JPH0980060A - Scanning probe microscope - Google Patents

Scanning probe microscope

Info

Publication number
JPH0980060A
JPH0980060A JP23691595A JP23691595A JPH0980060A JP H0980060 A JPH0980060 A JP H0980060A JP 23691595 A JP23691595 A JP 23691595A JP 23691595 A JP23691595 A JP 23691595A JP H0980060 A JPH0980060 A JP H0980060A
Authority
JP
Japan
Prior art keywords
measured
piezoelectric element
sample
displacement
scanning probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23691595A
Other languages
Japanese (ja)
Inventor
Yasushi Miyamoto
裕史 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP23691595A priority Critical patent/JPH0980060A/en
Publication of JPH0980060A publication Critical patent/JPH0980060A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a scanning probe microscope for obtaining the accurate information of the height of surface of a sample. SOLUTION: A tubular piezoelectric element 36 is supported on a mirror base 43 and a cantilever displacement detecting part 39 is secured to the lower end thereof. The cantilever displacement detecting part 39 is fixed with a cantilever 40 provided with a probe at the forward end thereof. A member 38 having a concave surface to be measured is secured to the upper surface of cantilever displacement detecting part 39 on the inside of tubular piezoelectric element 36. A Z sensor 37 for detecting the displacement of the surface to be measured of member 38 in z-direction is supported by the mirror base 43 and disposed on the inside of tubular piezoelectric element 36. A sample 41 is mounted on a sample stage 42 fixed to the mirror base 43.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、走査型プローブ顕
微鏡に関する。
[0001] The present invention relates to a scanning probe microscope.

【0002】[0002]

【従来の技術】走査型プローブ顕微鏡では、試料表面の
高さ情報は、通常、圧電素子に印加した電圧から算出さ
れている。しかし、圧電素子は、その動作特性にヒステ
リシスを有し、またクリープ現象を示すため、印加電圧
は圧電素子の変位を正確に示してはいない。このため、
圧電素子のZ方向の変位を検出する手段を設けた走査型
プローブ顕微鏡も考えられている。
2. Description of the Related Art In a scanning probe microscope, height information of a sample surface is usually calculated from a voltage applied to a piezoelectric element. However, since the piezoelectric element has hysteresis in its operation characteristics and exhibits a creep phenomenon, the applied voltage does not accurately indicate the displacement of the piezoelectric element. For this reason,
A scanning probe microscope provided with a means for detecting the displacement of the piezoelectric element in the Z direction has also been considered.

【0003】Z変位検出機構を設けた走査型プローブ顕
微鏡の一例を図5に示す。X走査信号発生器11から出
力されるx走査信号とY走査信号発生器12から出力さ
れるy走査信号は高圧アンプ13を介して円筒型圧電素
子2に供給され、円筒型圧電素子2は試料3をxy方向
に走査する。走査中、レーザーダイオード5、ミラー
6、フォトダイオード7、差動アンプ8からなる光学系
によって、カンチレバー4の変位はモニターされ、サー
ボ回路9は差動アンプ8の出力に基づきカンチレバー4
の変位を一定に保つためのzサーボ信号を出力する。z
サーボ信号は高圧アンプ13を介して円筒型圧電素子2
に供給され、円筒型圧電素子2はカンチレバー4の変位
を一定に保つようにz方向に伸縮する。
FIG. 5 shows an example of a scanning probe microscope provided with a Z displacement detection mechanism. The x-scan signal output from the X-scan signal generator 11 and the y-scan signal output from the Y-scan signal generator 12 are supplied to the cylindrical piezoelectric element 2 via the high-voltage amplifier 13, and the cylindrical piezoelectric element 2 is the sample. 3 is scanned in the xy direction. During scanning, the displacement of the cantilever 4 is monitored by the optical system including the laser diode 5, the mirror 6, the photodiode 7, and the differential amplifier 8, and the servo circuit 9 outputs the cantilever 4 based on the output of the differential amplifier 8.
Output a z-servo signal for keeping the displacement of the. z
The servo signal is transmitted through the high voltage amplifier 13 to the cylindrical piezoelectric element 2
The cylindrical piezoelectric element 2 expands and contracts in the z direction so as to keep the displacement of the cantilever 4 constant.

