JPH06220566A - Molybdenum-base alloy minimal in anisotropy and its production - Google Patents

Molybdenum-base alloy minimal in anisotropy and its production

Info

Publication number
JPH06220566A
JPH06220566A JP845393A JP845393A JPH06220566A JP H06220566 A JPH06220566 A JP H06220566A JP 845393 A JP845393 A JP 845393A JP 845393 A JP845393 A JP 845393A JP H06220566 A JPH06220566 A JP H06220566A
Authority
JP
Japan
Prior art keywords
molybdenum
based alloy
anisotropy
forging
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP845393A
Other languages
Japanese (ja)
Inventor
Masanori Nakae
正典 中江
Masaaki Igarashi
正晃 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP845393A priority Critical patent/JPH06220566A/en
Publication of JPH06220566A publication Critical patent/JPH06220566A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a molybdenum-base alloy having fine and uniform crystalline grain size, having high strength, free from anisotropy of ductility, and used for structural material for nuclear power use, die for high temp. work, heat resistant structural material, material for heating unit, and mandrel material. CONSTITUTION:At the time of forging a molybdenum-base alloy having a composition consisting of 0.20-0.60% Ti, 0.05-0.20% Zr, 0.01-0.40% C, and the balance molybdenum with inevitable impurities at a temp. in the region between the recrystallization temp. and 500 deg.C, a metal having a deformation resistance in this temp. region lower than that of the molybdenum-base alloy, such as SUS304, SUS314, and SCM420H, is heated up to the temp. region and allowed to exist between a forging tool and the molybdenum-base alloy. By this method, the molybdenum-base alloy where the ratio between the major axis (a) and the minor axis (b) of crystalline grain is regulated to 1.0-1.5 and which has a fine and uniform structure of <=15mum crystalline grain size and is minimal in anisotropy can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、異方性の小さいモリブ
デン基合金とその製造方法に関する。本発明により強度
および延性の異方性が改善されたモリブデン基合金は、
例えば原子力用構造材料、高温での成形加工用金型、80
0 ℃以上の高温燃焼ガスに曝されるような耐熱構造部
材、高温耐衝撃割れ性が要求される構造部材、発熱体用
材料、高合金製管用のマンドレル用材料、高温鍛造用の
金型素材等に使用できる。また、その製造方法はモリブ
デン基合金以外にもTa合金、Nb合金、W合金等の高融点
金属にも同様に適用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molybdenum-based alloy having small anisotropy and a method for producing the same. The molybdenum-based alloy with improved strength and ductility anisotropy according to the present invention,
For example, structural materials for nuclear power, molds for high temperature molding, 80
Heat-resistant structural members that are exposed to high-temperature combustion gas at 0 ° C or higher, structural members that require high-temperature impact crack resistance, heating element materials, mandrel materials for high alloy pipes, and die materials for high temperature forging Can be used for etc. Further, the manufacturing method can be applied to not only molybdenum-based alloys but also high-melting-point metals such as Ta alloys, Nb alloys and W alloys.

【0002】[0002]

【従来の技術】従来より、モリブデン基合金は、一般に
ほゞ2600℃という高融点を持つ金属であることから、10
00℃以上の温度で構造材料として使用できる耐熱合金と
して開発、利用されている。
2. Description of the Related Art Conventionally, molybdenum-based alloys are metals with a high melting point of about 2600 ° C.
It has been developed and used as a heat-resistant alloy that can be used as a structural material at temperatures above 00 ° C.

【0003】モリブデン基合金の製造方法としては大き
く分けて溶製法と粉末成形法に分類することができる。
Manufacturing methods of molybdenum-based alloys can be roughly classified into a melting method and a powder molding method.

【0004】まず、溶製法による製造方法は、モリブデ
ンが高融点金属であるため電子ビーム溶解(EB 溶解) 、
真空アーク溶解(VAR溶解) 等の方法で製造される。しか
し溶製法で作製したモリブデン基合金は結晶粒径が数10
0 μm 程度の粗大結晶粒となる。結晶粒の粗大化は合金
内応力の結晶粒界への集中により、強度の低下、ばらつ
きにつながることから結晶粒の微細化が望まれる。
First, in the manufacturing method by the melting method, since molybdenum is a refractory metal, electron beam melting (EB melting),
It is manufactured by a method such as vacuum arc melting (VAR melting). However, the molybdenum-based alloy produced by the melting method has a crystal grain size of several tens.
Coarse crystal grains of about 0 μm are formed. The coarsening of crystal grains leads to a decrease in strength and variations due to the concentration of stress in the alloy at the crystal grain boundaries.

【0005】そこで今日モリブデン基合金の製造方法と
しては結晶粒径の微細化が可能な粉末成形法が広く用い
られている。その場合、モリブデン基合金は高融点であ
るために通常1700〜2300℃での水素雰囲気中での焼結を
行う。しかし、この焼結を行っても嵩密度98%〜99%程
度にしか密度を上げることができない。そこで高密度化
のために1000℃〜1400℃で高温加工( 圧延、押出等) を
さらに行うことで、嵩密度をほぼ 100%にしている。
Therefore, as a method for producing a molybdenum-based alloy, a powder molding method capable of reducing the crystal grain size is widely used today. In that case, since the molybdenum-based alloy has a high melting point, it is usually sintered in a hydrogen atmosphere at 1700 to 2300 ° C. However, even if this sintering is performed, the bulk density can only be increased to about 98% to 99%. Therefore, in order to increase the density, high-temperature processing (rolling, extrusion, etc.) is further performed at 1000 ° C to 1400 ° C to bring the bulk density to almost 100%.

【0006】ところが、この様な方法で作製されたモリ
ブデン基合金は強度および延性の異方性を示す。モリブ
デン基合金は1400℃以上の熱処理によって再結晶化する
ことが知られており、そのような再結晶化処理を行うこ
とで延性の異方性は改善できるものの、今度は再結晶化
することによって結晶粒が粗大化し、延性および強度は
著しく低下することが知られている。
However, the molybdenum-based alloy produced by such a method exhibits strength and ductility anisotropy. It is known that a molybdenum-based alloy is recrystallized by heat treatment at 1400 ° C or higher, and although ductility anisotropy can be improved by performing such recrystallization treatment, this time it can be recrystallized. It is known that the crystal grains become coarse and the ductility and strength are significantly reduced.

