JP5579480B2 - Molybdenum alloy - Google Patents

Molybdenum alloy Download PDF

Info

Publication number
JP5579480B2
JP5579480B2 JP2010084801A JP2010084801A JP5579480B2 JP 5579480 B2 JP5579480 B2 JP 5579480B2 JP 2010084801 A JP2010084801 A JP 2010084801A JP 2010084801 A JP2010084801 A JP 2010084801A JP 5579480 B2 JP5579480 B2 JP 5579480B2
Authority
JP
Japan
Prior art keywords
powder
average particle
particle size
heat treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010084801A
Other languages
Japanese (ja)
Other versions
JP2011214112A (en
Inventor
由夏 中村
俊之 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2010084801A priority Critical patent/JP5579480B2/en
Priority to PCT/JP2011/057864 priority patent/WO2011125663A1/en
Priority to KR1020127022475A priority patent/KR20120136350A/en
Priority to TW100111640A priority patent/TWI491738B/en
Publication of JP2011214112A publication Critical patent/JP2011214112A/en
Application granted granted Critical
Publication of JP5579480B2 publication Critical patent/JP5579480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、2000℃以上の高温において強度が要求される高温環境で使用される部材で、その部材の材料として使用されるモリブデン合金に関するものである。 The present invention is a member for use in high temperature environments where strength is required at a high temperature of above 2000 ° C., are those concerning the molybdenum alloy for use as the material of the member.

Mo、W、およびこれらの合金は2000℃以上の融点を有し、主に電子部材、電極材、フィラメント材として従来用いられてきたが、近年、その優れた高温強度、耐食性に着目された構造用部材の材料として用途が期待されている。しかし、Mo、Wは融点が非常に高く、かつ加工性が悪いため、通常の溶解・加工といった方法で製品を作ることは困難であった。したがって、一般には粉末焼結法により各種部材を製造しているのが現状である。   Mo, W, and alloys thereof have a melting point of 2000 ° C. or higher, and have been conventionally used mainly as electronic members, electrode materials, and filament materials, but in recent years, their structures have been focused on their excellent high-temperature strength and corrosion resistance. Use is expected as a material for structural members. However, since Mo and W have very high melting points and poor processability, it has been difficult to produce products by ordinary methods such as melting and processing. Therefore, in general, various members are manufactured by a powder sintering method.

しかしながら、一般的な粉末焼結法で得られる焼結体の相対密度は90%程度で、その内部には多数の気孔が残留している。これら金属焼結体の強度や耐食性等の特性は密度に大きく依存することが知られており、焼結体内部の気泡は強度を著しく低下させたり、内部の気泡に腐食性溶液やガスが浸透し耐食性を著しく害する結果となる。一方、焼結温度が高すぎると結晶粒が粗大化し強度が低下し脆くなるという問題がある。従って、通常は熱間圧延、熱間鍛造といった塑性加工により高密度化を図っているのが現状である。   However, the relative density of a sintered body obtained by a general powder sintering method is about 90%, and a large number of pores remain inside. It is known that the properties such as strength and corrosion resistance of these metal sintered bodies depend greatly on the density, and the bubbles inside the sintered body significantly reduce the strength, or the corrosive solution or gas penetrates into the internal bubbles. As a result, the corrosion resistance is significantly impaired. On the other hand, if the sintering temperature is too high, there is a problem that the crystal grains are coarsened, the strength is lowered, and it becomes brittle. Therefore, at present, the density is increased by plastic working such as hot rolling and hot forging.

これらの方法で作製した部材は、高温での使用により、等軸結晶粒となるため、高温強度の低下が著しく、耐久性悪化の原因となっている。また、Moは耐酸化性に非常に乏しいために、成形体中の酸素含有量が非常に高くなり、2000℃程度の高温環境で使用する場合には、酸素起因と考えられるガスの発生により、部材の一部分または全体的に局部的な膨らみが発生する場合がある。   Since the member produced by these methods becomes equiaxed crystal grains when used at high temperatures, the high-temperature strength is significantly reduced, causing deterioration in durability. In addition, since Mo is very poor in oxidation resistance, the oxygen content in the molded body becomes very high, and when used in a high temperature environment of about 2000 ° C., due to generation of gas considered to be due to oxygen, Local bulges may occur on a part of the member or entirely.

