JP3512259B2 - Scanning probe microscope - Google Patents

Scanning probe microscope

Info

Publication number
JP3512259B2
JP3512259B2 JP04239595A JP4239595A JP3512259B2 JP 3512259 B2 JP3512259 B2 JP 3512259B2 JP 04239595 A JP04239595 A JP 04239595A JP 4239595 A JP4239595 A JP 4239595A JP 3512259 B2 JP3512259 B2 JP 3512259B2
Authority
JP
Japan
Prior art keywords
fine movement
movement mechanism
cantilever
sample
beak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04239595A
Other languages
Japanese (ja)
Other versions
JPH08211075A (en
Inventor
健 村山
高史 森本
吉弘 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP04239595A priority Critical patent/JP3512259B2/en
Publication of JPH08211075A publication Critical patent/JPH08211075A/en
Application granted granted Critical
Publication of JP3512259B2 publication Critical patent/JP3512259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Microscoopes, Condenser (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は走査型プローブ顕微鏡に
関し、補助観察装置との複合化に適した走査型プローブ
顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning probe microscope, and more particularly to a scanning probe microscope suitable for combination with an auxiliary observation device.

【0002】[0002]

【従来の技術】走査型プローブ(探針)顕微鏡は原子オ
ーダの測定分解能を有し、表面形状の計測など各種分野
に利用される。走査型プローブ顕微鏡には、検出対象の
物理量に応じて、走査型トンネル顕微鏡(STM)、原
子間力顕微鏡(AFM)、磁気力顕微鏡(MFM)など
がある。この中で原子間力顕微鏡は、試料表面の形状を
高分解能で検出するのに適しており、半導体や光ディス
クなどの表面形状の測定に利用されている。以下では、
一例として原子間力顕微鏡について説明する。
2. Description of the Related Art A scanning probe (probe) microscope has a measurement resolution of an atomic order and is used in various fields such as surface shape measurement. The scanning probe microscope includes a scanning tunneling microscope (STM), an atomic force microscope (AFM), a magnetic force microscope (MFM), etc., depending on the physical quantity to be detected. Among them, the atomic force microscope is suitable for detecting the shape of the sample surface with high resolution, and is used for measuring the surface shape of semiconductors, optical disks, and the like. Below,
An atomic force microscope will be described as an example.

【0003】図8に従来の原子間力顕微鏡の基本構成を
示す。XYZ微動機構11の上に被測定試料12が載置
され、基端が固定されたカンチレバー13が試料12の
上方に配置され、カンチレバー13の先端に取り付けた
探針14が試料12の表面に臨んでいる。上記XYZ微
動機構11は、直交するX軸、Y軸、Z軸の各方向に微
動を行える移動機構である。カンチレバー13の上側に
は、カンチレバー13の背面にレーザ光16を照射する
レーザ光源15および反射したレーザ光を受ける光検出
器17が配置される。レーザ光源15と光検出器17は
検出光学系を構成する。この構成において、カンチレバ
ー接近機構(図示せず)によって、探針14と試料12
の距離約1nmにまで近付けると、両者の間に原子間力
が作用し、カンチレバー13にたわみ変形が生じる。そ
のたわみ角を、レーザ光源15からのレーザ光を利用し
て光てこの原理を利用して検出する。XYZ微動機構1
1によって試料12をXY軸方向に走査し、かつそのと
きカンチレバー13のたわみ角が一定になるように試料
12をZ軸方向に移動させる。試料12をZ軸方向に移
動させる機構部分の移動量をモニタすることによって試
料12の表面の形状が計測される。
FIG. 8 shows the basic structure of a conventional atomic force microscope. The sample to be measured 12 is placed on the XYZ fine movement mechanism 11, the cantilever 13 having a fixed base end is arranged above the sample 12, and the probe 14 attached to the tip of the cantilever 13 faces the surface of the sample 12. I'm out. The XYZ fine movement mechanism 11 is a movement mechanism that can perform fine movements in each of the orthogonal X axis, Y axis, and Z axis directions. Above the cantilever 13, a laser light source 15 for irradiating the back surface of the cantilever 13 with a laser beam 16 and a photodetector 17 for receiving the reflected laser beam are arranged. The laser light source 15 and the photodetector 17 form a detection optical system. In this configuration, the probe 14 and the sample 12 are moved by a cantilever approach mechanism (not shown).
When the distance is approached to about 1 nm, an interatomic force acts between the two to cause the cantilever 13 to deform flexibly. The deflection angle is detected by utilizing the principle of lever using the laser light from the laser light source 15. XYZ fine movement mechanism 1
1, the sample 12 is scanned in the XY axis directions, and at that time, the sample 12 is moved in the Z axis direction so that the deflection angle of the cantilever 13 becomes constant. The shape of the surface of the sample 12 is measured by monitoring the amount of movement of the mechanical portion that moves the sample 12 in the Z-axis direction.