【0007】しかし、再結晶現象を利用して素材を改質
させる方法以外では、モリブデン基合金の強度および延
性の異方性を改善する方法は現在まで報告されていな
い。モリブデン基合金が強度および延性の異方性を示す
原因として次のような様々な問題が考えられる。
However, no method has been reported to date for improving the anisotropy of strength and ductility of a molybdenum-based alloy other than the method of modifying the material by utilizing the recrystallization phenomenon. The following various problems can be considered as the cause of the molybdenum-based alloy exhibiting the anisotropy of strength and ductility.

【0008】高密度化のために必要不可欠な高温加工
によって結晶粒は加工方向に延び延伸粒を示すことから
この延伸結晶粒が原因になっていることが考えられる。 体心立方晶金属(bcc金属、以下同じ)特有の強い(11
0) 繊維集合組織[(110)Fiber Texture : 加工軸方向に
(110) の強い配向組織] を示すことから集合組織の影響
が考えられる。 この他に結晶粒界に存在する不純物元素や析出物の悪
影響も考えられる。
It is considered that the stretched crystal grains are the cause since the crystal grains extend in the processing direction and show stretched grains due to the high temperature processing which is indispensable for increasing the density. Body-centered cubic metal (bcc metal, same hereafter)
0) Fiber texture [(110) Fiber Texture: In the processing axis direction
The strong texture of (110)] suggests the influence of texture. In addition to this, adverse effects of impurity elements and precipitates existing at the grain boundaries may be considered.

【0009】しかしながら、モリブデン基合金の異方性
原因の本質的解明には至っておらず、いまだに延性およ
び強度の異方性によると見られる急速割れ等のため、そ
の適用範囲は極めて制限されているのが実情である。
However, the essential cause of the anisotropy of the molybdenum-based alloy has not yet been elucidated, and the range of its application is extremely limited due to rapid cracking and the like which are still considered to be due to the anisotropy of ductility and strength. Is the reality.

【0010】このような加工に伴う特性の異方性の問題
は、例えば、ボイラ用の酸化物分散合金(ODS合金) のク
リープ強度にも見られる。そのような合金に生成する集
合組織は、特開平3-146617号公報、特開平3-243202号公
報に示してあるように、クリープ強度等の強度の異方性
を示すことが明らかにされている。その異方性を改善す
るためには集合組織を除去する方法を採用するか、
製造過程において集合組織が出来ないような加工法を採
用するかの二つの方法が考えられる。
The problem of characteristic anisotropy associated with such processing is also found in, for example, the creep strength of an oxide dispersion alloy (ODS alloy) for boilers. The texture generated in such an alloy is disclosed to exhibit strength anisotropy such as creep strength, as shown in JP-A-3-146617 and JP-A-3-243202. There is. In order to improve the anisotropy, adopt a method of removing texture,
Two methods are conceivable: adopting a processing method that does not form a texture in the manufacturing process.

【0011】上記公報においてはの繊維集合組織がで
きないような加工法としてスピニング加工仕上げ法、一
方向圧延法を提示している。しかし、モリブデン基合金
においては高温変形抵抗が非常に高く、高温変形挙動が
全く異なるためこの公報開示の方法では異方性改善は不
可能である。またこれらの公報においても、強加工によ
り一旦形成された集合組織を再び加工によって均一に除
去することは、デットメタル形成等の問題により不可能
であることが示唆されている。
In the above publication, a spinning finishing method and a unidirectional rolling method are proposed as processing methods which do not allow a fiber texture. However, in a molybdenum-based alloy, the high-temperature deformation resistance is very high, and the high-temperature deformation behavior is completely different, so the method disclosed in this publication cannot improve the anisotropy. Further, these publications also suggest that it is impossible to uniformly remove the texture once formed by strong working by working again due to problems such as dead metal formation.

【0012】次に、再結晶現象を利用した集合組織除去
方法としては、特開昭54-146206 号公報、特公昭58-360
43号公報に示されている方法がある。しかし融点が2600
℃というモリブデン基合金では、再結晶温度は約1400℃
以上であり再結晶すると著しい結晶粒粗大化が起こり強
度の著しい低下が起こるため再結晶による異方性改善は
有効でないことが分かる。
Next, as a texture removing method utilizing the recrystallization phenomenon, Japanese Patent Application Laid-Open No. 54-146206 and Japanese Patent Publication No. 58-360 are disclosed.
There is a method shown in Japanese Patent Publication No. 43. But the melting point is 2600
With a molybdenum-based alloy of ℃, the recrystallization temperature is about 1400 ℃.
As described above, recrystallization causes remarkable coarsening of crystal grains, resulting in a significant decrease in strength. Therefore, it is understood that the improvement of anisotropy by recrystallization is not effective.

【0013】[0013]

【発明が解決しようとする課題】このように現在、強度
および延性の異方性のために、800 ℃以上の高温からの
急速冷却によってモリブデン基合金の急速な破壊および
割れを示すことが問題となっている。従ってこの延性の
異方性を改善する製造方法を確立することが要求されて
いる。
Thus, at present, due to the anisotropy of strength and ductility, it is problematic to show rapid fracture and cracking of molybdenum-based alloys by rapid cooling from a high temperature of 800 ° C. or higher. Has become. Therefore, it is required to establish a manufacturing method that improves the anisotropy of ductility.

【0014】すでに述べたように、モリブデン基合金の
素形材の強加工による強度および延性の異方性の改善に
ついては先行技術はないものの、一般的な合金について
言えば再結晶処理を利用して強度および延性の異方性を
改善する方法が従来より種々提案されている。しかし、
モリブデン基合金は再結晶することにより結晶粒の粗大
化が起こり、著しい強度の低下が起こるため、再結晶を
利用した延性異方性改善策は適用することができない。
As described above, although there is no prior art for improving the anisotropy of strength and ductility by subjecting a molybdenum-based alloy raw material to strong working, in general alloys, recrystallization treatment is used. Conventionally, various methods for improving the anisotropy of strength and ductility have been proposed. But,
Recrystallization of a molybdenum-based alloy causes coarsening of crystal grains, resulting in a significant decrease in strength. Therefore, the ductility anisotropy improving method utilizing recrystallization cannot be applied.

【0015】ここに、本発明の目的は、結晶粒径が均
一、微細で、高強度かつ強度および延性の異方性を示さ
ない原子力用構造材料、高温成形加工用金型、耐熱構造
部材、発熱体用材料、マンドレル材料に使用されるモリ
ブデン基合金とその製造方法を提供することである。さ
らに本発明の具体的目的は、強度および延性の異方性を
解消すべく集合組織を均一に除去したモリブデン基合金
とその製造方法を提供することである。
The object of the present invention is to provide a structural material for nuclear power having a uniform and fine crystal grain size, high strength and no anisotropy of strength and ductility, a mold for high temperature molding, a heat-resistant structural member, It is an object to provide a molybdenum-based alloy used for a heating element material and a mandrel material, and a method for producing the same. A further specific object of the present invention is to provide a molybdenum-based alloy in which the texture is uniformly removed to eliminate the anisotropy of strength and ductility, and a method for producing the same.

【0016】[0016]

【課題を解決するための手段】モリブデン基合金の低い
延性および延性異方性について、bcc 金属固有の塑性異
方性と粒界強度の観点から、その改善方法を検討した結
果、以下の知見を得た。
[Means for Solving the Problems] Regarding the low ductility and ductile anisotropy of molybdenum-based alloys, the following findings were obtained as a result of studying a method of improving the plastic anisotropy and grain boundary strength peculiar to bcc metal. Obtained.

【0017】すなわち、 bcc金属であるモリブデン基合
金の延性は、粉末成形に必要不可欠な高温押し出しによ
って形成される(110) 繊維集合組織および結晶延伸粒組
織に大きく依存する。このような延伸粒組織が形成され
ると高温押出し軸に対して垂直方向(T方向) の延性は著
しく低下するかまたは延性を示さない。室温でのT 方向
の引張試験の結果、破壊形態は粒内劈開破壊を示すこと
から前述の繊維集合組織および延伸粒組織を除去するこ
とにより、延性の異方性を低減できることが判明した。
That is, the ductility of a molybdenum-based alloy, which is a bcc metal, is largely dependent on the (110) fiber texture and crystal-stretched grain structure formed by high temperature extrusion, which is essential for powder molding. When such a stretched grain structure is formed, the ductility in the direction perpendicular to the hot extrusion axis (T direction) is significantly reduced or does not show ductility. As a result of a tensile test in the T direction at room temperature, it was found that the fracture morphology shows intragranular cleavage fracture, and therefore the anisotropy of ductility can be reduced by removing the above-mentioned fiber texture and drawn grain texture.

【0018】そこで、これらの改善には、押出し軸方向
からの据込変形が有効と考えられるが、従来の押出し軸
方向(L方向) からの高温プレスおよび鍛造等によってモ
リブデン基合金の繊維集合組織および延伸結晶粒の除去
を試みたところ、特に高温変形抵抗が極めて大きいため
均一変形が極めて困難となり、素材内が不均一な性質(
引張強度、伸び、延性の部分不均一性) を示すことが分
かった。
Therefore, it is considered that upsetting deformation from the extrusion axial direction is effective for these improvements, but the fiber texture of the molybdenum-based alloy is obtained by conventional hot pressing and forging from the extrusion axial direction (L direction). When trying to remove the stretched crystal grains, the high temperature deformation resistance is extremely large, so that uniform deformation becomes extremely difficult, resulting in non-uniform properties in the material (
It was found that the tensile strength, elongation, and ductility are partially nonuniform.

【0019】その原因は、通常の据込プレスの場合、素
形材の変形が工具面と素形材との間の摩擦力によって据
込み面に沿う素形材の横方向の移動が妨げられるため、
変形は不均一になる。このような不均一な変形により材
料側面は樽型に膨らむと共に、断面上の格子線は複雑・
不均一なゆがみを示す。そのため材料側面と上下工具面
中心付近にはデッドゾーンまたはデッドメタルと呼ばれ
る塑性変形がゼロまたは非常にわずかな領域がみられ
る。このことにより、塑性変形を受けた部分と受けなか
った部分が素形材内に存在することから素形材内の強度
は不均一となる。また、素形材内に存在する延性および
強度異方性の原因である繊維集合組織および結晶延伸粒
組織を均一に除去することはできない。
The cause is that, in the case of a normal upsetting press, the deformation of the raw material prevents the lateral movement of the raw material along the upsetting surface due to the frictional force between the tool surface and the raw material. For,
Deformation becomes non-uniform. Due to such uneven deformation, the side surface of the material bulges like a barrel, and the lattice lines on the cross section are complicated.
Shows uneven distortion. For this reason, there are zero or very small areas of plastic deformation called dead zones or dead metals near the material side surface and the center of the upper and lower tool surfaces. As a result, since the portion that has undergone plastic deformation and the portion that has not undergone plastic deformation exist in the raw material, the strength in the raw material becomes non-uniform. Further, it is impossible to uniformly remove the fiber texture and the crystal-stretched grain structure, which are the causes of the ductility and strength anisotropy, existing in the matrix.

【0020】そこで、本発明者らが種々検討を重ねたと
ころ、素形材としてのプレス鍛造材と鍛造工具であるプ
レス鍛造台との間に、モリブデン基合金よりも変形抵抗
が低いスペーサ、例えば、SUS304鋼製スペーサを加熱
し、挟み込むことにより、素材の均一変形が可能とな
り、繊維集合組織および結晶延伸粒を軽減できることを
知った。
Therefore, the inventors of the present invention have made various studies, and as a result, a spacer having a lower deformation resistance than that of a molybdenum-based alloy, such as a spacer, is formed between a press forging material as a raw material and a press forging table as a forging tool. , It was found that by heating and sandwiching a SUS304 steel spacer, the material can be uniformly deformed, and the fiber texture and crystal grains can be reduced.

