JP6731841B2 - Axial spring - Google Patents

Axial spring Download PDF

Info

Publication number
JP6731841B2
JP6731841B2 JP2016248405A JP2016248405A JP6731841B2 JP 6731841 B2 JP6731841 B2 JP 6731841B2 JP 2016248405 A JP2016248405 A JP 2016248405A JP 2016248405 A JP2016248405 A JP 2016248405A JP 6731841 B2 JP6731841 B2 JP 6731841B2
Authority
JP
Japan
Prior art keywords
angle
peripheral surface
main shaft
shaft
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016248405A
Other languages
Japanese (ja)
Other versions
JP2018100761A (en
Inventor
篠原 克行
克行 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Priority to JP2016248405A priority Critical patent/JP6731841B2/en
Priority to CN201710913315.9A priority patent/CN108223644B/en
Publication of JP2018100761A publication Critical patent/JP2018100761A/en
Application granted granted Critical
Publication of JP6731841B2 publication Critical patent/JP6731841B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/387Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type comprising means for modifying the rigidity in particular directions
    • F16F1/3873Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type comprising means for modifying the rigidity in particular directions having holes or openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/387Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type comprising means for modifying the rigidity in particular directions
    • F16F1/3876Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type comprising means for modifying the rigidity in particular directions by means of inserts of more rigid material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/393Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type with spherical or conical sleeves
    • F16F1/3935Conical sleeves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、大型建機、大型船舶、とりわけ鉄道車両用として好適な軸ばねに係り、詳しくは、主軸と、主軸の軸心方向視で主軸を囲繞する状態で配備される外筒と、複数の弾性材層と一又は複数の硬質材壁とを軸心に対する径内外方向へ交互に積層させた状態で、主軸と外筒との間に介装されている弾性部と、を有してなる軸ばねに関するものである。 The present invention relates to a shaft spring suitable for large construction machines, large ships, especially railroad vehicles, and more specifically, a main shaft, an outer cylinder arranged in a state of surrounding the main shaft when viewed from the axial direction of the main shaft, and a plurality of outer cylinders. An elastic portion interposed between the main shaft and the outer cylinder in a state where the elastic material layer and one or more hard material walls are alternately laminated in the radial inward and outward directions with respect to the shaft center. The present invention relates to a shaft spring.

この種の軸ばねは、例えば鉄道車両においては、その蛇行動や上下動時の衝撃を吸収緩和するために、台車枠と車軸側部材との間に介装されている。即ち、軸箱支持装置の一例としての軸ばねは、主軸とその周囲に配置された外筒との間に、二つの硬質材壁と三つのゴム層とが同心状態で、かつ、半径方向に交互に積層されてなる構成のものが多い。 In a railcar, for example, this type of shaft spring is interposed between the bogie frame and the axle-side member in order to absorb and mitigate the snake's behavior and the shock of vertical movement. That is, the shaft spring as an example of the shaft box supporting device is such that the two hard material walls and the three rubber layers are concentric with each other between the main shaft and the outer cylinder arranged around the main shaft, and in the radial direction. Many of them have a structure in which they are alternately laminated.

鉄道車両用軸ばねの傾向としては、乗り心地の良さを考慮すれば弾性層をばね定数の柔らかい方が望ましいが、定員以上の乗車時などの大きな重量が負荷された場合の耐荷重を考慮すればばね定数が硬い方が望ましい。このように相反する要求を満たすため、従来では、特許文献1(図3,6を参照)や特許文献2にて開示されたように、主軸の外周面、弾性層、及び外筒の内周面を互いに同方向に傾けた傾斜型の軸ばねとされていた。 As for the tendency of axle springs for railway vehicles, it is desirable that the elastic layer has a soft spring constant in consideration of ride comfort, but consider the withstand load when a large weight is applied, such as when the vehicle is over capacity. It is desirable that the spring constant is hard. In order to satisfy such conflicting requirements, conventionally, as disclosed in Patent Document 1 (see FIGS. 3 and 6) and Patent Document 2, the outer peripheral surface of the main shaft, the elastic layer, and the inner peripheral surface of the outer cylinder are disclosed. It was an inclined type axial spring in which the surfaces were tilted in the same direction.

傾斜型とすることにより、クッションストロークが増すほどにばね定数も大きくなるという、いわゆるプログレッシブ特性が得られ、クッションストロークが少ないときにはソフトなばね定数による良好な乗車感を出せ、かつ、クッションストロークが大きいときにはハードなばね定数による大荷重にも踏ん張りの効く軸ばねが実現されていた。 By adopting the inclined type, a so-called progressive characteristic that the spring constant increases as the cushion stroke increases, a so-called progressive characteristic can be obtained when the cushion stroke is small, and a good riding feeling can be obtained due to the soft spring constant, and the cushion stroke is large. Occasionally, a shaft spring was realized that exerts tension even with a large load due to a hard spring constant.

しかしながら、より一層の車両の乗り心地向上のため、上下方向の低剛性化、即ち低ばね定数化の要求がある。傾斜型の軸ばねにおいては、まず、その上下軸心に対する傾斜角度を緩く(立たせた)角度にして、ばね定数を低下させることが考えられるが、そうすれば耐最大荷重も小さくなってしまい、都合が悪い。そこで、弾性部をおおきくしながら傾斜角度も緩くし、耐最大荷重も確保する案も考えられるが、この手段では軸ばね自体が大型化してしまい、やはり都合が悪い。 However, in order to further improve the riding comfort of the vehicle, there is a demand for lower vertical rigidity, that is, lower spring constant. In the inclined type axial spring, first, it is possible to decrease the spring constant by making the angle of inclination with respect to the vertical axis thereof gentle (standing), but if so, the maximum load resistance will also decrease. It's not convenient. Therefore, it is conceivable that the angle of inclination is made gentler and the maximum load resistance is secured while the elastic portion is made large, but this means is inconvenient because the shaft spring itself becomes large.

特開2014−073726号公報JP, 2014-073726, A 特開2015−169313号公報JP, 2005-169313, A

本発明の目的は、さらなる構造工夫により、クッションストローク初期或いは前半部においてばね定数を無理なくソフト化し、耐最大荷重を落とすことなく乗り心地の改善が図れる軸ばねを提供する点にある。 An object of the present invention is to provide a shaft spring which can improve the ride comfort without lowering the maximum load resistance by reasonably softening the spring constant at the initial stage or the first half of the cushion stroke by further improving the structure.

