JPH05322511A - Scanning measuring apparatus utilizing tunnel current - Google Patents

Scanning measuring apparatus utilizing tunnel current

Info

Publication number
JPH05322511A
JPH05322511A JP4148746A JP14874692A JPH05322511A JP H05322511 A JPH05322511 A JP H05322511A JP 4148746 A JP4148746 A JP 4148746A JP 14874692 A JP14874692 A JP 14874692A JP H05322511 A JPH05322511 A JP H05322511A
Authority
JP
Japan
Prior art keywords
probe
sample
tunnel current
scanning
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4148746A
Other languages
Japanese (ja)
Inventor
Hiroshi Kuroda
浩史 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP4148746A priority Critical patent/JPH05322511A/en
Publication of JPH05322511A publication Critical patent/JPH05322511A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve stable measurement and highly accurate measurement in a scanning measuring apparatus utilizing a tunnel current. CONSTITUTION:As a conductive probe 1 is brought close to the surface of a sample, a tunnel current is generated between the probe 1 and the sample. The measuring apparatus is so constituted as to measure the rough form of the surface of the sample by scanning the surface of the sample while the distance between the probe and the sample is controlled by the utilization of the tunnel current. Moreover, an insulating film 21 is provided at a leading end 1a of the probe 1. The thickness of the insulating film 21 is enough to prevent the field evaporation when the probe approaches the sample, more specifically, the thickness of the film 21 is the one of several atoms.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はトンネル電流を利用した
走査型測定装置に係り、特に、試料表面の微細形状を測
定するのに好適なトンネル電流を利用した走査型測定装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning type measuring apparatus utilizing a tunnel current, and more particularly to a scanning type measuring apparatus utilizing a tunnel current suitable for measuring a fine shape of a sample surface.

【0002】[0002]

【従来の技術】トンネル電流を利用した走査型測定装置
として、例えば走査型トンネル分光装置がある。従来の
走査型トンネル分光装置の一例は、特開平3−2104
65号に開示される。走査型トンネル分光装置は、走査
型トンネル顕微鏡の構成を利用して構成される。走査型
トンネル顕微鏡では、導電性探針と試料の間に所要電圧
を印加し、両者の間に所定のトンネル電流が流れるよう
に探針と試料を微小間隔で接近させ、探針を試料面に沿
って走査させながらトンネル電流が一定値に保持される
ように探針の高さ位置を制御する。走査型トンネル分光
装置は、かかる走査型トンネル顕微鏡の構成において、
各測定点で、探針の走査動作と探針の高さ方向のサーボ
制御を停止し、探針と試料の間に印加される電圧を変化
させ、電圧変化に対するトンネル電流の変化を測定する
ように構成される。
2. Description of the Related Art A scanning tunneling spectroscopic device is one example of a scanning measuring device utilizing a tunnel current. An example of a conventional scanning tunneling spectroscopic device is disclosed in Japanese Patent Application Laid-Open No. 3-2104.
No. 65. The scanning tunneling spectroscopic device is configured using the configuration of the scanning tunneling microscope. In a scanning tunneling microscope, the required voltage is applied between the conductive probe and the sample, and the probe and sample are brought close to each other at a minute distance so that a predetermined tunnel current flows between them, and the probe is placed on the sample surface. The height position of the probe is controlled so that the tunnel current is maintained at a constant value while scanning along. The scanning tunneling spectroscope has the following structure in the scanning tunneling microscope.
At each measurement point, stop the scanning operation of the probe and the servo control in the height direction of the probe, change the voltage applied between the probe and the sample, and measure the change in tunnel current with respect to the voltage change. Is composed of.

【0003】[0003]

【発明が解決しようとする課題】前記先行文献に開示さ
れる走査型トンネル分光装置の探針周辺部分の構成を、
さらに詳しく説明すると、探針は、微動機構に取り付け
られたカンチレバーの先端に固定され、探針先端の原子
と試料表面の対応する原子との間に発生する原子間力
で、前記のカンチレバーが変位するように構成される。
さらにカンチレバーで変位が発生したとき、これを検出
する検出系が設けられる。この検出系がカンチレバーの
変位発生を検出すると、検出系は制御系にその情報を送
り、制御系は、探針と試料の間隔が予め定められた一定
距離になるようにカンチレバーの位置を制御する。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
More specifically, the probe is fixed to the tip of a cantilever attached to the fine movement mechanism, and the cantilever is displaced by the atomic force generated between the atom at the tip of the probe and the corresponding atom on the sample surface. To be configured.
Further, when a displacement occurs in the cantilever, a detection system for detecting the displacement is provided. When this detection system detects the displacement of the cantilever, the detection system sends the information to the control system, and the control system controls the position of the cantilever so that the distance between the probe and the sample becomes a predetermined constant distance. ..