【0021】さらに詳細な検討の結果、特定の据込条
件、合金組成の組み合わせにより結晶粒の長径a と短径
b の比(a/b) が1.0 〜1.5 であり、かつ平均粒径が15μ
m 以下の均一微細粒を実現でき、その結果、高強度でか
つ強度および延性の異方性の飛躍的向上が可能であるこ
とを見い出し、本発明を完成した。
As a result of a more detailed examination, the major axis a and the minor axis of the crystal grains were changed depending on the combination of specific upsetting conditions and alloy composition.
The ratio of b (a / b) is 1.0 to 1.5, and the average particle size is 15μ.
It was found that uniform fine particles of m or less can be realized, and as a result, high strength and a dramatic improvement in the anisotropy of strength and ductility can be achieved, and the present invention was completed.

【0022】ここに、本発明は、重量割合で、Ti:0.20
%〜0.60%、Zr:0.05%〜0.20%、C :0.01%〜0.40%
を含み、残部がモリブデンおよび不可避的不純物から成
り、結晶粒の長径a と短径b の比(a/b) が1.0 〜1.5 で
あり、結晶粒径が15μm 以下の微細で均一な組織を有す
ることを特徴とする強度および延性の異方性の小さいモ
リブデン基合金である。
In the present invention, the weight ratio of Ti: 0.20
% To 0.60%, Zr: 0.05% to 0.20%, C: 0.01% to 0.40%
With the balance consisting of molybdenum and unavoidable impurities, the ratio (a / b) of the major axis a to the minor axis b of the crystal grains is 1.0 to 1.5, and the crystal grain size is 15 μm or less and has a fine and uniform structure. This is a molybdenum-based alloy having small strength and ductility anisotropy.

【0023】さらに別の面からは、本発明は、 重量割
合で、Ti:0.20%〜0.60%、Zr:0.05%〜0.20%、C :
0.01%〜0.40%を含み、残部がモリブデンおよび不可避
的不純物から成るモリブデン基合金の素形材を鍛造加工
して所定形状にする異方性の少ないモリブデン基合金の
製造方法であって、鍛造加工を再結晶温度以下、500 ℃
以上の温度域で行い、鍛造工具と前記モリブデン基合金
との間にその鍛造加工温度における変形抵抗がモリブデ
ン基合金の変形抵抗より小さい金属、例えばSUS304、SU
S314、SCM420H 等を介在させるとともに、該金属を予め
前記温度域の温度に加熱しておくことを特徴とする上述
のモリブデン基合金の製造方法である。
From another aspect, the present invention provides, by weight ratio, Ti: 0.20% to 0.60%, Zr: 0.05% to 0.20%, C:
A method for producing a molybdenum-based alloy having a small anisotropy in which a molybdenum-based alloy material containing 0.01% to 0.40% and the balance being molybdenum and unavoidable impurities is forged into a predetermined shape. The recrystallization temperature below 500 ℃
Performed in the above temperature range, the deformation resistance at the forging temperature between the forging tool and the molybdenum-based alloy is smaller than the deformation resistance of the molybdenum-based alloy, for example, SUS304, SU
The method for producing a molybdenum-based alloy described above is characterized in that S314, SCM420H and the like are interposed and the metal is preheated to a temperature in the temperature range.

【0024】ここに、上記金属の介在の形態は、単に鍛
造工具と被加工材であるモリブデン基合金との間に挟持
させる場合ばかりでなく、モリブデン基合金の全体を包
囲するように設ける場合であってもよい。その他、多く
の形態が考えられよう。いずれにしても、鍛造工具とモ
リブデン基合金との間にあって、急激な温度降下を防止
して均一な変形を可能とする作用をなす限りににおいて
特に制限はない。
Here, the intervening form of the metal is not limited to the case where the metal is simply sandwiched between the forging tool and the molybdenum-based alloy that is the workpiece, but the case where it is provided so as to surround the entire molybdenum-based alloy. It may be. Many other forms are possible. In any case, there is no particular limitation as long as it acts between the forging tool and the molybdenum-based alloy so as to prevent a sudden temperature drop and enable uniform deformation.

【0025】同様に、その介在させる金属の種類につい
ても、鍛造加工温度、つまり実際に加工が行われている
ときの変形抵抗がモリブデン基合金より小さければよ
い。なお、上記素形材は一般には焼結材あるいは焼結後
熱間加工材であるが、同様に溶製材であってもよい。
Similarly, regarding the kind of the metal to be interposed, it is sufficient that the forging temperature, that is, the deformation resistance during the actual working is smaller than that of the molybdenum-based alloy. Although the above-mentioned raw material is generally a sintered material or a hot-worked material after sintering, it may be a molten material.

【0026】[0026]

【作用】次に、本発明にかかる成形方法の具体的操作と
それによる作用効果について説明するとともに、本発明
において合金組成および処理方法を上記のように限定し
た理由を詳述する。なお、以下の説明では据込み鍛造を
例にとって本発明を説明するが、その他、型鍛造、タッ
プ鍛造、熱間鍛伸についても本発明は同様に適用され
る。
Next, the specific operation of the forming method according to the present invention and the operation and effect thereof will be described, and the reason why the alloy composition and the treatment method are limited as described above in the present invention will be described in detail. In the following description, the present invention will be described by taking upset forging as an example, but the present invention is similarly applied to die forging, tap forging, and hot forging.

【0027】図1は、本発明にかかる据込みプレス法の
操作例を示す概略説明図であって、図1(a) は据込み
前、図1(b) は据込み後の形態をそれぞれ示す。まず、
図1(a) に示すように、モリブデン基合金の延性および
強度の異方性を改善すべく、変形抵抗の低いスペーサ10
を鍛造加工工具12、12と素形材14との間にそれぞれ挟み
込む。このように据込プレス台、つまり鍛造加工工具と
鍛造温度(500℃〜再結晶温度) に加熱されたモリブデン
基合金の素形材との間に500 ℃からMoの再結晶温度に加
熱したスペーサを挟み込みプレスまたは鍛造するのであ
る。据込み量を10〜50%とすることによって、鍛造材中
の繊維集合組織および結晶延伸粒組織を均質に除去する
ことが可能となる。
FIG. 1 is a schematic explanatory view showing an operation example of an upsetting press method according to the present invention. FIG. 1 (a) shows a form before installation and FIG. 1 (b) shows a form after installation. Show. First,
As shown in Fig. 1 (a), spacers with low deformation resistance are used to improve the ductility and strength anisotropy of molybdenum-based alloys.
Are sandwiched between the forging tools 12 and 12 and the blank 14 respectively. In this way, the upsetting press table, that is, the spacer heated between 500 ° C and the recrystallization temperature of Mo between the forging tool and the molybdenum-based alloy raw material heated to the forging temperature (500 ° C to recrystallization temperature). It is sandwiched and pressed or forged. By setting the upsetting amount to 10 to 50%, it becomes possible to uniformly remove the fiber texture and the crystal grain structure in the forged material.

【0028】ここで、モリブデン基合金は2600℃という
非常に高い融点を持つことから耐熱材料として知られて
おり据込鍛造する500 ℃以上の温度において非常に高い
変形抵抗を示す。そこでスペーサには鍛造温度範囲内で
モリブデン基合金よりも変形抵抗の低い材料を用いるこ
とを特徴とする。
Since the molybdenum-based alloy has a very high melting point of 2600 ° C., it is known as a heat-resistant material and exhibits a very high deformation resistance at a temperature of 500 ° C. or higher for upset forging. Therefore, the spacer is characterized by using a material having a lower deformation resistance than the molybdenum-based alloy within the forging temperature range.

【0029】このスペーサは次に示す二つの特徴的な効
果を有する。 鍛造加工工具が高温に加熱されたモリブデン基合金に
接触することによりモリブデン基合金が急激に温度低下
することを高温に加熱されたスペーサは防止する役割を
示す。もしモリブデン基合金の端面の温度が急激に低下
した場合には鍛造材は均質に鍛造することは不可能であ
る。 高温に加熱されたスペーサは据込時にモリブデン基合
金よりも圧縮強度が劣るために据込鍛造によって圧縮変
形を受け易いので、モリブデン基合金よりも外周部に広
がる。
This spacer has the following two characteristic effects. The spacer heated to a high temperature has a role to prevent the temperature of the molybdenum-based alloy from rapidly decreasing due to the contact of the forged tool with the molybdenum-based alloy heated to a high temperature. If the temperature of the end surface of the molybdenum-based alloy drops sharply, the forged material cannot be forged uniformly. Since the spacer heated to a high temperature is inferior in compressive strength to the molybdenum-based alloy at the time of upsetting, it is more susceptible to compressive deformation due to upset forging, and thus spreads to the outer peripheral portion than the molybdenum-based alloy.

【0030】そこでこの高温に加熱されたスペーサは据
込時にモリブデン基合金との接触部において、モリブデ
ン基合金を外周部に押し広げる効果を発揮する。この押
し広げ効果によりモリブデン基合金の形状は均一に変形
する。ここで、鍛造加工温度を500 ℃以上、再結晶温度
以下に限定したのは、モリブデン基合金は500 ℃以上に
加熱しないと据込鍛造時に結晶粒界で脆性破壊割れを起
こすため、500 ℃以上に加熱しなければならない。一
方、再結晶温度より高温に加熱すると粒成長が著しくな
って結晶粒の粗大化を阻止できないことから、再結晶温
度以下に素形材を加熱する。
Therefore, the spacer heated to a high temperature exerts an effect of spreading the molybdenum-based alloy to the outer peripheral portion at the contact portion with the molybdenum-based alloy at the time of installation. The shape of the molybdenum-based alloy is uniformly deformed by this pushing and spreading effect. Here, the forging temperature is limited to 500 ℃ or more and the recrystallization temperature or less because the molybdenum-based alloy must be heated to 500 ℃ or more to cause brittle fracture cracking at the grain boundaries during upset forging, so 500 ℃ or more. Must be heated to. On the other hand, when the temperature is higher than the recrystallization temperature, grain growth becomes remarkable and the coarsening of the crystal grains cannot be prevented. Therefore, the cast material is heated to the recrystallization temperature or lower.

【0031】通常のスペーサを用いない高温据込プレス
鍛造においては、前述の繊維集合組織および結晶延伸粒
組織を除去する場合には鍛造およびプレス台と据込材の
間で不均一な変形がみられ、据込材に未変形部分が形成
され均一に繊維集合組織および結晶延伸組織が残存し除
去することは困難である。本発明においてスペーサとし
て使用される金属としては、SUS304、SUS314のようなオ
ーステナイト系ステンレス鋼が例示されるが、それ以外
でも所定の特性を備えている限りにおいて使用できる。
In the high temperature upsetting press forging without using a usual spacer, when the above-mentioned fiber texture and crystal stretched grain structure are removed, the forging and uneven deformation between the press table and the upsetting material are observed. However, an undeformed portion is formed in the upsetting material, and it is difficult to uniformly remove and remove the fiber texture and the crystal stretched texture. Examples of the metal used as the spacer in the present invention include austenitic stainless steels such as SUS304 and SUS314, but other metals can be used as long as they have predetermined characteristics.

【0032】本発明のモリブデン基合金は、重量割合
で、Ti:0.20%〜0.60%、Zr:0.05%〜0.20%、C :0.
01%〜0.40%を含んでいる。ここでそれぞれの元素の添
加理由について示す。
The molybdenum-based alloy of the present invention has a weight ratio of Ti: 0.20% to 0.60%, Zr: 0.05% to 0.20%, and C: 0.
Includes 01% to 0.40%. Here, the reason for adding each element is shown.

【0033】Ti :Tiの配合は、モリブデン中にTiC と
して微細分散させることを目的としており、TiC の微細
分散効果によるピン止め効果により、高温強度を上昇さ
せるためである。そのような効果を発揮させるためには
Tiは0.20%以上を添加する。しかし、Ti:0.60 %超とい
うようにこの組成範囲を越えて多量に添加するとTiはTi
C として分散しなく、数μm以上の粗大なTi系化合物の
介在物として存在し強度を低下させるのでTiは上記組成
内に抑えられなければならない。
Ti: Ti is compounded for the purpose of finely dispersing as TiC in molybdenum, and for increasing the high temperature strength by the pinning effect due to the fine dispersion effect of TiC. In order to exert such effect
Add 0.20% or more of Ti. However, if Ti is added in a large amount exceeding this composition range such as Ti: more than 0.60%, Ti becomes Ti
Since it does not disperse as C but exists as an inclusion of a coarse Ti-based compound of several μm or more and reduces the strength, Ti must be suppressed within the above composition.

【0034】また、Ti添加は、モリブデン粒界への不可
避不純物である数百ppm 程度の酸素偏析による粒界割れ
を防止する働きがある。これはTiが酸素と結びつきTiO2
となり、酸素のモリブデン粒界への偏析を防ぐと共に、
TiO2が微細分散しピン止め効果の役割を果たし、強度改
善を促進する働きがある。このような作用効果は上述の
組成範囲内で発揮される。
Further, the addition of Ti has a function of preventing grain boundary cracking due to oxygen segregation of several hundred ppm which is an unavoidable impurity in the molybdenum grain boundary. This is because Ti combines with oxygen and TiO 2
And prevents the segregation of oxygen to the molybdenum grain boundaries,
TiO 2 finely disperses, plays a role of a pinning effect, and has a function of promoting strength improvement. Such an effect is exhibited within the above composition range.

【0035】Zr :高温強度の向上と高温延性を向上さ
せるために0.05%以上添加する。ZrはTiと同様にZrC を
形成し分散することによって、高温強度を向上させる働
きを持つと共に固溶して高温延性を向上させる重要な働
きを有する。すなわち、Zrはモリブデン中に600 ℃で約
6.7 重量%固溶することができ、Cと結びつかなかった
Zrは結晶粒内に固溶することで高温変形を助ける役割を
する。そこでZrの添加は室温でモリブデン中に固溶でき
る0.20重量%以下とした。
Zr: 0.05% or more is added in order to improve high temperature strength and high temperature ductility. Zr, like Ti, forms and disperses ZrC, thereby having the function of improving the high-temperature strength and the important function of forming a solid solution to improve the high-temperature ductility. That is, Zr is about 600 ° C in molybdenum.
6.7 wt% solid solution was possible and did not bind to C
Zr plays a role of helping high temperature deformation by forming a solid solution in crystal grains. Therefore, Zr is added in an amount of 0.20% by weight or less that can be dissolved in molybdenum at room temperature.

【0036】このようにZr添加は、高温据込時に据込変
形を促進する働きがあるが、この組成割合を超えてZrを
添加すると、高温での破壊の起点となり易い、低融点の
hcp構造 (最密六方格子) のZr相が析出し、高温強度を
低下させる。
Thus, the addition of Zr has the function of promoting upsetting during high temperature upsetting, but if Zr is added in excess of this composition ratio, it tends to become a starting point of fracture at high temperatures and has a low melting point.
Zr phase of hcp structure (closest hexagonal lattice) precipitates and lowers high temperature strength.

【0037】C :TiおよびZrと炭化物を形成させ、モ
リブデン中に分散させるため0.01%以上添加する。結晶
粒界にC が必要以上に存在すると結晶粒界強度を減少さ
せる働きがあるため、C 添加量はTiおよびZrと炭化物を
形成できる範囲内に抑えなければならない。そこで重量
割合で0.01%〜0.40%C とする。次に、本発明の作用効
果について実施例によってさらに具体的に説明する。
C: Add 0.01% or more to form carbides with Ti and Zr and disperse them in molybdenum. Excessive C in the grain boundaries acts to reduce the grain boundary strength, so the amount of C added must be kept within the range where carbides can be formed with Ti and Zr. Therefore, the weight ratio is 0.01% to 0.40% C. Next, the function and effect of the present invention will be described more specifically by way of examples.

【0038】[0038]

【実施例】【Example】

(実施例1)代表的なモリブデン基合金として(0.5%Ti-
0.08%Zr-0.02%C-Mo) を用い、2000℃で焼結後、慣用の
熱間押出加工を行った。このようにして得た素形材に本
発明にかかる鍛造加工を行った。スペーサ材としてSUS3
04を用いて1000℃〜1200℃の温度範囲で据込プレス (据
込み率40%) を行い、据込材各部から引張試験片を採取
し、試験を行った。その結果を図2(a) および図2(b)
にまとめて示す。
(Example 1) As a typical molybdenum-based alloy (0.5% Ti-
0.08% Zr-0.02% C-Mo) was sintered at 2000 ° C. and then subjected to conventional hot extrusion. The forging material according to the present invention was subjected to the thus obtained material. SUS3 as spacer material
Using 04, upsetting press (upsetting rate 40%) was performed in the temperature range of 1000 ° C to 1200 ° C, and tensile test pieces were sampled from each part of the upsetting material and tested. The results are shown in Fig. 2 (a) and Fig. 2 (b).
Are shown together.

【0039】[引張試験の条件] 温度 : 室温 試験片 : 直径 6.0 mm(平行部長さGL=20mm) 歪速度 : 0.5 ×10-3[S-1] 試験項目 : 引張強度、伸び 図2(a) および図2(b) にそれぞれT方向、L方向の結
果を示すように、試験片の採取場所による引張強度、お
よび伸びの大きな差異は認められず、据込材内部におい
て均質であるといえる。
[Conditions of Tensile Test] Temperature: Room temperature Test piece: Diameter 6.0 mm (parallel portion length GL = 20 mm) Strain rate: 0.5 × 10 -3 [S -1 ] Test item: Tensile strength, elongation Fig. 2 (a 2) and FIG. 2B show the results in the T direction and the L direction, respectively, there is no significant difference in tensile strength and elongation depending on the sampling location of the test piece, and it can be said that it is homogeneous inside the upsetting material. .

【0040】また、bcc 金属に特有の(110) 繊維集合組
織 (押出軸方向) の有無を据込前後で測定した結果をそ
れぞれ図3(a) および図3(b) に極点図で示す。これら
の極点図の結果からも明らかなように本発明にかかる据
込によって均一に(110) 繊維集合組織を除去することが
可能であることが分かる。
Further, the results of measuring the presence or absence of (110) fiber texture (extrusion axis direction) peculiar to bcc metal before and after upsetting are shown in pole figures in FIGS. 3 (a) and 3 (b), respectively. As is clear from the results of these pole figures, it is possible to uniformly remove the (110) fiber texture by the upsetting according to the present invention.

【0041】また、結晶延伸粒組織も均一に除去するこ
とが可能であることも分かった。これらの結果をさらに
究明したところ、据込素材の側面と上下据込み台中心部
にできるデッドゾーンまたはデッドメタル( 塑性変形は
ゼロもしくは極わずかな部分) をなくすることができ、
すべての部分に均一に圧縮変形を与え得ることが判明し
た。
It was also found that the crystal grain structure can be uniformly removed. As a result of further investigation of these results, it is possible to eliminate the dead zone or dead metal (plastic deformation is zero or very small part) formed on the side surface of the upsetting material and the center of the upper and lower upsetting bases.
It has been found that compressive deformation can be uniformly applied to all parts.

【0042】(実施例2)実施例1と同様にして表1に示
す組成を有するモリブデン基合金について熱間押出材の
据込鍛造を行った。結果をその処理条件とともに表1に
まとめて示すが全ての合金において、L方向、T方向の
伸び比は70%〜130 %である。
(Example 2) In the same manner as in Example 1, the molybdenum-based alloy having the composition shown in Table 1 was subjected to upset forging of the hot extruded material. The results are summarized in Table 1 together with the treatment conditions. In all the alloys, the elongation ratios in the L and T directions are 70% to 130%.

【0043】このように伸びの異方性は押出後に比べて
大幅に低減できることが判明した。表1中の素材均一性
は合金ビレット中より引張試験片を据込鍛造軸および鍛
造軸に垂直方向に様々な場所で採取し、前述の引張試験
条件で20回引張試験を行った場合、伸び値が0〜80%の
範囲の値を示し、バラツキが生じる場合を×で表し、伸
び値が10〜30%の範囲内に入る場合を○として表示し
た。比較のため、粗大介在物が多いために素材均一性が
満足されない場合を示した。また、本発明例において比
較のために本発明にかかる据込方法を行なう前 (熱間押
出のままの状態)の特性を示すがビレット素材内部の均
一性は満足されないことが分かる。
As described above, it was found that the anisotropy of elongation can be significantly reduced as compared with that after extrusion. The material homogeneity in Table 1 shows the elongation when tensile test pieces are sampled from the alloy billet at various locations in the upset forging axis and in the direction perpendicular to the forging axis and the tensile test is performed 20 times under the above-mentioned tensile test conditions. The value is shown in the range of 0 to 80%, the case where variation occurs is indicated by x, and the case where the elongation value falls within the range of 10 to 30% is indicated as o. For comparison, the case where the material uniformity is not satisfied due to the large number of coarse inclusions is shown. In addition, in the examples of the present invention, the characteristics before performing the upsetting method according to the present invention (in the state of being hot extruded) are shown for comparison, but it is understood that the uniformity inside the billet material is not satisfied.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】モリブデン基合金を各種耐熱構造材料と
して使用する場合、延性および強度の異方性を示す材料
であれば、冷間では急速な破壊および割れを示す。しか
し、このモリブデン基合金より高温で強度の低い材料(S
US304 鋼等) を挟み込んだ本発明にかかる高温据込プレ
スおよび鍛造法により、(110) 繊維集合組織および延伸
粒組織を改善でき、延性および強度の異方性をもたない
素材を製造することが可能となる。
When a molybdenum-based alloy is used as various heat-resistant structural materials, any material exhibiting ductility and strength anisotropy will rapidly break and crack in the cold. However, a material (S
(110) The high temperature upsetting press and forging method according to the present invention sandwiching (for example, US304 steel) can improve the (110) fiber texture and drawn grain structure and produce a material having no anisotropy of ductility and strength. Is possible.

【0046】またこの延性異方性を改善したモリブデン
基合金は通常のモリブデン基合金によく起こる800 ℃以
上の高温使用時に急激な冷却が起こった場合に示す熱応
力割れを防止することができる。このように本発明によ
り延性および強度の異方性を改善することによって、現
在までに耐熱構造材料としてモリブデン基合金の用途を
限定されていた分野にも用途を拡大できる。
Further, the molybdenum-based alloy having improved ductility anisotropy can prevent thermal stress cracking, which often occurs in normal molybdenum-based alloys, when rapid cooling occurs at high temperatures of 800 ° C. or higher. As described above, by improving the ductility and the anisotropy of strength according to the present invention, the applications can be expanded to the fields where the applications of molybdenum-based alloys as heat-resistant structural materials have been limited so far.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a) および(b) は、本発明にしたがってス
ペーサを挟み込んで行う据込プレスのそれぞれ据込前、
据込後の形態の概略説明図である。
1 (a) and 1 (b) are views of an upsetting press performed by inserting a spacer according to the present invention, respectively.
It is a schematic explanatory drawing of the form after installation.

【図2】図2(a) は、鍛造プレス後のT方向強度および
伸び、図2(b) は、L方向の引張強度および伸びをそれ
ぞれ示すグラフである。
2 (a) is a graph showing tensile strength and elongation in the T direction after forging press, and FIG. 2 (b) is a graph showing tensile strength and elongation in the L direction, respectively.

【図3】熱間押出後の極点図とこの押出材の据込鍛造材
の極点図の比較を示すもので、図3(a) は据込前 (押出
し後) の極点図 (110)、図3(b) は据込後の極点図 (11
0)である。
FIG. 3 shows a comparison between the pole figure after hot extrusion and the pole figure of an upset forged material of this extruded material. FIG. 3 (a) shows the pole figure before upset (after extrusion) (110), Figure 3 (b) shows the pole figure after installation (11
0).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量割合で、 Ti:0.20%〜0.60%、Zr:0.05%〜0.20%、C :0.01%
〜0.40%を含み、 残部がモリブデンおよび不可避的不純物から成り、結晶
粒の長径a と短径b の比(a/b) が1.0 〜1.5 であり、結
晶粒径が15μm 以下の微細で均一な組織を有することを
特徴とする強度および延性の異方性の小さいモリブデン
基合金。
1. By weight ratio, Ti: 0.20% to 0.60%, Zr: 0.05% to 0.20%, C: 0.01%
~ 0.40%, the balance consisting of molybdenum and unavoidable impurities, the ratio (a / b) of major axis a to minor axis b of crystal grains is 1.0 to 1.5, and the crystal grain size is 15 μm or less. A molybdenum-based alloy having a structure and low anisotropy in strength and ductility.
【請求項2】 重量割合で、 Ti:0.20%〜0.60%、Zr:0.05%〜0.20%、C :0.01%
〜0.40%を含み、 残部がモリブデンおよび不可避的不純物から成るモリブ
デン基合金の素形材を鍛造加工して所定形状にする異方
性の少ないモリブデン基合金の製造方法であって、鍛造
加工を再結晶温度以下、500 ℃以上の温度域で行い、鍛
造工具と前記モリブデン基合金との間にその鍛造加工温
度における変形抵抗がモリブデン基合金の変形抵抗より
小さい金属を介在させるとともに、該金属を予め前記温
度域の温度に加熱しておくことを特徴とする請求項1に
記載のモリブデン基合金の製造方法。
2. By weight ratio, Ti: 0.20% to 0.60%, Zr: 0.05% to 0.20%, C: 0.01%
A method of manufacturing a molybdenum-based alloy that has a low anisotropy and is made into a prescribed shape by forging a molybdenum-based alloy matrix that contains ~ 0.40% and the balance is molybdenum and unavoidable impurities. It is carried out in a temperature range not higher than the crystallization temperature and not lower than 500 ° C, and a metal whose deformation resistance at the forging temperature is smaller than that of the molybdenum-based alloy is interposed between the forging tool and the molybdenum-based alloy, and the metal is preliminarily added The method for producing a molybdenum-based alloy according to claim 1, wherein heating is performed to a temperature in the temperature range.
JP845393A 1993-01-21 1993-01-21 Molybdenum-base alloy minimal in anisotropy and its production Withdrawn JPH06220566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP845393A JPH06220566A (en) 1993-01-21 1993-01-21 Molybdenum-base alloy minimal in anisotropy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP845393A JPH06220566A (en) 1993-01-21 1993-01-21 Molybdenum-base alloy minimal in anisotropy and its production

Publications (1)

Publication Number Publication Date
JPH06220566A true JPH06220566A (en) 1994-08-09

Family

ID=11693553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP845393A Withdrawn JPH06220566A (en) 1993-01-21 1993-01-21 Molybdenum-base alloy minimal in anisotropy and its production

Country Status (1)

Country Link
JP (1) JPH06220566A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0885840A (en) * 1994-09-19 1996-04-02 Hiroaki Kurishita Molybdenum alloy and production thereof
EP0770694A1 (en) 1995-10-24 1997-05-02 Doryokuro Kakunenryo Kaihatsu Jigyodan Super heat-resisting Mo-based alloy and method of producing same
JP2010531230A (en) * 2007-06-01 2010-09-24 エシコン・インコーポレイテッド Thermoforming of heat-resistant alloy surgical needle and apparatus and instrument
JP2017502166A (en) * 2013-10-29 2017-01-19 プランゼー エスエー Sputtering target and manufacturing method thereof
CN109371274A (en) * 2018-10-31 2019-02-22 西北有色金属研究院 A kind of preparation method of high-performance powder metallurgy TZM molybdenum alloy
WO2019188713A1 (en) * 2018-03-29 2019-10-03 株式会社アライドマテリアル Molybdenum material and method for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0885840A (en) * 1994-09-19 1996-04-02 Hiroaki Kurishita Molybdenum alloy and production thereof
EP0770694A1 (en) 1995-10-24 1997-05-02 Doryokuro Kakunenryo Kaihatsu Jigyodan Super heat-resisting Mo-based alloy and method of producing same
US6210497B1 (en) 1995-10-24 2001-04-03 Doryokuro Kakunenryo Kaihatsu Jigyodan Super heat-resisting Mo-based alloy and method of producing same
JP2010531230A (en) * 2007-06-01 2010-09-24 エシコン・インコーポレイテッド Thermoforming of heat-resistant alloy surgical needle and apparatus and instrument
JP2017502166A (en) * 2013-10-29 2017-01-19 プランゼー エスエー Sputtering target and manufacturing method thereof
WO2019188713A1 (en) * 2018-03-29 2019-10-03 株式会社アライドマテリアル Molybdenum material and method for producing same
CN109371274A (en) * 2018-10-31 2019-02-22 西北有色金属研究院 A kind of preparation method of high-performance powder metallurgy TZM molybdenum alloy

Similar Documents

Publication Publication Date Title
JP6889418B2 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
EP3791003B1 (en) High strength titanium alloys
CN111826550B (en) Moderate-strength nitric acid corrosion resistant titanium alloy
JPH0798989B2 (en) Method for producing titanium alloy parts comprising improved hot working and resulting parts
JPH04154933A (en) Production of aluminum alloy having high strength and high toughness and alloy stock
JP6826766B1 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
JPS6145699B2 (en)
US20100051144A1 (en) Excellent cold-workability exhibiting high-strength steel, wire or steel bar or high-strength shaped article, and process for producing them
Hofmann et al. New processing possibilities for highly toughened metallic glass matrix composites with tensile ductility
CN114990382B (en) Ultra-low-gap phase transition induced plasticity metastable beta titanium alloy and preparation method thereof
US5108517A (en) Process for preparing titanium and titanium alloy materials having a fine equiaxed microstructure
JPH06220566A (en) Molybdenum-base alloy minimal in anisotropy and its production
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
JP2932918B2 (en) Manufacturing method of α + β type titanium alloy extruded material
US5417779A (en) High ductility processing for alpha-two titanium materials
US3377211A (en) Tungsten base alloy treatment
JP2018053320A (en) α+β TYPE TITANIUM ALLOY HOT EXTRUSION SHAPE MATERIAL AND MANUFACTURING METHOD THEREFOR
JP5929251B2 (en) Iron alloy
JPH04235261A (en) Manufacture of co-base alloy stock
JP2013185249A (en) Iron alloy
RU2774671C2 (en) High-strength titanium alloys
WO1999050009A1 (en) High-strength metal solidified material and acid steel and manufacturing methods thereof
CN117265364A (en) 18Ni maraging steel coil and preparation method thereof
JPH0696759B2 (en) Method for producing α + β type titanium alloy rolled rod and wire having good structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404