この問題に対して、例えば特開平9−196570号公報(特許文献1)に開示されいるように、W添加により結晶粒粗大化を抑制しているが、膨れ発生については明確に言及していない。また、加工工程が複雑で圧延にて作製する素材板作製工程と熱間スピニング絞り加工により作製されるため、大型部材作製時にはコスト増の原因となる。   For this problem, for example, as disclosed in Japanese Patent Laid-Open No. 9-196570 (Patent Document 1), the addition of W suppresses the coarsening of crystal grains, but it does not explicitly mention the occurrence of swelling. . In addition, since the processing process is complicated and the material plate is manufactured by rolling and hot spinning drawing processing, it causes a cost increase when manufacturing a large member.

また、HIP法による焼結体の作製も試みられている。例えば、出願人が既に特許出願している発明では、高融点かつMo中で熱力学的に安定なセラミックスまたは金属をMo中に微細分散させ、結晶粒粗大化を抑制し、高強度なMo合金を製造する方法を提案している。
特開平9−196570号公報
In addition, attempts have been made to produce a sintered body by the HIP method. For example, in the invention for which the applicant has already applied for a patent, a ceramic or metal having a high melting point and thermodynamically stable in Mo is finely dispersed in Mo to suppress grain coarsening, and a high-strength Mo alloy Has proposed a method of manufacturing.
JP-A-9-196570

しかし、上述した特許文献1のようにW添加により結晶粒粗大化を抑制しているが、膨れ発生については明確に言及していない。また、加工工程が複雑で圧延にて作製する素材板作製工程と熱間スピニング絞り加工により作製されるため、大型部材作製時にはコスト増の原因となる。また、既に特許出願している発明、すなわち高融点かつMo中で熱力学的に安定なセラミックスまたは金属をMo中に微細分散させ、結晶粒粗大化を抑制し、高強度なMo合金を製造する方法は、高温環境下におけるガスによる膨れの発生は考慮されていない。   However, although crystal grain coarsening is suppressed by adding W as in Patent Document 1 described above, the occurrence of swelling is not clearly mentioned. In addition, since the processing process is complicated and the material plate is manufactured by rolling and hot spinning drawing processing, it causes a cost increase when manufacturing a large member. In addition, the invention for which a patent application has already been made, that is, a ceramic or metal having a high melting point and thermodynamically stable in Mo is finely dispersed in Mo to suppress coarsening of the crystal grains and produce a high-strength Mo alloy. The method does not consider the occurrence of blistering due to gas in a high temperature environment.

これらの問題を解消するために、発明者らは鋭意開発を進めた結果、2000℃の高温使用時においても局部的膨れ発生・結晶粒粗大化を抑制して部材の長寿命化を実現し、且つ複雑な加工工程を必要せず、大型部材の作製も容易となる作製方法・組成を提供するものである。その要旨とするところは、
(1)Mo粉末に、Nb,TaおよびWの1種または2種以上の平均粒径が15〜50μmである添加粉末を、マトリックスとなる平均粒径が6〜30μmのモリブデン粉末に対し、20〜50原子%混合し、該混合粉末を処理温度1100〜2100℃、圧力50〜300MPaとなる条件にて、保持を30分〜24時間行うHIPにて固化成形してなることを特徴とするモリブデン合金にある。
In order to solve these problems, the inventors have intensively developed, and as a result, even when used at a high temperature of 2000 ° C., local swelling and crystal grain growth are suppressed, and the life of the member is increased. In addition, the present invention provides a production method and composition that does not require a complicated processing step and that facilitates the production of a large member. The gist is that
(1) An additive powder having an average particle size of 15 to 50 μm of one or more of Nb, Ta and W is added to Mo powder and 20 to 20 μm of molybdenum powder having an average particle size of 6 to 30 μm serving as a matrix. Molybdenum obtained by mixing ˜50 atomic% and solidifying and molding the mixed powder with HIP that holds for 30 minutes to 24 hours under the conditions of a processing temperature of 1100 to 2100 ° C. and a pressure of 50 to 300 MPa. In the alloy .

本発明は、上述したように、2000℃の高温使用時においても局部的膨れ発生・結晶粒粗大化を抑制して部材の長寿命化を実現し、且つ複雑な加工工程を必要せず、大型部材の作製も容易となる作製方法・組成を提供することが出来る極めて優れた効果を奏するものである。   As described above, the present invention suppresses the occurrence of local blistering and crystal grain coarsening even when used at a high temperature of 2000 ° C., thereby prolonging the life of the member, and does not require a complicated processing step. It is possible to provide a production method / composition that facilitates the production of the member, and exhibits an extremely excellent effect.

以下、本発明について詳細に説明する。
上述したように、平均粒径15〜50μmのNb,TaおよびWの1種または2種以上の添加粉末を、マトリックスとなるモリブデン粉末に対し、20〜50原子%混合し、HIP成形体とすることで2000℃程度の高温環境において発生する膨れを抑制できることを見出し発明に至ったものである。さらには、第二相添加により結晶粒微細化効果が得られ、HIP法により作製することで非等軸結晶粒となるため、部材の長寿命化が現状できることにある。
Hereinafter, the present invention will be described in detail.
As described above, 20 to 50 atomic% of Nb, Ta and W additive powders having an average particle diameter of 15 to 50 μm are mixed with molybdenum powder as a matrix to form a HIP compact. As a result, the inventors have found that swelling generated in a high-temperature environment of about 2000 ° C. can be suppressed, and have led to the invention. Furthermore, the effect of refining crystal grains can be obtained by the addition of the second phase, and non-equal axis crystal grains can be obtained by manufacturing by the HIP method.

以下、本発明に係る限定理由について説明する。
Nb,Ta,Wをマトリックスに対して第2相となる添加粉末とした理由は、第1に高温で溶融しないこと、第2に高温強度に優れることの2つの条件を満たす第2相粒子を分散させることによりマトリックスのモリブデン相の結晶粒粗大化を抑制し、且つ高温での強度を高めることにある。ただし、その添加量が20原子%未満では発生ガス圧力に対して十分な強度が得られない場合があるためである。また、50原子%を超える添加はその効果が飽和することから、その範囲を20〜50原子%とした。好ましくは20〜40原子%とする。
Hereinafter, the reason for limitation according to the present invention will be described.
The reason why Nb, Ta, and W are additive powders to be the second phase with respect to the matrix is that the second phase particles satisfying the two conditions of first not melting at high temperature and secondly excellent in high temperature strength. Dispersion suppresses the coarsening of the crystal grains of the molybdenum phase of the matrix and increases the strength at high temperatures. However, if the addition amount is less than 20 atomic%, sufficient strength may not be obtained with respect to the generated gas pressure. Moreover, since the effect will be saturated if addition exceeding 50 atomic%, the range was made into 20-50 atomic%. Preferably it is 20-40 atomic%.

マトリックスとなるモリブデン粉末の平均粒径を6〜30μmをした理由は、マトリッ
クスの平均粒径が6μm未満では、成形時の充填が極度に悪くなり実用として要求されるのに十分な密度が得られず強度不足となる。または、モリブデン中の酸素量が増加し、膨れの発生の要因となるためである。それに対し平均粒径が大きいと、第2相の分散状態が悪くなり、局所的な密度低下の原因となるためである。したがって、その範囲を6〜30μmとした。好ましくは10〜20μmとする。
The reason why the average particle size of the molybdenum powder used as the matrix is set to 6 to 30 μm is that when the average particle size of the matrix is less than 6 μm, the filling at the time of molding becomes extremely poor and a density sufficient for practical use is obtained. Without sufficient strength. Or it is because the amount of oxygen in molybdenum increases and causes the occurrence of blistering. On the other hand, when the average particle size is large, the dispersion state of the second phase is deteriorated, which causes local density reduction. Therefore, the range was set to 6 to 30 μm. Preferably it is 10-20 micrometers.