【0004】上記のごとく、先行文献に開示される走査
型トンネル分光装置では、探針と試料の間に働く原子間
力によるカンチレバーの変位を検出し、カンチレバーの
位置を調整して、探針と試料の間の距離を一定に保持す
る。
As described above, in the scanning tunneling spectroscopic device disclosed in the prior art document, the displacement of the cantilever due to the interatomic force acting between the probe and the sample is detected, the position of the cantilever is adjusted, and Keep the distance between the samples constant.

【0005】探針と試料の間に印加される電圧と、探針
・試料間の距離とによって、探針と試料の間に生じる電
界が決定される。探針の走査中に、探針と試料の間の距
離制御が間に合わず、探針と試料が異常に接近したと
き、印加電圧によっては、探針と試料の間に生じる電界
が高くなり、探針が接近した試料表面の原子が電界蒸発
し、試料表面が変形し、測定精度が低下するという問題
を提起する。
The electric field generated between the probe and the sample is determined by the voltage applied between the probe and the sample and the distance between the probe and the sample. During scanning of the probe, when the distance control between the probe and the sample is not in time and the probe and the sample approach abnormally, the electric field generated between the probe and the sample becomes high depending on the applied voltage, This poses the problem that the atoms on the sample surface approaching the needle are field-evaporated, the sample surface is deformed, and the measurement accuracy is reduced.

【0006】本発明の目的は、電界蒸発を防止すること
により、安定して測定ができ、測定精度の高いトンネル
電流を利用した走査型測定装置を提供することにある。
An object of the present invention is to provide a scanning type measuring apparatus using a tunnel current with which measurement can be stably performed by preventing field evaporation and which has high measurement accuracy.

【0007】[0007]

【課題を解決するための手段】本発明に係るトンネル電
流を利用した走査型測定装置は、導電性を有する探針を
試料の表面に接近させ、探針と試料の間にトンネル電流
を流し、トンネル電流を利用して試料の表面を測定する
構成を有し、さらに、探針の先端部に絶縁膜を設けるよ
うに構成される。
A scanning type measuring apparatus using a tunnel current according to the present invention brings a conductive probe close to the surface of a sample, and causes a tunnel current to flow between the probe and the sample. The structure is such that the surface of the sample is measured by utilizing a tunnel current, and further, an insulating film is provided at the tip of the probe.

【0008】前記の構成において、好ましくは、絶縁膜
の厚みは原子数層分の厚みである。
In the above structure, the thickness of the insulating film is preferably the thickness of several atomic layers.

【0009】[0009]

【作用】本発明では、試料表面に対向する探針先端部
に、トンネル電流を流すことが可能な厚みを有する絶縁
膜を設け、この絶縁膜で、電界蒸発を起こさない距離を
探針と試料の間に確保し、高精度かつ高安定な測定を可
能とする。
In the present invention, an insulating film having a thickness capable of passing a tunnel current is provided at the tip of the probe facing the sample surface, and the distance between the probe and the sample at which electric field evaporation does not occur is provided by this insulating film. This ensures a high accuracy and stable measurement.

【0010】[0010]

【実施例】以下に、本発明の実施例を添付図面に基づい
て説明する。図1において、1は導電性を有する探針、
2は試料である。試料2には、例えば二硫化モリブデン
(MoS2 )を用いる。探針1はカンチレバーの形態
で形成されている。探針1の先端部1aは尖っており、
試料2の表面に対向している。試料2は基台3の上に固
定されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In FIG. 1, 1 is a conductive probe,
2 is a sample. For the sample 2, molybdenum disulfide (MoS2) is used, for example. The probe 1 is formed in the form of a cantilever. The tip 1a of the probe 1 is sharp,
It faces the surface of sample 2. The sample 2 is fixed on the base 3.