請求項1に係る発明は、主軸1と、前記主軸1の軸心P方向視で前記主軸1を囲繞する状態で配備される外筒2と、複数の弾性材層4a,4b,4cと一又は複数の硬質材壁5a,5bとを前記軸心Pに対する径内外方向へ交互に積層させた状態で、前記主軸1と前記外筒2との間に介装されている弾性部3と、を有してなる軸ばねにおいて、
前記主軸1の外周面1aと前記外筒2の内周面2aとが、前記軸心Pに対して互いに同じ第1角度θ1で傾斜した円錐面に形成され、前記硬質材壁5a,5bの前記軸心Pに対して傾斜する第2角度θ2が、前記第1角度θ1より小さい角度に設定されていることを特徴とする。
The invention according to claim 1 includes a main shaft 1, an outer cylinder 2 arranged in a state of surrounding the main shaft 1 when viewed from the direction of the axis P of the main shaft 1, and a plurality of elastic material layers 4a, 4b, 4c. Or, in a state where a plurality of hard material walls 5a and 5b are alternately laminated in the radial inward and outward directions with respect to the axis P, an elastic portion 3 interposed between the main shaft 1 and the outer cylinder 2, In a shaft spring having
The outer peripheral surface 1a of the main shaft 1 and the inner peripheral surface 2a of the outer cylinder 2 are formed into conical surfaces inclined at the same first angle θ1 with respect to the axis P, and the hard material walls 5a and 5b are formed. The second angle θ2 inclined with respect to the axis P is set to be smaller than the first angle θ1.

請求項2に係る発明は、請求項1に記載の軸ばねにおいて、
前記外筒2は前記主軸1に対して、前記軸心Pの方向における前記外周面1aの先窄まり側に寄せて配置されていることを特徴とする。
The invention according to claim 2 provides the shaft spring according to claim 1,
The outer cylinder 2 is arranged to be closer to the tapered side of the outer peripheral surface 1a in the direction of the axis P with respect to the main shaft 1.

請求項3に係る発明は、請求項1又は2に記載の軸ばねにおいて、
前記弾性部3は、内中外の三つの弾性材層4a,4b,4cと内外二つの硬質材壁5a,5bとを備えてなり、前記内硬質材壁5aの前記第2角度θ2及び前記外硬質材壁5bの前記第2角度θ2のいずれも前記第1角度θ1よりも小さい角度に設定されていることを特徴とする。
The invention according to claim 3 is the shaft spring according to claim 1 or 2, wherein
The elastic portion 3 includes three elastic material layers 4a, 4b and 4c inside and outside and two hard material walls 5a and 5b inside and outside, and the second angle θ2 and the outside of the inner hard material wall 5a. Each of the second angles θ2 of the hard material wall 5b is set to an angle smaller than the first angle θ1.

請求項4に係る発明は、請求項1〜3の何れか一項に記載の軸ばねにおいて、
前記第2角度θ2の前記第1角度θ1より小さい範囲が1.5〜7.5度に設定されていることを特徴とする。
The invention according to claim 4 is the axial spring according to any one of claims 1 to 3,
The range in which the second angle θ2 is smaller than the first angle θ1 is set to 1.5 to 7.5 degrees.

請求項5に係る発明は、請求項1〜4の何れか一項に記載の軸ばねにおいて、
前記外周面1aは、前記第1角度θ1よりも大きい第3角度θ3を有する先窄まり先端面9と、前記第1角度θ1よりも小さい第4角度θ4を有する先窄まり基端面10とを有し、前記外周面1aの平均角度が前記第1角度θ1に設定されていることを特徴とする。
The invention according to claim 5 is the shaft spring according to any one of claims 1 to 4,
The outer peripheral surface 1a includes a tapered front end surface 9 having a third angle θ3 larger than the first angle θ1 and a tapered proximal end surface 10 having a fourth angle θ4 smaller than the first angle θ1. And the average angle of the outer peripheral surface 1a is set to the first angle θ1.

請求項1の発明によれば、積層ゴム構造を採る弾性部において、弾性材層で挟まれた硬質材壁の傾斜角度を、主軸の外周面や外筒の内周面の傾斜角度より小さくしてあるので、軸ばねに作用する荷重に対する弾性部の弾性変位量の増加程度を、硬質材壁の傾斜角度が主軸の外周面や外筒の内周面の傾斜角度に等しい従来のものに比べて緩くすることが可能になる。そして、主軸の外周面、及び外筒の内周面の傾斜角度は従来と同じであるから、最大荷重時の弾性変形量は変わらないようにすることができる。
その結果、さらなる構造工夫により、少ないクッションストローク初期或いは前半部においてばね定数を無理なくソフト化し、耐最大荷重を落とすことなく乗り心地の改善が図れる軸ばねを提供することができる。
According to the invention of claim 1, in the elastic portion having the laminated rubber structure, the inclination angle of the hard material wall sandwiched by the elastic material layers is made smaller than the inclination angle of the outer peripheral surface of the main shaft or the inner peripheral surface of the outer cylinder. Therefore, the degree of increase in the elastic displacement of the elastic part with respect to the load acting on the shaft spring is compared with the conventional one in which the inclination angle of the hard material wall is equal to the inclination angle of the outer peripheral surface of the spindle or the inner peripheral surface of the outer cylinder. Can be loosened. Since the inclination angles of the outer peripheral surface of the main shaft and the inner peripheral surface of the outer cylinder are the same as the conventional ones, the elastic deformation amount at the maximum load can be kept unchanged.
As a result, it is possible to provide a shaft spring in which the spring constant can be reasonably softened in the early stage of the cushion stroke or in the first half by further structural improvement, and the riding comfort can be improved without reducing the maximum load resistance.

請求項2の発明のように、外筒が主軸に対して軸心方向で主軸外周面の先窄まり側に寄せられた軸ばねであるとか、請求項3の発明のように、内外三つの弾性材層と内外二つの硬質材壁とを備えた軸ばねであれば、請求項1の発明による作用効果をより一層明確に得ることができる。 According to a second aspect of the present invention, the outer cylinder is a shaft spring that is biased toward the tapered side of the outer peripheral surface of the main shaft in the axial direction with respect to the main shaft. With the axial spring provided with the elastic material layer and the two hard material walls inside and outside, the function and effect of the invention of claim 1 can be obtained more clearly.

請求項4の発明によれば、ばね定数のソフト化が丁度良い範囲に設定され、請求項1の発明による作用効果を適切に得ることが可能になる。即ち、第2角度θ2の第1角度θ1より小さい範囲が1.5度を下回ると、ばね定数のソフト化の効果が殆ど期待できないようになり、7.5度を上回るとばね定数のソフト化が過剰気味になるからである。 According to the fourth aspect of the invention, the softening of the spring constant is set within an appropriate range, and the effect of the first aspect of the invention can be appropriately obtained. That is, if the range of the second angle θ2 smaller than the first angle θ1 is less than 1.5 degrees, the effect of softening the spring constant can hardly be expected, and if it exceeds 7.5 degrees, the spring constant is softened. Because it will be excessive.

請求項5の発明によれば、主軸の円錐面状外周面が、例えば、中間部に比べて、先端部の角度が大きく、かつ、基端部の角度が小さいという三段に傾斜したような場合であっても、それらの平均角度が外筒の内周面と同じ傾斜角度であれば良い。従って、主軸の形状バリエーションの豊富化が図れる利点がある。 According to the invention of claim 5, the conical outer peripheral surface of the main shaft is inclined in three steps, for example, the angle of the tip end is larger and the angle of the base end is smaller than the middle part. Even in such a case, the average angle thereof may be the same as that of the inner peripheral surface of the outer cylinder. Therefore, there is an advantage that the shape variations of the spindle can be enriched.

実施形態1による軸ばねの平面図The top view of the axial spring by Embodiment 1. 図1の軸ばねを「前−軸心P−右」で切った断面図Sectional drawing which cut|disconnected the axial spring of FIG. 1 by "front-axis center P-right". 荷重と変位量との関係グラフを示す図Diagram showing the relationship graph between load and displacement 実施形態2による軸ばねの平面図The top view of the axial spring by Embodiment 2. 図4の軸ばねを「前−軸心P−右」で切った断面図Sectional drawing which cut|disconnected the axial spring of FIG. 4 by "front-axis center P-right".

以下に、本発明による軸ばねの実施の形態を、鉄道車両用軸ばねとして図面を参照しながら説明する。 Hereinafter, an embodiment of a shaft spring according to the present invention will be described as a railcar shaft spring with reference to the drawings.

〔実施形態1〕
鉄道車両用軸ばね(以下、軸ばねと略称する)Aは、図1及び図2に示されるように、主軸1と、主軸1と互いに同一(又はほぼ同一でも良い)の縦向きの軸心Pを有する外筒2と、主軸1と外筒2との間に介装されている弾性部3とを有して構成されている。弾性部3は、三層の弾性層4と二層の中間硬質筒5とを軸心Pに対して同心状態(又はほぼ同心状態でも良い)で径内外方向へ交互に積層する積層ゴム構造として、主軸1と外筒2との間に構成されている。
[Embodiment 1]
As shown in FIGS. 1 and 2, a railcar shaft spring (hereinafter, simply referred to as shaft spring) A has a main shaft 1 and a longitudinal shaft center that is the same as (or may be substantially the same as) the main shaft 1. The outer cylinder 2 having P and the elastic portion 3 interposed between the main shaft 1 and the outer cylinder 2 are configured. The elastic portion 3 has a laminated rubber structure in which three elastic layers 4 and two intermediate hard cylinders 5 are alternately laminated radially inward and outward with the axis P being concentric (or almost concentric). , Between the main shaft 1 and the outer cylinder 2.

ここで、図1(図4)においては、弾性層4に形成されている抜き孔6,7と軸心Pとを結ぶ線分の方向を左右、主軸1の下端部に形成されている一対のネジ孔1g,1gを結ぶ方向を前後と定義する。そして、図2(図5)においては、軸心Pを有する主軸1を基準として、主軸1の形状から先窄まり側を上、元拡がり側(反先窄まり側)を下と定義する。 Here, in FIG. 1 (FIG. 4), the direction of a line segment that connects the punched holes 6 and 7 formed in the elastic layer 4 and the axis P to the left and right, and the pair formed at the lower end of the main shaft 1 The direction connecting the screw holes 1g and 1g is defined as front and rear. Then, in FIG. 2 (FIG. 5), with respect to the spindle 1 having the axis P, the tapered side from the shape of the spindle 1 is defined as the upper side, and the original expansion side (anti-converged side) is defined as the lower side.

主軸1は、図1,2に示されるように、金属製のものであって、上窄まり状の円錐面でなる傾斜外周面1aを備える円錐上部1Aと、最大径の大外周面1bを有して円錐上部1Aの下側に続くフランジ部1Bと、径の細い小外周面1cを有してフランジ部1Bの下側に続く下部直胴部1Cとを備える筒状軸に形成されている。傾斜外周面1aは、軸心Pに対して第1角度θ1で傾斜されている。 As shown in FIGS. 1 and 2, the main shaft 1 is made of metal, and includes a conical upper portion 1A having an inclined outer peripheral surface 1a formed of an upper conical surface, and a large outer peripheral surface 1b having a maximum diameter. It is formed in a tubular shaft having a flange portion 1B having a lower outer diameter of the conical upper portion 1A and a lower straight body portion 1C having a small outer peripheral surface 1c having a small diameter and continuing to the lower side of the flange portion 1B. There is. The inclined outer peripheral surface 1a is inclined with respect to the axis P at a first angle θ1.

円錐上部1Aには、軸心Pを中心として上端開口している中空部1dが形成されており、この中空部1dは下部直胴部1Cの上下中間位置まで延設されている。下部直胴部1Cには、軸心Pを有して下端開口している細径縦孔1f、及び細径縦孔1fの両脇それぞれに配置される状態でネジ孔1g,1gが形成されている。これら細径縦孔1f及びネジ孔1g、1gは、中空部1dの漏斗状底面1eに開口されている。 A hollow portion 1d having an upper end opening centering on the axis P is formed in the cone upper portion 1A, and the hollow portion 1d is extended to a vertically intermediate position of the lower straight body portion 1C. In the lower straight body portion 1C, there are formed small diameter vertical holes 1f having an axis P and opening at the lower end, and screw holes 1g, 1g formed on both sides of the small diameter vertical holes 1f. ing. The small-diameter vertical hole 1f and the screw holes 1g, 1g are opened in the funnel-shaped bottom surface 1e of the hollow portion 1d.

外筒2は、図1,2に示されるように、金属製のものであって、下拡がり状の円錐面でなる傾斜内周面2a、傾斜内周面2aの上側に続く嵌合内周面2b、円環状の上端面2cを有し、縦断面形状がハ字状を呈する筒部材に形成されている。軸心Pを備える外筒2は、主軸1に対して上側(先窄まり側)に寄せて配置されている。即ち、主軸1の上端部の高さレベルと、外筒2の下端部の高さレベルがほぼ同じとなるように外筒2が上側に寄せられている。 As shown in FIGS. 1 and 2, the outer cylinder 2 is made of metal, and has a slanted inner peripheral surface 2a formed of a downwardly-spreading conical surface, and a fitting inner peripheral surface continuing to the upper side of the slanted inner peripheral surface 2a. It has a surface 2b and an annular upper end surface 2c, and is formed into a tubular member having a vertical cross-section of a V shape. The outer cylinder 2 having the shaft center P is arranged closer to the upper side (the tapered side) with respect to the main shaft 1. That is, the outer cylinder 2 is moved upward so that the height level of the upper end of the main shaft 1 and the height level of the lower end of the outer cylinder 2 are substantially the same.

傾斜内周面2aの軸心Pに対する傾斜角度は、主軸1の傾斜外周面1aと同じ第1角度θ1に設定されている。つまり、傾斜内周面2aと傾斜外周面1aとは互いに平行である。この第1角度θ1は、例えば10度(又は10度±5度)に設定されているが、それ以外の角度でも良い。
図2においては、傾斜外周面1aの補助線aと傾斜内周面2aの補助線bとを矢印マークで互いに平行であることを表している。
The inclination angle of the inclined inner peripheral surface 2a with respect to the axis P is set to the same first angle θ1 as that of the inclined outer peripheral surface 1a of the main shaft 1. That is, the inclined inner peripheral surface 2a and the inclined outer peripheral surface 1a are parallel to each other. The first angle θ1 is set to, for example, 10 degrees (or 10 degrees ±5 degrees), but may be another angle.
In FIG. 2, the auxiliary line a of the inclined outer peripheral surface 1a and the auxiliary line b of the inclined inner peripheral surface 2a are indicated by arrow marks to be parallel to each other.

弾性部3は、図1,2に示されるように、環状で三つのゴム層(弾性材層の一例)4a,4b,4cからなる弾性層4と、金属製又は板金製で二つの環状輪(硬質材壁の一例)5a,5bとかなる中間硬質筒5とを、軸心Pに対する径内外方向へ交互に積層させた状態で、主軸1と外筒2との間に介装することで構成されている。弾性層4は、径方向で内から内ゴム層4a、中ゴム層4b、外ゴム層4cを有している。内ゴム層4aは、主軸1の上面(符記省略)の大部分を径外側から覆う薄膜部4hを有している。上部中間硬質筒5は、径方向で内から内環状輪5a、外環状輪5bを有している。 As shown in FIGS. 1 and 2, the elastic portion 3 is an annular elastic layer 4 composed of three rubber layers (an example of an elastic material layer) 4a, 4b, 4c, and two annular rings made of metal or sheet metal. (Example of hard material wall) By interposing intermediate hard cylinders 5 made up of 5a and 5b in the radial inward and outward directions with respect to the axis P, they are interposed between the main shaft 1 and the outer cylinder 2. It is configured. The elastic layer 4 has an inner rubber layer 4a, a middle rubber layer 4b, and an outer rubber layer 4c from the inside in the radial direction. The inner rubber layer 4a has a thin film portion 4h that covers most of the upper surface (not shown) of the main shaft 1 from the radially outer side. The upper intermediate rigid cylinder 5 has an inner annular ring 5a and an outer annular ring 5b from the inside in the radial direction.

弾性層4及び中間硬質筒5は、軸心Pに対して主軸1の傾斜外周面1aや外筒2の傾斜内周面2aと同じ方向に傾けられている。そして、内及び外の各環状輪5a,5bの軸心Pに対して傾斜する第2角度θ2が、第1角度θ1より小さい角度に設定されている。
第2角度θ2は、例えば第1角度θ1が10度のときに7.5度に設定されている。その他、(θ1−1.5度)≧θ2≧(θ1−7.5度)、好ましくは(θ1−2.5度)≧θ2≧(θ1−4.5度)、或いは、それら以外の角度(θ1>θ2)でも良い。
図2においては、内環状輪5aの補助線cと外環状輪5bの補助線dとを二重矢印マークで互いに平行であることを表している。
The elastic layer 4 and the intermediate hard cylinder 5 are inclined with respect to the axis P in the same direction as the inclined outer peripheral surface 1a of the main shaft 1 and the inclined inner peripheral surface 2a of the outer cylinder 2. The second angle θ2 that is inclined with respect to the axis P of the inner and outer annular wheels 5a and 5b is set to be smaller than the first angle θ1.
The second angle θ2 is set to 7.5 degrees when the first angle θ1 is 10 degrees, for example. In addition, (θ1-1.5 degrees)≧θ2≧(θ1-7.5 degrees), preferably (θ1-2.5 degrees)≧θ2≧(θ1-4.5 degrees), or other angles (Θ1>θ2) may be used.
In FIG. 2, the auxiliary line c of the inner annular ring 5a and the auxiliary line d of the outer annular ring 5b are indicated by double arrow marks to be parallel to each other.

内ゴム層4a、中ゴム層4b、及び外ゴム層4cは、それらのいずれも下端部の厚み(径方向の厚み)が互いに同じ(又はほぼ同じ)である。図2において、各ゴム層4a〜4cの下端面における最も上方に凹入した箇所を結んだ線分を補助線eとすると、各ゴム層4a〜4cの補助線e上での幅が同じ又はほぼ同じとなるように構成されている。 The inner rubber layer 4a, the middle rubber layer 4b, and the outer rubber layer 4c have the same thickness (or substantially the same thickness) at the lower end portions (thickness in the radial direction). In FIG. 2, assuming that a line segment connecting the uppermost recessed portions on the lower end surfaces of the rubber layers 4a to 4c is an auxiliary line e, the widths of the rubber layers 4a to 4c on the auxiliary line e are the same or It is configured to be almost the same.

二つの環状輪5a,5bが傾斜外周面1a及び傾斜内周面2aに対して立った角度に傾いていることにより、外ゴム層4c上端部の厚み<中ゴム層4b上端部の厚み<内ゴム層4a上端部の厚み、になっている。また、内環状輪5aは主軸1に対して上側(先窄まり側)に寄せられ、外環状輪5bは内環状輪5aに対して上側(先窄まり側)に寄せられ、外筒2は外環状輪5bに対して上側(先窄まり側)に寄せられている。 Since the two annular wheels 5a, 5b are inclined at an upright angle with respect to the inclined outer peripheral surface 1a and the inclined inner peripheral surface 2a, the thickness of the upper end portion of the outer rubber layer 4c <the thickness of the upper end portion of the middle rubber layer 4b <inner The thickness of the upper end portion of the rubber layer 4a is set. Further, the inner annular ring 5a is moved to the upper side (the tapered side) with respect to the main shaft 1, the outer annular ring 5b is moved to the upper side (the tapered side) with respect to the inner annular ring 5a, and the outer cylinder 2 is It is moved to the upper side (the tapered side) with respect to the outer annular ring 5b.

図1、図2に示されるように、外ゴム層4cと中ゴム層4bとには、左右方向に配置された各一対の抜き孔6,7が上下に貫通状態で形成されている。図1に示されるように、外及び中の各抜き孔6,7の幅方向端(軸心Pに対する周方向端)を結んで軸心Pを通る補助線f、gを引くと、各抜き孔6,7の幅角度は互いに等しい第6角度θ6に揃えられている。一方の補助線gは、外筒2の一対の取付用ネジ部8,8の中心も通る状態になっている。第6角度θ6は、前後に等しい角度ずつ振り分けられている。各抜き孔6,7は、外筒2及び各中間硬質筒5,5の防錆のため、径方向にはゴム膜4gを残してほぼゴム層4c,4bの径方向幅に近い幅を有している。 As shown in FIGS. 1 and 2, each of the outer rubber layer 4c and the middle rubber layer 4b has a pair of holes 6 and 7 arranged in the left-right direction in a vertically penetrating state. As shown in FIG. 1, when the widthwise ends (circumferential ends with respect to the axis P) of the outer and inner holes 6, 7 are connected and auxiliary lines f and g passing through the axis P are drawn, The width angles of the holes 6 and 7 are aligned at the same sixth angle θ6. The one auxiliary line g also passes through the centers of the pair of mounting screw portions 8 of the outer cylinder 2. The sixth angle θ6 is divided into equal front and rear angles. Each of the vent holes 6 and 7 has a width close to the radial width of the rubber layers 4c and 4b, leaving the rubber film 4g in the radial direction, in order to prevent rusting of the outer cylinder 2 and the intermediate hard cylinders 5 and 5. doing.

外筒2に荷重が掛ると、外筒2が主軸1に対して下がる方向に弾性部3が弾性変形して懸架する。傾斜外周面1aと傾斜内周面2aとで挟まれている弾性部3には、せん断荷重に加えて圧縮荷重も掛る構造上、軸心P方向の荷重が増すに連れて弾性部3のばね定数が増す非線形特性、いわゆるプログレッシブ特性が得られる。 When a load is applied to the outer cylinder 2, the elastic portion 3 elastically deforms and suspends in a direction in which the outer cylinder 2 is lowered with respect to the main shaft 1. Since the elastic portion 3 sandwiched between the inclined outer peripheral surface 1a and the inclined inner peripheral surface 2a is subjected to a compressive load in addition to a shear load, the spring of the elastic portion 3 increases as the load in the axial center P direction increases. A non-linear characteristic in which the constant increases, that is, a so-called progressive characteristic can be obtained.

二つの環状輪5a,5bを傾斜外周面1a及び傾斜内周面2aより立たせた角度にしてあるので、外筒2と主軸1とが軸心P方向で近付く方向の荷重が作用したときに、従来構造の弾性部(二つの環状輪5a,5bと傾斜外周面1a及び傾斜内周面2aとが全て互いに同じ角度)に比べて、弾性部3としての最大荷重条件は変わらないようにしながら、弾性部3の全体としてのばね定数の増加具合を緩やかなものにすることができる。 Since the two annular wheels 5a, 5b are set at an angle upright from the inclined outer peripheral surface 1a and the inclined inner peripheral surface 2a, when a load in a direction in which the outer cylinder 2 and the main shaft 1 approach each other in the axial center P direction, Compared with the elastic portion of the conventional structure (the two annular wheels 5a, 5b and the inclined outer peripheral surface 1a and the inclined inner peripheral surface 2a are all at the same angle), the maximum load condition as the elastic portion 3 is not changed, It is possible to moderately increase the spring constant of the elastic portion 3 as a whole.

弾性層4には、軸心P方向の荷重に対して耐せん断力と耐圧縮力との双方により弾性変位するが、中ゴム層4bについては、従来構造(環状輪5a,5bの傾斜角度θ2が傾斜内周面2aの傾斜角度θ1に等しい構造)のものより耐せん断力の割合が多くなり、荷重が増すに連れてばね定数が増加する程度、即ちプログレッシブ特性が緩やかになる。内ゴム層4aや外ゴム層4cも、片側の傾斜角度(θ2)が立っていることの影響を受け、中ゴム層4bほどではないが従来構造のものよりもプログレッシブ特性が緩やかになる。弾性部3としての内外の傾斜角度(θ1)は従来と同じであるから、ストローク後半部或いは限界近くまで荷重が増加した状態では、プログレッシブ特性は従来よりも大きくなる。従って、弾性部3としての最大荷重時における最大変位量は、従来と変わらないようにすることができる。 The elastic layer 4 is elastically displaced by both the shear resistance and the compression resistance against a load in the direction of the axis P, but the middle rubber layer 4b has the conventional structure (the inclination angle θ2 of the annular wheels 5a and 5b). Has a greater proportion of shear resistance than that of the inclined inner circumferential surface 2a), and the spring constant increases as the load increases, that is, the progressive characteristic becomes gentle. The inner rubber layer 4a and the outer rubber layer 4c are also affected by the fact that the inclination angle (θ2) on one side is raised, so that the progressive characteristics become gentler than those of the conventional structure, although not as much as the middle rubber layer 4b. Since the inner and outer inclination angles (θ1) of the elastic portion 3 are the same as the conventional one, the progressive characteristic becomes larger than the conventional one when the load increases in the latter half of the stroke or near the limit. Therefore, the maximum displacement amount of the elastic portion 3 at the time of maximum load can be kept the same as the conventional one.

軸ばねにおける軸心P方向の荷重に対する弾性部3の変位量の関係を表した荷重−変位量のグラフの一例を図3に示す。ライン(a)は、環状輪5a,5bの傾斜角度が傾斜外周面1a及び傾斜内周面2aと同じである従来の軸ばねのものを示し、ライン(b)は本願による軸ばねAの荷重−変位量のグラフを示す。図3のグラフから、従来の軸ばねと実施形態1の軸ばねとでは、最大荷重時の変位量は同じであるが、ある荷重のときの変位量は実施形態1の軸ばねの方が大きく、即ち、ばね定数が小さくなっていることが分かる。 FIG. 3 shows an example of a load-displacement amount graph showing the relationship between the displacement amount of the elastic portion 3 and the load in the axial center P direction of the shaft spring. Line (a) shows a conventional axial spring in which the inclination angles of the annular wheels 5a and 5b are the same as those of the inclined outer peripheral surface 1a and the inclined inner peripheral surface 2a, and the line (b) shows the load of the axial spring A according to the present application. -The graph of the amount of displacement is shown. From the graph of FIG. 3, the conventional shaft spring and the shaft spring of the first embodiment have the same displacement amount at the maximum load, but the displacement amount at a certain load is larger in the shaft spring of the first embodiment. That is, it can be seen that the spring constant is small.

〔実施形態2〕
軸ばねAは、図4及び図5に示される構造のものでも良い。実施形態2の軸ばねAは、実施形態1の軸ばねAと、主軸1の形状と抜き孔6,7の周方向長さ(θ7)とが異なる以外は同じであり、対応する箇所には同じ符号を付し、説明は割愛する。主軸1の外周面1aと外筒2の内周面2aとは、軸心Pに対して互いに同じ方向に傾斜した円錐面(9,11,2a)を有して形成されている。
[Embodiment 2]
The shaft spring A may have the structure shown in FIGS. 4 and 5. The axial spring A of the second embodiment is the same as the axial spring A of the first embodiment except that the shape of the main shaft 1 and the circumferential lengths (θ7) of the holes 6, 7 are different, and The same reference numerals are given and the explanation is omitted. The outer peripheral surface 1a of the main shaft 1 and the inner peripheral surface 2a of the outer cylinder 2 are formed to have conical surfaces (9, 11, 2a) inclined in the same direction with respect to the axis P.

主軸1は、図4、図5に示されるように、第1角度θ1よりも大きい第3角度θ3を有する先窄まり先端面9と、第1角度θ1よりも小さい第4角度θ4を有する先窄まり基端面10と、第1角度θ1よりも僅かに小さい第5角度θ5を有する先窄まり中間面11と、を備えて複数段傾斜の傾斜外周面1aを有している。そして、この三段の傾斜外周面1aの平均角度が第1角度θ1と同じ又はほぼ同じになるように設定されている。 As shown in FIGS. 4 and 5, the main shaft 1 has a tapered tip surface 9 having a third angle θ3 larger than the first angle θ1 and a tip having a fourth angle θ4 smaller than the first angle θ1. It has a tapered proximal end surface 10 and a tapered intermediate surface 11 having a fifth angle θ5 which is slightly smaller than the first angle θ1, and has an inclined outer peripheral surface 1a having a plurality of steps. The average angle of the three inclined outer peripheral surfaces 1a is set to be the same as or substantially the same as the first angle θ1.

即ち、主軸1と外筒2とに跨って形成されている弾性部3の配設方向(軸心Pに対する径方向での延び方向)を矢印Zで表し、先窄まり先端面9における弾性層4の矢印Zに対する幅長さをw9、先窄まり基端面10における弾性層4の矢印Zに対する幅長さをw10、先窄まり中間面11における弾性層4の矢印Zに対する幅長さをw11とした場合、式1:θ3×w9+θ4×w10+θ5×w11≒θ1×(w9+w10+w11)となる状態に構成されている。 That is, the arranging direction of the elastic portion 3 formed over the main shaft 1 and the outer cylinder 2 (extending direction in the radial direction with respect to the axis P) is indicated by an arrow Z, and the elastic layer on the tapered front end surface 9 is shown. 4 is w9, the width length of the elastic layer 4 at the tapered proximal end face 10 to the arrow Z is w10, and the width length of the elastic layer 4 at the tapered intermediate face 11 to the arrow Z is w11. In such a case, the equation 1 is expressed as θ3×w9+θ4×w10+θ5×w11≈θ1×(w9+w10+w11).

弾性部3の配設方向Zは、三つのゴム層4a,4b,4cそれぞれの上面どうしを径内外方向に結んだ上線分の軸心Pに対する角度と、下面どうしを径内外方向に結んだ下線分の軸心Pに対する角度との平均の角度である。
上線分は、三つのゴム層4a,4b,4cそれぞれの上面において最も下方に凹入した箇所を結ぶ線分、或いは、各上面の径内外の端部それぞれと最も下方凹入した点を平均化した仮想箇所を結ぶ線分、として定義できる。
下線分は、三つのゴム層4a,4b,4cそれぞれの下面において最も上方に凹入した箇所を結ぶ線分(図2の補助線eを参照)、或いは、各下面の径内外の端部それぞれと最も上方凹入した点を平均化した仮想箇所を結ぶ線分)として定義できる。
そして、図5に示されるように、外周面1aの各面9,10,11それぞれに一体化されている弾性層4の実質厚みを、矢印Zに対する幅長さw9,w10,w11として定義している。
The arrangement direction Z of the elastic portion 3 is defined by an angle with respect to an axis P of an upper line segment connecting the upper surfaces of the three rubber layers 4a, 4b, 4c radially inward and outward, and an underline connecting the lower surfaces radially inward and outward. It is an average angle with respect to the axis P of the minute.
The upper line segment averages the line segments connecting the lowest recessed points on the upper surfaces of the three rubber layers 4a, 4b, 4c, or the lowest recessed points on the inner and outer ends of each upper surface. It can be defined as a line segment connecting the virtual locations.
The underlined line is a line segment that connects the uppermost recessed portions on the lower surfaces of the three rubber layers 4a, 4b, 4c (see auxiliary line e in FIG. 2), or the inner and outer ends of each lower surface. Can be defined as a line segment connecting averaged virtual points).
Then, as shown in FIG. 5, the substantial thickness of the elastic layer 4 integrated with each of the surfaces 9, 10, 11 of the outer peripheral surface 1a is defined as the width length w9, w10, w11 with respect to the arrow Z. ing.

また、図5の軸ばねAの場合、θ1<θ3、θ1>θ4、θ1>θ5であるから、式1は、式2:(θ3−θ1)×w9≒(θ1−θ4)×w10+(θ1−θ5)×w11とも現すことができる。例えば、θ1=10度、θ3=33.5度、θ4=0度、θ5=7.5度、w9=6、w10=11、w11=12であるとき、(33.5−10)×6=141、(10−0)×11=110、(10−7.5)×12=30であるから、141≒140(110+30)である。 Further, in the case of the axial spring A of FIG. 5, since θ1<θ3, θ1>θ4, θ1>θ5, the formula 1 is represented by the formula 2: (θ3-θ1)×w9≈(θ1-θ4)×w10+(θ1 It can also be expressed as −θ5)×w11. For example, when θ1=10 degrees, θ3=33.5 degrees, θ4=0 degrees, θ5=7.5 degrees, w9=6, w10=11, w11=12, (33.5-10)×6. =141, (10-0)×11=110, and (10-7.5)×12=30, so 141≈140(110+30).

弾性層4の幅長さw9、w10、w11とは、弾性部3の傾きを考慮して各外周面9,10,11に対応させた実質的な幅の長さである。つまり、主軸1の傾斜外周面1aを形成する3つの傾斜外周面9,10,11は、それらの算術平均角度がθ1に等しい又はほぼ等しい状態に構成されている。
なお、先窄まり中間面10の軸心Pに対する傾斜角度がθ1であり、第1角度θ1に対して傾斜する面が、先窄まり先端面9(θ3)と先窄まり基端面10(θ4)との二つだけとされた傾斜外周面1aを持つ主軸1でも良い。
The width lengths w9, w10, w11 of the elastic layer 4 are substantial width lengths corresponding to the outer peripheral surfaces 9, 10, 11 in consideration of the inclination of the elastic portion 3. That is, the three inclined outer peripheral surfaces 9, 10, 11 forming the inclined outer peripheral surface 1a of the main shaft 1 are configured such that their arithmetic average angles are equal to or substantially equal to θ1.
The inclination angle of the tapered intermediate surface 10 with respect to the axis P is θ1, and the surfaces inclined with respect to the first angle θ1 are the tapered front end surface 9 (θ3) and the tapered base end surface 10 (θ4). ) And the inclined outer peripheral surface 1a which is only two.

〔別実施形態〕
外筒2の主軸1に対する軸心P方向への寄せ度合い(寄せ量)は、図1,4に示される以外のものであっても良い。弾性層4が二つで中間硬質筒5が一つの構成や、弾性層4が四つ以上で中間硬質筒5が三つ以上の構成を採る軸ばねも可能である。
[Another embodiment]
The degree of displacement (amount of displacement) of the outer cylinder 2 with respect to the main shaft 1 in the direction of the axis P may be other than those shown in FIGS. A shaft spring having two elastic layers 4 and one intermediate hard cylinder 5 or a structure having four or more elastic layers 4 and three or more intermediate hard cylinders 5 is possible.

1 主軸
1a 外周面
2 外筒
2a 内周面
3 弾性部
4 弾性層
4a〜4c 弾性材層
5 中間硬質筒
5a,5b 硬質材壁
9 先窄まり先端面
10 先窄まり基端面
P 軸心
θ1 第1角度
θ2 第2角度
θ3 第3角度
θ4 第4角度
DESCRIPTION OF SYMBOLS 1 main shaft 1a outer peripheral surface 2 outer cylinder 2a inner peripheral surface 3 elastic part 4 elastic layers 4a to 4c elastic material layer 5 intermediate hard cylinders 5a, 5b hard material wall 9 constricted front end surface 10 constricted proximal end surface P axis center θ1 First angle θ2 Second angle θ3 Third angle θ4 Fourth angle

Claims (5)

主軸と、
前記主軸の軸心方向視で前記主軸を囲繞する状態で配備される外筒と、
複数の弾性材層と一又は複数の硬質材壁とを前記軸心に対する径内外方向へ交互に積層させた状態で、前記主軸と前記外筒との間に介装されている弾性部と、
を有してなる軸ばねであって、
前記主軸の外周面と前記外筒の内周面とが、前記軸心に対して互いに同じ第1角度で傾斜した円錐面に形成され、前記硬質材壁の前記軸心に対して傾斜する第2角度が、前記第1角度より小さい角度に設定されている軸ばね。
Spindle and
An outer cylinder arranged in a state of surrounding the main shaft in the axial direction of the main shaft,
In a state in which a plurality of elastic material layers and one or a plurality of hard material walls are alternately laminated in the radial inner and outer directions with respect to the axis, an elastic portion interposed between the main shaft and the outer cylinder,
A shaft spring having:
An outer peripheral surface of the main shaft and an inner peripheral surface of the outer cylinder are formed into conical surfaces inclined at the same first angle with respect to the shaft center, and are inclined with respect to the shaft center of the hard material wall. A shaft spring in which two angles are set to be smaller than the first angle.
前記外筒は前記主軸に対して、前記軸心の方向における前記外周面の先窄まり側に寄せて配置されている請求項1に記載の軸ばね。 The shaft spring according to claim 1, wherein the outer cylinder is arranged closer to the tapered side of the outer peripheral surface in the direction of the axis with respect to the main shaft. 前記弾性部は、内中外の三つの弾性材層と内外二つの硬質材壁とを備えてなり、前記内硬質材壁の前記第2角度及び前記外硬質材壁の前記第2角度のいずれも前記第1角度よりも小さい角度に設定されている請求項1又は2に記載の軸ばね。 The elastic part includes three elastic material layers inside and outside and two hard material walls inside and outside, and both the second angle of the inner hard material wall and the second angle of the outer hard material wall. The shaft spring according to claim 1, wherein the shaft spring is set to an angle smaller than the first angle. 前記第2角度の前記第1角度より小さい範囲が1.5〜7.5度に設定されている請求項1〜3の何れか一項に記載の軸ばね。 The axial spring according to claim 1, wherein a range of the second angle smaller than the first angle is set to 1.5 to 7.5 degrees. 前記外周面は、前記第1角度よりも大きい第3角度を有する先窄まり先端面と、前記第1角度よりも小さい第4角度を有する先窄まり基端面とを有し、前記外周面の平均角度が前記第1角度に設定されている請求項1〜4の何れか一項に記載の軸ばね。 The outer peripheral surface has a tapered distal end surface having a third angle larger than the first angle and a tapered proximal end surface having a fourth angle smaller than the first angle. The axial spring according to any one of claims 1 to 4, wherein an average angle is set to the first angle.
JP2016248405A 2016-12-21 2016-12-21 Axial spring Expired - Fee Related JP6731841B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016248405A JP6731841B2 (en) 2016-12-21 2016-12-21 Axial spring
CN201710913315.9A CN108223644B (en) 2016-12-21 2017-09-30 Shaft spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016248405A JP6731841B2 (en) 2016-12-21 2016-12-21 Axial spring

Publications (2)

Publication Number Publication Date
JP2018100761A JP2018100761A (en) 2018-06-28
JP6731841B2 true JP6731841B2 (en) 2020-07-29

Family

ID=62654684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016248405A Expired - Fee Related JP6731841B2 (en) 2016-12-21 2016-12-21 Axial spring

Country Status (2)

Country Link
JP (1) JP6731841B2 (en)
CN (1) CN108223644B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019109608B4 (en) * 2019-04-11 2021-06-24 Vibracoustic Ag Elastic bearing
CN112370760A (en) * 2020-11-10 2021-02-19 宁波市鄞州风名工业产品设计有限公司 Rebound damping support structure of boxing target

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153667U (en) * 1985-03-15 1986-09-24
DE4040426C2 (en) * 1990-12-18 1994-05-19 Daimler Benz Ag Support bearing
JPH10132006A (en) * 1996-10-24 1998-05-22 Mitsubishi Heavy Ind Ltd Base isolation device using laminated rubber
JPH10259852A (en) * 1997-03-19 1998-09-29 Shimizu Corp Base isolation vibration control device
DE19910308B4 (en) * 1999-03-09 2004-07-08 ZF Lemförder Metallwaren AG Hydraulically damping rubber bearing with axial stops and a method for producing such a hydraulically damping rubber bearing with integrated axial stops
JP2001165220A (en) * 1999-12-06 2001-06-19 Bridgestone Corp Vibration control device
DE10301756B4 (en) * 2003-01-18 2005-02-24 Carl Freudenberg Kg layer spring
JP4714505B2 (en) * 2005-05-25 2011-06-29 東洋ゴム工業株式会社 Air spring
DE102005028565A1 (en) * 2005-06-21 2007-01-04 Contitech Luftfedersysteme Gmbh Highly elastic layered spring
JP6038578B2 (en) * 2012-10-03 2016-12-07 川崎重工業株式会社 Railcar bogie with a shaft spring
JP6308819B2 (en) * 2014-03-10 2018-04-11 東洋ゴム工業株式会社 Shaft spring
CN106032831B (en) * 2015-03-17 2018-07-17 株洲时代新材料科技股份有限公司 A kind of volute spring variation rigidity and the method and product for preventing fold and cracking
JP6478790B2 (en) * 2015-04-28 2019-03-06 Toyo Tire株式会社 Shaft spring

Also Published As

Publication number Publication date
JP2018100761A (en) 2018-06-28
CN108223644B (en) 2020-05-12
CN108223644A (en) 2018-06-29

Similar Documents

Publication Publication Date Title
JP2008544186A (en) High elasticity leaf spring
JP5156736B2 (en) Pneumatic tire
KR20130056788A (en) Airless tire
JP6731841B2 (en) Axial spring
WO2012056863A1 (en) Air spring for vehicle and bogie using same
JP5884612B2 (en) Air spring
JP6438240B2 (en) Vehicle bushing and chassis frame support structure
JP4589567B2 (en) Rail car axle box support device
JP2008275009A (en) Shaft spring device
JP6789094B2 (en) Shaft spring
JP6731840B2 (en) Axial spring
JP4297803B2 (en) Air springs and carts for railway vehicles
JP6784590B2 (en) Shaft spring
WO2017006551A1 (en) Tire
JP5568522B2 (en) Damper mount
JP5033499B2 (en) Axle spring device
JP2009079622A (en) Axle spring for railroad vehicle
JP5097839B2 (en) Axle spring device
JP2020106073A (en) Design method of inter-ring bush
JP2008155874A (en) Toe correct bush and its manufacturing method
JP4270372B2 (en) Run flat tire
JP4340466B2 (en) Run flat tire
JP5456520B2 (en) Strut mount
JP4941114B2 (en) Upper support
JP6915576B2 (en) Vehicle rear structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200707

R150 Certificate of patent or registration of utility model

Ref document number: 6731841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees