2) Core Alloy In Example 1, Mo materials of sample numbers 1 to 3 and 101 shown in Table 1 were produced.

Figure 0006736777
Figure 0006736777

表1に示す試料番号1〜3および101のコア焼結体を得るために、図1に示す管であるカプセル21を4つ準備した。カプセル21の厚さは10mmとし、カプセル21の長さは2000mmとした。カプセル21の内径については、試料番号1は43mm、試料番号2は60mm、試料番号3は77mm、試料番号101は135mmとした。カプセル21は、軟鋼缶で構成されている。ただし、カプセル21の材質は、軟鋼にかぎられない。 In order to obtain core sintered bodies of sample numbers 1 to 3 and 101 shown in Table 1, four capsules 21 which are the tubes shown in FIG. 1 were prepared. The thickness of the capsule 21 was 10 mm, and the length of the capsule 21 was 2000 mm. Regarding the inner diameter of the capsule 21, the sample number 1 was 43 mm, the sample number 2 was 60 mm, the sample number 3 was 77 mm, and the sample number 101 was 135 mm. The capsule 21 is composed of a mild steel can. However, the material of the capsule 21 is not limited to mild steel.

Moの原料粉末10を嵩密度が4.2g/cmとなるようにカプセル21に充填した後に、高温脱気用のパイプ23が溶接されている蓋22をカプセル21とTIG(Tungsten Inert Gas)溶接した。パイプ23の先端25に、油回転ポンプおよび油拡散ポンプと繋がっているホースを取り付けた。After filling the raw material powder 10 of Mo into the capsule 21 so that the bulk density is 4.2 g/cm 3 , a lid 22 to which a pipe 23 for high temperature degassing is welded is attached to the capsule 21 and TIG (Tungsten Inert Gas). Welded. A hose connected to the oil rotary pump and the oil diffusion pump was attached to the tip 25 of the pipe 23.

500℃の温度に保持された大気炉に、カプセル21に蓋22が溶接された容器を入れ、油回転ポンプおよび油拡散ポンプを用いて真空引きし、容器の内圧を常圧から1×10−3Paまで減圧した。このように高温脱気された容器を取り出し、封止部24が設けられる位置でパイプ23を潰した後、潰れている部分でパイプを切り離し、切断されたパイプの端部をTIG溶接することにより封止して封止部24を設けた。The container in which the lid 22 was welded to the capsule 21 was placed in an atmospheric furnace maintained at a temperature of 500° C., and a vacuum was drawn using an oil rotary pump and an oil diffusion pump, and the internal pressure of the container was changed from normal pressure to 1×10 − The pressure was reduced to 3 Pa. By taking out the container that has been degassed at high temperature in this way, crushing the pipe 23 at the position where the sealing portion 24 is provided, separating the pipe at the crushed portion, and TIG welding the end portion of the cut pipe. It sealed and provided the sealing part 24.

軟鋼缶の厚さは、3mm以上20mm以下が好ましい。軟鋼缶の厚さが20mmを超える場合、加圧焼結時にMo合金の密度が上がらないおそれがある。軟鋼缶の厚さが3mm未満である場合、加圧焼結時にカプセル21が破れるおそれがある。カプセル21においては、外周部と底部とが一体成形されていてもよく、カプセル21のサイズが大きい場合は、別部材で構成されている外周部と底部とがTIG溶接によって互いに接合されていてもよい。蓋22として、たとえば、カプセル21と同じ厚さの板材を用いることができる。 The thickness of the mild steel can is preferably 3 mm or more and 20 mm or less. If the thickness of the mild steel can exceeds 20 mm, the density of the Mo alloy may not increase during pressure sintering. If the thickness of the mild steel can is less than 3 mm, the capsule 21 may be broken during pressure sintering. In the capsule 21, the outer peripheral portion and the bottom portion may be integrally formed. When the capsule 21 has a large size, the outer peripheral portion and the bottom portion, which are formed of different members, may be joined to each other by TIG welding. Good. As the lid 22, for example, a plate material having the same thickness as the capsule 21 can be used.

高温脱気時の炉内温度は、400℃以上500℃以下が好ましい。炉内温度が500℃を超える場合、容器内の真空度が低いとき、Mo粉末が酸化するおそれがある。炉内温度が400℃未満である場合、Mo粉末に吸着されたガス成分などを十分に脱気できず、Mo合金の内部に空孔が発生するおそれがある。 The temperature in the furnace at the time of high-temperature degassing is preferably 400°C or higher and 500°C or lower. If the furnace temperature exceeds 500° C., the Mo powder may be oxidized when the degree of vacuum in the container is low. If the temperature in the furnace is lower than 400° C., the gas components and the like adsorbed on the Mo powder cannot be sufficiently degassed, and voids may occur inside the Mo alloy.

高温脱気する時間は、カプセル21の温度が炉内温度と同じになってから、1時間以上5時間以下が好ましい。高温脱気する時間が5時間を超えた以降は、Mo合金の特性が向上しないため、5時間を超えて高温脱気すると、経済性が悪化する。高温脱気する時間が1時間未満である場合、Mo粉末に吸着されたガス成分などを十分に脱気できず、Mo合金の内部に空孔が発生するおそれがある。 The time for high-temperature degassing is preferably 1 hour or more and 5 hours or less after the temperature of the capsule 21 becomes the same as the furnace temperature. After the high temperature degassing time exceeds 5 hours, the properties of the Mo alloy are not improved, and thus the high temperature degassing for more than 5 hours deteriorates the economical efficiency. When the time of high-temperature degassing is less than 1 hour, gas components adsorbed on the Mo powder cannot be sufficiently degassed, and voids may occur inside the Mo alloy.

高温脱気時の容器内の到達圧力は、1×10−2Pa未満が好ましい。容器内の到達圧力が1×10−2Pa以上である場合、脱気が十分行なわれておらず、HIPによるプレス時にMo合金の密度が上がりにくいおそれがある。The ultimate pressure in the container during high temperature degassing is preferably less than 1×10 −2 Pa. When the ultimate pressure in the container is 1×10 −2 Pa or more, deaeration is not sufficiently performed, and the density of the Mo alloy may be difficult to increase during pressing with HIP.

容器内のMo粉末の嵩密度は、2.5g/cm以上5.0g/cm以下が好ましい。Mo粉末の嵩密度が5.0g/cmを超える場合、Mo粉末に吸着されたガス成分などを十分に脱気できず、Mo合金の密度が上がりにくいおそれがある。Mo粉末の嵩密度が2.5g/cm未満である場合、HIPによるプレス時のMo合金の収縮率が大きくなりすぎて、目標とする形状のMo焼結体が得られないおそれがある。より好ましくは、容器内のMo粉末の嵩密度は、3.5g/cm以上4.5g/cm以下である。The bulk density of the Mo powder in the container is preferably 2.5 g/cm 3 or more and 5.0 g/cm 3 or less. When the bulk density of the Mo powder exceeds 5.0 g/cm 3 , the gas components and the like adsorbed on the Mo powder cannot be sufficiently degassed, and the density of the Mo alloy may be difficult to increase. When the bulk density of the Mo powder is less than 2.5 g/cm 3 , the shrinkage rate of the Mo alloy during pressing with HIP becomes too large, and the Mo sintered body having a target shape may not be obtained. More preferably, the bulk density of the Mo powder in the container is 3.5 g/cm 3 or more and 4.5 g/cm 3 or less.

(1−3)焼結
密封した容器を熱間等方圧加圧装置の炉内に設置して、1280℃の温度、147MPaの圧力で5時間かけて、HIPによる加圧焼結を施した。以下、HIPによる加圧焼結を、単に、HIPと称する場合もある。図2で示すように、HIPにより容器内の体積を減少させた。
(1-3) Sintering The sealed container was placed in a furnace of a hot isostatic press, and pressure sintering was performed by HIP at a temperature of 1280° C. and a pressure of 147 MPa for 5 hours. .. Hereinafter, pressure sintering by HIP may be simply referred to as HIP. As shown in FIG. 2, HIP reduced the volume in the container.

加圧焼結後に容器を機械加工により除去して、図3で示すような、試料番号1〜3および101の第1の芯合金であるコア焼結体11を得た。コア焼結体11のサイズは、表1に示すとおりである。 After pressure sintering, the container was removed by machining to obtain a core sintered body 11 which is the first core alloy of sample numbers 1 to 3 and 101 as shown in FIG. The size of the core sintered body 11 is as shown in Table 1.

コア焼結体11の相対密度をアルキメデス法により測定したところ、直径方向における中心部において99.5%以上99.9%以下であり、中心部以外の部分において100%であった。HIP時の加熱温度は、1000℃以上1350℃以下が好ましい。加熱温度が1350℃を超えると、カプセル21を構成する軟鋼の融点近くの温度となり、カプセル21がHIP時に破れるおそれがある。加熱温度が1000℃未満である場合、HIP時にMo合金の密度が上がらないおそれがある。 When the relative density of the core sintered body 11 was measured by the Archimedes method, it was 99.5% or more and 99.9% or less in the central portion in the diametrical direction and 100% in the portion other than the central portion. The heating temperature during HIP is preferably 1000°C or higher and 1350°C or lower. When the heating temperature exceeds 1350° C., the temperature becomes close to the melting point of the mild steel forming the capsule 21, and the capsule 21 may be broken during HIP. If the heating temperature is less than 1000°C, the density of the Mo alloy may not increase during HIP.

HIP時の容器内の到達圧力は、98MPa以上250MPa以下が好ましい。容器内の到達圧力が250MPaを超えた以降は、Mo合金の密度が上がらないため、250MPaを超えるまで加圧すると、経済性が悪化する。容器内の到達圧力が98MPa未満である場合、Mo合金の密度が上がらないおそれがある。HIPを施す時間は、1時間以上10時間以下が好ましい。HIPを施す時間が10時間を超えた以降は、Mo合金の密度が上がらないため、10時間を超えてHIPを施すと、経済性が悪化する。HIPを施す時間が1時間未満である場合、Mo合金の密度が上がらないおそれがある。 The ultimate pressure in the container during HIP is preferably 98 MPa or more and 250 MPa or less. After the ultimate pressure in the container exceeds 250 MPa, the density of the Mo alloy does not increase. Therefore, if the pressure exceeds 250 MPa, the economical efficiency deteriorates. If the ultimate pressure in the container is less than 98 MPa, the density of the Mo alloy may not increase. HIP is preferably performed for 1 hour or more and 10 hours or less. After the HIP application time exceeds 10 hours, the density of the Mo alloy does not increase, so that the HIP application for more than 10 hours deteriorates the economical efficiency. If the HIP time is less than 1 hour, the density of the Mo alloy may not increase.

容器の軟鋼缶を除去する際のMo合金の加工代は、3mm以上10mm以下が好ましい。Mo合金の加工代が10mmを超えると、加工時間が長くなるとともに材料の歩留まりが低下するため、経済性が悪化する。Mo合金の加工代が3mm未満である場合、Mo合金から軟鋼缶を除去しきれないおそれがある。 The machining allowance of the Mo alloy when removing the mild steel can of the container is preferably 3 mm or more and 10 mm or less. If the machining allowance of the Mo alloy exceeds 10 mm, the machining time becomes long and the yield of the material decreases, so that the economical efficiency deteriorates. If the machining allowance of the Mo alloy is less than 3 mm, the mild steel can may not be completely removed from the Mo alloy.

(1−4)大径化
表1における試料番号1〜3のコア焼結体11を大径化するために、図1で示す3つの軟鋼缶のカプセル21を準備した。カプセル21の厚さは10mmとし、カプセル21の長さは1600mmとした。カプセル21の内径については、試料番号1は80mm、試料番号2は90mm、試料番号3は100mmとした。コア焼結体11をカプセル21の中心に配置し、カプセル21とコア焼結体11との間に、「(1−1)原料」の欄に記載の原料を充填した。「(1−2)芯合金」の欄に記載の工程に従って、400℃の温度で高温脱気し、容器を密封した。
(1-4) Increasing the diameter In order to increase the diameters of the core sintered bodies 11 of sample numbers 1 to 3 in Table 1, three mild steel can capsules 21 shown in FIG. 1 were prepared. The thickness of the capsule 21 was 10 mm, and the length of the capsule 21 was 1600 mm. Regarding the inner diameter of the capsule 21, the sample number 1 was 80 mm, the sample number 2 was 90 mm, and the sample number 3 was 100 mm. The core sintered body 11 was arranged in the center of the capsule 21, and the raw material described in the column of “(1-1) Raw material” was filled between the capsule 21 and the core sintered body 11. According to the process described in the column of "(1-2) Core alloy", high temperature degassing was performed at a temperature of 400°C, and the container was sealed.

次に、「(1−3)焼結」の欄に記載したようにHIPによる加圧焼結をした後、容器を機械加工により除去した。これにより、表1の「1回目」の欄の「直径」および「長さ」を有する試料番号1〜3の第2の芯合金であるMo焼結体を得た。 Next, after performing pressure sintering by HIP as described in the column of "(1-3) Sintering", the container was removed by machining. As a result, Mo sintered bodies, which are the second core alloys of sample numbers 1 to 3 having the “diameter” and the “length” in the “first time” column of Table 1, were obtained.

得られたMo焼結体をさらに大径化するために、図1で示す3つの軟鋼缶のカプセル21を準備した。カプセル21の厚さは10mmとし、カプセル21の長さは1600mmとした。カプセル21の内径については、試料番号1は102mm、試料番号2は95mm、試料番号3は88mmとした。Mo焼結体をカプセル21の中心に配置し、カプセル21とコア焼結体11との間に、「(1−1)原料」の欄に記載の原料を充填した。「(1−2)芯合金」の欄に記載の工程に従って、400℃の温度で高温脱気し、容器を密封した。 In order to further increase the diameter of the obtained Mo sintered body, three mild steel can capsules 21 shown in FIG. 1 were prepared. The thickness of the capsule 21 was 10 mm, and the length of the capsule 21 was 1600 mm. Regarding the inner diameter of the capsule 21, the sample number 1 was 102 mm, the sample number 2 was 95 mm, and the sample number 3 was 88 mm. The Mo sintered body was arranged at the center of the capsule 21, and the raw material described in the column “(1-1) Raw material” was filled between the capsule 21 and the core sintered body 11. According to the process described in the column of "(1-2) Core alloy", high temperature degassing was performed at a temperature of 400°C, and the container was sealed.

次に、「(1−3)焼結」の欄に記載したようにHIPによる加圧焼結をした後、容器を機械加工により除去した。これにより、表1の「2回目」の欄の「直径」および「長さ」を有する試料番号1〜3のMo素材であるMo焼結体を得た。 Next, after performing pressure sintering by HIP as described in the column of "(1-3) Sintering", the container was removed by machining. As a result, Mo sintered compacts, which are Mo raw materials of sample numbers 1 to 3, having the “diameter” and the “length” in the “second time” column of Table 1 were obtained.

(2)Mo素材の評価
上記の工程により得られた、直径75mm、長さ1500mmの試料番号1〜3および101の各々の棒状のMo素材について、図4に示す、前端1、中央2および後端3において、厚さL1が30mmの円板を切り出した。図5に示すように、評価場所として、切り出した各円板の直径方向における、周縁の位置4、中心の位置6、および、周縁と中心との間の位置5の各々から、試験片を切り出して相対密度を測定した。それらの結果を表1に示す。
(2) Evaluation of Mo material For each rod-shaped Mo material of sample numbers 1 to 3 and 101 having a diameter of 75 mm and a length of 1500 mm obtained by the above process, the front end 1, the center 2 and the rear are shown in FIG. At the end 3, a disk having a thickness L1 of 30 mm was cut out. As shown in FIG. 5, as an evaluation place, a test piece was cut out from each of a peripheral position 4, a central position 6, and a position 5 between the peripheral and the center in the diametrical direction of each of the cut out disks. And the relative density was measured. The results are shown in Table 1.

表1に示すように、実施例1の試料番号1〜3におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例1の試料番号1,2におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号101におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 1, it was confirmed that the relative density of the Mo material in the sample numbers 1 to 3 of Example 1 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 1 and 2 of Example 1 was 99.9% or more. It was confirmed that the relative density of the Mo material in sample No. 101 of the comparative example contained less than 99.5%.

(実施例2)
実施例2においては、長さが1000mmである点以外は実施例1と同様にコア焼結体11を作製し、コア焼結体11にHIPを2回追加して施すことで大径化して、試料番号4〜6のMo素材を作製した。比較例においては、長さが1000mmである点以外は試料番号101と同様に試料番号102のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表2に示す。
(Example 2)
In Example 2, a core sintered body 11 was prepared in the same manner as in Example 1 except that the length was 1000 mm, and HIP was added twice to the core sintered body 11 to increase the diameter. , Mo materials of sample numbers 4 to 6 were produced. In the comparative example, a Mo material of sample number 102 was prepared in the same manner as sample number 101 except that the length was 1000 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Table 2.

Figure 0006736777
Figure 0006736777

表2に示すように、実施例2の試料番号4〜6におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例2の試料番号4,5におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号102におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 2, it was confirmed that the relative density of the Mo material in the sample numbers 4 to 6 of Example 2 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 4 and 5 of Example 2 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample No. 102 of the comparative example contained less than 99.5%.

(実施例3)
実施例3においては、長さが500mmである点以外は実施例1と同様にコア焼結体11を作製し、コア焼結体11にHIPを2回追加して施すことで大径化して、試料番号7〜9のMo素材を作製した。比較例においては、長さが500mmである点以外は試料番号101と同様に試料番号103のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表3に示す。
(Example 3)
In Example 3, a core sintered body 11 was prepared in the same manner as in Example 1 except that the length was 500 mm, and HIP was added twice to the core sintered body 11 to increase the diameter. , Mo materials of sample numbers 7 to 9 were produced. In the comparative example, a Mo material of sample number 103 was manufactured in the same manner as sample number 101 except that the length was 500 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Table 3.

Figure 0006736777
Figure 0006736777

表3に示すように、実施例3の試料番号7〜9におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例3の試料番号7,8におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号103におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 3, it was confirmed that the relative density of the Mo material in the sample numbers 7 to 9 of Example 3 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 7 and 8 of Example 3 was 99.9% or more. It was confirmed that the relative density of the Mo material in sample No. 103 of the comparative example contained less than 99.5%.

(実施例4)
実施例4においては、長さが250mmである点以外は実施例1と同様にコア焼結体11を作製し、コア焼結体11にHIPを2回追加して施すことで大径化して、試料番号10〜12のMo素材を作製した。比較例においては、長さが250mmである点以外は試料番号101と同様に試料番号104のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表4に示す。
(Example 4)
In Example 4, a core sintered body 11 was prepared in the same manner as in Example 1 except that the length was 250 mm, and HIP was added twice to the core sintered body 11 to increase the diameter. , Mo materials of sample numbers 10 to 12 were produced. In the comparative example, a Mo material of sample number 104 was manufactured in the same manner as sample number 101 except that the length was 250 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Table 4.

Figure 0006736777
Figure 0006736777

表4に示すように、実施例4の試料番号10〜12におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例4の試料番号10,11におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号104におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 4, it was confirmed that the relative density of the Mo material in the sample numbers 10 to 12 of Example 4 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 10 and 11 of Example 4 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample No. 104 of the comparative example contained less than 99.5%.

(実施例5)
実施例5においては、試料番号13〜15のコア焼結体11を得るために、図1で示す3つの軟鋼缶のカプセル21を準備した。カプセル21の厚さは10mmとし、カプセル21の長さは2000mmとした。カプセル21の内径については、試料番号13は43mm、試料番号14は60mm、試料番号15は77mmとした。実施例1と同様にコア焼結体11を作製し、コア焼結体11にHIPを2回または3回追加して施すことで直径が100mmとなるように大径化して、試料番号13〜15のMo素材を作製した。比較例においては、直径が100mmである点以外は試料番号101と同様に試料番号105のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表5に示す。
(Example 5)
In Example 5, in order to obtain the core sintered bodies 11 of sample numbers 13 to 15, three capsules 21 of mild steel can shown in FIG. 1 were prepared. The thickness of the capsule 21 was 10 mm, and the length of the capsule 21 was 2000 mm. Regarding the inner diameter of the capsule 21, the sample number 13 was 43 mm, the sample number 14 was 60 mm, and the sample number 15 was 77 mm. A core sintered body 11 was prepared in the same manner as in Example 1, and HIP was added to the core sintered body 11 twice or three times to increase the diameter to 100 mm, and the sample numbers 13 to 13 were measured. 15 Mo materials were produced. In the comparative example, a Mo material of sample number 105 was prepared in the same manner as sample number 101 except that the diameter was 100 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Table 5.

Figure 0006736777
Figure 0006736777

表5に示すように、実施例5の試料番号13〜15におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例5の試料番号13,14におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号105におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 5, it was confirmed that the relative density of the Mo material in sample numbers 13 to 15 of Example 5 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 13 and 14 of Example 5 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample No. 105 of the comparative example contained less than 99.5%.

(実施例6)
実施例6においては、長さが1000mmである点以外は実施例5と同様にコア焼結体11を作製し、コア焼結体11にHIPを2回または3回追加して施すことで大径化して、試料番号16〜18のMo素材を作製した。比較例においては、長さが1000mmである点以外は試料番号105と同様に試料番号106のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表6に示す。
(Example 6)
In Example 6, the core sintered body 11 was prepared in the same manner as in Example 5 except that the length was 1000 mm, and the HIP was applied to the core sintered body 11 twice or three times. The Mo material of sample numbers 16 to 18 was produced by sizing. In the comparative example, a Mo material of Sample No. 106 was prepared in the same manner as Sample No. 105 except that the length was 1000 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Table 6.

Figure 0006736777
Figure 0006736777

表6に示すように、実施例6の試料番号16〜18におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例6の試料番号16,17におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号106におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 6, it was confirmed that the relative density of the Mo material in the sample numbers 16 to 18 of Example 6 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 16 and 17 of Example 6 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample No. 106 of the comparative example contained less than 99.5%.

(実施例7)
実施例7においては、長さが500mmである点以外は実施例5と同様にコア焼結体11を作製し、コア焼結体11にHIPを2回または3回追加して施すことで大径化して、試料番号19〜21のMo素材を作製した。比較例においては、長さが500mmである点以外は試料番号105と同様に試料番号107のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表7に示す。
(Example 7)
In Example 7, the core sintered body 11 was prepared in the same manner as in Example 5 except that the length was 500 mm, and HIP was added to the core sintered body 11 twice or three times. After being sized, Mo materials of sample numbers 19 to 21 were produced. In the comparative example, a Mo material of sample number 107 was manufactured in the same manner as sample number 105 except that the length was 500 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Table 7.

Figure 0006736777
Figure 0006736777

表7に示すように、実施例7の試料番号19〜21におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例7の試料番号19,20におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号107におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 7, it was confirmed that the relative density of the Mo material in the sample numbers 19 to 21 of Example 7 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 19 and 20 of Example 7 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample No. 107 of the comparative example contained less than 99.5%.

(実施例8)
実施例8においては、長さが250mmである点以外は実施例5と同様にコア焼結体11を作製し、コア焼結体11にHIPを2回または3回追加して施すことで大径化して、試料番号22〜24のMo素材を作製した。比較例においては、長さが250mmである点以外は試料番号105と同様に試料番号108のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表8に示す。
(Example 8)
In Example 8, a core sintered body 11 was prepared in the same manner as in Example 5 except that the length was 250 mm, and HIP was added to the core sintered body 11 twice or three times. After being sized, Mo materials of sample numbers 22 to 24 were produced. In the comparative example, a Mo material of sample number 108 was manufactured in the same manner as sample number 105 except that the length was 250 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Table 8.

Figure 0006736777
Figure 0006736777

表8に示すように、実施例8の試料番号22〜24におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例8の試料番号22,23におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号108におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 8, it was confirmed that the relative density of the Mo material in the sample numbers 22 to 24 of Example 8 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 22 and 23 of Example 8 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample No. 108 of the comparative example contained less than 99.5%.

(実施例9)
実施例9においては、試料番号25〜27のコア焼結体11を得るために、図1で示す3つの軟鋼缶のカプセル21を準備した。カプセル21の厚さは10mmとし、カプセル21の長さは2000mmとした。カプセル21の内径については、試料番号25は43mm、試料番号26は60mm、試料番号27は77mmとした。実施例1と同様にコア焼結体11を作製し、コア焼結体11にHIPを4回または5回追加して施すことで直径が150mmとなるように大径化して、試料番号25〜27のMo素材を作製した。比較例においては、直径が150mmである点以外は試料番号101と同様に試料番号109のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表9および表10に示す。
(Example 9)
In Example 9, in order to obtain the core sintered bodies 11 of sample numbers 25 to 27, three capsules 21 of a mild steel can shown in FIG. 1 were prepared. The thickness of the capsule 21 was 10 mm, and the length of the capsule 21 was 2000 mm. Regarding the inner diameter of the capsule 21, the sample number 25 was 43 mm, the sample number 26 was 60 mm, and the sample number 27 was 77 mm. A core sintered body 11 was prepared in the same manner as in Example 1, and HIP was additionally applied to the core sintered body 11 four times or five times to increase the diameter to 150 mm. 27 Mo materials were produced. In the comparative example, a Mo material of Sample No. 109 was manufactured in the same manner as Sample No. 101 except that the diameter was 150 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Tables 9 and 10.

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

表10に示すように、実施例9の試料番号25〜27におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例9の試料番号25,26におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号109におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 10, it was confirmed that the relative density of the Mo material in the sample numbers 25 to 27 of Example 9 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 25 and 26 of Example 9 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample No. 109 of the comparative example contained less than 99.5%.

(実施例10)
実施例10においては、長さが1000mmである点以外は実施例9と同様にコア焼結体11を作製し、コア焼結体11にHIPを4回または5回追加して施すことで大径化して、試料番号28〜30のMo素材を作製した。比較例においては、長さが1000mmである点以外は試料番号109と同様に試料番号110のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表11および表12に示す。
(Example 10)
In Example 10, a core sintered body 11 was prepared in the same manner as in Example 9 except that the length was 1000 mm, and HIP was added to the core sintered body 11 four times or five times. After being sized, Mo materials of sample numbers 28 to 30 were produced. In the comparative example, a Mo material of sample number 110 was manufactured in the same manner as sample number 109 except that the length was 1000 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Tables 11 and 12.

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

表12に示すように、実施例10の試料番号28〜30におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例10の試料番号28,29におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号110におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 12, it was confirmed that the relative density of the Mo material in the sample numbers 28 to 30 of Example 10 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 28 and 29 of Example 10 was 99.9% or more. It was confirmed that the relative density of the Mo material in sample No. 110 of the comparative example contained less than 99.5%.

(実施例11)
実施例11においては、長さが500mmである点以外は実施例9と同様にコア焼結体11を作製し、コア焼結体11にHIPを4回または5回追加して施すことで大径化して、試料番号31〜33のMo素材を作製した。比較例においては、長さが500mmである点以外は試料番号109と同様に試料番号111のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表13および表14に示す。
(Example 11)
In Example 11, a core sintered body 11 was prepared in the same manner as in Example 9 except that the length was 500 mm, and HIP was added to the core sintered body 11 four times or five times. After being sized, Mo materials of sample numbers 31 to 33 were produced. In the comparative example, a Mo material of sample number 111 was manufactured in the same manner as sample number 109 except that the length was 500 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Tables 13 and 14.

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

表14に示すように、実施例11の試料番号31〜33におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例11の試料番号31,32におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号111におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 14, it was confirmed that the relative density of the Mo material in the sample numbers 31 to 33 of Example 11 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 31 and 32 of Example 11 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample No. 111 of the comparative example contained less than 99.5%.

(実施例12)
実施例12においては、長さが250mmである点以外は実施例9と同様にコア焼結体11を作製し、コア焼結体11にHIPを4回または5回追加して施すことで大径化して、試料番号34〜36のMo素材を作製した。比較例においては、長さが250mmである点以外は試料番号109と同様に試料番号112のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表15および表16に示す。
(Example 12)
In Example 12, the core sintered body 11 was manufactured in the same manner as in Example 9 except that the length was 250 mm, and HIP was added to the core sintered body 11 four or five times. After being sized, Mo materials of sample numbers 34 to 36 were produced. In the comparative example, a Mo material of sample number 112 was prepared in the same manner as sample number 109 except that the length was 250 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Tables 15 and 16.

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

表16に示すように、実施例12の試料番号34〜36におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例12の試料番号34,35におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号112におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 16, it was confirmed that the relative density of the Mo material in the sample numbers 34 to 36 of Example 12 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 34 and 35 of Example 12 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample No. 112 of the comparative example contained less than 99.5%.

(実施例13)
実施例13においては、試料番号37〜39のコア焼結体11を得るために、図1で示す3つの軟鋼缶のカプセル21を準備した。カプセル21の厚さは10mmとし、カプセル21の長さは2000mmとした。カプセル21の内径については、試料番号37は43mm、試料番号38は60mm、試料番号39は77mmとした。実施例1と同様にコア焼結体11を作製し、コア焼結体11にHIPを6回または7回追加して施すことで直径が220mmとなるように大径化して、試料番号37〜39のMo素材を作製した。比較例においては、直径が220mmである点以外は試料番号101と同様に試料番号113のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表17および表18に示す。
(Example 13)
In Example 13, three mild steel can capsules 21 shown in FIG. 1 were prepared to obtain core sintered bodies 11 of sample numbers 37 to 39. The thickness of the capsule 21 was 10 mm, and the length of the capsule 21 was 2000 mm. Regarding the inner diameter of the capsule 21, the sample number 37 was 43 mm, the sample number 38 was 60 mm, and the sample number 39 was 77 mm. The core sintered body 11 was prepared in the same manner as in Example 1, and HIP was added to the core sintered body 11 six times or seven times to increase the diameter to 220 mm, and the sample numbers 37 to 37 were measured. 39 Mo materials were produced. In the comparative example, a Mo material of sample number 113 was manufactured in the same manner as sample number 101 except that the diameter was 220 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Tables 17 and 18.

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

表18に示すように、実施例13の試料番号37〜39におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例13の試料番号37,38におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号113におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 18, it was confirmed that the relative density of the Mo material in the sample numbers 37 to 39 of Example 13 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 37 and 38 of Example 13 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample No. 113 of the comparative example contained less than 99.5%.

(実施例14)
実施例14においては、長さが1000mmである点以外は実施例13と同様にコア焼結体11を作製し、コア焼結体11にHIPを6回または7回追加して施すことで大径化して、試料番号40〜42のMo素材を作製した。比較例においては、長さが1000mmである点以外は試料番号113と同様に試料番号110のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表19および表20に示す。
(Example 14)
In Example 14, the core sintered body 11 was prepared in the same manner as in Example 13 except that the length was 1000 mm, and the HIP was added to the core sintered body 11 6 times or 7 times. After being sized, Mo materials of sample numbers 40 to 42 were produced. In the comparative example, a Mo material of sample number 110 was manufactured in the same manner as sample number 113 except that the length was 1000 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Tables 19 and 20.

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

表20に示すように、実施例14の試料番号40〜42におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例14の試料番号40,41におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号114におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 20, it was confirmed that the relative density of the Mo material in the sample numbers 40 to 42 of Example 14 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 40 and 41 of Example 14 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample No. 114 of the comparative example contained less than 99.5%.

(実施例15)
実施例15においては、長さが500mmである点以外は実施例13と同様にコア焼結体11を作製し、コア焼結体11にHIPを6回または7回追加して施すことで大径化して、試料番号43〜45のMo素材を作製した。比較例においては、長さが500mmである点以外は試料番号113と同様に試料番号115のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表21および表22に示す。
(Example 15)
In Example 15, the core sintered body 11 was prepared in the same manner as in Example 13 except that the length was 500 mm, and the HIP was added to the core sintered body 11 6 times or 7 times. After being sized, Mo materials of sample numbers 43 to 45 were produced. In the comparative example, a Mo material of sample number 115 was manufactured in the same manner as sample number 113 except that the length was 500 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Tables 21 and 22.

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

表22に示すように、実施例15の試料番号43〜45におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例15の試料番号43,44におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号115におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 22, it was confirmed that the relative density of the Mo material in the sample numbers 43 to 45 of Example 15 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 43 and 44 of Example 15 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample No. 115 of the comparative example contained less than 99.5%.

(実施例16)
実施例16においては、長さが250mmである点以外は実施例13と同様にコア焼結体11を作製し、コア焼結体11にHIPを6回または7回追加して施すことで大径化して、試料番号46〜48のMo素材を作製した。比較例においては、長さが250mmである点以外は試料番号113と同様に試料番号116のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表23および表24に示す。
(Example 16)
In Example 16, the core sintered body 11 was manufactured in the same manner as in Example 13 except that the length was 250 mm, and HIP was added to the core sintered body 11 6 times or 7 times to increase the size. After being sized, Mo materials of sample numbers 46 to 48 were produced. In the comparative example, a Mo material of sample number 116 was manufactured in the same manner as sample number 113 except that the length was 250 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Tables 23 and 24.

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

表24に示すように、実施例16の試料番号46〜48におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例16の試料番号46,47におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号116におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 24, it was confirmed that the relative density of the Mo material in the sample numbers 46 to 48 of Example 16 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 46 and 47 of Example 16 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample No. 116 of the comparative example contained less than 99.5%.

(実施例17)
実施例17においては、試料番号49〜51のコア焼結体11を得るために、図1で示す3つの軟鋼缶のカプセル21を準備した。カプセル21の厚さは10mmとし、カプセル21の長さは2000mmとした。カプセル21の内径については、試料番号49は43mm、試料番号50は60mm、試料番号51は77mmとした。実施例1と同様にコア焼結体11を作製し、コア焼結体11にHIPを9回または10回追加して施すことで直径が300mmとなるように大径化して、試料番号49〜51のMo素材を作製した。比較例においては、直径が300mmである点以外は試料番号101と同様に試料番号117のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表25および表26に示す。
(Example 17)
In Example 17, three capsules 21 of a mild steel can shown in FIG. 1 were prepared in order to obtain the core sintered bodies 11 of sample numbers 49 to 51. The thickness of the capsule 21 was 10 mm, and the length of the capsule 21 was 2000 mm. Regarding the inner diameter of the capsule 21, the sample number 49 was 43 mm, the sample number 50 was 60 mm, and the sample number 51 was 77 mm. A core sintered body 11 was prepared in the same manner as in Example 1, and HIP was additionally applied to the core sintered body 11 9 times or 10 times to increase the diameter to 300 mm, and the sample numbers 49 to 51 Mo materials were produced. In the comparative example, a Mo material of Sample No. 117 was prepared in the same manner as Sample No. 101 except that the diameter was 300 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Tables 25 and 26.

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

表26に示すように、実施例17の試料番号49〜51におけるMo素材の相対密度は、99.6%以上であることが確認できた。実施例17の試料番号49,50におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号117におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 26, it was confirmed that the relative density of the Mo material in the sample numbers 49 to 51 of Example 17 was 99.6% or more. It was confirmed that the relative density of the Mo material in the sample numbers 49 and 50 of Example 17 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample No. 117 of the comparative example contained less than 99.5%.

(実施例18)
実施例18においては、長さが1000mmである点以外は実施例17と同様にコア焼結体11を作製し、コア焼結体11にHIPを9回または10回追加して施すことで大径化して、試料番号52〜54のMo素材を作製した。比較例においては、長さが1000mmである点以外は試料番号117と同様に試料番号118のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表27および表28に示す。
(Example 18)
In Example 18, the core sintered body 11 was prepared in the same manner as in Example 17 except that the length was 1000 mm, and HIP was added 9 times or 10 times to the core sintered body 11 to increase the size. After being sized, Mo materials of sample numbers 52 to 54 were produced. In the comparative example, a Mo material of sample number 118 was manufactured in the same manner as sample number 117 except that the length was 1000 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Tables 27 and 28.

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

表27に示すように、実施例18の試料番号52〜54におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例18の試料番号52,53におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号118におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 27, it was confirmed that the relative density of the Mo material in the sample numbers 52 to 54 of Example 18 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 52 and 53 of Example 18 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample number 118 of the comparative example contained less than 99.5%.

(実施例19)
実施例19においては、長さが500mmである点以外は実施例17と同様にコア焼結体11を作製し、コア焼結体11にHIPを9回または10回追加して施すことで大径化して、試料番号55〜57のMo素材を作製した。比較例においては、長さが500mmである点以外は試料番号117と同様に試料番号119のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表29および表30に示す。
(Example 19)
In Example 19, the core sintered body 11 was prepared in the same manner as in Example 17 except that the length was 500 mm, and the HIP was added 9 times or 10 times to the core sintered body 11 to increase the size. After being sized, Mo materials of sample numbers 55 to 57 were produced. In the comparative example, a Mo material of sample number 119 was manufactured in the same manner as sample number 117 except that the length was 500 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Tables 29 and 30.

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

表30に示すように、実施例19の試料番号55〜57におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例19の試料番号55,56におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号119におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 30, it was confirmed that the relative density of the Mo material in the sample numbers 55 to 57 of Example 19 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 55 and 56 of Example 19 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample No. 119 of the comparative example contained less than 99.5%.

(実施例20)
実施例20においては、長さが250mmである点以外は実施例17と同様にコア焼結体11を作製し、コア焼結体11にHIPを9回または10回追加して施すことで大径化して、試料番号58〜60のMo素材を作製した。比較例においては、長さが250mmである点以外は試料番号117と同様に試料番号120のMo素材を作製した。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表31および表32に示す。
(Example 20)
In Example 20, the core sintered body 11 was manufactured in the same manner as in Example 17 except that the length was 250 mm, and HIP was added to the core sintered body 11 9 times or 10 times to increase the size. After being sized, Mo materials of sample numbers 58 to 60 were produced. In the comparative example, a Mo material of sample number 120 was manufactured in the same manner as sample number 117 except that the length was 250 mm. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Table 31 and Table 32.

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

表32に示すように、実施例20の試料番号58〜60におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例20の試料番号58,59におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号120におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 32, it was confirmed that the relative density of the Mo material in the sample numbers 58 to 60 of Example 20 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 58 and 59 of Example 20 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample No. 120 of the comparative example contained less than 99.5%.

実施例1〜実施例20の結果から、Mo素材が、Moを99.9質量%以上含有する場合においても、Mo素材の相対密度を99.5%以上とすることが可能であり、さらに、Mo素材の相対密度を99.9%以上とすることも可能であることが確認できた。 From the results of Examples 1 to 20, even when the Mo material contains 99.9 mass% or more of Mo, the relative density of the Mo material can be 99.5% or more. It was confirmed that the relative density of the Mo material could be 99.9% or more.

(実施例21)
実施例21においては、原料のMo成分に、Ti成分、Zr成分およびC成分を添加することによりMo素材の組成を変更した点以外は実施例17と同様に、試料番号301〜303および601のMo素材を作製した。具体的には、Mo粉末とTiC粉末とZrC粉末とを混合して、原料粉末を準備した。Mo粉末のFSSS粒径は、4.0μmとした。TiC粉末のFSSS粒径は、2.0μmとした。ZrC粉末のFSSS粒径は、3.0μmとした。
(Example 21)
In Example 21, as in Example 17, except that the composition of the Mo material was changed by adding the Ti component, the Zr component, and the C component to the Mo component of the raw material, the sample numbers 301 to 303 and 601 were changed. A Mo material was produced. Specifically, a raw material powder was prepared by mixing Mo powder, TiC powder, and ZrC powder. The FSSS particle size of the Mo powder was 4.0 μm. The FSSS particle size of the TiC powder was 2.0 μm. The FSSS particle size of the ZrC powder was 3.0 μm.

Mo粉末のFSSS粒径は、3μm以上10μm以下が好ましい。Mo粉末のFsss粒径が10μmを超えると、全体的にMo焼結体の密度があがらないおそれがある。Mo粉末のFsss粒径が3μm未満であると、Mo焼結体の中心部の密度があがらないおそれがある。TiC粉末のFSSS粒径は、1μm以上20μm以下が好ましい。TiC粉末のFsss粒径が20μmを超えると、全体的にMo焼結体の密度があがらないおそれがある。TiC粉末のFsss粒径が1μm未満であると、Mo焼結体の中心部の密度があがらないおそれがある。ZrC粉末のFSSS粒径は、1μm以上20μm以下が好ましい。ZrC粉末のFsss粒径が20μmを超えると、全体的にMo焼結体の密度があがらないおそれがある。ZrC粉末のFsss粒径が1μm未満であると、Mo焼結体の中心部の密度があがらないおそれがある。 The FSSS particle size of the Mo powder is preferably 3 μm or more and 10 μm or less. If the Fsss particle size of the Mo powder exceeds 10 μm, the density of the Mo sintered body may not increase as a whole. If the Fsss particle size of the Mo powder is less than 3 μm, the density of the central portion of the Mo sintered body may not increase. The FSSS particle size of the TiC powder is preferably 1 μm or more and 20 μm or less. If the Fsss particle size of the TiC powder exceeds 20 μm, the density of the Mo sintered body may not increase as a whole. If the Fsss particle size of the TiC powder is less than 1 μm, the density of the central portion of the Mo sintered body may not increase. The FSSS particle size of the ZrC powder is preferably 1 μm or more and 20 μm or less. If the Fsss particle size of the ZrC powder exceeds 20 μm, the density of the Mo sintered body may not increase as a whole. If the Fsss particle size of the ZrC powder is less than 1 μm, the density of the central portion of the Mo sintered body may not increase.

なお、TiC粉末の代わりに、純Ti粉末またはTiH粉末を混合してもよい。ZrC粉末の代わりに、純Zr粉末またはZrH粉末を混合してもよい。これらの場合、C粉末を原料粉末に混合する。TiC粉末およびZrC粉末を用いる場合にも、C粉末を原料粉末に混合してもよい。C粉末のFSSS粒径は、0.1μm以上10μm以下が好ましい。C粉末のFsss粒径が10μmを超えると、全体的にMo焼結体の密度があがらないおそれがある。C粉末のFsss粒径が0.1μm未満であると、Mo焼結体の中心部の密度があがらないおそれがある。なお、純Tiとは、Tiの質量含有率が、99.9質量%以上であるチタン材料である。なお、純Zrとは、Zrの質量含有率が、99.9質量%以上であるジルコニウム材料である。 Instead of TiC powder, pure Ti powder or TiH powder may be mixed. Instead of ZrC powder, pure Zr powder or ZrH powder may be mixed. In these cases, C powder is mixed with the raw material powder. When using TiC powder and ZrC powder, C powder may be mixed with the raw material powder. The FSSS particle size of the C powder is preferably 0.1 μm or more and 10 μm or less. If the Fsss particle size of the C powder exceeds 10 μm, the density of the Mo sintered body may not increase as a whole. If the Fsss particle size of the C powder is less than 0.1 μm, the density of the central portion of the Mo sintered body may not increase. The pure Ti is a titanium material having a Ti mass content of 99.9 mass% or more. The pure Zr is a zirconium material having a Zr mass content of 99.9 mass% or more.

実施例21における、原料粉末の秤量値による各成分の質量含有率、および、Mo素材の組成測定値による各成分の質量含有率を表33に示す。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表34および表35に示す。 Table 33 shows the mass content of each component based on the weighed value of the raw material powder and the mass content of each component based on the measured composition of the Mo material in Example 21. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Table 34 and Table 35.

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

表35に示すように、実施例21の試料番号301〜303におけるMo素材の相対密度は、99.6%以上であることが確認できた。実施例21の試料番号301,302におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号601におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 35, it was confirmed that the relative density of the Mo material in the sample numbers 301 to 303 of Example 21 was 99.6% or more. It was confirmed that the relative density of the Mo material in the sample numbers 301 and 302 of Example 21 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample No. 601 of the comparative example contained less than 99.5%.

(実施例22)
実施例22においては、Mo素材の組成以外は実施例21と同様に、試料番号401〜403および602のMo素材を作製した。実施例22における、原料粉末の秤量値による各成分の質量含有率、および、Mo素材の組成測定値による各成分の質量含有率を表36に示す。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表37および表38に示す。
(Example 22)
In Example 22, Mo materials of sample numbers 401 to 403 and 602 were produced in the same manner as in Example 21 except for the composition of the Mo material. Table 36 shows the mass content of each component based on the weighed value of the raw material powder and the mass content of each component based on the measured composition of the Mo material in Example 22. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Tables 37 and 38.

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

表38に示すように、実施例22の試料番号401〜403におけるMo素材の相対密度は、99.6%以上であることが確認できた。実施例22の試料番号401,402におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号602におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 38, it was confirmed that the relative density of the Mo material in the sample numbers 401 to 403 of Example 22 was 99.6% or more. It was confirmed that the relative density of the Mo material in the sample numbers 401 and 402 of Example 22 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample No. 602 of the comparative example contained less than 99.5%.

(実施例23)
実施例23においては、Mo素材の組成以外は実施例21と同様に、試料番号501〜503および603のMo素材を作製した。実施例23における、原料粉末の秤量値による各成分の質量含有率、および、Mo素材の組成測定値による各成分の質量含有率を表39に示す。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表40および表41に示す。
(Example 23)
In Example 23, Mo materials of sample numbers 501 to 503 and 603 were produced in the same manner as in Example 21 except for the composition of the Mo material. Table 39 shows the mass content of each component based on the weighed value of the raw material powder and the mass content of each component based on the measured composition of the Mo material in Example 23. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Table 40 and Table 41.

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

表41に示すように、実施例23の試料番号501〜503におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例23の試料番号501,502におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号603におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 41, it was confirmed that the relative density of the Mo material in the sample numbers 501 to 503 of Example 23 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 501 and 502 of Example 23 was 99.9% or more. It was confirmed that the relative density of the Mo material in sample No. 603 of the comparative example contained less than 99.5%.

実施例21〜実施例23の結果から、Mo素材が、チタンを0.3質量%以上1.5質量%以下、ジルコニウムを0.03質量%以上0.1質量%以下、かつ、炭素を0.01質量%以上0.3質量%以下含有し、残部がモリブデンおよび不可避不純物からなる場合においても、Mo素材の相対密度を99.5%以上とすることが可能であり、さらに、Mo素材の相対密度を99.9%以上とすることも可能であることが確認できた。 From the results of Examples 21 to 23, the Mo raw material was 0.3% by mass or more and 1.5% by mass or less of titanium, 0.03% by mass or more and 0.1% by mass or less of zirconium, and 0 carbon. Even when the content is 0.01% by mass or more and 0.3% by mass or less, and the balance is molybdenum and unavoidable impurities, the relative density of the Mo material can be 99.5% or more. It was confirmed that the relative density could be 99.9% or more.

(実施例24)
実施例24においては、HIPを追加していない点以外は実施例21と同様に、試料番号701〜705および601のMo素材を作製した。実施例24における、原料粉末の秤量値による各成分の質量含有率、および、Mo素材の組成測定値による各成分の質量含有率を表42に示す。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表43に示す。
(Example 24)
In Example 24, Mo materials of sample numbers 701 to 705 and 601 were produced in the same manner as in Example 21 except that HIP was not added. Table 42 shows the mass content of each component based on the weighed value of the raw material powder and the mass content of each component based on the measured composition of the Mo material in Example 24. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Table 43.

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

表43に示すように、実施例24の試料番号701〜703におけるMo素材の相対密度は、99.6%以上であることが確認できた。実施例24の試料番号701,702におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号704,705,601におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 43, it was confirmed that the relative density of the Mo material in the sample numbers 701 to 703 of Example 24 was 99.6% or more. It was confirmed that the relative density of the Mo material in the sample numbers 701 and 702 of Example 24 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample numbers 704, 705, and 601 of the comparative example includes a portion of less than 99.5%.

(実施例25)
実施例25においては、HIPを追加していない点以外は実施例22と同様に、試料番号801〜805および602のMo素材を作製した。実施例25における、原料粉末の秤量値による各成分の質量含有率、および、Mo素材の組成測定値による各成分の質量含有率を表44に示す。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表45に示す。
(Example 25)
In Example 25, Mo materials of sample numbers 801 to 805 and 602 were produced in the same manner as in Example 22 except that HIP was not added. Table 44 shows the mass content of each component based on the weighed value of the raw material powder and the mass content of each component based on the measured composition of the Mo material in Example 25. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Table 45.

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

表45に示すように、実施例25の試料番号801〜803におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例25の試料番号801,802におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号804,805,602におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 45, it was confirmed that the relative density of the Mo material in the sample numbers 801 to 803 of Example 25 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 801 and 802 of Example 25 was 99.9% or more. It was confirmed that the relative density of the Mo material in the sample numbers 804, 805, and 602 of the comparative example included a portion of less than 99.5%.

(実施例26)
実施例26においては、HIPを追加していない点以外は実施例23と同様に、試料番号901〜905および603のMo素材を作製した。実施例26における、原料粉末の秤量値による各成分の質量含有率、および、Mo素材の組成測定値による各成分の質量含有率を表46に示す。実施例1と同様に、試験片を切り出して相対密度を測定した。それらの結果を表47に示す。
(Example 26)
In Example 26, Mo materials of sample numbers 901 to 905 and 603 were produced in the same manner as in Example 23 except that HIP was not added. Table 46 shows the mass content of each component based on the weighed value of the raw material powder and the mass content of each component based on the measured composition of the Mo material in Example 26. In the same manner as in Example 1, the test piece was cut out and the relative density was measured. The results are shown in Table 47.

Figure 0006736777
Figure 0006736777

Figure 0006736777
Figure 0006736777

表47に示すように、実施例26の試料番号901〜903におけるMo素材の相対密度は、99.5%以上であることが確認できた。実施例26の試料番号901,902におけるMo素材の相対密度は、99.9%以上であることが確認できた。比較例の試料番号904,905,603におけるMo素材の相対密度は、99.5%未満の部分が含まれていることが確認できた。 As shown in Table 47, it was confirmed that the relative density of the Mo material in the sample numbers 901 to 903 of Example 26 was 99.5% or more. It was confirmed that the relative density of the Mo material in the sample numbers 901 and 902 of Example 26 was 99.9% or more. It was confirmed that the relative densities of the Mo materials in sample numbers 904, 905, and 603 of the comparative example included less than 99.5%.

実施例24〜実施例26の結果から、Mo素材が、チタンを0.3質量%以上1.5質量%以下、ジルコニウムを0.03質量%以上0.1質量%以下、かつ、炭素を0.01質量%以上0.3質量%以下含有し、残部がモリブデンおよび不可避不純物からなる場合においても、Mo素材の相対密度を99.5%以上とすることが可能であり、さらに、Mo素材の相対密度を99.9%以上とすることも可能であることが確認できた。 From the results of Examples 24 to 26, the Mo raw material contains 0.3% by mass or more and 1.5% by mass or less of titanium, 0.03% by mass or more and 0.1% by mass or less of zirconium, and 0 carbon. Even when the content is 0.01% by mass or more and 0.3% by mass or less, and the balance is molybdenum and unavoidable impurities, the relative density of the Mo material can be 99.5% or more. It was confirmed that the relative density could be 99.9% or more.

今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above-described embodiments but by the scope of the claims, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.

1 前端、2 中央、3 後端、4〜6 位置、10 原料粉末、21 カプセル、22 蓋、23 パイプ、24 封止部、25 先端。 1 front end, 2 center, 3 rear end, 4 to 6 positions, 10 raw material powder, 21 capsules, 22 lids, 23 pipes, 24 sealing parts, 25 tips.

Claims (4)

直径75mm以上、長さが250mm以上の焼結されたモリブデン素材で、前記モリブデン素材の前端、中央および後端において厚さが30mmの円板を切り出し切り出した各円板の直径方向における周縁の位置、中心の位置および周縁と中心との間の位置の各々から試験片を切り出して相対密度を測定するとすべての位置での相対密度は99.9%以上である、モリブデン素材。 Position of the peripheral edge in the diametrical direction of each disc, which is a sintered molybdenum material having a diameter of 75 mm or more and a length of 250 mm or more, and having a thickness of 30 mm cut out at the front end, the center, and the rear end of the molybdenum material. A molybdenum material in which the relative density at all positions is 99.9% or more when the relative density is measured by cutting out the test piece from each of the position at the center and the position between the periphery and the center. モリブデンを99.9質量%以上含有する、請求項1に記載のモリブデン素材。 The molybdenum raw material according to claim 1, which contains 99.9% by mass or more of molybdenum. チタンを0.3質量%以上1.5質量%以下、ジルコニウムを0.03質量%以上0.1質量%以下、かつ、炭素を0.01質量%以上0.3質量%以下含有し、残部がモリブデンおよび不可避不純物からなる、請求項1に記載のモリブデン素材。 It contains titanium in an amount of 0.3% by mass or more and 1.5% by mass or less, zirconium in an amount of 0.03% by mass or more and 0.1% by mass or less, and carbon in an amount of 0.01% by mass or more and 0.3% by mass or less, and the balance. The molybdenum material according to claim 1, wherein the molybdenum and the unavoidable impurities. 熱間等方圧加圧法を用いて外径40mm以下の第1の芯合金を作製する工程(1)と、
前記第1の芯合金より大きな径の管に前記第1の芯合金を配置する工程(2)と、
前記第1の芯合金の周囲の前記管内にモリブデン粉末を配置した後に熱間等方圧加圧法で圧縮する工程(3)と、
圧縮後の前記管を除去して前記第1の芯合金よりも大径の第2の芯合金を形成する工程(4)と、
工程(2)から(4)を繰り返して請求項1から請求項3のいずれか1項に記載のモリブデン素材を得る工程とを備えた、モリブデン素材の製造方法。
A step (1) of producing a first core alloy having an outer diameter of 40 mm or less using a hot isostatic pressing method;
Placing the first core alloy in a tube having a diameter larger than that of the first core alloy (2),
Placing molybdenum powder in the tube around the first core alloy and then compressing it by a hot isostatic pressing method (3),
Removing the tube after compression to form a second core alloy having a larger diameter than the first core alloy (4),
A method for producing a molybdenum material, comprising the steps of repeating steps (2) to (4) to obtain the molybdenum material according to any one of claims 1 to 3.
JP2019540120A 2018-03-29 2019-03-20 Molybdenum material and manufacturing method thereof Active JP6736777B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018063888 2018-03-29
JP2018063888 2018-03-29
PCT/JP2019/011869 WO2019188713A1 (en) 2018-03-29 2019-03-20 Molybdenum material and method for producing same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020091337A Division JP2020143378A (en) 2018-03-29 2020-05-26 Molybdenum material and method for producing the same

Publications (2)

Publication Number Publication Date
JPWO2019188713A1 JPWO2019188713A1 (en) 2020-04-30
JP6736777B2 true JP6736777B2 (en) 2020-08-05

Family

ID=68060024

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019540120A Active JP6736777B2 (en) 2018-03-29 2019-03-20 Molybdenum material and manufacturing method thereof
JP2020091337A Pending JP2020143378A (en) 2018-03-29 2020-05-26 Molybdenum material and method for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020091337A Pending JP2020143378A (en) 2018-03-29 2020-05-26 Molybdenum material and method for producing the same

Country Status (3)

Country Link
US (1) US20210008625A1 (en)
JP (2) JP6736777B2 (en)
WO (1) WO2019188713A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3495958A (en) * 1969-03-06 1970-02-17 Charles Robert Talmage High purity steel by powder metallurgy
JPH06220566A (en) * 1993-01-21 1994-08-09 Sumitomo Metal Ind Ltd Molybdenum-base alloy minimal in anisotropy and its production
JP4591749B2 (en) * 2004-04-16 2010-12-01 日立金属株式会社 Manufacturing method of Mo target material
CN102505109A (en) * 2007-01-12 2012-06-20 新日铁高新材料 Process for producing molybdenum-based sputtering target plate
JP2010185137A (en) * 2009-01-15 2010-08-26 Hitachi Metals Ltd Method for producing sintered sheet material
JP5579480B2 (en) * 2010-04-01 2014-08-27 山陽特殊製鋼株式会社 Molybdenum alloy
KR102316360B1 (en) * 2013-10-29 2021-10-22 플란제 에스이 Sputtering target and production method
CN104439247B (en) * 2014-12-30 2017-08-29 山东昊轩电子陶瓷材料有限公司 The preparation method of molybdenum alloy target

Also Published As

Publication number Publication date
JP2020143378A (en) 2020-09-10
US20210008625A1 (en) 2021-01-14
JPWO2019188713A1 (en) 2020-04-30
WO2019188713A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6608390B2 (en) Method for manufacturing metal components with pre-manufactured components
EP0202735B1 (en) Process for making a composite powder metallurgical billet
US9327349B2 (en) Endplate for hot isostatic pressing canister, hot isostatic pressing canister, and hot isostatic pressing method
WO2015072250A1 (en) Diamond bonded body, tool provided with same, and method for producing diamond bonded body
EP2087144B1 (en) Process for the refurbishing of a sputtering target
JP5876490B2 (en) Method for producing a sintered composite
TW201704494A (en) Poly-crystalline tungsten and poly-crystalline tungsten alloy, and method of producing same
EP1779946A1 (en) Supersolvus hot isostatic pressing and ring rolling of hollow powder forms
EP2840155B1 (en) Magnesium alloy member and method for manufacturing same
JP6736777B2 (en) Molybdenum material and manufacturing method thereof
JP2007131886A (en) Method for producing fiber-reinforced metal superior in abrasion resistance
EP4035800A1 (en) Method for producing green compact and method for producing sintered body
JP2001181777A (en) Cylinder core and anvil core for superhigh pressure generating device
WO1996024455A1 (en) Processes for extruding powdered metals including tantalum and niobium
US20110052441A1 (en) Method and device for hot isostatic pressing of alloyed materials
JP2006342374A (en) Method for manufacturing metal sintered compact and alloy sintered compact
JP3511740B2 (en) Method for producing high toughness cemented carbide and composite cemented carbide roll
AU2012346363B2 (en) Endplate for hot isostatic pressing canister, hot isostatic pressing canister, and hot isostatic pressing method
JP2017511753A (en) Brazing and soldering alloy wire

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190724

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200526

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200526

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200603

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200715

R150 Certificate of patent or registration of utility model

Ref document number: 6736777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250