【0004】円筒型圧電素子2の自由端の下面にはミラ
ー18が設けられ、このミラー18に向けて光学干渉計
15に接続された光ファイバー14の端が配置されてお
り、ミラー18の移動量すなわち円筒型圧電素子2のz
方向の変位が光学干渉計15によって測定される。コン
ピューター10は、光学干渉計15により測定されるz
変位と、x走査信号とy走査信号とに基づいて、試料3
の表面の像を形成する。
A mirror 18 is provided on the lower surface of the free end of the cylindrical piezoelectric element 2, and the end of the optical fiber 14 connected to the optical interferometer 15 is arranged toward the mirror 18, and the amount of movement of the mirror 18 is set. That is, z of the cylindrical piezoelectric element 2
The directional displacement is measured by the optical interferometer 15. The computer 10 measures z measured by the optical interferometer 15.
The sample 3 based on the displacement and the x-scan signal and the y-scan signal.
Forming an image of the surface of.

【0005】[0005]

【発明が解決しようとする課題】この走査型プローブ顕
微鏡では、z方向にサーボをかけてxy走査しながら、
光学干渉計15によって、円筒型圧電素子2の自由端の
下面に設けたミラー18のz変位を検出し、これを試料
3の表面の高さ情報としている。しかし、光学干渉計1
5で測定されるミラー18のz変位は、xy走査時にミ
ラー18が傾斜することによる誤差を含んでおり、これ
もまた試料3の高さ情報を正確に示してはいない。
In this scanning probe microscope, while servo is applied in the z direction and xy scanning is performed,
The optical interferometer 15 detects z displacement of the mirror 18 provided on the lower surface of the free end of the cylindrical piezoelectric element 2, and uses this as height information of the surface of the sample 3. However, the optical interferometer 1
The z displacement of the mirror 18 measured at 5 includes an error due to the tilting of the mirror 18 during xy scanning, which also does not accurately indicate the height information of the sample 3.

【0006】これは光学干渉計を用いた場合に限った話
ではなく、他の光学式センサーや、静電容量センサー等
の電気式センサーを用いた場合にも同様のことがいえ、
測定されるz変位はミラー18に対応する被測定面の傾
斜による誤差を含んだものとなる。
This is not limited to the case where an optical interferometer is used, and the same can be said when another optical sensor or an electric sensor such as a capacitance sensor is used.
The measured z displacement includes an error due to the inclination of the measured surface corresponding to the mirror 18.

【0007】この辺の事情について図6を用いて詳しく
説明する。ここでは、後述する実施例との比較を行ない
易いように、前述した試料走査型の走査型プローブ顕微
鏡とは異なり探針走査型のものを例にあげて説明する。
The situation around this will be described in detail with reference to FIG. Here, in order to facilitate comparison with the examples described later, a probe scanning type will be described as an example, which is different from the sample scanning type scanning probe microscope described above.

【0008】図6(A)に示すように、円筒型圧電素子
36の下端にはカンチレバー変位検出部39が固定され
ており、その下方にカンチレバー40が取り付けられて
いる。円筒型圧電素子36の内側にはZセンサー37が
配置され、その測定対象である平面ミラー等の被測定部
材19はカンチレバー変位検出部39の上面に固定され
ている。
As shown in FIG. 6 (A), a cantilever displacement detecting portion 39 is fixed to the lower end of the cylindrical piezoelectric element 36, and a cantilever 40 is attached below it. A Z sensor 37 is arranged inside the cylindrical piezoelectric element 36, and a member to be measured 19 such as a plane mirror, which is an object of measurement, is fixed to the upper surface of a cantilever displacement detecting section 39.

【0009】図6(A)は、平坦な試料41をzサーボ
をかけてx方向に走査して測定した様子を示している。
図から分かるように、円筒型圧電素子36が湾曲する
と、被測定部材19が傾くとともに、Zセンサー37の
測定箇所が端へずれるため、Zセンサー37で測定され
る被測定部材19のz方向の位置はΔZ=D1の誤差を
含んだものとなる。このため、平坦な試料41を測定し
ているにも拘らず、測定される表面形状は図6(B)に
示すように高さD1の丘陵状に湾曲したものになる。
FIG. 6A shows a state in which a flat sample 41 is scanned in the x direction by applying z servo and measured.
As can be seen from the figure, when the cylindrical piezoelectric element 36 bends, the member to be measured 19 tilts and the measurement location of the Z sensor 37 shifts to the end, so that the member to be measured 19 measured by the Z sensor 37 in the z direction is moved. The position includes an error of ΔZ = D1. Therefore, even though the flat sample 41 is being measured, the surface shape to be measured becomes a hilly shape having a height D1 as shown in FIG. 6B.

【0010】従って、図6(C)に示すような形状の試
料を測定した場合には、その表面形状は図6(D)に示
す形状として測定される。
Therefore, when the sample having the shape shown in FIG. 6C is measured, the surface shape is measured as the shape shown in FIG. 6D.

【0011】本発明は、試料表面の高さ情報を正確に得
る走査型プローブ顕微鏡を提供することを目的とする。
It is an object of the present invention to provide a scanning probe microscope which can accurately obtain height information on the surface of a sample.

【0012】[0012]

【課題を解決するための手段】本発明の走査型プローブ
顕微鏡は、探針と、探針と試料の間に三方向に相対的な
移動を生じさせるための圧電素子と、試料の表面方向
(xy方向)に探針と試料の間の相対的な移動が生じる
ように圧電素子を駆動するXY駆動手段と、試料の高さ
方向(z方向)に探針と試料の間の相対的が移動が生じ
るように圧電素子を駆動するZ駆動手段と、圧電素子に
固定された被測定部材で、被測定面を持つ被測定部材
と、被測定部材の被測定面のz方向の変位を検出するZ
変位検出手段とを有し、被測定部材の被測定面は、Z変
位検出手段による測定箇所が、圧電素子のxy方向に関
する駆動とは無関係に、z方向に関して常に同じ位置と
なる曲面である。
The scanning probe microscope of the present invention comprises a probe, a piezoelectric element for causing relative movement between the probe and the sample in three directions, and a surface direction of the sample ( The XY drive means for driving the piezoelectric element so that the relative movement between the probe and the sample occurs in the xy direction) and the relative movement between the probe and the sample in the height direction (z direction) of the sample. Drive means for driving the piezoelectric element so as to cause the measurement, a member to be measured fixed to the piezoelectric element, the member to be measured having the surface to be measured, and the displacement of the surface to be measured of the member to be measured in the z direction are detected. Z
The surface to be measured of the member to be measured is a curved surface having a displacement detection means, and the measurement position by the Z displacement detection means is always the same position in the z direction regardless of the driving of the piezoelectric element in the xy directions.

【0013】さらに具体的には、圧電素子は円筒型圧電
素子で、被測定部材は円筒型圧電素子の内側の自由端に
固定され、被測定面は凹面である。
More specifically, the piezoelectric element is a cylindrical piezoelectric element, the member to be measured is fixed to the inner free end of the cylindrical piezoelectric element, and the surface to be measured is a concave surface.

【0014】試料に対して探針をその表面方向(xy方
向)に走査した際、被測定部材の被測定面は、Z変位検
出手段の測定箇所のz方向の位置は常に同じとなる。従
って、探針先端と試料表面の間の距離が常に一定となる
ように試料表面の高さ方向(z方向)にサーボ制御すれ
ば、Z変位検出手段によって検出される被測定面のz方
向の変位は、試料表面の凹凸を真に反映したものとな
る。
When the probe is scanned in the surface direction (xy directions) of the sample, the measured surface of the member to be measured always has the same position in the z direction at the measurement point of the Z displacement detecting means. Therefore, if the servo control is performed in the height direction (z direction) of the sample surface so that the distance between the tip of the probe and the sample surface is always constant, the z direction of the measured surface detected by the Z displacement detecting means can be adjusted. The displacement truly reflects the unevenness of the sample surface.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態の走査
型プローブ顕微鏡について、図1〜図4を参照しながら
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A scanning probe microscope according to an embodiment of the present invention will be described below with reference to FIGS.

【0016】図1に示すように、円筒型圧電素子36は
鏡基43に支持されており、その下端(自由端)にはカ
ンチレバー変位検出部39が固定され、カンチレバー変
位検出39には、先端に探針を備えるカンチレバー40
が取り付けられている。円筒型圧電素子36の内側のカ
ンチレバー変位検出部39の上面には凹面状の被測定面
を持つ被測定部材38が固定されており、被測定部材3
8の被測定面のz方向の変位を検出するZセンサー37
が鏡基43に支持され、円筒型圧電素子36の内側に配
置されている。
As shown in FIG. 1, the cylindrical piezoelectric element 36 is supported by a mirror base 43, and a cantilever displacement detecting section 39 is fixed to the lower end (free end) of the cylindrical piezoelectric element 36. Cantilever 40 equipped with a probe
Is attached. A member to be measured 38 having a concave surface to be measured is fixed to the upper surface of the cantilever displacement detecting portion 39 inside the cylindrical piezoelectric element 36, and the member to be measured 3
Z sensor 37 for detecting the displacement of the surface 8 to be measured in the z direction
Are supported by the mirror base 43 and are arranged inside the cylindrical piezoelectric element 36.

【0017】また、カンチレバー40の下方には、試料
ステージ42が鏡基43に取り付けられており、その上
に試料41が載置される。
A sample stage 42 is attached to a mirror base 43 below the cantilever 40, and a sample 41 is placed on it.

【0018】カンチレバー変位検出部39は、カンチレ
バー40の変位を検出し、レバー変位信号S5をサーボ
回路34へ出力する。サーボ回路34はレバー変位信号
S5を一定に保つようにzサーボ信号S4を円筒型圧電
素子36に出力する。XY走査回路33はX走査信号S
2とY走査信号S3を円筒型圧電素子36に出力する。
これにより円筒型圧電素子36は、カンチレバー40の
探針が試料41の表面をなぞるように変形する。
The cantilever displacement detector 39 detects the displacement of the cantilever 40 and outputs a lever displacement signal S5 to the servo circuit 34. The servo circuit 34 outputs the z servo signal S4 to the cylindrical piezoelectric element 36 so as to keep the lever displacement signal S5 constant. The XY scanning circuit 33 uses the X scanning signal S
2 and Y scanning signal S3 are output to the cylindrical piezoelectric element 36.
As a result, the cylindrical piezoelectric element 36 is deformed so that the probe of the cantilever 40 traces the surface of the sample 41.

【0019】Zセンサー37は、円筒型圧電体36の自
由端に設けられた被測定部材38の被測定面のz方向の
変位を検出し、z変位信号S1をZ変位検出回路32に
出力する。マイクロプロセッサー30は、XY走査回路
33からx走査信号とy走査信号をxy位置データとし
て取り込むとともに、これに同期させてZ変位検出回路
からz変位信号を試料表面の高さ情報であるz変位デー
タとして取り込む。マイクロプロセッサー30はxy位
置データとz変位データをホストコンピューター31に
転送し、ホストコンピューター31はxy位置データと
z変位データとに基づき、試料表面の凹凸の画像を形成
する。
The Z sensor 37 detects the displacement in the z direction of the surface to be measured of the member to be measured 38 provided at the free end of the cylindrical piezoelectric body 36, and outputs the z displacement signal S1 to the Z displacement detection circuit 32. . The microprocessor 30 takes in the x-scan signal and the y-scan signal from the XY scanning circuit 33 as xy position data, and in synchronization with this, the z-displacement signal from the Z-displacement detection circuit is the z-displacement data which is height information of the sample surface. Take in as. The microprocessor 30 transfers the xy position data and the z displacement data to the host computer 31, and the host computer 31 forms an image of the unevenness of the sample surface based on the xy position data and the z displacement data.

【0020】次に、この実施の形態の装置によって得ら
れる測定結果について図2を参照しながら説明する。図
2(A)は、平坦な試料41をzサーボをかけてx方向
に走査して測定した様子を示している。被測定部材38
の被測定面のz方向の位置は、Zセンサー37により測
定される部分が、円筒型圧電素子36の曲がり加減に関
係無く、常に同じ位置にある。言い換えれば、被測定部
材38の被測定面には、Zセンサー37による測定箇所
のz位置が変わらない曲面を選ぶ。従って、円筒型圧電
素子36の曲がりによる誤差ΔZは、ΔZ=0となって
いる。
Next, the measurement results obtained by the apparatus of this embodiment will be described with reference to FIG. FIG. 2A shows a state in which a flat sample 41 is scanned in the x direction by applying z servo and measured. Measured member 38
Regarding the position in the z direction of the surface to be measured, the portion measured by the Z sensor 37 is always at the same position regardless of the bending of the cylindrical piezoelectric element 36. In other words, as the surface to be measured of the member to be measured 38, a curved surface whose z position at the measurement position by the Z sensor 37 does not change is selected. Therefore, the error ΔZ due to the bending of the cylindrical piezoelectric element 36 is ΔZ = 0.

【0021】このため、図2(A)に示すような平坦な
試料41を測定した場合には、測定される表面形状は図
2(B)に示すような平坦なものとなる。また、図2
(C)に示すような形状の試料を測定した場合には、測
定される表面形状は図2(D)に示すものとなる。
Therefore, when the flat sample 41 as shown in FIG. 2A is measured, the surface shape to be measured becomes flat as shown in FIG. 2B. FIG.
When a sample having a shape as shown in (C) is measured, the measured surface shape is as shown in FIG. 2 (D).

【0022】このように、本発明によれば、試料表面の
形状を忠実に示した測定結果が得られる。本発明の利点
は、この実施の形態による測定結果である図2と従来例
による測定結果である図6とを比較すれば歴然である。
As described above, according to the present invention, the measurement result showing the shape of the sample surface faithfully can be obtained. The advantage of the present invention is clear when comparing the measurement result of this embodiment in FIG. 2 with the measurement result of the conventional example in FIG.

【0023】なお、上の説明では、Zセンサー37の構
成については特に触れなかったが、Zセンサー37とし
ては、例えば、図3に示す静電容量センサー等の電気式
変位検出センサー44を用いることができる。この場
合、被測定部材38の被測定面には導電膜が設けられ
る。また、図4に示す光学干渉計等の光学式変位検出セ
ンサー47を用いることもできる。この場合、被測定部
材38の被測定面には光学反射膜が設けられる。
In the above description, the structure of the Z sensor 37 was not particularly mentioned, but as the Z sensor 37, for example, an electric displacement detection sensor 44 such as a capacitance sensor shown in FIG. 3 is used. You can In this case, a conductive film is provided on the measured surface of the measured member 38. Further, the optical displacement detection sensor 47 such as the optical interferometer shown in FIG. 4 can be used. In this case, an optical reflection film is provided on the measured surface of the measured member 38.

【0024】また、被測定部材38の被測定面の形状は
球面や非球面などが考えられ、このような被測定部材3
8は例えば凹レンズに光学反射膜や導電膜を施すことに
より作製される。
The shape of the surface to be measured of the member to be measured 38 may be a spherical surface or an aspherical surface.
8 is manufactured by applying an optical reflection film or a conductive film to the concave lens, for example.

【0025】実施の形態では、走査型プローブ顕微鏡と
して、原子間力顕微鏡(AFM)を例にあげて説明して
いるが、勿論、本発明は、カンチレバーを励振させて試
料表面形状を測定する励振モードAFM、試料表面の磁
気情報を検出する磁気力顕微鏡(MFM)、トンネル電
子顕微鏡(STM)などの他の種類の走査型プローブ顕
微鏡にも適用可能である。
In the embodiment, an atomic force microscope (AFM) is taken as an example of the scanning probe microscope, but of course, the present invention is an excitation for exciting the cantilever to measure the sample surface shape. It is also applicable to other types of scanning probe microscopes such as a mode AFM, a magnetic force microscope (MFM) for detecting magnetic information on the sample surface, and a tunneling electron microscope (STM).

【0026】また、実施の形態では、被測定部材38の
被測定面を凹面としたが、Zセンサー37、円筒型圧電
体36、カンチレバー40、試料41の配置によっては
凸面とすることも可能である。
Further, in the embodiment, the surface to be measured of the member to be measured 38 is a concave surface, but it may be a convex surface depending on the arrangement of the Z sensor 37, the cylindrical piezoelectric body 36, the cantilever 40, and the sample 41. is there.

【0027】[0027]

【発明の効果】本発明の走査型プローブ顕微鏡によれ
ば、被測定部材の傾斜による誤差を含まない試料表面の
高さ情報が得られるので、試料表面の真の凹凸を測定で
きる。
According to the scanning probe microscope of the present invention, since the height information of the sample surface which does not include the error due to the inclination of the member to be measured can be obtained, the true unevenness of the sample surface can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の走査型プローブ顕微鏡の
構成を示す図である。
FIG. 1 is a diagram showing a configuration of a scanning probe microscope according to an embodiment of the present invention.

【図2】図1に示した走査型プローブ顕微鏡による測定
結果を説明するための図である。
FIG. 2 is a diagram for explaining measurement results by the scanning probe microscope shown in FIG.

【図3】Zセンサーに電気式変位検出センサーを用いた
様子を示す図である。
FIG. 3 is a diagram showing a state in which an electric displacement detection sensor is used as a Z sensor.

【図4】Zセンサーに光学式変位検出センサーを用いた
様子を示す図である。
FIG. 4 is a diagram showing a state in which an optical displacement detection sensor is used as a Z sensor.

【図5】Z変位検出機構を設けた走査型プローブ顕微鏡
の一例を示す図である。
FIG. 5 is a diagram showing an example of a scanning probe microscope provided with a Z displacement detection mechanism.

【図6】Z変位検出機構を有する従来の走査型プローブ
顕微鏡による測定結果を説明する図である。
FIG. 6 is a diagram illustrating a measurement result by a conventional scanning probe microscope having a Z displacement detection mechanism.

【符号の説明】[Explanation of symbols]

32…Z変位検出回路、33…XY走査回路、34…サ
ーボ回路、36…円筒型圧電素子、37…Zセンサー、
38…被測定部材、40…カンチレバー。
32 ... Z displacement detection circuit, 33 ... XY scanning circuit, 34 ... Servo circuit, 36 ... Cylindrical piezoelectric element, 37 ... Z sensor,
38 ... Member to be measured, 40 ... Cantilever.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】走査型プローブ顕微鏡において、 探針と、 探針と試料の間に三方向に相対的な移動を生じさせるた
めの圧電素子と、 試料の表面方向(xy方向)に探針と試料の間の相対的
な移動が生じるように圧電素子を駆動するXY駆動手段
と、 試料の高さ方向(z方向)に探針と試料の間の相対的が
移動が生じるように圧電素子を駆動するZ駆動手段と、 圧電素子に固定された被測定部材で、被測定面を持つ被
測定部材と、 被測定部材の被測定面のz方向の変位を検出するZ変位
検出手段とを有し、 被測定部材の被測定面は、Z変位検出手段による測定箇
所が、圧電素子のxy方向に関する駆動とは無関係に、
z方向に関して常に同じ位置となる曲面である、走査型
プローブ顕微鏡。
1. In a scanning probe microscope, a probe, a piezoelectric element for causing relative movement in three directions between the probe and the sample, and a probe in a surface direction (xy direction) of the sample. The XY drive means for driving the piezoelectric element so that the relative movement between the sample occurs, and the piezoelectric element so that the relative movement between the probe and the sample occurs in the height direction (z direction) of the sample. A Z drive means for driving, a member to be measured fixed to the piezoelectric element and having a surface to be measured, and a Z displacement detecting means for detecting displacement of the surface to be measured of the member to be measured in the z direction. On the surface to be measured of the member to be measured, the measurement position by the Z displacement detecting means is independent of the driving of the piezoelectric element in the xy directions.
A scanning probe microscope, which is a curved surface that always has the same position in the z direction.
【請求項2】請求項1において、圧電素子は円筒型圧電
素子であり、被測定部材は円筒型圧電素子の内側の自由
端に固定されており、被測定面は凹面である、走査型プ
ローブ顕微鏡。
2. The scanning probe according to claim 1, wherein the piezoelectric element is a cylindrical piezoelectric element, the member to be measured is fixed to the inner free end of the cylindrical piezoelectric element, and the surface to be measured is a concave surface. microscope.
JP23691595A 1995-09-14 1995-09-14 Scanning probe microscope Withdrawn JPH0980060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23691595A JPH0980060A (en) 1995-09-14 1995-09-14 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23691595A JPH0980060A (en) 1995-09-14 1995-09-14 Scanning probe microscope

Publications (1)

Publication Number Publication Date
JPH0980060A true JPH0980060A (en) 1997-03-28

Family

ID=17007643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23691595A Withdrawn JPH0980060A (en) 1995-09-14 1995-09-14 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JPH0980060A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009029043A1 (en) * 2007-08-24 2009-03-05 Quantum Precision Instruments Asia Private Limited Quantum tunnelling sensor device and method
CN104076826A (en) * 2013-03-28 2014-10-01 日本株式会社日立高新技术科学 Actuator Position Calculation Device and Actuator Position Calculation Method
WO2015140996A1 (en) * 2014-03-20 2015-09-24 株式会社島津製作所 Scanning probe microscope

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009029043A1 (en) * 2007-08-24 2009-03-05 Quantum Precision Instruments Asia Private Limited Quantum tunnelling sensor device and method
US8544324B2 (en) 2007-08-24 2013-10-01 Pilsne Research Co., L.L.C. Quantum tunnelling sensor device and method
CN104076826A (en) * 2013-03-28 2014-10-01 日本株式会社日立高新技术科学 Actuator Position Calculation Device and Actuator Position Calculation Method
DE102014103829A1 (en) 2013-03-28 2014-10-02 Hitachi High-Tech Science Corp. Calculating device, calculating method and calculating program for a position of a driving element
US9766267B2 (en) 2013-03-28 2017-09-19 Hitachi High-Tech Science Corporation Actuator position calculation device, actuator position calculation method, and actuator position calculation program
WO2015140996A1 (en) * 2014-03-20 2015-09-24 株式会社島津製作所 Scanning probe microscope
CN106104278A (en) * 2014-03-20 2016-11-09 株式会社岛津制作所 Scanning probe microscopy
JPWO2015140996A1 (en) * 2014-03-20 2017-04-06 株式会社島津製作所 Scanning probe microscope

Similar Documents

Publication Publication Date Title
US6530268B2 (en) Apparatus and method for isolating and measuring movement in a metrology apparatus
EP0536827B1 (en) Combined scanning force microscope and optical metrology tool
USRE37404E1 (en) Detection system for atomic force microscopes
US7312619B2 (en) Multiple local probe measuring device and method
US6642517B1 (en) Method and apparatus for atomic force microscopy
US20120079633A1 (en) Apparatus and Method for Isolating and Measuring Movement in Metrology Apparatus
US6278113B1 (en) Scanning probe microscope
US5929643A (en) Scanning probe microscope for measuring the electrical properties of the surface of an electrically conductive sample
JPH0642953A (en) Interatomic force microscope
EP0712533B1 (en) Probe microscopy
JPH0980060A (en) Scanning probe microscope
JP2007240238A (en) Probe microscope and measuring method of probe microscope
KR100424540B1 (en) Cantilever construction composed of multiple actuators for AFM, AFM system having the cantilever construction and measurement method for properties of material by using the AFM
JPH10282125A (en) Cantilever, scanning probe microscope using the cantilever, and sample observation method
JP2967965B2 (en) Scanner for scanning probe microscope and scanning probe microscope provided with the same
JPH10232240A (en) Surface observing device
JPH10300760A (en) Scanning probe microscope
JP2694783B2 (en) Atomic force microscope
KR100298301B1 (en) Scanning probe with built-in sensor for sensing bending state and apparatus for measuring the bending state by using the same
JP3512259B2 (en) Scanning probe microscope
JPH0626852A (en) Scanning type probe microscope
JPH1073606A (en) Scanning probe microscope
JPH1062438A (en) Scanning probe microscope
JP2001013057A (en) Scanning probe microscope
JPH0727560A (en) Scanning type probe microscope and control method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203