JP6735382B2 - Three-dimensional fine movement measuring device - Google Patents

Three-dimensional fine movement measuring device Download PDF

Info

Publication number
JP6735382B2
JP6735382B2 JP2019070985A JP2019070985A JP6735382B2 JP 6735382 B2 JP6735382 B2 JP 6735382B2 JP 2019070985 A JP2019070985 A JP 2019070985A JP 2019070985 A JP2019070985 A JP 2019070985A JP 6735382 B2 JP6735382 B2 JP 6735382B2
Authority
JP
Japan
Prior art keywords
dimensional
movement
fine movement
coarse
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019070985A
Other languages
Japanese (ja)
Other versions
JP2019109260A5 (en
JP2019109260A (en
Inventor
雅次 繁野
雅次 繁野
渡辺 和俊
和俊 渡辺
将史 渡邉
将史 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
Hitachi High Tech Science Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Science Corp filed Critical Hitachi High Tech Science Corp
Priority to JP2019070985A priority Critical patent/JP6735382B2/en
Publication of JP2019109260A publication Critical patent/JP2019109260A/en
Publication of JP2019109260A5 publication Critical patent/JP2019109260A5/ja
Application granted granted Critical
Publication of JP6735382B2 publication Critical patent/JP6735382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、ステージを駆動する機構を有する走査型プローブ顕微鏡等の3次元微動測定装置に関する。 The present invention relates to a three-dimensional fine movement measuring device such as a scanning probe microscope having a mechanism for driving a stage.

走査型プローブ顕微鏡は、カンチレバーの先端に取付けた探針を試料表面に近接又は接触させ、試料の表面形状を測定するものである。走査型プローブ顕微鏡の測定モードとしては、(1)探針と試料の間の原子間力を一定に保って試料の表面形状を測定するコンタクト・モード、(2)カンチレバーをピエゾ素子等によって共振周波数近傍で強制振動させ、探針を試料に近接させた時に、両者の間の間欠的な接触によって探針の振幅が減衰するのを利用して試料の形状を測定する方法(以下、適宜「ダイナミック・フォース・モード(DFM測定モード)」という)、(3)カンチレバーをピエゾ素子等によって共振周波数近傍で強制振動させ、探針を試料に近接させた時に両者の間に働く力によって探針の共振状態が変化するのを利用し、試料の形状及び物性を測定する方法(以下、適宜「ノンコンタクト・モード(NC-AFM測定モード)」という)、が知られている。 The scanning probe microscope measures a surface shape of a sample by bringing a probe attached to the tip of a cantilever into proximity with or in contact with the sample surface. The measurement modes of the scanning probe microscope are (1) contact mode in which the atomic force between the probe and the sample is kept constant and the surface shape of the sample is measured, (2) the resonance frequency of the cantilever using a piezo element, etc. A method of measuring the shape of the sample by utilizing the fact that the amplitude of the probe is attenuated by the intermittent contact between the two when the probe is brought close to the sample by forcibly vibrating in the vicinity.・"Force mode (DFM measurement mode)"), (3) The cantilever is forced to vibrate near the resonance frequency by a piezo element etc., and when the probe is brought close to the sample, the force between them acts to resonate the probe. A method of measuring the shape and physical properties of a sample by utilizing the change of state (hereinafter, referred to as "non-contact mode (NC-AFM measurement mode)") is known.

又、走査型プローブ顕微鏡は、試料をxy(平面)方向にそれぞれ走査する2つ(2軸)の微動機構(圧電素子等)と、試料をz(高さ)方向に走査する1つ(1軸)の微動機構(圧電素子等)とからなる微動部を備え、例えば微動部上に配置されたステージの表面に試料が載置されている。圧電素子に印加する電圧と圧電素子の変位はある程度比例するので、試料表面の高さ情報は圧電素子に印加した電圧から算出することができる。しかし、圧電素子の動作特性はヒステリシスやクリープを有するため、印加電圧から圧電素子の正確な位置を求めることは困難である。
そこで、圧電素子上にインピーダンスを利用した位置検出センサを設けた技術が開発されている(特許文献1参照)。そして、このような技術を用いることで、微動部の3つ(3軸)の圧電素子の位置をそれぞれ検出し、微動部上に配置された試料の3次元の位置を算出することが可能である。
Further, the scanning probe microscope includes two (two-axis) fine movement mechanisms (piezoelectric elements or the like) for scanning the sample in the xy (plane) directions and one (1) for scanning the sample in the z (height) direction. The sample is placed on the surface of a stage, which is provided on, for example, a fine movement unit including a fine movement mechanism (piezoelectric element or the like) for the axis. Since the voltage applied to the piezoelectric element is proportional to the displacement of the piezoelectric element to some extent, the height information of the sample surface can be calculated from the voltage applied to the piezoelectric element. However, since the operating characteristics of the piezoelectric element have hysteresis and creep, it is difficult to find the exact position of the piezoelectric element from the applied voltage.
Therefore, a technique has been developed in which a position detection sensor using impedance is provided on the piezoelectric element (see Patent Document 1). By using such a technique, it is possible to detect the positions of the three (three-axis) piezoelectric elements of the fine movement part and calculate the three-dimensional position of the sample placed on the fine movement part. is there.

特開2009-225654号公報JP 2009-225654 A

ところで、3軸の各圧電素子上の位置検出センサを用いて試料の3次元の位置を算出する場合には、各圧電素子についてそれぞれ検出した1軸の変位を3方向に組み合わせる。しかしながら、図6に示すように、圧電素子1100aは、移動方向(x方向)以外の直交する2軸(例えば、y方向)にもわずかに変位するので、圧電素子1100a上の位置検出センサ1100sで測定されるx方向の変位量がd1であるのに対し、実際の変位量はd1にy方向の微小な変位を合成したdxとなる。このため、3軸の各圧電素子の位置検出センサで検出した変位量を3方向に組み合わせても、実際の変位量との間で誤差が生じる。
一方、走査型プローブ顕微鏡で測定する試料は微細であることが多いため、この試料の位置を直接検出することは困難である。又、試料の位置を測定しようとしても、試料毎にステージ上の位置や試料の形状が異なるために測定条件も個々に異なり、測定条件の調整に多大な時間や労力を要する。
By the way, when the three-dimensional position of the sample is calculated by using the position detection sensor on each of the triaxial piezoelectric elements, the displacement of one axis detected for each piezoelectric element is combined in three directions. However, as shown in FIG. 6, since the piezoelectric element 1100a is slightly displaced in two orthogonal axes (for example, the y direction) other than the moving direction (x direction), the position detection sensor 1100s on the piezoelectric element 1100a can be used. The measured displacement amount in the x direction is d1, whereas the actual displacement amount is dx, which is a combination of d1 and a minute displacement in the y direction. Therefore, even if the displacement amounts detected by the position detection sensors of the triaxial piezoelectric elements are combined in the three directions, an error occurs between the displacement amount and the actual displacement amount.
On the other hand, since the sample measured by the scanning probe microscope is often fine, it is difficult to directly detect the position of this sample. Further, even if the position of the sample is to be measured, the position on the stage and the shape of the sample are different for each sample, so that the measurement conditions are also different, and it takes a lot of time and labor to adjust the measurement conditions.

本発明は上記の課題を解決するためになされたものであり、カンチレバー等の移動体を固定した固定部材の3次元の位置を、移動体の微動に比べて相対的に動かない基体部又は粗動部に固定された移動量検出手段で直接検出することで、固定部材、ひいては移動体の位置を簡易にかつ正確に測定できる3次元微動測定装置の提供を目的とする。 The present invention has been made to solve the above-mentioned problems, and a three-dimensional position of a fixing member, which fixes a moving body such as a cantilever, does not move relative to a fine movement of the moving body or a base portion. It is an object of the present invention to provide a three-dimensional fine movement measuring device that can easily and accurately measure the position of a fixed member, and by extension, the position of a moving body by directly detecting the amount of movement by means of a moving amount detecting means fixed to the moving part.

本発明の3次元微動測定装置は、カンチレバーをなす移動体と、前記移動体が固定される固定部材と、
前記固定部材が固定され、該固定部材を介して前記移動体を3次元に微動可能な3次元微動部と、前記3次元微動部よりも大きい移動量で粗動可能な3次元粗動部であって、前記3次元微動部が固定され、該3次元微動部を3次元のうち重力方向である一軸に粗動させる第1の3次元粗動部と、第1の3次元粗動部が粗動する軸と異なる二軸が粗動する第2の3次元粗動部とからなる3次元粗動部と、前記第1及び第2の3次元粗動部が固定される基体部と、
前記第1の3次元粗動部に固定されて前記固定部材の移動量を検出する移動量検出手段と、を備えた3次元微動測定装置であって、前記3次元微動部と前記第2の3次元粗動部とは前記基体部の別個の位置にそれぞれ対向するように固定され、前記第2の3次元粗動部の前記移動体側には測定対象物を配置する試料ステージが設置されてなる。
この3次元微動測定装置によれば、移動体が固定された固定部材の3次元の位置を、移動体の微動に比べて相対的に動かない3次元粗動部に固定された移動量検出手段で直接検出することで、固定部材、ひいては移動体の位置を簡易にかつ正確に測定できる。
又、移動体の反対側に配置される対象物を3次元粗動部を介して載置した場合、対象物が重いほど、対象物の自重により3次元の粗動位置が大きくドリフトする傾向にある。そこで、3次元粗動部の一軸を対象物と反対側の固定部材側に取り付けることで、上記ドリフトの影響を抑えて3次元粗動させることができる。
The three-dimensional fine movement measuring apparatus of the present invention includes a moving body forming a cantilever, a fixing member to which the moving body is fixed,
The fixing member is fixed, and includes a three-dimensional fine movement unit capable of finely moving the moving body in three dimensions via the fixing member, and a three-dimensional coarse movement unit capable of coarse movement with a movement amount larger than that of the three-dimensional fine movement unit. The three-dimensional fine movement unit is fixed, and a first three-dimensional coarse movement unit that roughly moves the three-dimensional fine movement unit to one axis in the three-dimensional direction, which is the direction of gravity, and a first three-dimensional coarse movement unit. A three-dimensional coarse moving section including a second three-dimensional coarse moving section in which two axes different from the coarse moving axis coarsely move; and a base section to which the first and second three-dimensional coarse moving sections are fixed,
A three-dimensional fine movement measuring device, comprising: a movement amount detecting means fixed to the first three-dimensional coarse movement portion to detect a movement amount of the fixing member, wherein the three-dimensional fine movement portion and the second The three-dimensional coarse movement unit is fixed so as to face each other at different positions of the base unit, and a sample stage for arranging an object to be measured is installed on the moving body side of the second three-dimensional coarse movement unit. Become.
According to this three-dimensional fine movement measuring device, the movement amount detecting means fixed to the three-dimensional coarse movement portion that does not move the three-dimensional position of the fixing member to which the moving body is fixed relative to the fine movement of the moving body. The position of the fixed member, and by extension, the moving body can be easily and accurately measured by directly detecting the position.
Further, when an object placed on the opposite side of the moving body is placed via the three-dimensional coarse movement part, the heavier the object, the more the three-dimensional coarse movement position tends to drift due to the weight of the object. is there. Therefore, by attaching one axis of the three-dimensional coarse movement unit to the fixed member side opposite to the object, the three-dimensional coarse movement can be performed while suppressing the influence of the drift.

発明の3次元微動測定装置において、前記基体部は側面から見てコ字状であってもよい。
発明の3次元微動測定装置において、前記3次元粗動部は、粗動制御回路によって独立にその位置を制御されてもよい。
本発明の3次元微動測定装置において、前記移動量検出手段は、前記固定部材の検出面を検出してもよい。
この3次元微動測定装置によれば、例えば検出面として高精度な回折格子(体積型ホログラム格子)を用い、これを回折レーザ光を検出する移動量検出手段で検出することで、移動体の位置をより正確に測定できる。
In the three-dimensional fine movement measuring device of the present invention, the base portion may be U-shaped when viewed from the side.
In the three-dimensional fine movement measuring device of the present invention, the position of the three-dimensional coarse movement unit may be independently controlled by a coarse movement control circuit.
In the three-dimensional fine movement measuring device of the present invention, the movement amount detecting means may detect the detection surface of the fixing member.
According to this three-dimensional fine movement measuring device, for example, a highly accurate diffraction grating (volume hologram grating) is used as the detection surface, and this is detected by the movement amount detection means for detecting the diffracted laser light, whereby the position of the moving body is detected. Can be measured more accurately.

前記検出面が3次元の各軸に配置され、前記移動量検出手段は前記各軸の検出面毎に設けられて対応する検出面を検出してもよい。
この3次元微動測定装置によれば、3次元の各軸の変位を移動量検出手段で検出することで、移動体の位置をより正確に測定できる。
The detection surface may be arranged on each of the three-dimensional axes, and the movement amount detection means may be provided for each detection surface of each of the axes to detect the corresponding detection surface.
According to this three-dimensional fine movement measuring device, the position of the moving body can be measured more accurately by detecting the displacement of each of the three-dimensional axes by the movement amount detecting means.

前記移動量検出手段が非接触型センサであると、移動体の位置をより正確に測定できる。 When the movement amount detecting means is a non-contact type sensor, the position of the moving body can be measured more accurately.

前記非接触型センサが静電容量、光干渉又は光回折を使用したセンサであると、移動体の位置をより正確に測定できる。 When the non-contact type sensor is a sensor using capacitance, optical interference or optical diffraction, the position of the moving body can be measured more accurately.

前記移動体の3次元の位置のうち少なくとも一軸の位置の制御を、前記移動量検出手段が検出した前記移動量に基づいたクローズドループ制御により行うための制御部を備えてもよい。
この3次元微動測定装置によれば、移動体の3次元の位置を正確に制御して高精度に位置決めしたり、移動量を制御しながら、移動体の位置を測定できる。
A control unit may be provided for controlling the position of at least one axis of the three-dimensional position of the moving body by closed loop control based on the movement amount detected by the movement amount detecting means.
According to this three-dimensional fine movement measuring device, the position of the moving body can be measured while accurately controlling the three-dimensional position of the moving body to perform positioning with high accuracy or controlling the moving amount.

本発明によれば、カンチレバー等の移動体を固定した固定部材の3次元の位置を、移動体の微動に比べて相対的に動かない基体部又は粗動部に固定された移動量検出手段で直接検出することで、固定部材、ひいては移動体の位置を簡易にかつ正確に測定できる。 According to the present invention, the three-dimensional position of the fixing member, which fixes the moving body such as the cantilever, is fixed by the movement amount detecting means fixed to the base portion or the coarse moving portion which does not move relatively compared to the fine movement of the moving body. By directly detecting, the position of the fixed member, and hence the moving body can be easily and accurately measured.

本発明の第1の実施形態に係る3次元微動測定装置(走査型プローブ顕微鏡)のブロック図である。1 is a block diagram of a three-dimensional fine movement measuring device (scanning probe microscope) according to a first embodiment of the present invention. 図1のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 参考例に係る3次元微動測定装置のブロック図である。It is a block diagram of the three-dimensional fine movement measurement device concerning a reference example. 本発明の別の実施形態に係る3次元微動測定装置の変形例を示すブロック図である。It is a block diagram which shows the modification of the three-dimensional fine movement measuring apparatus which concerns on another embodiment of this invention . 別の参考例に係る3次元微動測定装置のブロック図である。It is a block diagram of the three-dimensional fine movement measuring device concerning another reference example. 従来の圧電素子の変位を示す図である。It is a figure which shows the displacement of the conventional piezoelectric element.

以下、本発明の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の第1の実施形態に係る3次元微動測定装置(走査型プローブ顕微鏡)200Aのブロック図であり、図2は図1のA−A線に沿う断面図である。
図1において、走査型プローブ顕微鏡200Aは、先端に探針を保持するカンチレバー1と、カンチレバー取り付け部(斜面ブロック)101と、それぞれx、y、z方向に走査する圧電素子を積層した3軸の圧電素子から構成される円筒型のスキャナ111と、走査型プローブ顕微鏡の各構成部分を支持するフレームをなす基体部13と、非接触型センサ130と、非接触型センサ130からの検出信号を受ける検出面132と、3次元粗動部122と、3次元粗動部122上に設置された試料ステージ102と、全体を制御するプローブ顕微鏡コントローラー24及び制御部(コンピュータ)40等とを備える。
コンピュータ40は、走査型プローブ顕微鏡200Aの動作を制御するための制御基板、CPU(中央制御処理装置)、ROM、RAM等の記憶手段、インターフェース、操作部等を有する。
カンチレバー1、カンチレバー取り付け部101、スキャナ111、非接触型センサ130がそれぞれ特許請求の範囲の「移動体」、「固定部材」、「3次元微動部」、「移動量検出手段」に相当する。
FIG. 1 is a block diagram of a three-dimensional fine movement measuring device (scanning probe microscope) 200A according to the first embodiment of the present invention, and FIG. 2 is a sectional view taken along the line AA of FIG.
In FIG. 1, a scanning probe microscope 200A has a triaxial structure in which a cantilever 1 holding a probe at its tip, a cantilever mounting portion (slope block) 101, and piezoelectric elements for scanning in the x, y, and z directions are laminated. A cylindrical scanner 111 formed of a piezoelectric element, a base portion 13 that forms a frame that supports each component of the scanning probe microscope, a non-contact sensor 130, and detection signals from the non-contact sensor 130. The detection surface 132, the three-dimensional coarse movement part 122, the sample stage 102 installed on the three-dimensional coarse movement part 122, the probe microscope controller 24 and the control part (computer) 40 which control the whole are provided.
The computer 40 has a control board for controlling the operation of the scanning probe microscope 200A, a CPU (central processing unit), storage means such as ROM and RAM, an interface, and an operation section.
The cantilever 1, the cantilever mounting portion 101, the scanner 111, and the non-contact type sensor 130 correspond to the "moving body", "fixing member", "three-dimensional fine movement portion", and "movement amount detecting means" in the claims, respectively.

基体部13は、側面から見て略コ字状に形成され、コ字の下側部材の上面に3次元粗動部122が固定され、3次元粗動部122上に設置された試料ステージ102の所定位置に試料300が載置されている。
一方、コ字状の基体部13のコ字の上側部材の下面にスキャナ111が固定され、スキャナ111の下面にカンチレバー取り付け部101が固定されている。カンチレバー取り付け部101は先端面が斜面状の略四角柱をなし、当該先端面にカンチレバー1が片持ち式に取り付けられている。カンチレバー1は試料300に対向し、カンチレバー1の先端の探針が試料300に接触又は近接して試料300の表面形状や表面の特性を検出するようになっている。
The base portion 13 is formed in a substantially U-shape when viewed from the side surface, the three-dimensional coarse movement part 122 is fixed to the upper surface of the lower member of the U-shape, and the sample stage 102 installed on the three-dimensional coarse movement part 122. The sample 300 is placed at a predetermined position.
On the other hand, the scanner 111 is fixed to the lower surface of the U-shaped upper member of the U-shaped base portion 13, and the cantilever mounting portion 101 is fixed to the lower surface of the scanner 111. The cantilever mounting portion 101 is formed into a substantially rectangular column having a sloping end face, and the cantilever 1 is attached to the front end face in a cantilever manner. The cantilever 1 faces the sample 300, and the probe at the tip of the cantilever 1 contacts or approaches the sample 300 to detect the surface shape and surface characteristics of the sample 300.

そして、基体部13の上方に配置されたレーザ光源30からレーザ光が照射され、レーザ光はダイクロックミラー31を介して基体部13の上側部材を貫通する照射孔13hから下方に向かってカンチレバー1の背面に照射される。カンチレバー1から反射されたレーザ光は、ミラー32で反射されて変位検出器5で検出される。カンチレバー1の上下(z方向)の移動量は、ダイクロックミラー31へ入射されるレーザの光路の変化(入射位置)に反映される。従って、この入射位置からカンチレバー1の変位量が変位検出器5で検出されることになる。
このように、第1の実施形態の走査型プローブ顕微鏡200Aは、カンチレバー1に照射した光の反射光の位置ずれをカンチレバー1(探針)の変位として検出する光テコ方式を採用している。又、走査型プローブ顕微鏡200Aは、カンチレバー1が取り付けられたカンチレバー取り付け部101をスキャンして測定を行うレバースキャン方式の走査型プローブ顕微鏡となっている。
Then, laser light is emitted from a laser light source 30 arranged above the base portion 13, and the laser light is directed downward from an irradiation hole 13h penetrating an upper member of the base portion 13 via a dichroic mirror 31. Is illuminated on the back of the. The laser light reflected from the cantilever 1 is reflected by the mirror 32 and detected by the displacement detector 5. The amount of vertical movement (z direction) of the cantilever 1 is reflected in the change (incident position) of the optical path of the laser incident on the dichroic mirror 31. Therefore, the displacement detector 5 detects the displacement amount of the cantilever 1 from this incident position.
As described above, the scanning probe microscope 200A of the first embodiment employs the optical lever method in which the positional deviation of the reflected light of the light emitted to the cantilever 1 is detected as the displacement of the cantilever 1 (probe). Further, the scanning probe microscope 200A is a lever scanning scanning probe microscope that scans the cantilever mounting portion 101 to which the cantilever 1 is mounted for measurement.

プローブ顕微鏡コントローラー24は、後述するZ制御回路20、微動制御回路(X,Y,Z出力アンプ)22、粗動制御回路23、センサコントローラ25を有する。プローブ顕微鏡コントローラー24はコンピュータ40に接続されてデータの高速通信が可能である。コンピュータ40は、プローブ顕微鏡コントローラー24内の回路の動作条件を制御し、測定されたデータを取り込み制御し、表面形状測定、表面物性測定、周波数・振動特性、フォースカーブ測定、などを実現する。 The probe microscope controller 24 has a Z control circuit 20, a fine movement control circuit (X, Y, Z output amplifiers) 22, a coarse movement control circuit 23, and a sensor controller 25, which will be described later. The probe microscope controller 24 is connected to the computer 40 to enable high speed data communication. The computer 40 controls the operating conditions of the circuit in the probe microscope controller 24, fetches and controls the measured data, and realizes surface shape measurement, surface physical property measurement, frequency/vibration characteristics, force curve measurement, and the like.

スキャナ111は、カンチレバー取り付け部101(及びカンチレバー1)を3次元に移動(微動)させるものであり、カンチレバー取り付け部101をそれぞれxy(試料300の平面)方向に走査する2つの(2軸の)圧電素子111a、111bと、カンチレバー取り付け部101をz(高さ)方向に走査する圧電素子111cと、を備えた3軸の圧電素子から構成されている。
圧電素子は、電界を印加すると結晶がひずみ、外力で結晶を強制的にひずませると電界が発生する素子であり、圧電素子としては、セラミックスの一種であるPZT(チタン酸ジルコン酸鉛)を一般に使用することができるがこれに限られない。
圧電素子111a〜111cは微動制御回路22に接続され、微動制御回路22に所定の制御信号(電圧)を出力することで、圧電素子111a、111bをそれぞれxy方向へ駆動し、圧電素子111cをz方向へ駆動する。
The scanner 111 moves (finely moves) the cantilever mounting portion 101 (and the cantilever 1) three-dimensionally, and two (biaxial) scanning the cantilever mounting portion 101 in the xy (plane of the sample 300) direction. It is configured by a triaxial piezoelectric element including piezoelectric elements 111a and 111b and a piezoelectric element 111c that scans the cantilever mounting portion 101 in the z (height) direction.
A piezoelectric element is an element in which the crystal is distorted when an electric field is applied, and an electric field is generated when the crystal is forcibly distorted by an external force.As the piezoelectric element, PZT (lead zirconate titanate), which is a type of ceramics, is generally used. It can be used, but is not limited to this.
The piezoelectric elements 111a to 111c are connected to the fine movement control circuit 22, and by outputting a predetermined control signal (voltage) to the fine movement control circuit 22, the piezoelectric elements 111a and 111b are respectively driven in the xy directions, and the piezoelectric element 111c is moved in the z direction. Drive in the direction.

3次元粗動部122は、試料ステージ102を大まかに3次元移動させて試料300をカンチレバー1に近付けるものであり、xステージ122a、yステージ122b、zステージ122cを有する。3次元粗動部122は、例えばステップモータによりネジ機構を駆動して動作し、粗動制御回路23によって制御される。 The three-dimensional coarse movement unit 122 roughly moves the sample stage 102 in three dimensions to bring the sample 300 closer to the cantilever 1, and includes an x stage 122a, ay stage 122b, and az stage 122c. The three-dimensional coarse movement unit 122 operates by driving a screw mechanism by a step motor, for example, and is controlled by the coarse movement control circuit 23.

又、図2に示すように、カンチレバー取り付け部101は、先端面が斜面状の略四角柱をなしている。そして、非接触型センサ130は、3つの非接触型センサ130a〜130cからなり、非接触型センサ130aはカンチレバー取り付け部101の背面(基体部13)からカンチレバー取り付け部101に向き、非接触型センサ130b、130cはカンチレバー取り付け部101の両側面(図1の紙面方向)からカンチレバー取り付け部101に向いている。
一方、各非接触型センサ130a〜130cにそれぞれ対向するカンチレバー取り付け部101の3つの面に、それぞれ検出面132a〜132cが設置されている。
なお、非接触型センサ130aは、基体部13のコ字の上下に伸びる部材の内面に取り付けられて水平方向に延びるステー135aの先端に取り付けられている。又、非接触型センサ130b、130cは、それぞれ基体部13の上面に取り付けられて下方に伸びるステー135b、135cの先端に取り付けられている。
Further, as shown in FIG. 2, the cantilever mounting portion 101 has a substantially square pole with a slanted end surface. The non-contact sensor 130 is composed of three non-contact sensors 130a to 130c. The non-contact sensor 130a faces the cantilever mounting portion 101 from the back surface (base portion 13) of the cantilever mounting portion 101, and the non-contact sensor 130a. 130b and 130c face the cantilever mounting portion 101 from both side surfaces of the cantilever mounting portion 101 (the direction of the paper surface of FIG. 1).
On the other hand, detection surfaces 132a to 132c are provided on the three surfaces of the cantilever mounting portion 101 facing the non-contact sensors 130a to 130c, respectively.
The non-contact sensor 130a is attached to the tip of a stay 135a that is attached to the inner surface of a member of the base portion 13 that extends in the vertical direction and that extends in the horizontal direction. Further, the non-contact sensors 130b and 130c are attached to the upper surfaces of the base portion 13 and attached to the tips of stays 135b and 135c extending downward.

そして、第1の実施形態では、検出面132a〜132cが回折格子(体積型ホログラム格子)であり、非接触型センサ130a〜130cは対応するレーザ変位計であり、検出面132a〜132cも「移動量検出手段」の一部を構成する。
このレーザ変位計は、体積型ホログラム格子で回折されるレーザ光を検出するフォトディテクタ、及びレーザ光をS偏光とP偏光に分ける偏光ビームスプリッタ、ミラー等を有し、体積型ホログラム格子が一方向(1軸)に移動したときにレーザ光の干渉状態が変わり、格子1ピッチに応じて干渉光が明暗することにより、1軸での変位を検出する。
従って、例えば図2に示すように、検出面132a、132b、132cを、それぞれx、y、z方向を検出する向きに設置することで、後述するように各非接触型センサ130a〜130cにてカンチレバー取り付け部101のx、y、z方向の変位を検出するようになっている。
Then, in the first embodiment, the detection surfaces 132a to 132c are diffraction gratings (volume hologram holograms), the non-contact sensors 130a to 130c are corresponding laser displacement meters, and the detection surfaces 132a to 132c are also “movable”. It constitutes a part of the "quantity detecting means".
This laser displacement meter has a photodetector that detects laser light diffracted by the volume hologram grating, a polarization beam splitter that splits the laser light into S-polarized light and P-polarized light, a mirror, and the like. The interference state of the laser light changes when moving to one axis), and the interference light is bright and dark according to one pitch of the grating, so that the displacement on one axis is detected.
Therefore, for example, as shown in FIG. 2, by installing the detection surfaces 132a, 132b, and 132c in the directions that detect the x, y, and z directions, respectively, the non-contact sensors 130a to 130c will be described later. The displacement of the cantilever mounting portion 101 in the x, y, and z directions is detected.

次に、走査型プローブ顕微鏡200Aの動作について説明する。
まず、3次元粗動部122を動作させ、試料ステージ102を大まかに3次元移動させて試料300をカンチレバー1(探針)に近付ける。さらに、スキャナ111をxy方向に適宜移動させてカンチレバー1と試料300の位置関係を調整し、試料300の任意の場所を測定する。そして、スキャナ111の圧電素子111cにより、カンチレバー1は試料300に接触する位置までz方向に送られる。
このようにして、試料300にカンチレバー1の探針を近接又は接触させ、このとき、上記した光テコ方式によってカンチレバー1の変位を検出し、スキャナ111によりカンチレバー1の高さ(z)方向の変位量を一定に保ちながら試料300の表面(xy)を走査する。そして、カンチレバー1の変位量を一定に保つための制御信号を物性情報として、試料300の表面の物性を測定する。
なお、光テコ方式で変位を検出する際、変位検出器5の電気信号の振幅は、交流−直流変換機構6により直流のレベル信号に変換され、さらにZ制御回路20へ入力される。Z制御回路20は、カンチレバー1の高さ(z)方向の変位量を一定に保つように、微動制御回路22のz信号部へ制御信号を伝達し、z信号部は圧電素子111cをz方向へ駆動する制御信号(電圧)を出力する。すなわち、試料300と探針の間に働く原子間力によって生じるカンチレバー1の高さ(z)方向の変位を上述の機構で検出し、当該変位が一定になるように圧電素子111cを変位させる。そして、この状態で、微動制御回路22にてxy方向に圧電素子111a、111bを変位させて試料300のスキャンを行い、表面の形状や物性値をマッピングする。
Next, the operation of the scanning probe microscope 200A will be described.
First, the three-dimensional coarse moving unit 122 is operated to roughly three-dimensionally move the sample stage 102 to bring the sample 300 close to the cantilever 1 (probe). Further, the scanner 111 is appropriately moved in the xy directions to adjust the positional relationship between the cantilever 1 and the sample 300, and the arbitrary position of the sample 300 is measured. Then, the piezoelectric element 111c of the scanner 111 moves the cantilever 1 in the z direction to a position where the cantilever 1 contacts the sample 300.
In this way, the probe of the cantilever 1 is brought close to or in contact with the sample 300. At this time, the displacement of the cantilever 1 is detected by the optical lever method described above, and the scanner 111 displaces the cantilever 1 in the height (z) direction. The surface (xy) of the sample 300 is scanned while keeping the amount constant. Then, the physical property of the surface of the sample 300 is measured by using the control signal for keeping the displacement amount of the cantilever 1 constant as physical property information.
When the displacement is detected by the optical lever method, the amplitude of the electric signal of the displacement detector 5 is converted into a DC level signal by the AC/DC converting mechanism 6 and further input to the Z control circuit 20. The Z control circuit 20 transmits a control signal to the z signal portion of the fine movement control circuit 22 so that the displacement amount of the cantilever 1 in the height (z) direction is kept constant, and the z signal portion causes the piezoelectric element 111c to move in the z direction. The control signal (voltage) for driving to is output. That is, the displacement in the height (z) direction of the cantilever 1 caused by the interatomic force acting between the sample 300 and the probe is detected by the above mechanism, and the piezoelectric element 111c is displaced so that the displacement becomes constant. Then, in this state, the fine movement control circuit 22 displaces the piezoelectric elements 111a and 111b in the xy directions to scan the sample 300 and map the surface shape and physical property values.

ここで、第1の実施形態においては、走査型プローブ顕微鏡200Aでのカンチレバー1による試料300の表面の形状や物性の測定の際、カンチレバー取り付け部101の3次元の位置を、非接触型センサ130a〜130cで直接検出している。非接触型センサ130a〜130cの検出信号は、表面の形状や物性値をマッピングする際の実際の3次元の変位量としてセンサコントローラ25を経て制御部40に逐次取得される。そして、制御部40に取得された上記検出信号(情報)に基づいて、試料表面の3次元形状等の再構成を行う。このため、これらの3次元形状等のデータは、従来の走査型プローブ顕微鏡が圧電素子111a、111b、111cへの印加電圧に基づいて取得する3次元変位量に比べ、他方向からの干渉を受けない精度の高いものとなる。
よって、カンチレバー取り付け部101に固定されたカンチレバー1の位置、及びカンチレバー1に対向してカンチレバー1に接触又は近接する試料300の位置を正確に測定できるので、カンチレバー1により試料300をスキャンする際の位置決め精度、及び試料300の表面の形状や物性値の測定精度や解像度が向上する。
また、X‐Y平面内の動き(位置)は、非接触型センサ130a〜130cの検出信号に基づくクローズドループ制御を採用し、より高精度な位置決めを行いながらの移動を行わせることもできる。これにより、X‐Y平面内の位置決め誤差をより少なくした制御ができる。
なお、本実施形態で通常の表面形状を観察する場合、Z方向の動き(位置)については、上記検出信号(センサの値)を直接読み込むだけで十分なので、クローズドループ制御を行わなくてもよい。しかしながら、フォースカーブ測定のようにZ方向の移動量を制御する必要がある場合は、非接触型センサ130cのZ方向の検出信号に基づいたクローズドループ制御を行ってもよい。
クローズドループ制御は、プローブ顕微鏡コントローラー24及び制御部40で行うことができる。又、クローズドループ制御は、上記検出信号のデータを制御部40にフィードバックする公知のフィードバック制御である。
Here, in the first embodiment, when measuring the shape and physical properties of the surface of the sample 300 by the cantilever 1 in the scanning probe microscope 200A, the three-dimensional position of the cantilever mounting portion 101 is set to the non-contact sensor 130a. It is detected directly at ~130c. The detection signals of the non-contact type sensors 130a to 130c are sequentially acquired by the control unit 40 via the sensor controller 25 as an actual three-dimensional displacement amount when mapping the surface shape and physical property values. Then, the three-dimensional shape or the like of the sample surface is reconstructed based on the detection signal (information) acquired by the control unit 40. Therefore, the data such as these three-dimensional shapes are subject to interference from other directions as compared with the three-dimensional displacement amount acquired by the conventional scanning probe microscope based on the applied voltage to the piezoelectric elements 111a, 111b, and 111c. There will be no high precision.
Therefore, since the position of the cantilever 1 fixed to the cantilever mounting portion 101 and the position of the sample 300 facing the cantilever 1 and contacting or approaching the cantilever 1 can be accurately measured, the sample 300 is scanned by the cantilever 1. The positioning accuracy and the measurement accuracy and resolution of the surface shape and physical property value of the sample 300 are improved.
Further, the movement (position) in the XY plane may be closed loop control based on the detection signals of the non-contact type sensors 130a to 130c, so that the movement can be performed while performing more accurate positioning. This makes it possible to perform control with a smaller positioning error in the XY plane.
It should be noted that when observing a normal surface shape in the present embodiment, it is sufficient to directly read the detection signal (sensor value) for the movement (position) in the Z direction, and therefore closed loop control need not be performed. .. However, when it is necessary to control the movement amount in the Z direction as in the force curve measurement, closed loop control based on the detection signal in the Z direction of the non-contact sensor 130c may be performed.
The closed loop control can be performed by the probe microscope controller 24 and the control unit 40. The closed loop control is a known feedback control for feeding back the data of the detection signal to the control unit 40.

又、本実施形態では、検出面132a〜132cが3次元の各軸に配置され、非接触型センサ130a〜130cが各軸の検出面132a〜132c毎に設けられて対応する検出面を検出する。このため、検出面132a〜132cが設置されたカンチレバー取り付け部101の3次元の位置をより正確に測定することができる。 Further, in this embodiment, the detection surfaces 132a to 132c are arranged on each of the three-dimensional axes, and the non-contact type sensors 130a to 130c are provided for each of the detection surfaces 132a to 132c of each axis to detect the corresponding detection surface. .. Therefore, it is possible to more accurately measure the three-dimensional position of the cantilever mounting portion 101 on which the detection surfaces 132a to 132c are installed.

図3は参考例に係る走査型プローブ顕微鏡200Bのブロック図である。走査型プローブ顕微鏡200Bは、スキャナ111と基体部13との間に3次元粗動部122が介装され、試料ステージ102が基体部13のコ字の上側部材の下面に直接固定されていること、及び非接触型センサ130dの取付構造が異なること以外は、第1の実施形態に係る走査型プローブ顕微鏡200Aと同一であるので、同一の構成部分に同一符号を付して説明を省略する。
走査型プローブ顕微鏡200Bにおいて、3次元粗動部122とスキャナ111との間に粗動ステージ125が配置され、粗動ステージ125は3次元粗動部122の粗動に伴って3次元変位する。そして、スキャナ111は、粗動ステージ125の下面の一部に固定され、粗動ステージ125のうちスキャナ111が固定されていない面には下方に伸びるステー136が固定されている。さらに、ステー136の先端には、カンチレバー取り付け部101の背面に向く非接触型センサ130dが取り付けられている。
なお、第2の実施形態においては、非接触型センサ130dは1つのみ設置され、カンチレバー取り付け部101のz方向の変位を検出するようになっている。さらに、非接触型センサ130dは静電容量センサであり、検出面として第1の実施形態のような回折格子を非接触型センサ130dに対向するカンチレバー取り付け部101の1つの面(背面)に設置する必要はなく、上記背面がそのまま検出面となっている。
FIG. 3 is a block diagram of a scanning probe microscope 200B according to a reference example. In the scanning probe microscope 200B, a three-dimensional coarse movement unit 122 is interposed between the scanner 111 and the base unit 13, and the sample stage 102 is directly fixed to the lower surface of the U-shaped upper member of the base unit 13. , And the attachment structure of the non-contact type sensor 130d is different, the configuration is the same as that of the scanning probe microscope 200A according to the first embodiment, and therefore, the same components will be denoted by the same reference numerals and description thereof will be omitted.
In the scanning probe microscope 200B, a coarse movement stage 125 is arranged between the three-dimensional coarse movement unit 122 and the scanner 111, and the coarse movement stage 125 is three-dimensionally displaced along with the coarse movement of the three-dimensional coarse movement unit 122. The scanner 111 is fixed to a part of the lower surface of the coarse movement stage 125, and a stay 136 extending downward is fixed to the surface of the coarse movement stage 125 on which the scanner 111 is not fixed. Further, a non-contact sensor 130d facing the back surface of the cantilever mounting portion 101 is attached to the tip of the stay 136.
In the second embodiment, only one non-contact sensor 130d is installed to detect the displacement of the cantilever mounting portion 101 in the z direction. Further, the non-contact sensor 130d is a capacitance sensor, and the diffraction grating as in the first embodiment is installed as a detection surface on one surface (back surface) of the cantilever mounting portion 101 facing the non-contact sensor 130d. It is not necessary to do so, and the back surface is the detection surface as it is.

ここで、3次元粗動部122上に載置する試料300が重いほど、試料300の自重により、3次元の粗動位置が大きくドリフトする傾向にある。そこで、3次元粗動部122を試料300と反対側のカンチレバー取り付け部101側に取り付けることで、上記ドリフトの影響を抑えて3次元粗動させることができる。
なお、図3の例では、3次元粗動部122の3軸(xステージ122a、yステージ122b、zステージ122c)のすべてをカンチレバー取り付け部101側に取り付けたが、図4の走査型プローブ顕微鏡200Cに示すように、3次元粗動部122の3軸のうち少なくとも1軸をカンチレバー取り付け部101側に取り付けてもよい。特に、試料300の自重によるドリフトは上下(z)方向に顕著であるため、少なくともz軸(zステージ122c)をカンチレバー取り付け部101側に取り付けることが好ましい。この場合、3次元粗動部122の2軸(xステージ122a、yステージ122b)は、試料ステージ102と基体部13との間に介装されることになる。
ここで、走査型プローブ顕微鏡200Cにおいて、3次元粗動部122の2軸(xステージ122a、yステージ122b)が、特許請求の範囲の「第2の3次元粗動部」に相当する。
Here, the heavier the sample 300 placed on the three-dimensional coarse movement unit 122, the more the three-dimensional coarse movement position tends to drift due to the own weight of the sample 300. Therefore, by attaching the three-dimensional coarse movement portion 122 to the cantilever attachment portion 101 side opposite to the sample 300, it is possible to suppress the influence of the drift and perform the three-dimensional coarse movement.
In addition, in the example of FIG. 3, all three axes (x stage 122a, y stage 122b, z stage 122c) of the three-dimensional coarse movement unit 122 are attached to the cantilever attachment unit 101 side, but the scanning probe microscope of FIG. As shown in 200C, at least one of the three axes of the three-dimensional coarse movement section 122 may be attached to the cantilever attachment section 101 side. In particular, since the drift of the sample 300 due to its own weight is remarkable in the vertical (z) direction, it is preferable to mount at least the z axis (z stage 122c) on the cantilever mounting portion 101 side. In this case, the two axes of the three-dimensional coarse movement unit 122 (x stage 122a, y stage 122b) are interposed between the sample stage 102 and the base unit 13.
Here, in the scanning probe microscope 200C, the two axes of the three-dimensional coarse movement unit 122 (x stage 122a, y stage 122b) correspond to the "second three-dimensional coarse movement unit" in the claims.

但し、第2の実施形態のように基体部13に3次元粗動部122を固定した場合、非接触型センサ130aを基体部13に固定すると、3次元粗動部122によって大きく変位したスキャナ111上のカンチレバー取り付け部101の位置を検出しなければならず、非接触型センサ130aの計測レンジを超えてしまい、検出が困難になる。そこで、非接触型センサ130aを3次元粗動部122に固定することで、3次元粗動による変位の影響を受けずに、3次元粗動部122に固定されたスキャナ111の微動の変位量を正確に検出することができる。 However, when the three-dimensional coarse moving section 122 is fixed to the base section 13 as in the second embodiment, when the non-contact type sensor 130a is fixed to the base section 13, the scanner 111 which is largely displaced by the three-dimensional coarse moving section 122. The position of the upper cantilever mounting portion 101 must be detected, which exceeds the measurement range of the non-contact sensor 130a, which makes detection difficult. Therefore, by fixing the non-contact sensor 130a to the three-dimensional coarse movement unit 122, the displacement amount of the fine movement of the scanner 111 fixed to the three-dimensional coarse movement unit 122 is not affected by the displacement due to the three-dimensional coarse movement. Can be accurately detected.

第2の実施形態の走査型プローブ顕微鏡200Bにおいても、第1の実施形態と同様に、カンチレバー取り付け部101に固定されたカンチレバー1の位置、及びカンチレバー1に対向してカンチレバー1に接触又は近接する試料300の位置を正確に測定できるので、カンチレバー1により試料300をスキャンする際の位置決め精度、及び試料300の表面の形状や物性値の測定精度や解像度が向上する。 Also in the scanning probe microscope 200B of the second embodiment, similar to the first embodiment, the position of the cantilever 1 fixed to the cantilever mounting portion 101, and the cantilever 1 facing the cantilever 1 are brought into contact with or close to the cantilever 1. Since the position of the sample 300 can be accurately measured, the positioning accuracy when the sample 300 is scanned by the cantilever 1 and the measurement accuracy and resolution of the surface shape and physical property values of the sample 300 are improved.

図5は別の参考例に係る走査型プローブ顕微鏡200Dのブロック図である。走査型プローブ顕微鏡200Dは、スキャナ111が試料ステージ102と基体部13との間に介装されていること、及び非接触型センサ130aの取付構造が異なること以外は、第1の実施形態に係る走査型プローブ顕微鏡200Aと同一であるので、同一の構成部分に同一符号を付して説明を省略する。
このように、本実施形態の走査型プローブ顕微鏡200Dは、試料300を配置した試料ステージ102をスキャンして測定を行うサンプルスキャン方式の走査型プローブ顕微鏡となっている。
又、走査型プローブ顕微鏡200Dにおいて、基体部13のコ字の上下に伸びる部材の内面には、試料ステージ102の背面に向く非接触型センサ130aが取り付けられている。非接触型センサ130aは試料ステージ102のz方向の変位を検出するようになっている。又、非接触型センサ130aは第1の実施形態と同様のレーザ変位計であり、非接触型センサ130aに対向する試料ステージ102の1つの面(背面)に、回折格子からなる検出面132aを設置している。
ここで、走査型プローブ顕微鏡200Dにおいて、試料300、試料ステージ102が、それぞれ特許請求の範囲の「移動体」、「固定部材」に相当する。
FIG. 5 is a block diagram of a scanning probe microscope 200D according to another reference example. The scanning probe microscope 200D is according to the first embodiment except that the scanner 111 is interposed between the sample stage 102 and the base portion 13 and the mounting structure of the non-contact sensor 130a is different. Since it is the same as the scanning probe microscope 200A, the same components are designated by the same reference numerals and the description thereof will be omitted.
As described above, the scanning probe microscope 200D of the present embodiment is a sample scanning scanning probe microscope that scans the sample stage 102 on which the sample 300 is placed and performs measurement.
Further, in the scanning probe microscope 200D, a non-contact sensor 130a facing the back surface of the sample stage 102 is attached to the inner surface of the member of the base portion 13 that extends in the vertical direction of the U-shape. The non-contact sensor 130a detects displacement of the sample stage 102 in the z direction. Further, the non-contact type sensor 130a is a laser displacement meter similar to that of the first embodiment, and a detection surface 132a made of a diffraction grating is provided on one surface (back surface) of the sample stage 102 facing the non-contact type sensor 130a. It is installed.
Here, in the scanning probe microscope 200D, the sample 300 and the sample stage 102 correspond to the "moving body" and the "fixing member" in the claims, respectively.

走査型プローブ顕微鏡200Dは、第1の実施形態と同様に光テコ方式により、カンチレバー1(探針)の変位を検出し、スキャナ111を動作させて試料ステージ102側の高さを制御することで、カンチレバー1の高さ(z)方向の変位量を一定に保ちながら試料300の表面(xy)を走査する。 As in the first embodiment, the scanning probe microscope 200D detects the displacement of the cantilever 1 (probe) by the optical lever method and operates the scanner 111 to control the height on the sample stage 102 side. , The surface (xy) of the sample 300 is scanned while keeping the displacement amount of the cantilever 1 in the height (z) direction constant.

本発明は上記実施形態に限定されない。移動体は、カンチレバーや試料に限定されず、例えば、ICテスターなどに使用するプローバー(圧子)端子、精密加工の刃物(ボール盤のドリル、旋盤のバイト、フライス盤のエンドミル、NC旋盤の刃等)、パッチクランプシステム(マニピュレータ)などで使用するピペットが挙げられる。このうち、プローバーは細すぎてセンサで直接位置を測定することが困難であり、ドリルやエンドミルは回転しているためにセンサで直接位置を測定することが困難である。又、バイトは加工によって摩耗するので、センサで直接位置を測定しても値が不正確となる。ピペットは直径が10μm程度と細く、又、使い捨てタイプで一々付け替えて使用するため、センサで直接位置を測定しようとしても、付け替えの都度、センサの初期位置等の調整が必要になり困難となる。このように、移動体が固定される固定部材を測定することで、上記問題を回避できる。 The present invention is not limited to the above embodiment. The moving body is not limited to a cantilever or a sample, and for example, a prober (indenter) terminal used in an IC tester or the like, a precision machining blade (drill for a drilling machine, a lathe tool, an end mill for a milling machine, a blade for an NC lathe, etc.), Examples include pipettes used in patch clamp systems (manipulators) and the like. Among them, the prober is too thin and it is difficult to directly measure the position with the sensor, and it is difficult to directly measure the position with the sensor because the drill and the end mill are rotating. Further, since the cutting tool is worn by machining, the value becomes inaccurate even if the position is directly measured by the sensor. Since the pipette has a thin diameter of about 10 μm and is used as a disposable type by reattaching it one by one, it becomes difficult to adjust the initial position of the sensor each time it is reattached, even if the position is directly measured by the sensor. As described above, by measuring the fixing member to which the moving body is fixed, the above problem can be avoided.

移動量検出手段も上記に限定されず、例えば静電容量、光干渉又は光回折を使用したセンサ、光ファイバと光学干渉計からなる光学式センサ、歪ゲージ等の電気式センサでもよい。但し、静電容量、光干渉又は回折格子を用いたセンサを用いると検出精度が高いので好ましい。但し、非接触型センサ130は特に限定されず、であってもよい。
又、移動量検出手段は、固定部材の少なくとも一方向(一軸)の移動量を検出すればよい。
The moving amount detecting means is not limited to the above, and may be, for example, a sensor using capacitance, optical interference or optical diffraction, an optical sensor including an optical fiber and an optical interferometer, or an electric sensor such as a strain gauge. However, it is preferable to use a sensor using capacitance, optical interference, or a diffraction grating because the detection accuracy is high. However, the non-contact sensor 130 is not particularly limited and may be.
Further, the movement amount detecting means may detect the movement amount of the fixing member in at least one direction (one axis).

本発明の3次元微動測定装置を走査型プローブ顕微鏡に適用する場合、上記例では、試料とカンチレバーとの間の高さ(z)方向の変位量を一定に保つことで、試料の高さの変位から3次元形状像を測定したが、その他に (ii)共振状態の位相の値から位相像を、(iii)振動振幅の目標値との差により誤差信号像を、(iv)探針試料間の物性地から多機能測定像を測定することもできる。又、その他の周波数・振動特性を測定することもできる。 When the three-dimensional micromotion measuring device of the present invention is applied to a scanning probe microscope, in the above example, the amount of displacement of the sample in the height (z) direction is kept constant to maintain the height of the sample. A three-dimensional shape image was measured from the displacement. In addition, (ii) a phase image from the phase value in the resonance state, (iii) an error signal image due to the difference from the target value of the vibration amplitude, and (iv) a probe sample It is also possible to measure a multifunctional measurement image from the physical property between the two. Also, other frequency/vibration characteristics can be measured.

1 移動体(カンチレバー)
13 基体部
101 固定部材(カンチレバー取り付け部)
102 固定部材(試料ステージ)
111 3次元微動部(スキャナ)
122 3次元粗動部
122a、122b 第2の3次元粗動部(xステージ、yステージ)
130、130a〜130d 移動量検出手段
132、132a〜132c 検出面
200A〜200D 3次元微動測定装置(走査型プローブ顕微鏡)
300 移動体(試料)
1 Moving body (cantilever)
13 Base Part 101 Fixing Member (Cantilever Attachment Part)
102 fixing member (sample stage)
111 Three-dimensional fine movement unit (scanner)
122 three-dimensional coarse moving section 122a, 122b second three-dimensional coarse moving section (x stage, y stage)
130, 130a to 130d Moving amount detecting means 132, 132a to 132c Detection surface 200A to 200D Three-dimensional fine movement measuring device (scanning probe microscope)
300 Moving object (sample)

Claims (8)

カンチレバーをなす移動体と、
前記移動体が固定される固定部材と、
前記固定部材が固定され、該固定部材を介して前記移動体を3次元に微動可能な3次元微動部と、
前記3次元微動部よりも大きい移動量で粗動可能な3次元粗動部であって、前記3次元微動部が固定され、該3次元微動部を3次元のうち重力方向である一軸に粗動させる第1の3次元粗動部と、第1の3次元粗動部が粗動する軸と異なる二軸が粗動する第2の3次元粗動部とからなる3次元粗動部と、
前記第1及び第2の3次元粗動部が固定される基体部と、
前記第1の3次元粗動部に固定されて前記固定部材の移動量を検出する移動量検出手段と、を備えた3次元微動測定装置であって、
前記3次元微動部と前記第2の3次元粗動部とは前記基体部の別個の位置にそれぞれ対向するように固定され、
前記第2の3次元粗動部の前記移動体側には測定対象物を配置する試料ステージが設置されてなる3次元微動測定装置。
A moving body that forms a cantilever ,
A fixed member to which the moving body is fixed,
A three-dimensional fine movement unit to which the fixing member is fixed and which can finely move the moving body in three dimensions via the fixing member;
A three-dimensional coarse movement unit capable of coarsely moving with a movement amount larger than that of the three-dimensional fine movement unit, wherein the three-dimensional fine movement unit is fixed, and the three-dimensional fine movement unit is roughly moved to one axis in the direction of gravity in three dimensions. And a three-dimensional coarse moving section including a first three-dimensional coarse moving section to be moved and a second three-dimensional coarse moving section having two axes coarsely moving different from an axis about which the first three-dimensional coarse moving section coarsely moves. ,
A base portion to which the first and second three-dimensional coarse movement portions are fixed,
A three-dimensional fine movement measuring device, comprising: a movement amount detection unit fixed to the first three-dimensional coarse movement unit to detect a movement amount of the fixing member,
The three-dimensional fine movement portion and the second three-dimensional coarse movement portion are fixed so as to face different positions of the base portion, respectively.
A three-dimensional fine movement measuring device in which a sample stage for placing a measurement object is installed on the moving body side of the second three-dimensional coarse movement unit.
前記基体部は側面から見てコ字状である、請求項1に記載の3次元微動測定装置。 The three-dimensional fine movement measuring device according to claim 1, wherein the base portion is U-shaped when viewed from the side . 前記3次元粗動部は、粗動制御回路によって独立にその位置を制御される、請求項1又は2に記載の3次元微動測定装置。 The three-dimensional fine movement measuring device according to claim 1 or 2, wherein the position of the three-dimensional coarse movement unit is independently controlled by a coarse movement control circuit . 前記移動量検出手段は、前記固定部材の検出面を検出する請求項1〜3のいずれか一項に記載の3次元微動測定装置。 The three-dimensional fine movement measuring device according to any one of claims 1 to 3, wherein the movement amount detecting means detects a detection surface of the fixing member . 前記検出面が3次元の各軸に配置され、前記移動量検出手段は前記各軸の検出面毎に設けられて対応する検出面を検出する請求項4に記載の3次元微動測定装置。 The three-dimensional fine movement measuring device according to claim 4 , wherein the detection surface is arranged on each of three-dimensional axes, and the movement amount detecting means is provided for each detection surface of each of the axes to detect a corresponding detection surface . 前記移動量検出手段は、非接触型センサである請求項1〜5のいずれか一項に記載の3次元微動測定装置。 The three-dimensional fine movement measuring device according to claim 1 , wherein the movement amount detecting means is a non-contact type sensor . 前記非接触型センサは、静電容量、光干渉又は光回折を使用したセンサである請求項6に記載の3次元微動測定装置。 The three-dimensional micromotion measurement device according to claim 6, wherein the non-contact sensor is a sensor that uses capacitance, optical interference, or optical diffraction . 前記移動体の3次元の位置のうち少なくとも一軸の位置の制御を、前記移動量検出手段が検出した前記移動量に基づいたクローズドループ制御により行うための制御部を備えた請求項1〜7のいずれか一項に記載の3次元微動測定装置。 The control unit for controlling the position of at least one axis of the three-dimensional position of the moving body by closed loop control based on the movement amount detected by the movement amount detecting means . The three-dimensional fine movement measurement device according to any one of claims.
JP2019070985A 2019-04-03 2019-04-03 Three-dimensional fine movement measuring device Active JP6735382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019070985A JP6735382B2 (en) 2019-04-03 2019-04-03 Three-dimensional fine movement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019070985A JP6735382B2 (en) 2019-04-03 2019-04-03 Three-dimensional fine movement measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014141057A Division JP2016017862A (en) 2014-07-09 2014-07-09 Three-dimensional fine movement apparatus

Publications (3)

Publication Number Publication Date
JP2019109260A JP2019109260A (en) 2019-07-04
JP2019109260A5 JP2019109260A5 (en) 2019-08-15
JP6735382B2 true JP6735382B2 (en) 2020-08-05

Family

ID=67179619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019070985A Active JP6735382B2 (en) 2019-04-03 2019-04-03 Three-dimensional fine movement measuring device

Country Status (1)

Country Link
JP (1) JP6735382B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254540A (en) * 1995-03-16 1996-10-01 Hitachi Constr Mach Co Ltd Scanning probe microscope
JP2001188035A (en) * 1999-03-17 2001-07-10 Seiko Instruments Inc Scan probe microscope
JP2001135561A (en) * 1999-11-05 2001-05-18 Canon Inc Stage system, aligner and method of fabrication for device
JP2002214111A (en) * 2001-01-17 2002-07-31 Seiko Instruments Inc Probe microscope
CN1259558C (en) * 2004-09-07 2006-06-14 中国科学院上海光学精密机械研究所 Modular atomic force microscope
JP2006234507A (en) * 2005-02-23 2006-09-07 Hitachi Constr Mach Co Ltd Scanning probe microscope and its measurement method
KR101678041B1 (en) * 2010-02-17 2016-11-21 삼성전자 주식회사 Atomic Force Microscope and Specimen Measuring Method Using the Same

Also Published As

Publication number Publication date
JP2019109260A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
US7685869B2 (en) Nanoindenter
US9970851B2 (en) Measuring head for nanoindentation instrument and measuring method
KR20110104018A (en) Dynamic probe detection system
JP2004510131A (en) Dynamic tensile tester
CN105320152B (en) Three-dimensional micromovement measuring device
US8782810B2 (en) Scanning probe microscope having support stage incorporating a kinematic flexure arrangement
Lawrence et al. MEMS characterization using laser Doppler vibrometry
Chu et al. Two-dimensional optical accelerometer based on commercial DVD pick-up head
JP6735382B2 (en) Three-dimensional fine movement measuring device
US11644478B2 (en) Automated optimization of AFM light source positioning
JP6104667B2 (en) Actuator position calculation device, position calculation method, and position calculation program
JP4676658B2 (en) probe
JPH08136552A (en) Interatomic force microscope and similar scanning probe microscope
JPH06294638A (en) Surface profile measuring equipment
Hidaka et al. A high-resolution, self-sensing and self-actuated probe for micro-and nano-coordinate metrology and scanning force microscopy
JP2004069445A (en) Scanning type probe microscope
JP2002214111A (en) Probe microscope
WO1998057119A1 (en) Improved stylus profiler and array
JPH0989550A (en) High-accuracy surface configuration measuring method and device
JPH06281448A (en) Optical displacement sensor
JP3512259B2 (en) Scanning probe microscope
JP2001241933A (en) Probe driving system and length measuring apparatus for vibration detecting system
JP2004361174A (en) Hardness meter
JPH08178933A (en) Surface measuring device
JPH0743144A (en) Three-dimensional contour measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R150 Certificate of patent or registration of utility model

Ref document number: 6735382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250