【0011】4は微動機構であり、微動機構4はX軸圧
電素子4a、Y軸圧電素子4b、Z軸圧電素子4cから
構成される。微動機構4によれば、3次元の変位を発生
させることができる。X軸圧電素子4aとY軸圧電素子
4bで、探針1を試料2の表面に沿って走査させる走査
装置が構成される。Z軸圧電素子4cは、探針1と試料
2との距離を変化させるためのものである。微動機構4
は、その一端が基台5に固定され、他端には探針1の他
方の端が固定される。また他端には、さらに変位センサ
6が取り付けられる。変位センサ6は、カンチレバーと
しての探針1のたわみを検出する機能を有し、例えばレ
ーザ光を用いた非接触の微小変位計が使用される。
Reference numeral 4 denotes a fine movement mechanism. The fine movement mechanism 4 is composed of an X-axis piezoelectric element 4a, a Y-axis piezoelectric element 4b, and a Z-axis piezoelectric element 4c. The fine movement mechanism 4 can generate a three-dimensional displacement. The X-axis piezoelectric element 4a and the Y-axis piezoelectric element 4b constitute a scanning device that scans the probe 1 along the surface of the sample 2. The Z-axis piezoelectric element 4c is for changing the distance between the probe 1 and the sample 2. Fine movement mechanism 4
Has one end fixed to the base 5 and the other end fixed to the other end of the probe 1. The displacement sensor 6 is further attached to the other end. The displacement sensor 6 has a function of detecting the deflection of the probe 1 as a cantilever, and for example, a non-contact micro displacement meter using laser light is used.

【0012】7は帰還制御装置であり、変位センサ6の
検出した信号を入力し、この信号に基づいて得られた制
御信号をZ軸圧電素子4cに与える。帰還制御装置7
は、探針1と試料2の間の距離が変動したときに、探針
1と試料2の間の距離が所定の距離に保持されるように
制御を行う。帰還制御装置7は、かかる制御を行うに当
たって、後述される演算制御装置9から制御のための指
令を受け、必要に応じて変位センサ6で検出された信号
を演算制御装置9に送る。探針1と試料2の間の距離の
調整においては、Z軸圧電素子4cが用いられる。
Reference numeral 7 is a feedback control device, which inputs a signal detected by the displacement sensor 6 and gives a control signal obtained based on this signal to the Z-axis piezoelectric element 4c. Feedback control device 7
Controls so that the distance between the probe 1 and the sample 2 is maintained at a predetermined distance when the distance between the probe 1 and the sample 2 changes. In performing such control, the feedback control device 7 receives a command for control from the arithmetic control device 9 described later, and sends a signal detected by the displacement sensor 6 to the arithmetic control device 9 as necessary. For adjusting the distance between the probe 1 and the sample 2, the Z-axis piezoelectric element 4c is used.

【0013】8はXY走査制御装置である。XY走査制
御装置8は、演算制御装置9から制御信号を受け、この
制御信号に基づいて、X軸圧電素子4aとY軸圧電素子
4bの伸縮動作を制御し、探針1を走査動作させる。
Reference numeral 8 is an XY scanning control device. The XY scanning control device 8 receives a control signal from the arithmetic and control unit 9, controls the expansion / contraction operation of the X-axis piezoelectric element 4a and the Y-axis piezoelectric element 4b based on the control signal, and causes the probe 1 to perform a scanning operation.

【0014】探針1と試料2との間にトンネル電流を流
すために、探針1と試料2との間に電圧を印加する。1
0は、当該電圧を印加するための電圧印加制御装置であ
る。この電圧印加制御装置10は、演算制御装置9から
与えれる制御信号に基づいて、印加電圧を設定する。電
圧印加制御装置10によれば、印加電圧を適当に変える
ことができる。
In order to pass a tunnel current between the probe 1 and the sample 2, a voltage is applied between the probe 1 and the sample 2. 1
Reference numeral 0 is a voltage application control device for applying the voltage. The voltage application control device 10 sets an applied voltage based on a control signal given from the arithmetic and control unit 9. According to the voltage application control device 10, the applied voltage can be changed appropriately.

【0015】探針1と試料2との間に電圧が印加された
状態で、両者の間隔が所定の距離になると、トンネル電
流が流れる。探針1と試料2の間にトンネル電流が流れ
ると、このトンネル電流は、トンネル電流検出装置11
によって検出される。検出されたトンネル電流は、演算
制御装置9に与えられる。
When a voltage is applied between the probe 1 and the sample 2 and the distance between them becomes a predetermined distance, a tunnel current flows. When a tunnel current flows between the probe 1 and the sample 2, this tunnel current is generated by the tunnel current detection device 11
Detected by. The detected tunnel current is given to the arithmetic and control unit 9.

【0016】演算制御装置9には、予め探針1を走査さ
せるためのデータが入力され、格納されている。またト
ンネル分光測定を行うため、印加電圧を変化させるため
のデータが入力され、格納されている。このような格納
データに基づいて、各測定点で、印加電圧を変化させて
トンネル電流値を検出するトンネル分光測定を実行す
る。演算制御装置9は、試料表面の各測定点の位置と、
測定で得られた各印加電圧とトンネル電流の関係を、表
示装置12に表示する。
Data for scanning the probe 1 is input and stored in the arithmetic and control unit 9 in advance. Further, in order to perform tunneling spectroscopic measurement, data for changing the applied voltage is input and stored. Based on such stored data, tunnel spectroscopic measurement is performed at each measurement point by changing the applied voltage and detecting the tunnel current value. The arithmetic and control unit 9 determines the position of each measurement point on the sample surface,
The relationship between each applied voltage and the tunnel current obtained by the measurement is displayed on the display device 12.

【0017】上記構成を有する走査型トンネル分光装置
の動作を概説する。探針1は、演算制御装置9とXY走
査制御装置8でX軸およびY軸用の圧電素子4a,4b
の動作を制御することによって、試料2の走査面におけ
る各測定点上で静止状態にされる。各測定点で、演算制
御装置9は、探針1と試料2の間の原子間力によるカン
チレバー変位量が予め設定された値になるように、帰還
制御装置7を介して、探針1の変位量を変位センサ6で
モニタしながら、Z軸圧電素子4cの伸縮動作を制御す
る。演算制御装置9は、電圧印加制御装置10を介し
て、探針1と試料2の間の印加電圧を変化させながら、
トンネル電流検出装置11で検出されるトンネル電流を
入力する。その後に、次の測定点に移動し、同じ測定動
作を繰り返す。
The operation of the scanning tunneling spectroscope having the above structure will be outlined. The probe 1 includes an X-axis and Y-axis piezoelectric device 4a, 4b for the X-axis and the Y-axis, which is formed by the arithmetic control unit 9 and the XY scanning control unit 8.
By controlling the operation of (1), the sample 2 is made to stand still on each measurement point on the scanning plane. At each measurement point, the arithmetic and control unit 9 controls the feedback controller 7 so that the displacement amount of the cantilever due to the interatomic force between the probe 1 and the sample 2 becomes a preset value. While the displacement amount is monitored by the displacement sensor 6, the expansion / contraction operation of the Z-axis piezoelectric element 4c is controlled. The arithmetic and control unit 9 changes the applied voltage between the probe 1 and the sample 2 via the voltage application controller 10,
The tunnel current detected by the tunnel current detection device 11 is input. Then, it moves to the next measurement point and repeats the same measurement operation.

【0018】図2に、探針1の先端部1aを拡大して示
す。探針1の先端部1aは、絶縁膜21で覆われてい
る。この絶縁膜21の厚みは、トンネル電流を流すこと
のできる厚みであり、かつ、印加電圧に対して、探針と
試料の間に、電界蒸発を起こす電界を発生しない距離を
確保できる厚みである。この絶縁膜21の厚みは、例え
ば、原子数層分の厚みである。このように、探針1の先
端部1aに絶縁膜21を設けることにより、先端部1a
と試料2は、絶縁膜21の厚みよりも小さい距離で近づ
くことはない。従って、電界蒸発による試料表面の破壊
や変形が起こらず、高精度で高安定なトンネル分光測定
を行うことができる。
FIG. 2 shows the tip 1a of the probe 1 in an enlarged manner. The tip 1 a of the probe 1 is covered with an insulating film 21. The thickness of the insulating film 21 is a thickness that allows a tunnel current to flow, and is a thickness that can secure a distance between the probe and the sample that does not generate an electric field that causes electric field evaporation with respect to an applied voltage. .. The thickness of the insulating film 21 is, for example, the thickness of several atomic layers. In this way, by providing the insulating film 21 on the tip portion 1 a of the probe 1, the tip portion 1 a
And the sample 2 do not approach at a distance smaller than the thickness of the insulating film 21. Therefore, destruction and deformation of the sample surface due to field evaporation do not occur, and highly accurate and stable tunneling spectroscopic measurement can be performed.

【0019】試料2として二硫化モリブデンを用いる場
合には、5.5V/0.3nm(=16.5V/nm)
の電界強度で電界蒸発が発生するという報告がある(日
本機会学会メカライフNo.27,92−3,p4,
5)。通常、走査トンネル分光測定を行う場合は、探針
1と試料2の間の距離は1nm程度で、探針と試料の間
の印加電圧を−数ボルトから十数ボルトの間で変化させ
る。このときの電界強度は数V/nmであり、電界蒸発
は生じない。従って、導電性探針の先端を覆う絶縁性薄
膜の厚みは、トンネル電流を流すために、1nm以下で
ある必要がある。
When molybdenum disulfide is used as the sample 2, 5.5 V / 0.3 nm (= 16.5 V / nm)
There is a report that electric field evaporation occurs with the electric field strength of (Japan Society for Opportunity Japan Mecha Life No. 27, 92-3, p4.
5). Usually, when performing the scanning tunneling spectroscopic measurement, the distance between the probe 1 and the sample 2 is about 1 nm, and the applied voltage between the probe and the sample is changed between −several volts and tens of volts. The electric field strength at this time is several V / nm, and electric field evaporation does not occur. Therefore, the thickness of the insulating thin film that covers the tip of the conductive probe needs to be 1 nm or less in order to pass the tunnel current.

【0020】前記実施例では、走査型トンネル顕微鏡を
利用する走査型トンネル分光装置について説明したが、
本発明の構成は、トンネル電流を利用する測定装置に一
般的に適用することができる。
In the above embodiment, the scanning tunneling spectroscope utilizing the scanning tunneling microscope has been described.
The configuration of the present invention can be generally applied to a measuring device that uses a tunnel current.

【0021】[0021]

【発明の効果】以上の説明で明らかなように本発明によ
れば、探針の先端部に所定の厚みの絶縁膜を設けるよう
にしたため、絶縁膜の存在によって、探針と試料の間に
は最低限必要とされる距離が確保されるため、電界蒸発
による試料表面の破壊や変形が起こらず、高精度で高安
定なトンネル分光等の測定を行うことができる。
As is apparent from the above description, according to the present invention, the tip of the probe is provided with the insulating film having a predetermined thickness. Therefore, the presence of the insulating film causes a gap between the probe and the sample. Since the minimum required distance is secured, destruction and deformation of the sample surface due to field evaporation do not occur, and highly accurate and stable measurements such as tunneling spectroscopy can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】探針の先端部の絶縁膜の形成状態を詳しく示す
拡大図である。
FIG. 2 is an enlarged view showing in detail a formation state of an insulating film on a tip portion of a probe.

【符号の説明】[Explanation of symbols]

1 …探針 2 …試料 3,5 …基台 4 …微動機構 6 …変位センサ 7 …帰還制御装置 8 …XY走査制御装置 9 …演算制御装置 10 …電圧印加制御装置 11 …トンネル電流検出装置 21 …絶縁膜 DESCRIPTION OF SYMBOLS 1 ... Probe 2 ... Sample 3, 5 ... Base 4 ... Fine movement mechanism 6 ... Displacement sensor 7 ... Feedback control device 8 ... XY scanning control device 9 ... Arithmetic control device 10 ... Voltage application control device 11 ... Tunnel current detection device 21 … Insulating film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導電性を有する探針を試料の表面に接近
させ、探針と試料の間にトンネル電流を流し、トンネル
電流を利用して試料の表面を測定する測定装置におい
て、前記探針の先端部に絶縁膜を設けたことを特徴とす
るトンネル電流を利用した走査型測定装置。
1. A measuring device in which a conductive probe is brought close to the surface of a sample, a tunnel current is passed between the probe and the sample, and the surface of the sample is measured by utilizing the tunnel current. A scanning measuring device utilizing a tunnel current, characterized in that an insulating film is provided at the tip of the.
【請求項2】 請求項1記載のトンネル電流を利用した
走査型測定装置において、前記絶縁膜の厚みは、原子数
層分の厚みであることを特徴とするトンネル電流を利用
した走査型測定装置。
2. The scanning measuring apparatus using a tunnel current according to claim 1, wherein the thickness of the insulating film is a thickness of several atomic layers. ..
JP4148746A 1992-05-15 1992-05-15 Scanning measuring apparatus utilizing tunnel current Pending JPH05322511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4148746A JPH05322511A (en) 1992-05-15 1992-05-15 Scanning measuring apparatus utilizing tunnel current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4148746A JPH05322511A (en) 1992-05-15 1992-05-15 Scanning measuring apparatus utilizing tunnel current

Publications (1)

Publication Number Publication Date
JPH05322511A true JPH05322511A (en) 1993-12-07

Family

ID=15459701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4148746A Pending JPH05322511A (en) 1992-05-15 1992-05-15 Scanning measuring apparatus utilizing tunnel current

Country Status (1)

Country Link
JP (1) JPH05322511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013371A1 (en) * 2005-07-25 2007-02-01 Shimadzu Corporation Scan tunnel spectral method and scan tunnel microscope
JP2018044805A (en) * 2016-09-13 2018-03-22 株式会社東芝 Conductivity probe, electrical characteristic evaluation system, scanning probe microscope, manufacturing method of conductivity probe, and measuring method of electrical characteristics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013371A1 (en) * 2005-07-25 2007-02-01 Shimadzu Corporation Scan tunnel spectral method and scan tunnel microscope
JPWO2007013371A1 (en) * 2005-07-25 2009-02-05 株式会社島津製作所 Scanning tunneling spectroscopy method and scanning tunneling microscope
JP4755646B2 (en) * 2005-07-25 2011-08-24 株式会社島津製作所 Scanning tunneling spectroscopy method and scanning tunneling microscope
JP2018044805A (en) * 2016-09-13 2018-03-22 株式会社東芝 Conductivity probe, electrical characteristic evaluation system, scanning probe microscope, manufacturing method of conductivity probe, and measuring method of electrical characteristics

Similar Documents

Publication Publication Date Title
CA1270132A (en) Method and atomic force microscope for imaging surfaces with atomic resolution
USRE33387E (en) Atomic force microscope and method for imaging surfaces with atomic resolution
US4724318A (en) Atomic force microscope and method for imaging surfaces with atomic resolution
US7404313B2 (en) Scanning probe microscope
JP2945090B2 (en) Encoder
US5168159A (en) Barrier height measuring apparatus including a conductive cantilever functioning as a tunnelling probe
US5902928A (en) Controlling engagement of a scanning microscope probe with a segmented piezoelectric actuator
EP0410131A1 (en) Near-field Lorentz force microscopy
US7378837B2 (en) Method and system for calibrating a micro-electromechanical system (MEMS) based sensor using tunneling current sensing
US6552556B1 (en) Prober for electrical measurement of potentials in the interior of ultra-fine semiconductor devices, and method of measuring electrical characteristics with said prober
US5773824A (en) Method for improving measurement accuracy using active lateral scanning control of a probe
JP2002156409A (en) Measuring sonde for detecting electrical signal in integrated circuit, method for using the measuring sonde, method for manufacturing the measuring sonde and measuring system by the measuring sonde
JPH05322511A (en) Scanning measuring apparatus utilizing tunnel current
JP2964317B2 (en) Atomic force microscope type surface roughness meter
JPH06207819A (en) Measuring method for fine gap width
JPH0526662A (en) Scanning type interatomic force/magnetic force microscope and analogous device thereof
JP4500156B2 (en) Material property evaluation system
JPH09264897A (en) Scanning probe microscope
JPH08136552A (en) Interatomic force microscope and similar scanning probe microscope
JPH10232240A (en) Surface observing device
JPH09119938A (en) Scanning probe microscope
JPH0989550A (en) High-accuracy surface configuration measuring method and device
JP3597613B2 (en) Scanning probe microscope
JP2624008B2 (en) Scanning tunnel microscope
JPH03210465A (en) Scanning type tunneling spectral apparatus