【0004】原子間力顕微鏡は原理上分解能が高いが、
測定範囲が数μmと数百μmと非常に狭いという不具合
がある。従って、試料12の観察場所を特定するため光
学顕微鏡等の補助観察装置と複合化されることが望ま
れ、例えば図9に示すような光学顕微鏡と複合化された
原子間力顕微鏡が従来提案されている。この構成を有す
る原子間力顕微鏡によって測定される試料21は、例え
ばシリコンウェハや光ディスクなどの大型のものであ
る。これらの試料21では、半導体回路や記録面におけ
る所定素子や記録ピットを特定して原子間力顕微鏡で観
察することが望まれており、かかる原子間力顕微鏡では
光学顕微鏡等との複合化が必要不可欠である。図9の原
子間力顕微鏡は、カンチレバー13側にXYZ微動機構
11を備え、カンチレバー13側を走査する構成として
いる。図9において、図8で説明した要素と実質的に同
一の要素には同一の符号を付している。検出光学系はブ
ロック23に取り付けられてXYZ微動機構11の側に
結合され、このXYZ微動機構11はカンチレバー接近
機構24に取り付けられる。光学顕微鏡25は、原子間
力顕微鏡の側方に距離Dを離して配置され、試料21は
試料移動用のXYステージ26上に配置される。
Although the atomic force microscope has a high resolution in principle,
There is a problem that the measurement range is very narrow, such as several μm and several hundred μm. Therefore, in order to specify the observation location of the sample 12, it is desired to be combined with an auxiliary observation device such as an optical microscope. For example, an atomic force microscope combined with an optical microscope as shown in FIG. 9 has been conventionally proposed. ing. The sample 21 measured by the atomic force microscope having this configuration is a large one such as a silicon wafer or an optical disk. In these samples 21, it is desired to identify a predetermined element or recording pit on the semiconductor circuit or recording surface and observe with an atomic force microscope, and such an atomic force microscope needs to be combined with an optical microscope or the like. It is essential. The atomic force microscope of FIG. 9 is provided with an XYZ fine movement mechanism 11 on the cantilever 13 side, and is configured to scan the cantilever 13 side. 9, elements that are substantially the same as the elements described in FIG. 8 are given the same reference numerals. The detection optical system is attached to the block 23 and coupled to the XYZ fine movement mechanism 11 side, and the XYZ fine movement mechanism 11 is attached to the cantilever approach mechanism 24. The optical microscope 25 is arranged laterally of the atomic force microscope with a distance D, and the sample 21 is arranged on an XY stage 26 for moving the sample.

【0005】上記の原子間力顕微鏡による測定は、光
学顕微鏡25で観察を行い、試料21の表面で測定箇所
を決定する、XYステージ26を用いて距離Dだけ移
動させ、測定箇所を原子間力顕微鏡の位置にセットす
る、カンチレバー接近機構24により探針14を試料
21の表面に近付ける、原子間力顕微鏡により観察を
行う、という工程によって行われる。この測定工程で
は、距離Dの移動をいかに正確に行えるかということが
問題となる。実際上、距離D自身を正確に知るのが難し
いこと、距離Dはカンチレバーの交換や温度等の環境要
因により変化すること、XYステージ26によって距離
Dの移動を正確に行うことが難しいことの理由から、試
料21の表面上で観察したい場所を例えば1μm以下の
精度で特定することは不可能に近い。
The above-mentioned measurement by the atomic force microscope is performed by observing with the optical microscope 25 and determining the measurement point on the surface of the sample 21. The measurement point is moved by the distance D using the XY stage 26 to measure the atomic force. The steps of setting the position of the microscope, bringing the probe 14 closer to the surface of the sample 21 by the cantilever approach mechanism 24, and observing with the atomic force microscope are performed. In this measuring step, how accurately the distance D can be moved becomes a problem. In practice, it is difficult to know the distance D itself accurately, the distance D changes due to replacement of the cantilever and environmental factors such as temperature, and it is difficult to accurately move the distance D by the XY stage 26. Therefore, it is almost impossible to specify the place to be observed on the surface of the sample 21 with an accuracy of, for example, 1 μm or less.

【0006】そこで、図10に示すようにカンチレバー
13とその先端の探針14が光学顕微鏡の視野内に位置
するように構成し、図11に示すように光学顕微鏡25
の視野27にて試料21とカンチレバー13の先端の探
針14を同時に観察する方式が提案される。この方式に
よれば、光学顕微鏡と原子間力顕微鏡との間でXYステ
ージ26を移動させる必要がなく、測定箇所の特定が極
めて容易となる。しかし他方で、探針14を光学顕微鏡
の視野内に配置するようにしたため、次の問題が生じ
る。
Therefore, as shown in FIG. 10, the cantilever 13 and the probe 14 at the tip thereof are arranged so as to be located within the visual field of the optical microscope, and as shown in FIG.
A method of observing the sample 21 and the probe 14 at the tip of the cantilever 13 at the same time in the visual field 27 is proposed. According to this method, it is not necessary to move the XY stage 26 between the optical microscope and the atomic force microscope, and it becomes extremely easy to specify the measurement location. On the other hand, however, since the probe 14 is arranged in the visual field of the optical microscope, the following problem occurs.

【0007】第1の問題はZ軸方向の探針の位置制御に
関しサーボ特性が低下すること、第2の問題は光てこ検
出光学系との間で干渉が生じること、である。特に第1
の問題は、試料が大型の場合に大きな問題となる。Z軸
方向のサーボの制御は、原子間力顕微鏡による測定にお
いて測定性能を左右する重要な要素である。試料の表面
の凹凸に対してカンチレバーのたわみ角が一定になるよ
うにZ微動機構を作動させるが、Z軸方向のサーボ制御
に高速性がないと、試料表面の凹凸を正確にトレースす
ることができない。試料が大型の場合に試料の側にZ微
動機構を設けると、試料が大きい分、試料台等の機構の
質量が増し、高速性が損なわれるので、軽量のカンチレ
バー側にZ微動機構を設けることが必要になる。
The first problem is that the servo characteristics are deteriorated with respect to the position control of the probe in the Z-axis direction, and the second problem is that interference occurs with the optical lever detecting optical system. Especially the first
The above problem becomes a big problem when the sample is large. The control of the servo in the Z-axis direction is an important factor that influences the measurement performance in the measurement by the atomic force microscope. The Z fine movement mechanism is operated so that the deflection angle of the cantilever is constant with respect to the unevenness of the sample surface, but if the servo control in the Z-axis direction is not fast, the unevenness of the sample surface can be accurately traced. Can not. If the Z fine movement mechanism is provided on the sample side when the sample is large, the mass of the mechanism such as the sample table increases due to the larger sample and the high speed is impaired. Therefore, provide the Z fine movement mechanism on the lightweight cantilever side. Will be required.

【0008】そこで図10では、XYZ微動機構11を
カンチレバー13側に設けた構成が示される。固定され
たカンチレバー接近機構24にXYZ微動機構11が取
り付けられ、このXYZ微動機構11に、カンチレバー
13を取り付けるためのくちばし状部材31が取り付け
られる。くちばし状部材31は、光学顕微鏡25の視野
内にカンチレバー13を配置させるための部材で、当該
視野の方向に伸びるくちばし部を有する。カンチレバー
13は、くちばし部の先端に取り付けられる。このくち
ばし部の具体的な形状や構成はかなりの自由度を有する
が、光学顕微鏡25の対物レンズの半径Rより長い長さ
が必要になる。このような構成では、Z微動機構でカン
チレバー13の探針14の位置を正確に制御する場合
に、機構的な剛性が問題となり、高速性を得ることは容
易ではない。高速性を得るためには、機構の固有振動数
が高いことが要求される。固有振動数は、一般的に、固
有振動数(Hz)をf、剛性をk、質量(回転運動の場
合には慣性モーメント)をmとするとき、次の式で表わ
される。
Therefore, FIG. 10 shows a configuration in which the XYZ fine movement mechanism 11 is provided on the cantilever 13 side. The XYZ fine movement mechanism 11 is attached to the fixed cantilever approach mechanism 24, and the beak-shaped member 31 for attaching the cantilever 13 is attached to the XYZ fine movement mechanism 11. The beak-shaped member 31 is a member for disposing the cantilever 13 in the visual field of the optical microscope 25, and has a beak portion extending in the direction of the visual field. The cantilever 13 is attached to the tip of the beak portion. Although the concrete shape and configuration of the beak portion has a considerable degree of freedom, a length longer than the radius R of the objective lens of the optical microscope 25 is required. With such a configuration, when the position of the probe 14 of the cantilever 13 is accurately controlled by the Z fine movement mechanism, mechanical rigidity becomes a problem, and it is not easy to obtain high speed. In order to obtain high speed, it is required that the mechanism has a high natural frequency. The natural frequency is generally expressed by the following equation, where f is the natural frequency (Hz), k is the rigidity, and m is the mass (inertia moment in the case of rotational movement).

【0009】[0009]

【数1】f=(1/2π)(k/m)1/2 ## EQU1 ## f = (1 / 2π) (k / m) 1/2

【0010】上記式に従えば、並進運動、回転運動にお
ける剛性kが高く、質量または慣性モーメントが小さい
ほど固有振動数が高くなる。サーボ制御における帯域
(サーボ制御が追従できる最大周波数)は、基本的に機
構の固有振動数よりも低く設定される。帯域を固有振動
数の近くにすると、機構が共振し、制御不能となるから
である。従ってサーボ制御の帯域の観点から、機構の固
有振動数は高いほど望ましく、機構の固有振動数を高く
するためには質量が小さいほど望ましい。
According to the above equation, the higher the rigidity k in translational motion and rotational motion and the smaller the mass or moment of inertia, the higher the natural frequency. The band in servo control (the maximum frequency that servo control can follow) is basically set lower than the natural frequency of the mechanism. This is because, if the band is near the natural frequency, the mechanism resonates and becomes uncontrollable. Therefore, from the viewpoint of the band of servo control, it is desirable that the natural frequency of the mechanism is high, and that the mass is small in order to increase the natural frequency of the mechanism.

【0011】[0011]

【発明が解決しようとする課題】図10に示した原子間
力顕微鏡は、次の問題を有する。図12に示すようにX
YZ微動機構として具体的にチューブ型圧電セラミック
ス41を使用し、その下端にくちばし状部材31を備え
る。圧電セラミックス41は、X軸駆動用電極41a、
Y軸駆動用電極41b、Z軸駆動用電極41cを備えて
いる。各電極に所定の電圧を印加すると、X軸、Y軸、
Z軸の各方向に変位を発生させることができる。代表的
な振動モードを示すと、破線に示すごとくなる。この運
動では、くちばし状部材31が所要の質量m、くちばし
部の長さR1に基づく慣性モーメントを有し、これらの
質量と慣性モーメントの増加によって、機構の固有振動
数が低下するという問題を有している。
The atomic force microscope shown in FIG. 10 has the following problems. X as shown in FIG.
A tube-type piezoelectric ceramic 41 is specifically used as the YZ fine movement mechanism, and a beak-shaped member 31 is provided at the lower end thereof. The piezoelectric ceramics 41 includes an X-axis drive electrode 41a,
It is provided with a Y-axis drive electrode 41b and a Z-axis drive electrode 41c. When a predetermined voltage is applied to each electrode, X-axis, Y-axis,
Displacement can be generated in each direction of the Z axis. A typical vibration mode is as shown by the broken line. In this motion, the beak-shaped member 31 has a required mass m and an inertia moment based on the length R1 of the beak portion, and there is a problem that the natural frequency of the mechanism decreases due to the increase of these masses and inertia moments. is doing.

【0012】上記の問題は、原子間力顕微鏡のみではな
く、光学顕微鏡等の補助観察装置と複合される走査型プ
ローブ顕微鏡について一般的に生じる問題である。
The above-mentioned problems generally occur not only in atomic force microscopes but also in scanning probe microscopes combined with auxiliary observation devices such as optical microscopes.

【0013】本発明の目的は、上記問題を解決すること
にあり、光学顕微鏡等の補助観察装置を備え、この補助
観察装置の視野内にくちばし状部材を利用してカンチレ
バーを配置する構造において、Z軸方向の制御のサーボ
特性を高め、測定性能を向上した走査型プローブ顕微鏡
を提供することにある。
An object of the present invention is to solve the above problems, and in a structure provided with an auxiliary observation device such as an optical microscope and arranging a cantilever using a beak member within the field of view of the auxiliary observation device, An object of the present invention is to provide a scanning probe microscope with improved servo performance of control in the Z-axis direction and improved measurement performance.

【0014】[0014]

【課題を解決するための手段】本発明に係る走査型プロ
ーブ顕微鏡は、試料に対向する探針を先部に備えたカン
チレバーと、試料の表面とカンチレバーの背面を観察し
得る補助観察装置と、この補助観察装置の視野内にカン
チレバーを配置させるくちばし状部材と、カンチレバー
の変位を検出する変位検出装置と、探針と試料の相対的
位置を変位させるXY微動機構およびZ微動機構とを備
え、探針と試料の間に作用する物理量に基づくカンチレ
バーのたわみ量をZ微動機構で制御し、XY微動機構で
試料の表面を走査して試料を測定する装置であり、Z微
動機構をくちばし状部材の先部に取り付け、カンチレバ
ーをZ微動機構に取り付ける共に、Z微動機構は、くち
ばし状部材に平板状弾性部材を介して結合される駆動部
材と、くちばし状部材と駆動部材との間に介設される圧
電素子とからなるように構成される。
A scanning probe microscope according to the present invention comprises a cantilever provided with a probe facing a sample at its tip, and an auxiliary observation device capable of observing the surface of the sample and the back surface of the cantilever. A beak-shaped member for arranging a cantilever in the field of view of this auxiliary observation device, a displacement detection device for detecting displacement of the cantilever, an XY fine movement mechanism and a Z fine movement mechanism for displacing the relative position of the probe and the sample, This is a device that controls the deflection amount of the cantilever based on the physical quantity acting between the probe and the sample by the Z fine movement mechanism and scans the surface of the sample with the XY fine movement mechanism to measure the sample. Attach the cantilever to the Z fine movement mechanism and attach the Z fine movement mechanism to
A drive unit that is coupled to the beak member via a flat elastic member
Material and pressure applied between the beak member and the driving member.
And an electric element .

【0015】本発明は、前記の構成において、補助観察
装置が光学顕微鏡であることを特徴とする。
The present invention is characterized in that, in the above structure, the auxiliary observation device is an optical microscope.

【0016】[0016]

【0017】[0017]

【作用】本発明では、カンチレバーのみを取り付けるZ
微動機構は、駆動質量や慣性モーメントを小さくするこ
とができるので、固有振動数が小さくなり、Z軸方向の
サーボ制御の特性を高め、Z軸サーボの高速化が実現さ
れる。
In the present invention, only the cantilever is attached Z
Since the fine movement mechanism can reduce the driving mass and the moment of inertia, the natural frequency is reduced, the characteristics of servo control in the Z-axis direction are improved, and the Z-axis servo speed is increased.

【0018】[0018]

【実施例】以下に、本発明の好適実施例を図1〜図7に
基づいて説明する。この実施例では、光学顕微鏡と複合
化された原子間力顕微鏡について説明する。図1は本発
明の基本的構成、図2は部分的に拡大した具体的構成を
示し、各図において図10等で説明した要素と実質的に
同一の要素には同一の符号を付す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to FIGS. In this example, an atomic force microscope combined with an optical microscope will be described. FIG. 1 shows a basic configuration of the present invention, and FIG. 2 shows a partially enlarged specific configuration. In each drawing, substantially the same elements as those described with reference to FIG.

【0019】図1において、XYステージ26の上にX
Y微動機構51が設けられる。XYステージ26とXY
微動機構51は大型の試料を載置するためのものであ
り、XY微動機構51の上にシリコンウェハ等の大型の
被測定試料21が載置される。XYステージ26はX軸
方向のステージ26aとY軸方向のステージ26bから
なり、図示しないテーブルに固定される。試料21の上
側には、先端に探針14を設けたカンチレバー13が配
置される。固定されたカンチレバー接近機構24にはく
ちばし状部材31が取り付けられ、くちばし状部材31
の先部にZ軸微動機構52が取り付けられる。上記カン
チレバー13は、駆動部材53を介してZ微動機構52
に取り付けられる。また試料21の上方には光学顕微鏡
25が配置され、光学顕微鏡25は固定される。カンチ
レバー13の先部と探針14は、光学顕微鏡25の視野
内に含まれる。なお15は、検出光学系の一部であるレ
ーザ光源を示す。本実施例の検出光学系は、カンチレバ
ー13の長手方向と直交する方向に配置される。光学顕
微鏡25の向う側に光検出器(図示せず)が配置され
る。
In FIG. 1, X is placed on the XY stage 26.
A Y fine movement mechanism 51 is provided. XY stage 26 and XY
The fine movement mechanism 51 is for placing a large sample, and the large measured sample 21 such as a silicon wafer is placed on the XY fine movement mechanism 51. The XY stage 26 includes an X-axis direction stage 26a and a Y-axis direction stage 26b, and is fixed to a table (not shown). On the upper side of the sample 21, a cantilever 13 having a probe 14 at its tip is arranged. A beak-shaped member 31 is attached to the fixed cantilever approach mechanism 24.
The Z-axis fine movement mechanism 52 is attached to the tip of the. The cantilever 13 has a Z fine movement mechanism 52 via a driving member 53.
Attached to. An optical microscope 25 is arranged above the sample 21, and the optical microscope 25 is fixed. The tip of the cantilever 13 and the probe 14 are included in the visual field of the optical microscope 25. Reference numeral 15 denotes a laser light source which is a part of the detection optical system. The detection optical system of the present embodiment is arranged in a direction orthogonal to the longitudinal direction of the cantilever 13. A photodetector (not shown) is arranged on the opposite side of the optical microscope 25.

【0020】図1で明らかなように、本実施例では、X
軸、Y軸、Z軸の各方向の微動を行う機構をXY微動機
構51とZ微動機構52に分離し、Z微動機構52をく
ちばし状部材31の先部に設け、XY微動機構51を例
えば試料21の側に設けるように構成した。Z微動機構
52に取り付けられるのは、探針14を有するカンチレ
バー13と軽量の駆動部材53であるので、Z微動機構
52と関して、その動作に影響を与える質量(m)や慣
性モーメントを極めて小さくすることができ、これによ
ってZ軸方向のサーボ制御の特性を高め、応答性を高く
することができる。従って、補助観察装置として光学顕
微鏡25と複合された原子間力顕微鏡において、くちば
し状部材31を利用する構造を有するものにおいても測
定の性能を非常に高いものとすることができる。
As is apparent from FIG. 1, in this embodiment, X
A mechanism for performing fine movements in each of the axes, the Y-axis, and the Z-axis is separated into an XY fine movement mechanism 51 and a Z fine movement mechanism 52, and the Z fine movement mechanism 52 is provided at the tip of the beak member 31, and the XY fine movement mechanism 51 is provided, for example. It was configured to be provided on the side of the sample 21. Since the cantilever 13 having the probe 14 and the lightweight driving member 53 are attached to the Z fine movement mechanism 52, the mass (m) and the moment of inertia affecting the operation of the Z fine movement mechanism 52 are extremely small. It is possible to reduce the size, whereby the characteristics of servo control in the Z-axis direction can be improved and the response can be improved. Therefore, even in an atomic force microscope combined with the optical microscope 25 as an auxiliary observation device having a structure using the beak-shaped member 31, the measurement performance can be made extremely high.

【0021】図2を参照してくちばし状部材とZ微動機
構の具体的な構成例を説明する。31はブロック形状の
上記くちばし状部材、53は上記駆動部材であり、くち
ばし状部材31と駆動部材53は平板状弾性部材54で
結合され、かつくちばし状部材31と駆動部材53との
間に圧電素子55が介設される。圧電素子55はZ軸微
動機構としての機能を有し、圧電素子55に電圧を印加
することにより、駆動部材53をZ軸方向に変位させる
ことができ、探針をZ軸方向に微動させることができ
る。なお駆動部材53に取り付けられるカンチレバー1
3の部分を拡大して示すと、図3のようになる。カンチ
レバー13は保持部56を介して駆動部材53に固定さ
れる。上記構成によれば、駆動質量、慣性モーメントを
極めて小さくすることができる。上記弾性部材54は、
Z軸方向の微動のための手段であってZ軸方向の案内の
役割を有すると共に、X軸およびY軸の方向、さらに回
転方向に関して剛性を高めることができ、より高速なサ
ーボ制御を行うことを可能にする。駆動部材53のサイ
ズの微小化は可能なかぎり行うことができる。この場合
において、駆動部材53のサイズを、保持部56を有す
るカンチレバー13を駆動部材53に対して容易に着脱
交換を行える程度の大きさにしたとしても、Z微動機構
を含む機構全体の固有振動数を容易に数KHzにするこ
とができる。上記の構造によれば、かかる特性を有する
ことから、実際に、くちばし状部材を使用しない構造を
有した従来の原子間力顕微鏡と同等の応答性を有してい
る。
A concrete example of the construction of the beak member and the Z fine movement mechanism will be described with reference to FIG. Reference numeral 31 denotes the block-shaped beak-shaped member, 53 denotes the drive member, the beak-shaped member 31 and the drive member 53 are joined together by a flat elastic member 54, and the beak-shaped member 31 and the drive member 53 are piezoelectric. The element 55 is interposed. The piezoelectric element 55 has a function as a Z-axis fine movement mechanism, and by applying a voltage to the piezoelectric element 55, the driving member 53 can be displaced in the Z-axis direction, and the probe can be finely moved in the Z-axis direction. You can The cantilever 1 attached to the drive member 53
FIG. 3 is an enlarged view of the portion of No. 3. The cantilever 13 is fixed to the drive member 53 via the holding portion 56. According to the above configuration, the driving mass and the moment of inertia can be made extremely small. The elastic member 54 is
A means for fine movement in the Z-axis direction, which has a role of guiding in the Z-axis direction, and can increase rigidity in the directions of the X-axis and the Y-axis, and further in the rotation direction, and perform higher-speed servo control. To enable. The size of the driving member 53 can be reduced as much as possible. In this case, even if the size of the drive member 53 is set to a size such that the cantilever 13 having the holding portion 56 can be easily attached to and detached from the drive member 53, the natural vibration of the entire mechanism including the Z fine movement mechanism. The number can easily be several KHz. Since the above structure has such characteristics, it actually has the same responsiveness as a conventional atomic force microscope having a structure that does not use a beak member.

【0022】Z微動機構52の構造については、その他
に各種のものを考えることができる。その例を図4、図
5に示す。図4の構造は、図2で説明した構造におい
て、平板状弾性部材54を取り除いたものを示す。これ
によって構成を簡略化でき、製作コストを低減すること
ができる。図5に示す構造は、弾性部材として並行板バ
ネ57を使用した例を示す。この構成によれば、Z軸方
向の正確な移動を可能にし、これにより原子間力顕微鏡
の測定精度を向上することができる。
Various other structures can be considered for the structure of the Z fine movement mechanism 52. Examples thereof are shown in FIGS. 4 and 5. The structure of FIG. 4 shows the structure described in FIG. 2 with the flat elastic member 54 removed. This can simplify the configuration and reduce the manufacturing cost. The structure shown in FIG. 5 shows an example in which a parallel leaf spring 57 is used as an elastic member. With this configuration, accurate movement in the Z-axis direction is possible, which can improve the measurement accuracy of the atomic force microscope.

【0023】上記の実施例において、XY微動機構51
を試料21の側に配置することは必須ではなく、くちば
し状部材31とカンチレバー接近機構24の間に構成す
ることもできる。XY微動機構51の一例を図6に示
す。XY微動機構51において、固定用剛体51X,5
1Xと移動用剛体51Aとこれらを連結する平行板バネ
61〜64と剛体51A,51Xの間に介設される圧電
素子65,65とによってX微動機構が形成され、圧電
素子65,65に電圧を印加すると、移動用剛体51A
にX軸方向の変位Uxが生じる。また同じように、剛体
51Y,51Yと剛体51Aとこれらを連結する平行板
バネ71〜74と剛体51A,51Yの間に介設される
圧電素子75,75とによってY微動機構が形成され
る。この場合、圧電素子75,75に電圧を印加する
と、剛体51Aを基準としてY軸方向に変位Uyが生じ
るように剛体51Y,51YをY軸方向に移動できる。
かかるXY微動機構51は、シリコンウェハ等の大型試
料の走査に十分対応できる。
In the above embodiment, the XY fine movement mechanism 51 is used.
Is not essential to be arranged on the side of the sample 21, and may be arranged between the beak-shaped member 31 and the cantilever approach mechanism 24. An example of the XY fine movement mechanism 51 is shown in FIG. In the XY fine movement mechanism 51, the fixing rigid bodies 51X, 5
The X fine movement mechanism is formed by 1X, the moving rigid body 51A, the parallel plate springs 61 to 64 connecting them, and the piezoelectric elements 65 and 65 interposed between the rigid bodies 51A and 51X, and voltage is applied to the piezoelectric elements 65 and 65. Is applied, the moving rigid body 51A
A displacement Ux in the X-axis direction occurs at. Similarly, the rigid bodies 51Y and 51Y, the rigid body 51A, the parallel leaf springs 71 to 74 connecting them and the piezoelectric elements 75 and 75 interposed between the rigid bodies 51A and 51Y form a Y fine movement mechanism. In this case, when a voltage is applied to the piezoelectric elements 75, 75, the rigid bodies 51Y, 51Y can be moved in the Y axis direction so that a displacement Uy is generated in the Y axis direction with the rigid body 51A as a reference.
The XY fine movement mechanism 51 can sufficiently cope with the scanning of a large sample such as a silicon wafer.

【0024】なお本実施例による構成は、大型試料用の
原子間力顕微鏡に限定されるものではなく、小型試料を
測定する光学顕微鏡複合型原子間力顕微鏡として利用す
ることもできる。この場合には、チューブ型XY微動機
構で試料を走査する方式に対しても十分に実用可能であ
る。
The structure according to this embodiment is not limited to the atomic force microscope for a large sample, but can be used as an optical microscope combined atomic force microscope for measuring a small sample. In this case, it can be sufficiently put to practical use even for a system in which the sample is scanned by the tube type XY fine movement mechanism.

【0025】図7ではレーザ光源15と光検出器17か
らなる検出光学系の構成例を示し、(a)は正面図、
(b)は側面図である。図から明らかなように、カンチ
レバー13がたわむ方向を含む平面に対してレーザ光1
6の光路が直交するように検出光学系が配置される。こ
れによって、光学顕微鏡が複合された原子間力顕微鏡に
おける光てこ光学系と光学顕微鏡の干渉の問題を解決し
ている。
FIG. 7 shows an example of the structure of a detection optical system comprising a laser light source 15 and a photodetector 17, (a) is a front view,
(B) is a side view. As is clear from the figure, the laser beam 1 is applied to a plane including the direction in which the cantilever 13 bends.
The detection optical system is arranged so that the optical paths of 6 are orthogonal to each other. This solves the problem of interference between the optical lever optical system and the optical microscope in the atomic force microscope combined with the optical microscope.

【0026】上記の実施例では、補助観察装置としての
光学顕微鏡と複合された原子間力顕微鏡について説明し
たが、本発明はこれに限定されず、その他の補助観察装
置を備える走査型プローブ顕微鏡に一般的に用いること
ができる。
In the above embodiment, the atomic force microscope combined with the optical microscope as the auxiliary observation device has been described, but the present invention is not limited to this, and a scanning probe microscope equipped with other auxiliary observation devices can be used. It can be generally used.

【0027】[0027]

【発明の効果】以上の説明で明らかなように本発明によ
れば、走査型プローブ顕微鏡において光学顕微鏡等の補
助観察装置を用いてカンチレバーおよび探針と試料の表
面とを同時に観察することができ、かつくちばし状部材
の先部にZ微動機構を設け、このZ微動機構にカンチレ
バーを取り付けるようにしたため、Z微動機構に影響を
与える質量等を小さくすることができ、Z軸方向の制御
に関しサーボ特性を高め高速性を発揮することができ、
走査型プローブ顕微鏡の測定性能を高めることができ
る。
As is apparent from the above description, according to the present invention, the cantilever and the probe and the surface of the sample can be observed simultaneously in the scanning probe microscope by using an auxiliary observation device such as an optical microscope. Since the Z fine movement mechanism is provided at the tip of the beak-shaped member and the cantilever is attached to the Z fine movement mechanism, it is possible to reduce the mass or the like that affects the Z fine movement mechanism, and to control the Z-axis in the servo direction. It can improve the characteristics and exhibit high speed,
The measurement performance of the scanning probe microscope can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る走査型プローブ顕微鏡の実施例を
示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of a scanning probe microscope according to the present invention.

【図2】図1の要部の具体的拡大構成図である。FIG. 2 is a specific enlarged configuration diagram of a main part of FIG.

【図3】図2に示されたカンチレバー部分の拡大側面図
である。
FIG. 3 is an enlarged side view of the cantilever portion shown in FIG.

【図4】くちばし状部材とZ駆動機構の他の実施例を示
す側面図である。
FIG. 4 is a side view showing another embodiment of the beak member and the Z drive mechanism.

【図5】くちばし状部材とZ駆動機構の他の実施例を示
す側面図である。
FIG. 5 is a side view showing another embodiment of the beak member and the Z drive mechanism.

【図6】XYステージの具体的実施例を示す外観斜視図
である。
FIG. 6 is an external perspective view showing a specific example of the XY stage.

【図7】検出光学系の配置構成例を示す図である。FIG. 7 is a diagram showing an arrangement configuration example of a detection optical system.

【図8】従来の原子間力顕微鏡の基本構成を示す構成図
である。
FIG. 8 is a configuration diagram showing a basic configuration of a conventional atomic force microscope.

【図9】従来の原子間力顕微鏡の他の例を示す構成図で
ある。
FIG. 9 is a configuration diagram showing another example of a conventional atomic force microscope.

【図10】従来の原子間力顕微鏡のさらなる他の例を示
す構成図である。
FIG. 10 is a configuration diagram showing still another example of a conventional atomic force microscope.

【図11】図10に示した装置における光学顕微鏡の視
野の状態を示す図である。
11 is a diagram showing a state of a field of view of an optical microscope in the device shown in FIG.

【図12】図10で示した従来の例を問題を説明するた
めの図である。
FIG. 12 is a diagram for explaining a problem of the conventional example shown in FIG.

【符号の説明】[Explanation of symbols]

13 カンチレバー 14 探針 15 レーザ光源 16 レーザ光 21 試料 24 カンチレバー接近機構 25 光学顕微鏡 26 XYステージ 31 くちばし状部材 51 XY微動機構 52 Z微動機構 53 駆動部材 54 弾性部材 55 圧電素子 13 cantilevers 14 probes 15 Laser light source 16 laser light 21 samples 24 Cantilever approach mechanism 25 Optical microscope 26 XY stage 31 Beak member 51 XY fine movement mechanism 52 Z fine movement mechanism 53 Drive member 54 Elastic member 55 Piezoelectric element

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−199904(JP,A) 特開 平3−110403(JP,A) 特開 平5−312563(JP,A) 特開 平5−340713(JP,A) 特開 平5−113308(JP,A) 特開 平5−126515(JP,A) 特開 平5−209713(JP,A) 特開 平7−181030(JP,A) 特開 平8−122342(JP,A) 特開 平8−35972(JP,A) 特開 平8−68799(JP,A) 特開 平8−226928(JP,A) 特開 平7−198731(JP,A) 実開 平5−55008(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 13/10 - 13/24 G12B 21/00 - 21/24 JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-3-199904 (JP, A) JP-A-3-110403 (JP, A) JP-A-5-312563 (JP, A) JP-A-5- 340713 (JP, A) JP 5-113308 (JP, A) JP 5-126515 (JP, A) JP 5-209713 (JP, A) JP 7-181030 (JP, A) JP-A-8-122342 (JP, A) JP-A-8-35972 (JP, A) JP-A-8-68799 (JP, A) JP-A-8-226928 (JP, A) JP-A-7-198731 (JP, A) Actual Kaihei 5-55008 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 13/10-13/24 G12B 21/00-21/24 JISST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試料に対向する探針を先部に備えたカン
チレバーと、前記試料の表面と前記カンチレバーの背面
を観察し得る補助観察装置と、この補助観察装置の視野
内に前記カンチレバーを配置させるくちばし状部材と、
前記カンチレバーの変位を検出する変位検出装置と、前
記探針と前記試料の相対的位置を変位させるXY微動機
構およびZ微動機構とを備え、前記探針と前記試料の間
に作用する物理量に基づく前記カンチレバーのたわみ量
を前記Z微動機構で制御し、前記XY微動機構で前記試
料の表面を走査して前記試料を測定する走査型プローブ
顕微鏡において、 前記Z微動機構を前記くちばし状部材の先部に取り付
け、前記カンチレバーを前記Z微動機構に取り付けると
共に、前記Z微動機構は、前記くちばし状部材に平板状
弾性部材を介して結合される駆動部材と、前記くちばし
状部材と前記駆動部材との間に介設される圧電素子とか
らなることを特徴とする走査型プローブ顕微鏡。
1. A cantilever provided with a probe facing a sample at its tip, an auxiliary observation device capable of observing the surface of the sample and the back surface of the cantilever, and the cantilever arranged in the field of view of the auxiliary observation device. A beak-shaped member
A displacement detection device for detecting the displacement of the cantilever, an XY fine movement mechanism and a Z fine movement mechanism for displacing the relative positions of the probe and the sample are provided, and based on a physical quantity acting between the probe and the sample. In a scanning probe microscope in which the amount of deflection of the cantilever is controlled by the Z fine movement mechanism, and the surface of the sample is scanned by the XY fine movement mechanism to measure the sample, the Z fine movement mechanism is provided at the tip of the beak member. attached to, when the cantilever Ru attached to said Z fine movement mechanism
In both cases, the Z fine movement mechanism has a flat plate shape on the beak member.
The driving member coupled via an elastic member and the beak
A piezoelectric element provided between the plate-shaped member and the driving member
Scanning probe microscope characterized in that Ranaru.
【請求項2】 前記補助観察装置は光学顕微鏡であるこ
とを特徴とする請求項1記載の走査型プローブ顕微鏡。
2. The scanning probe microscope according to claim 1, wherein the auxiliary observation device is an optical microscope.
JP04239595A 1995-02-07 1995-02-07 Scanning probe microscope Expired - Fee Related JP3512259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04239595A JP3512259B2 (en) 1995-02-07 1995-02-07 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04239595A JP3512259B2 (en) 1995-02-07 1995-02-07 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JPH08211075A JPH08211075A (en) 1996-08-20
JP3512259B2 true JP3512259B2 (en) 2004-03-29

Family

ID=12634885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04239595A Expired - Fee Related JP3512259B2 (en) 1995-02-07 1995-02-07 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP3512259B2 (en)

Also Published As

Publication number Publication date
JPH08211075A (en) 1996-08-20

Similar Documents

Publication Publication Date Title
JP5000076B2 (en) Force scanning probe microscope
US7219538B2 (en) Balanced momentum probe holder
US6229607B1 (en) Fine movement mechanism unit and scanning probe microscope
JP2004523748A5 (en)
US5808302A (en) Fine positioning apparatus with atomic resolution
US11789037B2 (en) Integrated dual-probe rapid in-situ switching measurement method and device of atomic force microscope
EP2867682B1 (en) High throughput scanning probe microscopy device
JP2001514733A (en) Integrated silicon profile meter and AFM head
US5423514A (en) Alignment assembly for aligning a spring element with a laser beam in a probe microscope
JP3512259B2 (en) Scanning probe microscope
Harley et al. A high-stiffness axial resonant probe for atomic force microscopy
JPH08226928A (en) Interatomic force microscope with optical microscope
JP3892184B2 (en) Scanning probe microscope
KR100424540B1 (en) Cantilever construction composed of multiple actuators for AFM, AFM system having the cantilever construction and measurement method for properties of material by using the AFM
JPH1010140A (en) Scanning probe microscope
JPH09264897A (en) Scanning probe microscope
Wang et al. Fast AFM probes switching method via Integrated dual-probes
JP3473937B2 (en) Scanning probe microscope and its scanning method
WO2018131343A1 (en) Scanner and scanning probe microscope
JPH0980060A (en) Scanning probe microscope
JP4448508B2 (en) Scanning probe microscope
JPH04330752A (en) Interatomic power microscope
JPH1123589A (en) Force detecting device and scanning type probe microscope using it
JPH09113520A (en) Supporting device and supporting method for moving section, interatomic force microscope, scanning tunnel microscope

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees