JPH06294638A - Surface profile measuring equipment - Google Patents

Surface profile measuring equipment

Info

Publication number
JPH06294638A
JPH06294638A JP10352393A JP10352393A JPH06294638A JP H06294638 A JPH06294638 A JP H06294638A JP 10352393 A JP10352393 A JP 10352393A JP 10352393 A JP10352393 A JP 10352393A JP H06294638 A JPH06294638 A JP H06294638A
Authority
JP
Japan
Prior art keywords
probe
diffraction grating
support member
sample
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10352393A
Other languages
Japanese (ja)
Inventor
Yasushi Nakamura
泰 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP10352393A priority Critical patent/JPH06294638A/en
Publication of JPH06294638A publication Critical patent/JPH06294638A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To obtain a surface profile measuring equipment in which the surface can be measured at high speed through a compact structure. CONSTITUTION:A diffraction grating 3 is provided on the plane opposite to the probe supporting plane 1 of a probe supporting member 2. A drive element 5 holding the probe supporting member 2 is connected with a controller 29. A displacement detector 8 projects light 6 and detects the position of the diffraction grating 7. The displacement detector 8 is connected with the controller 29.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子間力顕微鏡(以下
AFMと略称する)および磁気顕微鏡等の試料面に探針
を近づけて試料から受ける物理量から試料の表面を観察
する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for observing the surface of a sample such as an atomic force microscope (hereinafter abbreviated as AFM) and a magnetic microscope by bringing a probe close to the sample surface and observing the physical quantity received from the sample.

【0002】[0002]

【従来の技術】従来、原子間力顕微鏡として、例えば特
開平3−296612号公報記載の発明がある。上記発
明を図10に示す。探針支持部材52は探針51を保持
している。試料53を探針51に近づけることにより探
針支持部材52が変位し、この変位量をレザー54,光
ファイバー55,レンズ56,ミラー57および光セン
サー58により構成した光てこ方式の検出器で検出す
る。
2. Description of the Related Art Conventionally, as an atomic force microscope, for example, there is an invention described in JP-A-3-296612. The above invention is shown in FIG. The probe support member 52 holds the probe 51. The probe support member 52 is displaced by bringing the sample 53 closer to the probe 51, and the displacement amount is detected by an optical lever type detector composed of a laser 54, an optical fiber 55, a lens 56, a mirror 57 and an optical sensor 58. .

【0003】試料53と探針51との距離を一定の位置
に保つために、駆動素子59で保持された光ファィバー
55,レンズ56,ミラー57,光センサー58,探針
支持部材52および探針51をZ方向に制御しながら、
同時に試料53表面をXY方向に走査することにより試
料面の凹凸を観察する。
In order to keep the distance between the sample 53 and the probe 51 at a constant position, the optical fiber 55 held by the drive element 59, the lens 56, the mirror 57, the optical sensor 58, the probe support member 52 and the probe. While controlling 51 in the Z direction,
At the same time, the surface of the sample 53 is scanned in the XY directions to observe the unevenness of the sample surface.

【0004】[0004]

【発明が解決しようとする課題】しかるに、前記従来技
術においては、試料と探針との距離を一定の位置に保つ
ために、光ファィバー,レンズ,ミラー,光センサー,
探針支持部材および探針全体を駆動素子で制御しなけれ
ばならず、駆動質量が大きくなり、制御特性が低く測定
速度がおそくなる。さらに、レンズと光センサーと探針
支持部材との位置関係が光の反射の法則で規定されるた
め、小型化できない。
However, in the above-mentioned prior art, in order to keep the distance between the sample and the probe at a constant position, an optical fiber, a lens, a mirror, an optical sensor,
Since the probe support member and the entire probe must be controlled by the drive element, the drive mass becomes large, the control characteristic becomes low, and the measurement speed becomes slow. Furthermore, the positional relationship among the lens, the optical sensor, and the probe support member is defined by the law of light reflection, so that the size cannot be reduced.

【0005】因って、本発明は前記従来技術における欠
点に鑑みて開発されたもので、小型で駆動部質量の小さ
い構成にすることにより小型で高速制御が可能な表面形
状測定装置を提供することを目的とする。
Therefore, the present invention was developed in view of the above-mentioned drawbacks of the prior art, and provides a surface shape measuring apparatus which is small in size and has a small driving portion mass and which can be controlled at high speed. The purpose is to

【0006】[0006]

【課題を解決するための手段および作用】本発明の表面
観察装置は、探針支持部材上に1方向以上の回折格子を
構成し、この格子の方向およびピッチにより光反射角を
設定するものである。
The surface observing device of the present invention comprises a diffraction grating in one or more directions on the probe support member, and the light reflection angle is set by the direction and pitch of the grating. is there.

【0007】図1は本発明の概念図、図2〜図5は回折
格子を示し、図2は斜視図、図3〜図5は回折格子の形
状例を示す概略平面図である。図1に示す様に、この装
置では探針1を試料4に対向して配置し、接近或いは接
触させることにより両者の間に物理量を作用させて探針
支持部材2を変位させる。この物理量は、具体的には、
AFMでは原子間力、磁気力顕微鏡では磁気力として作
用する。
FIG. 1 is a conceptual diagram of the present invention, FIGS. 2 to 5 show a diffraction grating, FIG. 2 is a perspective view, and FIGS. 3 to 5 are schematic plan views showing examples of the shape of the diffraction grating. As shown in FIG. 1, in this device, the probe 1 is arranged so as to face the sample 4, and a physical amount acts between the two to displace the probe support member 2 by approaching or contacting them. This physical quantity is
AFM acts as an atomic force, and a magnetic force microscope acts as a magnetic force.

【0008】駆動素子5は、探針1で試料4の面上を2
次元に走査し、さらに探針支持部材2の変位量を変位検
出器8で検出し、制御器29によりこの変位量を一定に
するようにZ方向の制御動作をおこなう。この時、前記
Z方向の制御動作をモニタする事により試料4の面形状
を測定できる。
The driving element 5 is a probe 1 which moves the surface of the sample 4 two times.
Then, the displacement detector 8 detects the amount of displacement of the probe support member 2, and the controller 29 performs a control operation in the Z direction so as to make the displacement constant. At this time, the surface shape of the sample 4 can be measured by monitoring the control operation in the Z direction.

【0009】探針1を保持している探針支持部材2は、
板バネ等の弾性部材で構成され、図2に示す様に、探針
1が保持されている面の反対面に回折格子3を構成す
る。変位検出器8は、レーザー光を投光する機能および
投光した光が回折格子により回折した光の位置を検出す
る機能を有する。
The probe support member 2 holding the probe 1 is
It is composed of an elastic member such as a leaf spring, and as shown in FIG. 2, the diffraction grating 3 is formed on the surface opposite to the surface on which the probe 1 is held. The displacement detector 8 has a function of projecting a laser beam and a function of detecting the position of the light diffracted by the diffraction grating.

【0010】投射光6と回折光7の角度θは、前記回折
格子へのレーザー光入射角を1とし、反射角をθ、レー
ザー光の波長をλ、回折格子ピッチをPとすると、P
(sinI+sinθ)=mλで表される。mは、m次
回折光の次数。
The angle θ between the projected light 6 and the diffracted light 7 is P, where the incident angle of the laser light on the diffraction grating is 1, the reflection angle is θ, the wavelength of the laser light is λ, and the diffraction grating pitch is P.
It is represented by (sinI + sinθ) = mλ. m is the order of the m-th order diffracted light.

【0011】このように回折格子3の格子方向および格
子ピッチを変化させることにより、任意の方向に回折光
を出す事が出来る。回折光7は、探針支持部材2が変化
した時その回折角が変化し、これを変位検出器8により
検出してその変位量を知る事が出来る。
By changing the grating direction and the grating pitch of the diffraction grating 3 in this way, it is possible to emit diffracted light in any direction. The diffraction angle of the diffracted light 7 changes when the probe supporting member 2 changes, and the displacement detector 8 can detect this and know the displacement amount.

【0012】[0012]

【実施例1】図6は本実施例を示す概略構成図である。
支持体11は、レーザー光源16,レンズ22,センサ
14,センサ15,駆動素子5および粗動機構26を保
持している。探針1は、図2に示す通り、探針支持部材
2の先端へ試料4に対向して配置され、回折格子23は
探針1に裏面にあたる位置へ構成されている。探針支持
部材2は駆動素子5により保持されている。探針支持部
材2としては充分に薄い燐青銅の箔片または半導体作製
技術により作製されたSi箔を用いる。
First Embodiment FIG. 6 is a schematic configuration diagram showing this embodiment.
The support 11 holds the laser light source 16, the lens 22, the sensor 14, the sensor 15, the drive element 5, and the coarse movement mechanism 26. As shown in FIG. 2, the probe 1 is arranged at the tip of the probe supporting member 2 so as to face the sample 4, and the diffraction grating 23 is arranged at a position corresponding to the back surface of the probe 1. The probe support member 2 is held by the drive element 5. As the probe support member 2, a sufficiently thin phosphor bronze foil piece or a Si foil manufactured by a semiconductor manufacturing technique is used.

【0013】レーザー光源16およびレンズ22は回折
格子23に対向した位置に配置する。センサ14および
センサ15は回折格子23の格子ピッチとレーザー光源
16とで決まる回折角θに準じて配置する。回折角は、
例として波長0.8μmのレーザー光源16に対し、格
子ピッチ2μmでは23.6度の方向に1次回折光が発
生する。センサ14およびセンサ15は、ポジションセ
ンサまたは2分割センサ等の市販センサで構成されてい
る。
The laser light source 16 and the lens 22 are arranged at positions facing the diffraction grating 23. The sensors 14 and 15 are arranged according to the diffraction angle θ determined by the grating pitch of the diffraction grating 23 and the laser light source 16. The diffraction angle is
As an example, with respect to the laser light source 16 having a wavelength of 0.8 μm, the first-order diffracted light is generated in the direction of 23.6 degrees when the grating pitch is 2 μm. The sensors 14 and 15 are commercially available sensors such as a position sensor or a two-divided sensor.

【0014】センサ14およびセンサ15の出力はそれ
ぞれ増幅器17および増幅器18にはいり、加算器19
および制御回路20で処理されて駆動素子5のZ方向制
御信号となる。さらに、制御回路20の出力と駆動素子
5とで生成されるXY走査信号はモニタ部21に入力す
る。制御回路20は一般的はPID(比例・積分・微
分)制御回路で構成されている。
The outputs of the sensor 14 and the sensor 15 are sent to an amplifier 17 and an amplifier 18, respectively, and an adder 19
And is processed by the control circuit 20 to be a Z direction control signal of the driving element 5. Further, the XY scanning signal generated by the output of the control circuit 20 and the driving element 5 is input to the monitor unit 21. The control circuit 20 is generally composed of a PID (proportional / integral / derivative) control circuit.

【0015】駆動素子5は、圧電素子と簡単な走査信号
発生回路とで構成された微動機構であり、紙面に垂直な
方向をY方向とするXYZの直交3方向へ動作可能に構
成されている。粗動機構26はXYZ方向に動作するス
テージ等で構成されている。
The drive element 5 is a fine movement mechanism composed of a piezoelectric element and a simple scanning signal generating circuit, and is configured to be operable in three orthogonal directions of XYZ, where the direction perpendicular to the paper surface is the Y direction. . The coarse movement mechanism 26 is composed of a stage or the like that operates in the XYZ directions.

【0016】以上の構成から成る装置は、探針1と試料
4との位置を粗調整する粗動機構26を動作させて試料
4を探針1に近づけることにより、探針1と試料4との
間に力が働き、探針支持部材2が変位する。この変位量
を検出するためのレーザー光源16から出射した光はレ
ンズ22で集光されて回折格子23に投光する。
In the apparatus having the above-described structure, the coarse movement mechanism 26 for roughly adjusting the positions of the probe 1 and the sample 4 is operated to bring the sample 4 close to the probe 1, thereby making the probe 1 and the sample 4 closer to each other. A force acts between the two, and the probe support member 2 is displaced. The light emitted from the laser light source 16 for detecting the displacement amount is condensed by the lens 22 and projected onto the diffraction grating 23.

【0017】この結果得られる回折光をセンサ14とセ
ンサ15とで受光し、探針支持部材2の変位にともなう
角度変化を光てこ検出法の原理に基づき、位置変化とし
て検出する。センサ14,15からの出力を、増幅器1
7,18により位置信号となるように演算し、両信号を
加算器19で加算する。試料4の表面の凹凸変化による
探針支持部材2の変位を一定に制御するため、探針支持
部材2を駆動素子5によりZ方向に作動させる。
The diffracted light obtained as a result is received by the sensor 14 and the sensor 15, and the change in angle due to the displacement of the probe support member 2 is detected as a change in position based on the principle of the optical lever detection method. The output from the sensors 14 and 15 is fed to the amplifier 1
The position signals are calculated by 7 and 18, and both signals are added by the adder 19. In order to control the displacement of the probe support member 2 due to the change in the unevenness of the surface of the sample 4 to be constant, the probe support member 2 is operated in the Z direction by the drive element 5.

【0018】この時センサ14とセンサ15上の光は、
駆動素子5による動き量に従い互いに逆方向に推移し、
両者の出力を加算器19で加算する事により推移した量
は打ち消し合い加算器19の出力変化はない。この事
は、制御動作による探針支持部材2の変位感度を無く
し、試料4の凹凸による変位変化のみを検出できる作用
をする。
At this time, the light on the sensors 14 and 15 is
According to the amount of movement by the drive element 5, the directions change in opposite directions,
The amount changed by adding the outputs of the both in the adder 19 cancels each other out, and the output of the adder 19 does not change. This serves to eliminate the displacement sensitivity of the probe support member 2 due to the control operation and to detect only the displacement change due to the unevenness of the sample 4.

【0019】探針支持部材2のZ方向作動は駆動素子5
により行い、加算器19の出力を一定にするように制御
回路20の出力をフィードバック制御する。さらに、駆
動素子5は試料4をXY方向に走査する。この時のXY
方向走査信号と制御回路20の制御信号とによりモニタ
部21で試料表面形状を表示する。
The operation of the probe support member 2 in the Z direction is performed by the drive element 5.
The output of the control circuit 20 is feedback-controlled so that the output of the adder 19 becomes constant. Further, the drive element 5 scans the sample 4 in the XY directions. XY at this time
The surface shape of the sample is displayed on the monitor unit 21 by the directional scanning signal and the control signal of the control circuit 20.

【0020】本実施例によれば、高速制御が可能とな
る。
According to this embodiment, high speed control is possible.

【0021】[0021]

【実施例2】図7および図8は本実施例を示し、図7は
概略構成図、図8は投光配置図である。本実施例では、
前記実施例1と同様な構成部分には同一番号を付してそ
の説明を省略する。支持体24は、前記実施例1の他に
センサ27およびセンサ28を保持する。探針支持部材
2は、図4或いは図5に示す様な回折格子を構成する。
[Embodiment 2] FIGS. 7 and 8 show the present embodiment, FIG. 7 is a schematic configuration diagram, and FIG. In this embodiment,
The same components as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. The support 24 holds a sensor 27 and a sensor 28 in addition to the first embodiment. The probe support member 2 constitutes a diffraction grating as shown in FIG. 4 or 5.

【0022】図8の投光配置図に図示する様に、センサ
27およびセンサ28は前記実施例1で示した図3の格
子方向に直角な方向へ回折する回折角に準じて配置す
る。センサ27およびセンサ28は、ポジションセンサ
および2分割センサ等のセンサで構成する。
As shown in the light projection arrangement diagram of FIG. 8, the sensors 27 and 28 are arranged in accordance with the diffraction angle diffracted in the direction perpendicular to the grating direction of FIG. 3 shown in the first embodiment. The sensors 27 and 28 are sensors such as a position sensor and a two-divided sensor.

【0023】センサ27およびセンサ28の出力は、そ
れぞれ増幅器31および増幅器32に入り、これらを加
算器33に入力する。加算器33の出力は、駆動素子5
で生成されるXY走査信号と同時に表示器34に入力す
る。
The outputs of the sensor 27 and the sensor 28 enter the amplifier 31 and the amplifier 32, respectively, and input them to the adder 33. The output of the adder 33 is the drive element 5
It is input to the display unit 34 at the same time as the XY scanning signal generated in.

【0024】本実施例では、粗動機構26,探針1,探
針支持部材3,駆動素子5,センサ14,センサ15,
レーザー光源16,レンズ22,増幅器17,増幅器1
8,加算器19,制御回路20およびモニタ部21は前
記実施例1と同様に動作し、探針支持部材2の変位を一
定に制御する。
In this embodiment, the coarse movement mechanism 26, the probe 1, the probe support member 3, the drive element 5, the sensor 14, the sensor 15,
Laser light source 16, lens 22, amplifier 17, amplifier 1
8, the adder 19, the control circuit 20, and the monitor unit 21 operate in the same manner as in the first embodiment, and control the displacement of the probe support member 2 to be constant.

【0025】この時、試料面の摩擦等による探針支持部
材2の撓み変位量を検出するため、前記実施例1の回折
格子23に垂直方向な格子要素を付加した回折格子25
を構成し、紙面に垂直なY方向に探針支持部材2を走査
する。このため、レーザー光はセンサ14および15に
回折するとともに、センサ27およびセンサ28に回折
する。
At this time, in order to detect the amount of bending displacement of the probe support member 2 due to friction on the sample surface, a diffraction grating 25 in which a vertical grating element is added to the diffraction grating 23 of the first embodiment.
And scans the probe support member 2 in the Y direction perpendicular to the paper surface. Therefore, the laser light is diffracted by the sensors 14 and 15 and also diffracted by the sensors 27 and 28.

【0026】センサ27とセンサ28上での光位置変化
は、前記実施例1の増幅器17,増幅器18および加算
器19と同等に作用する増幅器31,増幅器32および
加算器33で演算し、撓み変位量として表示器34に表
示する。表示器34は、駆動素子5で生成されるXY走
査信号と前記加算器33の出力である撓み変位量とを同
期して表示することにより、試料4の表面特性を測定で
きる。
The change in the light position on the sensor 27 and the sensor 28 is calculated by the amplifier 31, the amplifier 32 and the adder 33, which have the same functions as the amplifier 17, the amplifier 18 and the adder 19 of the first embodiment, and the deflection displacement. The quantity is displayed on the display 34. The display 34 can measure the surface characteristics of the sample 4 by synchronously displaying the XY scanning signal generated by the driving element 5 and the deflection displacement amount output from the adder 33.

【0027】本実施例によれば、試料の表面特性を高精
度で測定できる。
According to this embodiment, the surface characteristics of the sample can be measured with high accuracy.

【0028】[0028]

【実施例3】図9は本実施例を示す概略構成図である。
本実施例における粗動機構26,探針1,探針支持部材
2,回折格子23,センサ14,センサ15,増幅器,
増幅器18,加算器19,制御回路20およびモニタ部
21の構成は前記実施例1と同様である。
Third Embodiment FIG. 9 is a schematic configuration diagram showing this embodiment.
In this embodiment, the coarse movement mechanism 26, the probe 1, the probe support member 2, the diffraction grating 23, the sensor 14, the sensor 15, the amplifier,
The configurations of the amplifier 18, the adder 19, the control circuit 20, and the monitor unit 21 are the same as those in the first embodiment.

【0029】XY微動機構45は、粗動機構26で固定
されて試料4を保持し、紙面に垂直な面と左右平行な面
X・Y方向に動作する。Z微動機構35は、探針支持部
材2を保持し、粗動機構29に保持されてZ方向に動
く。XY微動機構45およびZ微動機構35は、円筒型
圧電素子等の圧電アクチュエータで構成する。
The XY fine movement mechanism 45 is fixed by the coarse movement mechanism 26, holds the sample 4, and operates in the planes X and Y parallel to the plane perpendicular to the paper surface and to the left and right. The Z fine movement mechanism 35 holds the probe support member 2, is held by the coarse movement mechanism 29, and moves in the Z direction. The XY fine movement mechanism 45 and the Z fine movement mechanism 35 are composed of a piezoelectric actuator such as a cylindrical piezoelectric element.

【0030】レーザー光源16,レンズ22,光アイソ
レータ42は同軸上に配置され、ダイクロックミラー4
3により偏光された光を回折格子23に対向した位置に
配置された対物レンズ44を通して回折格子23に投射
できるよう配置する。角度微動機構46はダイクロック
ミラー43を保持し、光学的中心軸を中心に回転機構を
構成する。
The laser light source 16, the lens 22, and the optical isolator 42 are coaxially arranged, and the dichroic mirror 4 is used.
The light polarized by 3 is arranged so that it can be projected onto the diffraction grating 23 through an objective lens 44 arranged at a position facing the diffraction grating 23. The angle fine movement mechanism 46 holds the dichroic mirror 43 and constitutes a rotation mechanism about the optical center axis.

【0031】対物レンズ44,プリズム38,接眼レン
ズ36,ハーフミラー39,照明レンズ40および光源
41は通常の顕微鏡の構成である。カメラ37は、対物
レンズ44の結像位置に配置し、その出力をビデオモニ
ター48に接続する。赤外カットフィルタ47は、ハー
フミラー39とダイクロックミラー43との間に配置す
る。
The objective lens 44, the prism 38, the eyepiece lens 36, the half mirror 39, the illumination lens 40 and the light source 41 have the structure of an ordinary microscope. The camera 37 is arranged at the image forming position of the objective lens 44, and its output is connected to the video monitor 48. The infrared cut filter 47 is arranged between the half mirror 39 and the dichroic mirror 43.

【0032】本実施例では、粗動機構26,探針1,探
針支持部材2,駆動素子5,センサ14,センサ15,
増幅器17,増幅器18,加算器19,制御回路20お
よびモニタ部21は前記実施例1と同様に動作する。レ
ーザー光源16から出射されるレーザー光は、レンズ2
2,光アイソレータ42,ダイクロックミラー43およ
び対物レンズ44を通り、回折格子23上に投射され
る。
In this embodiment, the coarse movement mechanism 26, the probe 1, the probe support member 2, the drive element 5, the sensor 14, the sensor 15,
The amplifier 17, the amplifier 18, the adder 19, the control circuit 20, and the monitor unit 21 operate in the same manner as in the first embodiment. The laser light emitted from the laser light source 16 is reflected by the lens 2
2, passes through the optical isolator 42, the dichroic mirror 43, and the objective lens 44, and is projected onto the diffraction grating 23.

【0033】光アイソレータ42は、回折格子23上で
反射した0次回折光がレーザー光源16に戻るのを防ぐ
働きをする。ダイクロックミラー43は、顕微鏡構成部
の光学系光軸と前記レーザー光源16の光学軸を合わせ
る働きをし、レーザー光源16で出射される赤外光を反
射し、可視光を透過する働きをする。このように構成す
ることにより探針支持部材2および試料4表面上を顕微
鏡観察出来ると同時に、レーザー光を回折格子23上に
投射できる。
The optical isolator 42 has a function of preventing the 0th-order diffracted light reflected on the diffraction grating 23 from returning to the laser light source 16. The dichroic mirror 43 functions to align the optical axis of the optical system of the microscope component with the optical axis of the laser light source 16, reflects infrared light emitted from the laser light source 16, and transmits visible light. . With this configuration, the surfaces of the probe support member 2 and the sample 4 can be observed with a microscope, and at the same time, laser light can be projected onto the diffraction grating 23.

【0034】光源41,照明レンズ40およびハーフミ
ラー39は顕微鏡用落射照明として試料面を照明作用す
る。プリズム38は観察像を接眼レンズ36とカメラ3
7に分配する働きをする。ビデオモニター48は、カメ
ラで捕らえた観察像をモニタする。赤外カットフィルタ
47は、観察時に有害となる回折格子23で反射した赤
外光がダイクロックミラー43で完全に反射されずに透
過してしまった光が、目49或いはカメラ37に入射し
ないよう赤外線をカットする機能を持つ。
The light source 41, the illumination lens 40 and the half mirror 39 illuminate the sample surface as epi-illumination for a microscope. The prism 38 displays the observation image on the eyepiece 36 and the camera 3.
It works to distribute to 7. The video monitor 48 monitors the observation image captured by the camera. The infrared cut filter 47 prevents the infrared light reflected by the diffraction grating 23, which is harmful during observation, from passing through the dichroic mirror 43 without being completely reflected by the eye 49 or the camera 37. Has the function of cutting infrared rays.

【0035】角度微動機構46は、ダイクロックミラー
43の角度補正調整機構であり、探針支持部材2が傾い
て取り付けられた場合、レーザー光の回折角がセンサ1
4,15に対してずれてしまうため、レーザー光源16
の光学軸をダイクロックミラー43で回転して投射角を
変えることにより、回折角を変えてセンサ14,15上
にレーザー光が入射するように調整する。粗動機構29
は、探針支持部材2を対物レンズ44に対して調整し、
レーザー光の投射位置を変える機能を持つ。
The angle fine movement mechanism 46 is an angle correction adjustment mechanism of the dichroic mirror 43, and when the probe support member 2 is mounted at an inclination, the diffraction angle of the laser beam is detected by the sensor 1.
Laser light source 16
The optical axis of is rotated by the dichroic mirror 43 to change the projection angle so that the diffraction angle is changed so that the laser light is incident on the sensors 14 and 15. Coarse movement mechanism 29
Adjusts the probe support member 2 with respect to the objective lens 44,
It has a function to change the projection position of laser light.

【0036】本実施例によれば、試料の表面を光学的に
観察できる。
According to this embodiment, the surface of the sample can be optically observed.

【0037】[0037]

【発明の効果】以上説明したように、本発明に係る表面
形状測定装置によれば、コンパクトな構成で高速測定可
能な表面観察がおこなえる。
As described above, according to the surface profile measuring apparatus of the present invention, the surface observation capable of high speed measurement can be performed with a compact structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の概念図である。FIG. 1 is a conceptual diagram of the present invention.

【図2】回折格子を示す斜視図である。FIG. 2 is a perspective view showing a diffraction grating.

【図3】回折格子の形状例を示す概略平面図である。FIG. 3 is a schematic plan view showing an example of the shape of a diffraction grating.

【図4】回折格子の形状例を示す概略平面図である。FIG. 4 is a schematic plan view showing an example of the shape of a diffraction grating.

【図5】回折格子の形状例を示す概略平面図である。FIG. 5 is a schematic plan view showing an example of the shape of a diffraction grating.

【図6】実施例1を示す概略構成図である。FIG. 6 is a schematic configuration diagram showing a first embodiment.

【図7】実施例2を示す概略構成図である。FIG. 7 is a schematic configuration diagram showing a second embodiment.

【図8】実施例2を示す投光配置図である。FIG. 8 is a light emitting layout diagram showing a second embodiment.

【図9】実施例3を示す概略構成図である。FIG. 9 is a schematic configuration diagram showing a third embodiment.

【図10】従来例を示す概略構成図である。FIG. 10 is a schematic configuration diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 探針 2 探針支持部材 3 回折格子 4 試料 5 駆動素子 6 投射光 7 回折光 8 変位検出器 29 制御器 1 probe 2 probe support member 3 diffraction grating 4 sample 5 driving element 6 projection light 7 diffracted light 8 displacement detector 29 controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料面との間に作用する力を検出する探
針と、これを支持する探針支持部材と、前記探針の変位
を検出する変位検出器と、前記試料面と前記探針とを3
次元的に相対運動させる駆動素子と、前記変位検出器の
出力に基づき前記探針と前記試料面とを一定の位置に保
つ制御器とを有した試料表面を観察する表面形状測定装
置において、前記探針支持部材の変位検出面を1方向以
上の回折格子で構成したことを特徴とする表面形状測定
装置。
1. A probe for detecting a force acting between the probe and a sample surface, a probe support member for supporting the probe, a displacement detector for detecting displacement of the probe, the sample surface and the probe. Needle and 3
In a surface shape measuring device for observing a sample surface having a driving element for moving the two-dimensionally relatively, and a controller for keeping the probe and the sample surface at a constant position based on the output of the displacement detector, A surface shape measuring apparatus characterized in that a displacement detecting surface of a probe supporting member is composed of a diffraction grating in one or more directions.
JP10352393A 1993-04-06 1993-04-06 Surface profile measuring equipment Withdrawn JPH06294638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10352393A JPH06294638A (en) 1993-04-06 1993-04-06 Surface profile measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10352393A JPH06294638A (en) 1993-04-06 1993-04-06 Surface profile measuring equipment

Publications (1)

Publication Number Publication Date
JPH06294638A true JPH06294638A (en) 1994-10-21

Family

ID=14356290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10352393A Withdrawn JPH06294638A (en) 1993-04-06 1993-04-06 Surface profile measuring equipment

Country Status (1)

Country Link
JP (1) JPH06294638A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6279389B1 (en) * 1998-11-05 2001-08-28 Nanodevices, Inc. AFM with referenced or differential height measurement
JP2006514274A (en) * 2003-01-31 2006-04-27 フラウンホファー‐ゲゼルシャフト ツール フォーダールング デル アンゲヴァンテン フォーシュング エー・ファウ Near-field optical microscope probe with suppressed scattered light and manufacturing method thereof
WO2007094365A1 (en) * 2006-02-14 2007-08-23 Japan Science And Technology Agency Measuring probe, sample surface measuring apparatus and sample surface measuring method
WO2018177685A1 (en) * 2017-03-31 2018-10-04 Carl Zeiss Smt Gmbh Apparatus and method for a scanning probe microscope

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6279389B1 (en) * 1998-11-05 2001-08-28 Nanodevices, Inc. AFM with referenced or differential height measurement
JP2006514274A (en) * 2003-01-31 2006-04-27 フラウンホファー‐ゲゼルシャフト ツール フォーダールング デル アンゲヴァンテン フォーシュング エー・ファウ Near-field optical microscope probe with suppressed scattered light and manufacturing method thereof
WO2007094365A1 (en) * 2006-02-14 2007-08-23 Japan Science And Technology Agency Measuring probe, sample surface measuring apparatus and sample surface measuring method
US7557933B2 (en) 2006-02-14 2009-07-07 Japan Science And Technology Agency Measuring probe, sample surface measuring apparatus and sample surface measuring method
JP4546535B2 (en) * 2006-02-14 2010-09-15 独立行政法人科学技術振興機構 Measuring probe, sample surface measuring apparatus, and sample surface measuring method
WO2018177685A1 (en) * 2017-03-31 2018-10-04 Carl Zeiss Smt Gmbh Apparatus and method for a scanning probe microscope
TWI675206B (en) * 2017-03-31 2019-10-21 德商卡爾蔡司Smt有限公司 Apparatus and method for a scanning probe microscope
JP2020512563A (en) * 2017-03-31 2020-04-23 カール・ツァイス・エスエムティー・ゲーエムベーハー Apparatus and method for scanning probe microscope
US11237185B2 (en) 2017-03-31 2022-02-01 Carl Zeiss Smt Gmbh Apparatus and method for a scanning probe microscope
US11796563B2 (en) 2017-03-31 2023-10-24 Carl Zeiss Smt Gmbh Apparatus and method for a scanning probe microscope

Similar Documents

Publication Publication Date Title
US7591171B2 (en) Atomic force microscope
US5408094A (en) Atomic force microscope with light beam emission at predetermined angle
EP0406413A1 (en) Scanning type tunnel microscope
US8345260B2 (en) Method of detecting a movement of a measuring probe and measuring instrument
US4959552A (en) Microscope arranged for measuring microscopic structures
JPH08505952A (en) Inspection interferometer with scanning function
US8269157B2 (en) Optical imaging system
JPH06294638A (en) Surface profile measuring equipment
JP2008051690A (en) Optical displacement detecting mechanism, and surface information measuring device using the same
JP3939028B2 (en) Oblique incidence interferometer
JP2791121B2 (en) Micro surface shape measuring device
JPH07301516A (en) Surface shape measuring instrument
JPH08136552A (en) Interatomic force microscope and similar scanning probe microscope
JP2009300236A (en) Displacement detecting device
JP3250788B2 (en) Scanning probe microscope
JPH0980059A (en) Scanner system
JPH07244058A (en) Surface shape measuring device
JPH1054834A (en) Measuring method of scan probe microscope
JP3333111B2 (en) Scanning probe microscope and unit used for scanning probe microscope
JP2568385B2 (en) Scanning probe microscope
JPH04161808A (en) Surface shape measuring apparatus
JPH08240597A (en) Surface shape measuring device
JPH09229943A (en) Scanning-type probe microscope
JPH0426685B2 (en)
JP2802252B2 (en) Surface profile measuring device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704