JPH0989550A - High-accuracy surface configuration measuring method and device - Google Patents

High-accuracy surface configuration measuring method and device

Info

Publication number
JPH0989550A
JPH0989550A JP26781095A JP26781095A JPH0989550A JP H0989550 A JPH0989550 A JP H0989550A JP 26781095 A JP26781095 A JP 26781095A JP 26781095 A JP26781095 A JP 26781095A JP H0989550 A JPH0989550 A JP H0989550A
Authority
JP
Japan
Prior art keywords
movement mechanism
probe
displacement
coarse
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26781095A
Other languages
Japanese (ja)
Inventor
Takayuki Goto
崇之 後藤
Kimiyuki Mitsui
公之 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26781095A priority Critical patent/JPH0989550A/en
Publication of JPH0989550A publication Critical patent/JPH0989550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To markedly enlarge a measuring range along height by inputting a signal of the difference between a detected physical quantity and a target value to a drive mechanism, and operating a coarse adjustment mechanism so that the amount of displacement of a driven mechanism is held constant. SOLUTION: The distance between a probe 1 and a subject 12 for measurement is detected from physical quantities such as tunnel current, electrostatic capacity, interatomic force, and optical, acoustic, and dynamical variations. A signal of the difference between each of the detected physical quantities and a desired value for keeping the physical quantity constant is input to a coarse adjustment mechanism 3 and a fine adjustment mechanism 2. As a result, the mechanisms 3, 2 are controlled simultaneously, so the mechanism 3 whose response speed is lower than that of the mechanism 2 operates to correspond to measurements of the components with larger amplitude of a surface configuration. Therefore, the mechanism 3 is operated in such a way as to hold the amount of variation of the mechanism 2 constant, so as to enable a measuring range along height to be significantly increased without lowering measuring resolution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は機械部品や加工面等
の表面粗さ測定や微細な部品の形状・寸法測定等、高さ
方向の測定範囲が大きくかつ高精度の測定が必要とされ
る表面形状の測定に適用して有用な発明である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention requires a large measurement range in the height direction and high precision measurement such as surface roughness measurement of machine parts and machined surfaces and shape / dimension measurement of fine parts. This invention is useful when applied to the measurement of surface shape.

【0002】[0002]

【従来の技術】従来、表面形状の高精度測定には、触針
式表面粗さ測定法、光学式表面粗さ測定法、走査型トン
ネル顕微鏡(STM)、分子間力顕微鏡(AFM)、レ
ーザ顕微鏡が用いられている。
2. Description of the Related Art Conventionally, a stylus type surface roughness measuring method, an optical type surface roughness measuring method, a scanning tunneling microscope (STM), an intermolecular force microscope (AFM), a laser have been used for highly accurate surface shape measurement. A microscope is used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術においては、次の問題がある。すなわち、触針式
表面粗さ測定法では各測定倍率毎に測定分解能が決まっ
ており、大きな段差や粗さの値の大きな物を測定する場
合、測定倍率を下げる、すなわち、被測定物表面の断面
曲線の高さ方向の測定範囲を大きくするとそれにつれて
測定分解能が低くなってしまうという問題がある。ま
た、光学式表面粗さ測定法では、断面曲線の高さ方向の
測定範囲が3μm程度と小さく、さらに、走査型トンネ
ル顕微鏡、分子間力顕微鏡では、高さ方向の測定範囲が
最大でも10μm程度であり、これらの測定法ではナノ
メートルオーダの精度の高い測定分解能を有しているに
もかかわらず、高さ方向の測定範囲が小さいという問題
がある。また、レーザ顕微鏡では、測定分解能が最高で
も10nm程度であり、測定分解能が低いという問題が
ある。
However, the above-mentioned prior art has the following problems. That is, in the stylus type surface roughness measurement method, the measurement resolution is determined for each measurement magnification, and when measuring an object with a large step or a large roughness value, the measurement magnification is lowered, that is, If the measurement range in the height direction of the cross-section curve is increased, the measurement resolution will decrease accordingly. Further, in the optical surface roughness measuring method, the measuring range in the height direction of the sectional curve is as small as about 3 μm. Furthermore, in the scanning tunnel microscope and the intermolecular force microscope, the measuring range in the height direction is about 10 μm at the maximum. However, these measurement methods have a problem that the measurement range in the height direction is small, although the measurement resolution has high accuracy of the order of nanometers. Further, in the laser microscope, the measurement resolution is about 10 nm at the maximum, and there is a problem that the measurement resolution is low.

【0004】本発明は、従来法の前記課題に鑑み成され
たものであり、数ナノメートルの高精度分解能を有し、
且つ、高さ方向の測定範囲が数十μm以上と大きな、高
精度表面形状測定方法とその装置を提供することを目的
とする。
The present invention has been made in view of the above problems of the conventional method, and has a high precision resolution of several nanometers,
Moreover, it is an object of the present invention to provide a high-accuracy surface shape measuring method and its apparatus, which has a large measuring range in the height direction of several tens of μm or more.

【0005】[0005]

【課題を解決するための手段】本発明はかかる課題を解
決するために、請求項1記載の発明において、被測定物
の表面と探針との距離を、トンネル電流、静電容量、原
子間力、光学的変化、音響的変化、力学的変化その他の
物理量として検出し、前記探針あるいは前記被測定物を
被測定物表面の面内方向、具体的には非測定物表面と平
行な方向(X軸方向)に移動させ、かつ、前記物理量が
一定値となるように前記探針を前記被測定物表面の面外
方向、具体的には前記表面と垂直な方向(Z軸方向)に
移動させる為の駆動機構の変位を検出する事によって、
前記被測定物表面の形状を測定する高精度表面形状測定
方法において、前記駆動機構を大移動量で且つ移動分解
能の低い粗動機構と、小移動量で且つ移動分解能の高い
微動機構とを用い、前記探針により検出された前記物理
量と物理量を一定に保つための目標値との差から成る信
号を前記粗動機構及び前記微動機構に入力し、粗動機構
と微動機構をほぼ同時に協調して制御することにより、
微動機構の変位量がほぼ一定となるように粗動機構を作
動させるようにした高精度表面形状測定方法を提案す
る。
In order to solve the above problems, the present invention provides the method according to claim 1 in which the distance between the surface of the object to be measured and the probe is determined by the tunnel current, the electrostatic capacity, and the interatomic distance. Detected as force, optical change, acoustic change, mechanical change or other physical quantity, the probe or the object to be measured is in the in-plane direction of the surface of the object to be measured, specifically, the direction parallel to the surface of the non-object to be measured. The probe is moved in the (X-axis direction), and the probe is moved in the out-of-plane direction of the measured object surface, specifically, in the direction perpendicular to the surface (Z-axis direction) so that the physical quantity has a constant value. By detecting the displacement of the drive mechanism for moving,
In the high-accuracy surface shape measuring method for measuring the shape of the surface of the object to be measured, the drive mechanism is used with a coarse movement mechanism having a large movement amount and a low movement resolution, and a fine movement mechanism having a small movement amount and a high movement resolution. , A signal consisting of the difference between the physical quantity detected by the probe and a target value for keeping the physical quantity constant is input to the coarse movement mechanism and the fine movement mechanism, and the coarse movement mechanism and the fine movement mechanism are coordinated almost at the same time. By controlling
We propose a high-accuracy surface profile measuring method that activates the coarse movement mechanism so that the displacement of the fine movement mechanism becomes almost constant.

【0006】そしてかかる発明を達成するための具体的
な手段として、請求項2記載の発明において、図1及び
図2に示すように、被測定物12の表面と探針1との距
離を、トンネル電流、静電容量、原子間力、光学的変
化、音響的変化、力学的変化その他の物理量として検出
する手段と、前記探針あるいは前記被測定物を被測定物
表面の面内方向に移動させる移動手段と、前記物理量が
一定値となるように前記探針を前記被測定物表面の面外
方向に移動させる駆動機構を備えた高精度表面形状測定
装置において、大移動量で且つ移動分解能の低い(特に
応答速度の遅い)粗動機構3と、小移動量で且つ移動分
解能の高い(特に応答速度の早い)微動機構2から成る
前記探針1の駆動機構と、前記探針1により検出された
前記物理量と物理量を一定に保つ為の目標値との差から
成る信号を前記粗動機構3及び前記微動機構2に入力
し、粗動機構3と微動機構2をほぼ同時に協調して制御
することで、微動機構2の変位量が常にほぼ一定となる
ように粗動機構3を作動させる制御手段と、前記微動機
構2及び前記粗動機構3の変位を検出する変位検出手段
8/9と、を具えてなる高精度表面形状測定装置を提案
する。
As a concrete means for achieving the invention, in the invention described in claim 2, as shown in FIGS. 1 and 2, the distance between the surface of the object to be measured 12 and the probe 1 is set as follows. Means for detecting tunnel current, electrostatic capacitance, atomic force, optical change, acoustic change, mechanical change and other physical quantities, and moving the probe or the object to be measured in the in-plane direction of the surface of the object to be measured. In the high-precision surface profile measuring device including a moving mechanism for moving the probe and a drive mechanism for moving the probe in the out-of-plane direction of the surface of the object to be measured so that the physical quantity has a constant value, a large moving amount and a moving resolution Of the coarse movement mechanism 3 having a low movement speed (especially low response speed) and the fine movement mechanism 2 having a small movement amount and a high movement resolution (especially high response speed) and the drive mechanism for the probe 1 and the probe 1. The detected physical quantity and physical quantity By inputting a signal consisting of a difference from a target value for keeping it constant to the coarse movement mechanism 3 and the fine movement mechanism 2 and controlling the coarse movement mechanism 3 and the fine movement mechanism 2 almost simultaneously, the fine movement mechanism 2 Control means for activating the coarse movement mechanism 3 so that the amount of displacement is substantially constant, and displacement detection means 8/9 for detecting the displacements of the fine movement mechanism 2 and the coarse movement mechanism 3. We propose a precision surface profile measuring device.

【0007】ここで大(小)移動量、移動分解能の低い
(高い)、応答速度の遅い(早い)粗動機構3と微動機
構2との相対的関係を単に示すものである。
Here, the relative relationship between the coarse movement mechanism 3 and the fine movement mechanism 2 having a large (small) movement amount, a low (high) movement resolution, and a slow (fast) response speed is merely shown.

【0008】この場合、粗動機構3と微動機構2をほぼ
同時に協調して制御することを容易化する為に、先端に
前記探針1が取り付けられた応答速度の早い微動機構2
を、応答速度の遅い粗動機構3の自由端側に取付けて構
成するのが良い。そしてさらに具体的には、例えば変位
生成手段としての圧電素子4a、4bと、弾性ヒンジよ
り成る平行ばね3a、3aを2段直列に連結する等の構
成により、前記圧電素子4a、4bの変位を拡大する変
位拡大手段30とを具えてなる粗動機構3と、前記粗動
機構3の、例えば変位拡大手段30の自由端側に取り付
けられ、かつ、先端に前記探針1が取り付けられた圧電
素子から成る微動機構2とから構成するのがよい。
In this case, in order to facilitate the control of the coarse movement mechanism 3 and the fine movement mechanism 2 in a coordinated manner at substantially the same time, the fine movement mechanism 2 having a fast response speed with the probe 1 attached to the tip thereof.
Is preferably attached to the free end side of the coarse movement mechanism 3 having a slow response speed. More specifically, for example, the piezoelectric elements 4a and 4b as displacement generating means and the parallel springs 3a and 3a formed of elastic hinges are connected in two stages in series. A piezoelectric device having a coarse movement mechanism 3 including a displacement enlargement means 30 for enlarging and a coarse movement mechanism 3 attached to, for example, the free end side of the displacement enlargement means 30 and having the probe 1 attached to the tip thereof. It is preferable that the fine movement mechanism 2 is composed of an element.

【0009】[0009]

【発明の実施の形態】本発明によれば、探針1と被測定
物12間の距離を、トンネル電流、静電容量、原子間
力、光学的変化、音響的変化、力学的変化等の物理量に
より検出し、前記探針1により検出された前記物理量
と、物理量を一定に保つ為の目標値との差から成る信号
を粗動機構3及び微動機構2に入力する。この結果粗動
機構3と微動機構2の制御は同時に行われるので、微動
機構2に比べて応答速度の遅い粗動機構3は、表面形状
のうちの、振幅の大きい成分の測定に、応答の速い微動
機構2は微小な振幅成分の測定に対応した動きをするこ
とになる。従って、微動機構2の変位量が常にほぼ一定
となるように粗動機構3が作動させることとなり、測定
分解能を低下させることなく、高さ方向の測定範囲を飛
躍的に大きくすることが可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, the distance between the probe 1 and the object 12 to be measured can be calculated by using tunnel current, electrostatic capacitance, atomic force, optical change, acoustic change, mechanical change, etc. A signal, which is detected by a physical quantity and is a difference between the physical quantity detected by the probe 1 and a target value for keeping the physical quantity constant, is input to the coarse movement mechanism 3 and the fine movement mechanism 2. As a result, the coarse movement mechanism 3 and the fine movement mechanism 2 are controlled at the same time, so that the coarse movement mechanism 3 having a slower response speed than the fine movement mechanism 2 does not respond to the measurement of a component having a large amplitude in the surface shape. The fast fine movement mechanism 2 makes a movement corresponding to the measurement of a minute amplitude component. Therefore, the coarse movement mechanism 3 is operated so that the displacement amount of the fine movement mechanism 2 is always substantially constant, and the measurement range in the height direction can be dramatically increased without lowering the measurement resolution. Become.

【0010】以下図面を参照して本発明の実施形態を説
明する。但し、この実施形態に記載されている構成部品
の寸法、材質、形状、その相対的配置等は特に特定的な
記載がないかぎりは、この発明の範囲をそれに限定する
趣旨ではなく、単なる説明例にすぎない。図1は本発明
の一実施例を示す表面形状測定装置の概略構成図であ
る。同図に示すように、探針1は微動機構2に取り付け
られており、さらに、微動機構2は粗動機構3の下面に
取り付けられている。また、微動機構2には最大変位量
15μmの圧電素子が用いられており、垂直方向に微小
変位可能に構成されている。
Embodiments of the present invention will be described below with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. It's just FIG. 1 is a schematic configuration diagram of a surface profile measuring apparatus showing an embodiment of the present invention. As shown in the figure, the probe 1 is attached to the fine movement mechanism 2, and the fine movement mechanism 2 is attached to the lower surface of the coarse movement mechanism 3. Further, the fine movement mechanism 2 uses a piezoelectric element having a maximum displacement of 15 μm, and is configured to be finely displaced in the vertical direction.

【0011】前記圧電素子2の下端に取付けられた探針
1は先端を鋭利に加工したタングステンの針を用いてい
る。粗動機構3は、垂直に並行して配列させた一対の圧
電素子4a、4bからなる変位部と、該圧電素子4a、
4bの変位を拡大する変位拡大手段30として、圧電素
子4a、4bの変位により駆動される弾性ヒンジよりな
る平行ばね3a、3aを2段直列に連結したものを用い
ており、該平行ばね3a、3aにより圧電素子4a、4
bの変位を拡大して、最大60μmの変位を得ることが
できる。より具体的に説明するに、平行ばね3a、3a
は、垂直固定壁30の上下両側より水平に延設される弾
性ヒンジ31A、31Bと、対応する上下の弾性ヒンジ
31A、31Bの自由端側間を垂直に連設する垂直変位
壁32からなり、一方圧電素子4a、4bは垂直固定壁
36より水平に延在する水平固定腕34と下側弾性ヒン
ジ31A間に介装される。
The probe 1 attached to the lower end of the piezoelectric element 2 uses a tungsten needle having a sharpened tip. The coarse movement mechanism 3 includes a displacement portion composed of a pair of piezoelectric elements 4a and 4b arranged vertically and in parallel, and the piezoelectric elements 4a and 4a.
As the displacement magnifying means 30 for magnifying the displacement of 4b, parallel springs 3a and 3a, which are elastic hinges driven by the displacement of the piezoelectric elements 4a and 4b, are connected in two stages in series. Piezoelectric elements 4a, 4 by 3a
The displacement of b can be magnified to obtain a maximum displacement of 60 μm. More specifically, the parallel springs 3a, 3a
Is composed of elastic hinges 31A and 31B extending horizontally from the upper and lower sides of the vertical fixed wall 30 and a vertical displacement wall 32 vertically connecting the free end sides of the corresponding upper and lower elastic hinges 31A and 31B. On the other hand, the piezoelectric elements 4a and 4b are interposed between the horizontal fixed arm 34 extending horizontally from the vertical fixed wall 36 and the lower elastic hinge 31A.

【0012】この結果前記圧電素子4a、4bの垂直変
位を弾性ヒンジ31Aが受けてその変位が拡大されて垂
直変位壁32が垂直方向に拡大変位し、該垂直変位壁3
2の下面側に設けた微動機構2及び探針1に伝達され
る。50は粗動機構3を上下に移動させるZ軸ステージ
で、ベースプレート5及びマイクロメータヘッド6とに
より構成され、マイクロメータヘッド6の回転に従って
粗動機構3を上下動可能に構成されている。また、この
Z軸ステージ50はコラム7に固設されている。
As a result, the elastic hinge 31A receives the vertical displacement of the piezoelectric elements 4a and 4b, and the displacement is expanded, and the vertical displacement wall 32 is expanded and displaced in the vertical direction.
It is transmitted to the fine movement mechanism 2 and the probe 1 provided on the lower surface side of 2. Reference numeral 50 denotes a Z-axis stage that moves the coarse movement mechanism 3 up and down, which is configured by the base plate 5 and the micrometer head 6, and is configured so that the coarse movement mechanism 3 can be moved up and down in accordance with the rotation of the micrometer head 6. The Z-axis stage 50 is fixed to the column 7.

【0013】又ベースプレート5の図上左下隅部には、
変位計8が取付けられ、垂直変位壁32の下側側部より
水平に延在する舌片32A上面に変位部先端を当接さ
せ、粗動機構3の垂直変位を効率良く測定可能に構成さ
れている。微動機構2の変位を直接計測することが困難
な為、微動機構2及び変位観察用圧電素子10にはそれ
ぞれ同一の印加電圧を与えることにより、微動機構2の
圧電素子と変位観察用圧電素子10は同一の変位を示
し、従って変位観察用圧電素子10の変位を変位計9に
より測定することにより、微動機構2の変位をモニター
する事が出来る。なお、微動機構2と変位観察用圧電素
子10には同じ特性のものを用いることが精度良いモニ
ターを行う上での要件である。
In the lower left corner of the base plate 5 in the figure,
The displacement gauge 8 is attached, and the tip of the displacement portion is brought into contact with the upper surface of the tongue piece 32A extending horizontally from the lower side portion of the vertical displacement wall 32 so that the vertical displacement of the coarse movement mechanism 3 can be efficiently measured. ing. Since it is difficult to directly measure the displacement of the fine movement mechanism 2, the same applied voltage is applied to each of the fine movement mechanism 2 and the displacement observation piezoelectric element 10, so that the piezoelectric element of the fine movement mechanism 2 and the displacement observation piezoelectric element 10 are applied. Indicates the same displacement, and therefore the displacement of the fine movement mechanism 2 can be monitored by measuring the displacement of the displacement observing piezoelectric element 10 with the displacement meter 9. The fine movement mechanism 2 and the displacement observing piezoelectric element 10 having the same characteristics are required for accurate monitoring.

【0014】被測定物12は、図中矢印(Z軸と直交す
る水平方向)Χ方向に移動可能な送り台11に搭載され
ており、被測定物12には探針1との間にトンネル電流
を発生させる為のバイアス電圧13が印加されている。
また、微動機構2の圧電素子及び粗動機構3の圧電素子
4a、4bにはこれらを制御する為の制御回路14と圧
電素子駆動用の高圧アンプ15が接続されている。
The object to be measured 12 is mounted on a feed table 11 which is movable in the arrow direction (horizontal direction orthogonal to the Z axis) in the figure, and the object to be measured 12 is tunneled between the object 1 and the probe 1. A bias voltage 13 for generating a current is applied.
Further, a control circuit 14 for controlling the piezoelectric elements of the fine movement mechanism 2 and the piezoelectric elements 4a, 4b of the coarse movement mechanism 3 and a high voltage amplifier 15 for driving the piezoelectric elements are connected.

【0015】次に、図2は前記表面形状測定装置に組込
まれる制御装置の制御ブロック線図で、図1を参照しな
がら図2に基づいて本実施例の動作を説明する。図2
中、Cは微動機構2の制御目標値であり、Bは粗動機構
3の制御目標値であり、また、Aは被測定物12の表面
形状である。ここで、16は探針1と被測定物12の間
に流れるトンネル電流と探針1と被測定物12間の距離
との変換係数設定回路であり、トンネル電流を電圧に変
換する電流/電圧変換回路(I/Vアンプ)ならびに対
数変換回路を含んでいる。17は積分器、15aは微動
機構2の圧電素子駆動用高圧アンプ、15bは粗動機構
3の圧電素子4a、4b駆動用高圧アンプである、Df
とDcは微動機構2と粗動機構3の変位出力を表す。
Next, FIG. 2 is a control block diagram of a controller incorporated in the surface profile measuring apparatus. The operation of this embodiment will be described with reference to FIG. FIG.
In the figure, C is the control target value of the fine movement mechanism 2, B is the control target value of the coarse movement mechanism 3, and A is the surface shape of the DUT 12. Here, 16 is a conversion coefficient setting circuit for the tunnel current flowing between the probe 1 and the DUT 12 and the distance between the probe 1 and the DUT 12, and a current / voltage for converting the tunnel current into a voltage. It includes a conversion circuit (I / V amplifier) and a logarithmic conversion circuit. Reference numeral 17 is an integrator, 15a is a high voltage amplifier for driving the piezoelectric elements of the fine movement mechanism 2, 15b is a high voltage amplifier for driving the piezoelectric elements 4a and 4b of the coarse movement mechanism 3, Df
And Dc represent displacement outputs of the fine movement mechanism 2 and the coarse movement mechanism 3.

【0016】測定に当たっては、まずマイクロメータヘ
ッド6によりZ軸ステージ50を移動させ、探針1と被
測定物12間の距離が粗動機構3の作動範囲に納まるよ
うに調整すると、探針1と被測定物12の間にトンネル
電流が発生する。探針1により検出されたトンネル電流
は、変換係数設定回路16を通過し、被測定物12と探
針1間の距離に比例した電圧信号となる。
In the measurement, first, the Z-axis stage 50 is moved by the micrometer head 6 and adjusted so that the distance between the probe 1 and the object 12 to be measured falls within the operating range of the coarse movement mechanism 3. A tunnel current is generated between the device under test and the device under test 12. The tunnel current detected by the probe 1 passes through the conversion coefficient setting circuit 16 and becomes a voltage signal proportional to the distance between the DUT 12 and the probe 1.

【0017】この電圧信号と微動機構2の目標値Cとの
差が積分器17により積分され、圧電素子駆動用高圧ア
ンプ15aを経て微動機構2の圧電素子を駆動する。こ
れにより、目標値Cと16の出力電圧の差が零となるよ
うに微動用機構2の圧電素子の伸縮量が制御され、被測
定物12と探針1間の距離が常にほぼ一定に保たれるこ
とになる。他方、積分器17の出力信号Eは粗動機構3
へも与えられる。
The difference between this voltage signal and the target value C of the fine movement mechanism 2 is integrated by the integrator 17, and the piezoelectric element of the fine movement mechanism 2 is driven via the high voltage amplifier 15a for driving the piezoelectric element. As a result, the expansion / contraction amount of the piezoelectric element of the fine movement mechanism 2 is controlled so that the difference between the output voltages of the target value C and 16 becomes zero, and the distance between the DUT 12 and the probe 1 is always kept substantially constant. You will be drunk. On the other hand, the output signal E of the integrator 17 is the coarse movement mechanism 3
Is also given to.

【0018】この結果、Eと粗動機構3の目標値Bとの
差が積分器18に入力され、粗動機構3の変位が制御さ
れる。Bの値は、微動機構2の圧電素子が入力電圧10
0Vに対し15μm伸びることから、圧電素子駆動用高
圧アンプ15aのゲイン10倍を考慮して、5Vに設定
している。これにより、粗動機構3は微動機構2の伸び
が常に7.5μmを保つようにその変位が制御されるこ
とになる。
As a result, the difference between E and the target value B of the coarse movement mechanism 3 is input to the integrator 18, and the displacement of the coarse movement mechanism 3 is controlled. As for the value of B, the piezoelectric element of the fine movement mechanism 2 has an input voltage of 10
Since the extension is 15 μm with respect to 0 V, the gain is set to 5 V in consideration of the gain of the piezoelectric element driving high-voltage amplifier 15a which is 10 times. As a result, the displacement of the coarse movement mechanism 3 is controlled so that the extension of the fine movement mechanism 2 always maintains 7.5 μm.

【0019】この状態で、送り台11をΧ軸方向に移動
させると、被測定物12の表面形状にしたがい、微動機
構2と粗動機構3が制御回路14により制御され、表面
形状はDc+Dfとして検出される。
In this state, when the feed table 11 is moved in the X axis direction, the fine movement mechanism 2 and the coarse movement mechanism 3 are controlled by the control circuit 14 according to the surface shape of the object 12 to be measured, and the surface shape is Dc + Df. To be detected.

【0020】図3に、上述の実施例の構成で、触針式表
面粗さ測定器校正用標準片の形状測定を行った結果を示
す。図中(a)は触針式表面粗さ測定器による測定結果
を示し、(b)は粗動機構3と、微動機構2の変位の
和、すなわち本実施例の装置による表面形状の測定結果
を示す。また、(c)、(d)には粗動機構3と微動機
構2の変位、言換えればDcとDfの値をそれぞれ示
す。
FIG. 3 shows the result of measuring the shape of the standard piece for calibrating the stylus type surface roughness measuring instrument with the configuration of the above-mentioned embodiment. In the figure, (a) shows the measurement result by the stylus type surface roughness measuring instrument, and (b) shows the sum of the displacements of the coarse movement mechanism 3 and the fine movement mechanism 2, that is, the measurement result of the surface shape by the apparatus of this embodiment. Indicates. Further, (c) and (d) show the displacements of the coarse movement mechanism 3 and the fine movement mechanism 2, in other words, the values of Dc and Df, respectively.

【0021】本図3より本実施例の装置と触針式表面粗
さ測定器による測定結果は、振幅を含めよく一致してい
ることがわかる。又触針式表面粗さ測定器による測定方
法では捕足し得なかった微小変位を本実施例の装置では
有効に捕足している事も理解できる。これにより本測定
装置が有効に機能しているものといえる。
From FIG. 3, it can be seen that the measurement results obtained by the apparatus of this embodiment and the stylus type surface roughness measuring device are in good agreement including the amplitude. It can also be understood that the apparatus of the present embodiment effectively captures minute displacements that could not be captured by the measuring method using the stylus type surface roughness measuring device. Therefore, it can be said that the measuring device is effectively functioning.

【0022】図4は、上述の実施例の構成で、アルミニ
ウム合金をフライス加工した被測定物12表面を測定し
た結果である。加工の条件は、主軸回転数67rpm、
テーブルの送りが80mm/minである。(a)は触
針式表面粗さ測定器による測定結果を、(b)は本実施
例の装置による測定結果を示している。断面形状の最大
高さは約30μmであり、両者はよく一致している。こ
の断面形状の最大高さは、微動機構2の最大変位15μ
mを越えており、粗動機構3と微動機構2が協調した制
御機能により測定が有効に行われていることがわかる。
FIG. 4 shows the result of measuring the surface of the object to be measured 12 obtained by milling an aluminum alloy with the configuration of the above embodiment. The processing conditions are: spindle rotation speed 67 rpm,
The table feed is 80 mm / min. (A) shows the measurement result by the stylus type surface roughness measuring device, and (b) shows the measurement result by the apparatus of the present embodiment. The maximum height of the cross-sectional shape is about 30 μm, and both are in good agreement. The maximum height of this cross-sectional shape is the maximum displacement of the fine movement mechanism 2 of 15μ.
Since m is exceeded, it can be seen that the measurement is effectively performed by the control function in which the coarse movement mechanism 3 and the fine movement mechanism 2 cooperate with each other.

【0023】又触針式表面粗さ測定器では深い細溝幅部
分の測定にバラツキを有すが、本発明ではこのような部
分も有効に測定し得る。尚、本実施例では、探針1と被
測定物12間の距離をトンネル電流として検出している
が、この探針1と被測定物12間の距離を、探針1・被
測定物12間の原子間力、静電容量、光学的変化、音響
的変化、力学的変化として検出しても本実施例と同様の
測定が可能であり、その場合、図2の変換係数回路16
が、これらの各物理量と探針1と被測定物12間の距離
との変換係数となるのみであり、他の構成は同一に設定
できる。
Further, the stylus type surface roughness measuring device has variations in the measurement of the deep narrow groove width portion, but the present invention can also effectively measure such a portion. In the present embodiment, the distance between the probe 1 and the object to be measured 12 is detected as a tunnel current, but the distance between the probe 1 and the object to be measured 12 is calculated as follows. Even if it is detected as an interatomic force, an electrostatic capacitance, an optical change, an acoustic change, or a mechanical change between them, the same measurement as in this embodiment can be performed. In that case, the conversion coefficient circuit 16 of FIG.
However, it is only a conversion coefficient between each of these physical quantities and the distance between the probe 1 and the object to be measured 12, and other configurations can be set to be the same.

【0024】[0024]

【発明の効果】以上、具体的に説明したように、本発明
によれば、探針と被測定物間の距離を、何らかの物理量
(トンネル電流、静電容量、原子間力、光学的変化、音
響的変化、力学的変化等)により検出し、前記探針によ
り検出された前記物理量を一定に保つ為の目標値との差
から成る信号を粗動機構及び微動機構に入力する。そし
て粗動機構と微動機構の制御は同時に行われるので、微
動機構に比べて応答速度の遅い粗動機構は、表面形状の
うちの、振幅の大きい成分の測定に、応答の速い微動機
構は微小な振幅成分の測定に対応した動きをすることに
なる。従って、微動機構の変位量が常にほぼ一定となる
ように粗動機構が作動することとなり、測定分解能を低
下させることなく、高さ方向の測定範囲を飛躍的に大き
くすることが可能となるものである。
As described above in detail, according to the present invention, the distance between the probe and the object to be measured is set to some physical quantity (tunnel current, capacitance, atomic force, optical change, Acoustic change, mechanical change, etc.), and a signal consisting of a difference from a target value for keeping the physical quantity detected by the probe constant is input to the coarse movement mechanism and the fine movement mechanism. Since the coarse movement mechanism and the fine movement mechanism are controlled at the same time, the coarse movement mechanism, which has a slower response speed than the fine movement mechanism, has a small response for the measurement of a component with a large amplitude in the surface shape. The movement will correspond to the measurement of various amplitude components. Therefore, the coarse movement mechanism operates so that the displacement amount of the fine movement mechanism is always almost constant, and it is possible to dramatically increase the measurement range in the height direction without lowering the measurement resolution. Is.

【0025】また、本発明によれば、探針駆動系の周波
数特性を高めることが可能となるので、表面形状測定の
高速化及び耐外乱特性を向上させることができる為、機
上計測あるいはインプロセス計測への適用も可能とな
る。
Further, according to the present invention, since the frequency characteristic of the probe drive system can be enhanced, the surface profile measurement can be speeded up and the disturbance resistance characteristic can be improved. It can also be applied to process measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す表面形状測定装置の概略
構成図である。
FIG. 1 is a schematic configuration diagram of a surface shape measuring apparatus showing an embodiment of the present invention.

【図2】図1の表面形状測定装置に組込まれる制御装置
の制御ブロック線図である。
FIG. 2 is a control block diagram of a control device incorporated in the surface profile measuring apparatus of FIG.

【図3】図1の測定装置と公知に触針式表面粗さ測定器
による校正用標準片の形状測定結果で、(a)は触針式
表面粗さ測定器、(b)は粗動機構と微動機構の変位の
和、すなわち本実施例の装置による表面形状の測定結果
を示す。また、(c)、(d)には粗動機構と微動機構
の変位の値をそれぞれ示す。
3A and 3B show the shape measurement results of a calibration standard piece by the measuring apparatus of FIG. 1 and a known stylus-type surface roughness measuring instrument. FIG. 3A is a stylus-type surface roughness measuring instrument, and FIG. The sum of the displacements of the mechanism and the fine movement mechanism, that is, the measurement result of the surface shape by the apparatus of this embodiment is shown. Further, (c) and (d) show displacement values of the coarse movement mechanism and the fine movement mechanism, respectively.

【図4】アルミニウム合金材をフライス加工した被測定
物の表面を測定した測定結果で(a)は触針式表面粗さ
測定器による測定結果を、(b)は本実施例の装置によ
る測定結果を示している。
4A and 4B show measurement results obtained by measuring the surface of an object to be measured by milling an aluminum alloy material, where FIG. 4A is a measurement result obtained by a stylus-type surface roughness measuring instrument, and FIG. 4B is a measurement result obtained by the apparatus of this embodiment. The results are shown.

【符号の説明】[Explanation of symbols]

1 探針 2 微動機構 3 粗動機構 4a、4b 圧電素子 8、9 変位計 11 送り台 12 被測定物 14 制御回路 DESCRIPTION OF SYMBOLS 1 Probe 2 Fine movement mechanism 3 Coarse movement mechanism 4a, 4b Piezoelectric element 8, 9 Displacement meter 11 Feeding table 12 Measured object 14 Control circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被測定物の表面と探針との距離を、トン
ネル電流、静電容量、原子間力、光学的変化、音響的変
化、力学的変化その他の物理量として検出し、前記探針
あるいは前記被測定物を被測定物表面の面内方向に移動
させ、かつ、前記物理量が一定値となるように前記探針
を前記被測定物表面の面外方向に移動させる為の駆動機
構の変位を検出する事によって、前記被測定物表面の形
状を測定する高精度表面形状測定方法において、 前記駆動機構を、相対的に大移動量で且つ移動分解能の
低い粗動機構と、相対的に小移動量で且つ移動分解能の
高い微動機構とを用い、 前記探針により検出された前記物理量と物理量を一定に
保つための目標値との差から成る信号を前記粗動機構及
び前記微動機構に入力し、粗動機構と微動機構をほぼ同
時に制御することにより、微動機構の変位量がほぼ一定
となるように粗動機構を作動させるようにしたことを特
徴とする高精度表面形状測定方法。
1. The probe detects the distance between the surface of the object to be measured and the probe as a tunnel current, electrostatic capacitance, atomic force, optical change, acoustic change, mechanical change or other physical quantity, Or of the drive mechanism for moving the measured object in the in-plane direction of the measured object surface, and moving the probe in the out-of-plane direction of the measured object surface so that the physical quantity becomes a constant value. In a high-precision surface shape measuring method for measuring the shape of the surface of the object to be measured by detecting a displacement, the drive mechanism is a coarse movement mechanism having a relatively large movement amount and a low movement resolution, and relatively. A fine movement mechanism having a small movement amount and high movement resolution is used, and a signal composed of a difference between the physical quantity detected by the probe and a target value for keeping the physical quantity constant is supplied to the coarse movement mechanism and the fine movement mechanism. Input the coarse movement mechanism and fine movement mechanism Precision surface shape measuring method, wherein by controlling, amount of displacement of the fine movement mechanism is to actuate the coarse feed mechanism to be substantially constant.
【請求項2】 被測定物の表面と探針との距離を、トン
ネル電流、静電容量、原子間力、光学的変化、音響的変
化、力学的変化その他の物理量として検出する手段と、 前記探針あるいは前記被測定物を被測定物表面の面内方
向に移動させる移動手段と、 前記物理量が一定値となるように前記探針を前記被測定
物表面の面外方向に移動させる駆動機構を備えた高精度
表面形状測定装置において、 相対的に大移動量で且つ移動分解能の低い粗動機構と、
相対的に小移動量で且つ移動分解能の高い微動機構から
成る前記探針の駆動機構と、 前記探針により検出された前記物理量と物理量を一定に
保つ為の目標値との差から成る信号を前記粗動機構及び
前記微動機構に入力し、粗動機構と微動機構をほぼ同時
に制御することで、微動機構の変位量が常にほぼ一定と
なるように粗動機構を作動させる制御手段と、 前記微動機構及び前記粗動機構の変位を検出する変位検
出手段と、 を具えてなることを特徴する高精度表面形状測定装置。
2. A means for detecting the distance between the surface of the object to be measured and the probe as a physical quantity such as tunnel current, electrostatic capacity, atomic force, optical change, acoustic change, mechanical change, or the like, Moving means for moving the probe or the object to be measured in the in-plane direction of the surface of the object to be measured, and a drive mechanism for moving the probe out of the surface of the object to be measured so that the physical quantity has a constant value. In a high-precision surface profile measuring device equipped with, a coarse movement mechanism having a relatively large movement amount and a low movement resolution,
A signal that is composed of a drive mechanism of the probe, which is composed of a fine movement mechanism having a relatively small movement amount and high movement resolution, and a difference between the physical quantity detected by the probe and a target value for keeping the physical quantity constant. Control means for inputting to the coarse movement mechanism and the fine movement mechanism to control the coarse movement mechanism and the fine movement mechanism almost at the same time to operate the coarse movement mechanism such that the displacement amount of the fine movement mechanism is always substantially constant, A high-accuracy surface profile measuring device comprising: a displacement detecting means for detecting displacements of the fine moving mechanism and the coarse moving mechanism.
【請求項3】 先端に前記探針が取り付けられた応答速
度の早い微動機構を、応答速度の遅い粗動機構に取付け
て構成したことを特徴とする請求項2の記載の高精度表
面形状測定装置。
3. The high-accuracy surface profile measurement according to claim 2, wherein a fine movement mechanism having a fast response speed, the tip of which is attached to the fine movement mechanism, is attached to a coarse movement mechanism having a slow response speed. apparatus.
【請求項4】 変位を生成する圧電素子と該圧電素子の
変位を拡大する変位拡大手段とを具えてなる粗動機構
と、 前記粗動機構の変位拡大手段側に取り付けられ、かつ、
先端に前記探針が取り付けられた圧電素子から成る微動
機構とを有することを特徴とする請求項2の記載の高精
度表面形状測定装置。
4. A coarse movement mechanism comprising a piezoelectric element that generates a displacement and a displacement enlargement means that enlarges the displacement of the piezoelectric element; and a coarse movement mechanism attached to the displacement enlargement means side of the coarse movement mechanism, and
3. A high precision surface profile measuring apparatus according to claim 2, further comprising a fine movement mechanism including a piezoelectric element having the tip attached to the tip.
JP26781095A 1995-09-21 1995-09-21 High-accuracy surface configuration measuring method and device Pending JPH0989550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26781095A JPH0989550A (en) 1995-09-21 1995-09-21 High-accuracy surface configuration measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26781095A JPH0989550A (en) 1995-09-21 1995-09-21 High-accuracy surface configuration measuring method and device

Publications (1)

Publication Number Publication Date
JPH0989550A true JPH0989550A (en) 1997-04-04

Family

ID=17449925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26781095A Pending JPH0989550A (en) 1995-09-21 1995-09-21 High-accuracy surface configuration measuring method and device

Country Status (1)

Country Link
JP (1) JPH0989550A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228436A (en) * 2001-02-05 2002-08-14 Sony Disc Technology Inc Device for measuring thickness of disk substrate
JP2002323312A (en) * 2001-04-26 2002-11-08 Mitsutoyo Corp High precision movement mechanism
JP4676658B2 (en) * 2001-09-07 2011-04-27 株式会社ミツトヨ probe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228436A (en) * 2001-02-05 2002-08-14 Sony Disc Technology Inc Device for measuring thickness of disk substrate
JP2002323312A (en) * 2001-04-26 2002-11-08 Mitsutoyo Corp High precision movement mechanism
JP4676658B2 (en) * 2001-09-07 2011-04-27 株式会社ミツトヨ probe

Similar Documents

Publication Publication Date Title
EP0410131B1 (en) Near-field lorentz force microscopy
JP2915554B2 (en) Barrier height measurement device
US6901677B2 (en) Method and apparatus using a closed loop controlled actuator for surface profilometry
US7041963B2 (en) Height calibration of scanning probe microscope actuators
US5186041A (en) Microprobe-based CD measurement tool
Gao Surface metrology for micro-and nanofabrication
Fu et al. Long‐range scanning for scanning tunneling microscopy
JPH08233836A (en) Scanning probe microscope, standard device for calibrating height direction thereof and calibration method
Chetwynd et al. A controlled-force stylus displacement probe
JP2002156409A (en) Measuring sonde for detecting electrical signal in integrated circuit, method for using the measuring sonde, method for manufacturing the measuring sonde and measuring system by the measuring sonde
JPH0989550A (en) High-accuracy surface configuration measuring method and device
JP2964317B2 (en) Atomic force microscope type surface roughness meter
JPH09264897A (en) Scanning probe microscope
Hoffmann et al. Traceable profilometry with a 3D nanopositioning unit and zero indicating sensors in compensation method
Heyde et al. New application for the calibration of scanning probe microscopy piezos
JPH1010140A (en) Scanning probe microscope
JP3597613B2 (en) Scanning probe microscope
JPH09119938A (en) Scanning probe microscope
JP2004069445A (en) Scanning type probe microscope
JP3272314B2 (en) measuring device
JP2533728B2 (en) Measuring device and measuring method
JPS63281002A (en) Body surface state access system
JPH03211401A (en) Shape measuring instrument
JPH05322511A (en) Scanning measuring apparatus utilizing tunnel current
Hofmann et al. Measurements with an atomic force microscope using a long travel nanopositioning and nanomeasuring machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051111