また、添加金属粉末の平均粒径を15〜50μmとした理由は、15μm未満では結晶粒界での切欠効果などにより局部的に強度の弱い部分が多くなり、粒界を通りガスが集まり、膨れ抑制効果が十分に得られないためである。平均粒径が50μmより大きいと、焼結性の低下によりHIP後に十分な密度が得られないためである。なお、モリブデン粉末および添加粉末の平均粒径はレーザー回折法により測定したものである。したがって、その範囲を15〜50μmとした。好ましくは30〜50μmとする。   The reason why the average particle size of the additive metal powder is 15 to 50 μm is that if it is less than 15 μm, there are many locally weak parts due to the notch effect at the crystal grain boundary, etc., and gas gathers through the grain boundary and swells. This is because a sufficient suppression effect cannot be obtained. This is because if the average particle size is larger than 50 μm, a sufficient density cannot be obtained after HIP due to a decrease in sinterability. The average particle size of the molybdenum powder and the additive powder is measured by a laser diffraction method. Therefore, the range was set to 15 to 50 μm. Preferably it is 30-50 micrometers.

HIP処理として処理温度1100〜2100℃、圧力50〜300MPaとなる条件
にて、30〜24時間保持のHIP処理を行う。処理温度が1100℃未満では密度が不足し、2100℃を超える温度を得るためには実用設備上コストアップとなることから、その範囲とした。なお、HIP温度が1400℃を超える条件では、SC製容器が処理温度により溶融するため、市販のモリブデンやニオブやタンタルなど高融点材料の板を用いてSC製容器と同寸法の容器を作成し、HIP処理に用いることが好ましい。
HIP treatment is performed for 30 to 24 hours under the conditions of a treatment temperature of 1100 to 2100 ° C. and a pressure of 50 to 300 MPa. If the processing temperature is less than 1100 ° C., the density is insufficient, and in order to obtain a temperature exceeding 2100 ° C., the cost is increased in practical equipment, so that the range is set. Under the conditions where the HIP temperature exceeds 1400 ° C., the SC container melts at the processing temperature. Therefore, a container having the same dimensions as the SC container is prepared using a commercially available high melting point material such as molybdenum, niobium or tantalum. It is preferable to use for HIP processing.

圧力50〜300MPaとした理由は、50MPa未満では十分な密度を得ることができず、また、300MPaを超える温度を得るためには実用設備上コストアップとなることから、その範囲を50〜300MPaとした。さらに、30分〜24時間保持とした理由は30分未満では十分な密度を得ることが出来ず、また、24時間を越えると結晶粒が粗大化することからである。好ましくは処理温度1200〜1700℃、圧力100〜200MPa、処理時間1〜10時間保持である。   The reason why the pressure is set to 50 to 300 MPa is that a sufficient density cannot be obtained if the pressure is less than 50 MPa, and in order to obtain a temperature exceeding 300 MPa, the cost is increased in practical equipment. did. Furthermore, the reason for maintaining for 30 minutes to 24 hours is that a sufficient density cannot be obtained if it is less than 30 minutes, and crystal grains become coarse if it exceeds 24 hours. Preferably, the treatment temperature is 1200 to 1700 ° C., the pressure is 100 to 200 MPa, and the treatment time is 1 to 10 hours.

以下、本発明について実施例によって具体的に説明する。
表1に示すモリブデン粉末に対する各種添加粉末を混合した組成の粉末20kgを直径250mmで高さ80mmの円柱形状のHIP用鉄カプセルに充填し、脱気封入し、処理温度1350℃、圧力147MPa、5時間保持、圧力媒体ArのHIP処理条件にて、直径200mmで厚さ40mmの成形体を作製した。作製した成形体の評価として、相対密度(%)を示し、実使用環境に合わせた評価のために、カーボンヒーターを用いて2000℃、不活性雰囲気にて、熱処理を実施した。上記2000℃の熱処理を施した成形体より、2000℃熱処理後の膨れ、マトリックスであるモリブデンの結晶粒径で示した。その結果を表1に示す。
Hereinafter, the present invention will be specifically described with reference to examples.
20 kg of a powder having a composition in which various additive powders are mixed with the molybdenum powder shown in Table 1 is filled in a cylindrical iron capsule for HIP having a diameter of 250 mm and a height of 80 mm, deaerated and sealed, processing temperature of 1350 ° C., pressure of 147 MPa, 5 A molded body having a diameter of 200 mm and a thickness of 40 mm was produced under the time holding and HIP processing conditions of the pressure medium Ar. As an evaluation of the formed body, a relative density (%) was shown, and a heat treatment was performed in an inert atmosphere at 2000 ° C. using a carbon heater for an evaluation in accordance with an actual use environment. From the molded body subjected to the above heat treatment at 2000 ° C., the swelling after 2000 ° C. heat treatment and the crystal grain size of molybdenum as a matrix are shown. The results are shown in Table 1.

なお、成形体密度は、純モリブデン成形体の成形体密度と比較評価する。また、2000℃熱処理後のガスによる部材の局部的な膨れ、熱処理後結晶粒径(μm)の評価としては、研磨面を腐食し光学顕微鏡写真を撮影し、この写真に一定長さの試験直線を引き、この直線と結晶粒界との交点の数を測定し、[試験直線長さ(μm)]/[交点の数(個)]により評価した。   In addition, a molded object density is compared and evaluated with the molded object density of a pure molybdenum molded object. In addition, as for the evaluation of the local swelling of the member by the gas after the heat treatment at 2000 ° C. and the crystal grain size (μm) after the heat treatment, the polished surface was corroded and an optical microscope photograph was taken, and a test straight line of a certain length was taken on this photograph. , And the number of intersections between this straight line and the grain boundary was measured, and the evaluation was made by [test straight line length (μm)] / [number of intersections (pieces)].

Figure 0005579480
表1に示すように、No.1〜12は本発明例であり、No.13〜20は比較例である。
Figure 0005579480
As shown in Table 1, no. Nos. 1 to 12 are examples of the present invention. 13 to 20 are comparative examples.

表1に示すように、比較例No.20は純Moの場合であって、2000℃熱処理後膨れが観察され、熱処理後結晶粒径が大きい。比較例No.13は添加量が少ないために、2000℃熱処理後膨れが観察され、かつ熱処理後結晶粒径がやや大きい。比較例No.14は添加粉末の平均粒径が小さいために、2000℃熱処理後膨れが観察された。比較例No.15はMo粉末の平均粒径が小さいために、2000℃熱処理後膨れが観察される。   As shown in Table 1, Comparative Example No. No. 20 is pure Mo, swelling is observed after heat treatment at 2000 ° C., and the crystal grain size is large after heat treatment. Comparative Example No. Since No. 13 has a small addition amount, swelling after 2000 ° C. heat treatment is observed, and the crystal grain size after heat treatment is slightly large. Comparative Example No. In No. 14, since the average particle size of the additive powder was small, swelling was observed after heat treatment at 2000 ° C. Comparative Example No. In No. 15, since the average particle size of the Mo powder is small, swelling is observed after heat treatment at 2000 ° C.

比較例No.16はMo粉末の平均粒径が大きく、かつ添加粉末の添加量が少ないために、成形密度が低く、かつ2000℃熱処理後膨れが観察され、熱処理後結晶粒径がやや大きい。比較例No.17は添加粉末の添加量が少なく、かつ添加粉末の平均粒径が小さいために、2000℃熱処理後膨れが観察され、熱処理後結晶粒径がやや大きい。比較例No.18はMo粉末の平均粒径が小さく、かつ添加粉末の平均粒径が大きいために、成形密度が低い。   Comparative Example No. No. 16 has a large average particle size of Mo powder and a small amount of additive powder added, so the molding density is low, and swelling after 2000 ° C. heat treatment is observed, and the crystal particle size after heat treatment is slightly large. Comparative Example No. In No. 17, the amount of additive powder added was small and the average particle size of the additive powder was small, so swelling was observed after heat treatment at 2000 ° C., and the crystal grain size after heat treatment was slightly large. Comparative Example No. No. 18 has a low molding density because the average particle size of the Mo powder is small and the average particle size of the additive powder is large.

比較例No.19はMo粉末の平均粒径が大きく、かつ添加粉末の添加量が多いために、成形密度が低く、熱処理後結晶粒径が大きい。これに対し、本発明例No.1〜12はいずれもMo粉末の平均粒径、添加粉末の添加量、添加粉末の平均粒径が本発明の条件を満たしていることから、成形体密度が高く、2000℃熱処理後膨れが観察されず、かつ熱処理後結晶粒径は小さいことが分かる。   Comparative Example No. No. 19 has a large average particle diameter of Mo powder and a large amount of additive powder added, so that the molding density is low and the crystal grain diameter after heat treatment is large. On the other hand, the present invention example No. In Nos. 1 to 12, since the average particle size of the Mo powder, the amount of additive powder added, and the average particle size of the additive powder satisfy the conditions of the present invention, the density of the compact is high, and swelling is observed after heat treatment at 2000 ° C. It can be seen that the crystal grain size is not small after heat treatment.

このように、Mo粉末に、高温強度の高いW粉末等を添加することで、発生ガス圧力より高い強度が得られ、部材の変形を抑制でき、また、2000℃の高温使用時においても局部的膨れ発生・結晶粒粗大化を抑制して部材の長寿命化を実現し、かつ複雑な加工工程を必要せず、大型部材の作製も容易となる。さらに従来法では、高温溶解の用途(約2000℃)への使用の際には、高温熱処理工程が必要となりコストアップの原因となるが、本発明では必要としない等極めて優れた効果を奏するものである。


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
Thus, by adding W powder having a high temperature strength to the Mo powder, strength higher than the generated gas pressure can be obtained, deformation of the member can be suppressed, and even when used at a high temperature of 2000 ° C. Swelling generation and coarsening of crystal grains are suppressed to realize a long life of the member, and a complicated processing step is not required, and a large member can be easily manufactured. Furthermore, the conventional method requires a high-temperature heat treatment step when used for a high-temperature melting application (about 2000 ° C.), which causes an increase in cost. It is.


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (1)

Mo粉末に、Nb,TaおよびWの1種または2種以上の平均粒径が15〜50μmである添加粉末を、マトリックスとなる平均粒径が6〜30μmのモリブデン粉末に対し、20〜50原子%混合し、該混合粉末を処理温度1100〜2100℃、圧力50〜300MPaとなる条件にて、保持を30分〜24時間行うHIPにて固化成形してなることを特徴とするモリブデン合金。 An additive powder having an average particle size of 15 to 50 μm of one or more of Nb, Ta and W is added to Mo powder by 20 to 50 atoms with respect to molybdenum powder having an average particle size of 6 to 30 μm as a matrix. %, And the mixed powder is solidified and formed by HIP holding for 30 minutes to 24 hours under the conditions of a processing temperature of 1100 to 2100 ° C. and a pressure of 50 to 300 MPa .
JP2010084801A 2010-04-01 2010-04-01 Molybdenum alloy Expired - Fee Related JP5579480B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010084801A JP5579480B2 (en) 2010-04-01 2010-04-01 Molybdenum alloy
PCT/JP2011/057864 WO2011125663A1 (en) 2010-04-01 2011-03-29 Molybdenum alloy and process for producing same
KR1020127022475A KR20120136350A (en) 2010-04-01 2011-03-29 Molybdenum alloy and process for producing same
TW100111640A TWI491738B (en) 2010-04-01 2011-04-01 Molybdenum alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010084801A JP5579480B2 (en) 2010-04-01 2010-04-01 Molybdenum alloy

Publications (2)

Publication Number Publication Date
JP2011214112A JP2011214112A (en) 2011-10-27
JP5579480B2 true JP5579480B2 (en) 2014-08-27

Family

ID=44762610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010084801A Expired - Fee Related JP5579480B2 (en) 2010-04-01 2010-04-01 Molybdenum alloy

Country Status (4)

Country Link
JP (1) JP5579480B2 (en)
KR (1) KR20120136350A (en)
TW (1) TWI491738B (en)
WO (1) WO2011125663A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8820824B1 (en) * 2013-03-14 2014-09-02 Honda Motor Co., Ltd. Vehicle roof structure
JP6331019B2 (en) * 2014-04-28 2018-05-30 三菱マテリアル株式会社 Tungsten-molybdenum alloy electrode material for resistance welding
KR101725656B1 (en) 2014-08-29 2017-04-11 주식회사 엘지화학 Method for manufacturing rod-shaped molybdenum oxide and method for manufacturing composite of molybdenum oxide
JP2019173049A (en) * 2018-03-27 2019-10-10 山陽特殊製鋼株式会社 Powder for metal mold
WO2019188713A1 (en) * 2018-03-29 2019-10-03 株式会社アライドマテリアル Molybdenum material and method for producing same
CN114318101B (en) * 2021-12-29 2023-01-10 安徽尚欣晶工新材料科技有限公司 High-density fine-grain molybdenum-tantalum alloy and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196348A (en) * 1987-10-08 1989-04-14 Tokyo Tungsten Co Ltd Corrosion-resistant material
JPH1136067A (en) * 1997-07-18 1999-02-09 Hitachi Metals Ltd Molybdenum-tungsten based target
JP4432015B2 (en) * 2001-04-26 2010-03-17 日立金属株式会社 Sputtering target for thin film wiring formation
JP4574949B2 (en) * 2003-01-14 2010-11-04 株式会社東芝 Sputtering target and manufacturing method thereof
JP4721090B2 (en) * 2004-04-16 2011-07-13 日立金属株式会社 Manufacturing method of Mo-based target material
JP2008044244A (en) * 2006-08-17 2008-02-28 Hideaki Koda Stretching rod and blowing mold

Also Published As

Publication number Publication date
KR20120136350A (en) 2012-12-18
WO2011125663A1 (en) 2011-10-13
JP2011214112A (en) 2011-10-27
TW201209176A (en) 2012-03-01
TWI491738B (en) 2015-07-11

Similar Documents

Publication Publication Date Title
JP5579480B2 (en) Molybdenum alloy
JP5546880B2 (en) Molybdenum alloy
EP4083244A1 (en) Heat-resistant powdered aluminium material
WO2010021314A1 (en) Oxide-dispersion-strengthened alloy
JP2016180179A (en) Polycrystalline tungsten, tungsten alloy sintered compact, and method for producing same
EP4048463A1 (en) Printable powder material of fecral for additive manufacturing and an additive manufactured object and the uses thereof
JP2014019945A (en) Titanium alloy and method for producing the same
JP4376826B2 (en) Co-Cr alloy pellet and method for producing the same
JPWO2013058338A1 (en) Nickel-based intermetallic compound composite sintered material and method for producing the same
JP6552137B2 (en) Oxide particle dispersion strengthened Ni base super alloy
JP6667264B2 (en) Manufacturing method of high-rigidity iron-based sintered alloy
JP2015209367A (en) Composite sintered body
JP5876943B2 (en) Alloy and production method thereof
JP2017526813A (en) Corrosion-resistant article and production method
JP2013181213A (en) Oxide dispersion strengthening type nickel-based superalloy
JP6017372B2 (en) Ni-based boride-dispersed corrosion-resistant wear-resistant alloy having age-hardening properties
JP3987471B2 (en) Al alloy material
JP6217638B2 (en) Target material and manufacturing method thereof
WO2020031585A1 (en) METHOD FOR MANUFACTURING αFE-SIC COMPOSITE MATERIAL, AND αFE-SIC COMPOSITE MATERIAL
JP2016084534A (en) High density iron-based sintered body and manufacturing method therefor
JP2019077930A (en) Hard phase dispersed nickel group intermetallic compound composite sintered material, manufacturing method therefor, and corrosion resistant abrasion resistant component using the material
JP6860300B2 (en) Lightweight tungsten alloy, tools and friction stir welding equipment
JP4762862B2 (en) Method for producing MoVB target material
CA3239779A1 (en) Precipitation hardening powder metal composition
JP2013204115A (en) Brass alloy sintering extruded material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140709

R150 Certificate of patent or registration of utility model

Ref document number: 5579480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees