JP6784590B2 - Shaft spring - Google Patents

Shaft spring Download PDF

Info

Publication number
JP6784590B2
JP6784590B2 JP2016248404A JP2016248404A JP6784590B2 JP 6784590 B2 JP6784590 B2 JP 6784590B2 JP 2016248404 A JP2016248404 A JP 2016248404A JP 2016248404 A JP2016248404 A JP 2016248404A JP 6784590 B2 JP6784590 B2 JP 6784590B2
Authority
JP
Japan
Prior art keywords
peripheral surface
angle
inner peripheral
outer cylinder
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016248404A
Other languages
Japanese (ja)
Other versions
JP2018100760A (en
Inventor
篠原 克行
克行 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Priority to JP2016248404A priority Critical patent/JP6784590B2/en
Priority to CN201710913267.3A priority patent/CN108216287B/en
Publication of JP2018100760A publication Critical patent/JP2018100760A/en
Application granted granted Critical
Publication of JP6784590B2 publication Critical patent/JP6784590B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/40Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers consisting of a stack of similar elements separated by non-elastic intermediate layers
    • F16F1/41Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers consisting of a stack of similar elements separated by non-elastic intermediate layers the spring consisting of generally conically arranged elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/26Mounting or securing axle-boxes in vehicle or bogie underframes
    • B61F5/30Axle-boxes mounted for movement under spring control in vehicle or bogie underframes
    • B61F5/301Axle-boxes mounted for movement under spring control in vehicle or bogie underframes incorporating metal springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/26Mounting or securing axle-boxes in vehicle or bogie underframes
    • B61F5/30Axle-boxes mounted for movement under spring control in vehicle or bogie underframes
    • B61F5/305Axle-boxes mounted for movement under spring control in vehicle or bogie underframes incorporating rubber springs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Springs (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、大型建機、大型船舶、とりわけ鉄道車両用として好適な軸ばねに係り、詳しくは、主軸と、主軸の軸心方向視で主軸を囲繞する状態で配備される外筒と、複数の弾性材層と一又は複数の硬質材壁とを軸心に対する径内外方向へ交互に積層させた状態で、主軸と外筒との間に介装されている弾性部と、を有してなる軸ばねに関する。 The present invention relates to a shaft spring suitable for a large construction machine, a large ship, particularly a railroad vehicle, and more specifically, a spindle and an outer cylinder arranged so as to surround the spindle in the axial direction of the spindle. In a state where the elastic material layer and one or more hard material walls are alternately laminated in the inner and outer diameter directions with respect to the axis, the elastic portion interposed between the spindle and the outer cylinder is provided. Regarding the shaft spring.

この種の軸ばねは、例えば鉄道車両においては、その蛇行動や上下動時の衝撃を吸収緩和するために、台車枠と車軸側部材との間に介装されている。即ち、軸箱支持装置の一例としての軸ばねは、主軸とその周囲に配置された外筒との間に、二つの硬質材壁と三つのゴム層とが同心状態で、かつ、半径方向に交互に積層されてなる構成のものが多い。 In a railway vehicle, for example, this type of axle spring is interposed between the bogie frame and the axle side member in order to absorb and mitigate the impact during hunting and vertical movement. That is, in the shaft spring as an example of the axle box support device, two hard material walls and three rubber layers are concentric between the main shaft and the outer cylinder arranged around the main shaft, and in the radial direction. Many of them have a structure in which they are laminated alternately.

鉄道車両用軸ばねの傾向としては、乗り心地の良さを考慮すれば弾性層をばね定数の柔らかい方が望ましいが、定員以上の乗車時などの大きな重量が負荷された場合の耐荷重を考慮すればばね定数が硬い方が望ましい。このように相反する要求を満たすため、従来では、特許文献1(図3,6を参照)や特許文献2にて開示されるように、主軸の外周面、弾性層、及び外筒の内周面を同方向に傾けた傾斜型の軸ばねとされたものが多い。 As for the tendency of shaft springs for railway vehicles, it is desirable that the elastic layer has a soft spring constant in consideration of riding comfort, but consider the load capacity when a large weight is applied, such as when riding more than the capacity. It is desirable that the spring constant is hard. In order to satisfy such conflicting requirements, conventionally, as disclosed in Patent Document 1 (see FIGS. 3 and 6) and Patent Document 2, the outer peripheral surface of the spindle, the elastic layer, and the inner circumference of the outer cylinder Most of them are inclined shaft springs whose surfaces are tilted in the same direction.

傾斜型とすることにより、クッションストロークが増すほどにばね定数も大きくなるという、いわゆるプログレッシブ特性が得られ、クッションストロークが少ないときにはソフトなばね定数による良好な乗車感を出せ、かつ、クッションストロークが大きいときにはハードなばね定数による大荷重にも踏ん張りの効く軸ばねが実現されていた。 By using the inclined type, the so-called progressive characteristic that the spring constant increases as the cushion stroke increases can be obtained, and when the cushion stroke is small, a good riding feeling can be obtained due to the soft spring constant, and the cushion stroke is large. Occasionally, a shaft spring that can withstand a large load due to a hard spring constant has been realized.

近年では、大荷重時の踏ん張りが効きながらより一層の乗り心地向上を図るとか、人気路線で常に乗車人員が多いことに対応できるように、耐最大荷重を上げずに懸架ストローク前半部分のばね定数を高めたいなど、種々の懸架特性が要求されるとともに、その要求レベルも高くなってきている。 In recent years, the spring constant of the first half of the suspension stroke without increasing the maximum load capacity so that the ride quality can be further improved while the tension under heavy load is effective, and the number of passengers is always large on popular routes. Various suspension characteristics are required, such as wanting to improve the suspension characteristics, and the required level is also increasing.

特開2014−073726号公報Japanese Unexamined Patent Publication No. 2014-07726 特開2015−169313号公報Japanese Unexamined Patent Publication No. 2015-169313

本発明の目的は、前述した種々の懸架特性で、かつ、高レベルな要求特性にも対応することが可能となるように、さらなる工夫が凝らされた高次元な軸ばねを開発して提供する点にある。 An object of the present invention is to develop and provide a high-dimensional shaft spring that has been further devised so as to be able to meet the above-mentioned various suspension characteristics and high-level required characteristics. At the point.

請求項1に係る発明は、軸ばねにおいて、
主軸1と、前記主軸1の軸心P方向視で前記主軸1を囲繞する状態で配備される外筒2と、複数の弾性材層4a,4b,4cと一又は複数の硬質材壁5a,5bとを前記軸心Pに対する径内外方向へ交互に積層させた状態で、前記主軸1と前記外筒2との間に介装されている弾性部3と、を有し、
前記主軸1の外周面1aと前記外筒2の内周面2aとが、前記軸心Pに対して互いに同じ方向に傾斜した円錐面に形成されるとともに、前記外周面1aの傾斜角度θ1と前記内周面2aの傾斜角度θ2とが互いに異なっており、
前記硬質材壁5a,5bの前記軸心Pに対して傾斜する角度θ3が、前記内周面2aの傾斜角度θ2よりも小さい角度に設定されていることを特徴とする。
The invention according to claim 1 is a shaft spring.
The spindle 1, the outer cylinder 2 arranged so as to surround the spindle 1 in the axial P direction of the spindle 1, and the plurality of elastic material layers 4a, 4b, 4c and one or a plurality of hard material walls 5a, It has an elastic portion 3 interposed between the main shaft 1 and the outer cylinder 2 in a state where 5b and 5b are alternately laminated in the inner and outer diameter directions with respect to the axial center P.
The outer peripheral surface 1a of the main shaft 1 and the inner peripheral surface 2a of the outer cylinder 2 are formed as conical surfaces inclined in the same direction with respect to the axial center P, and at the same time, with the inclination angle θ1 of the outer peripheral surface 1a. The inclination angle θ2 of the inner peripheral surface 2a is different from each other .
The angle θ3 at which the hard material walls 5a and 5b are inclined with respect to the axial center P is set to be smaller than the inclination angle θ2 of the inner peripheral surface 2a .

請求項2に係る発明は、請求項1に記載の軸ばねにおいて、
前記外周面1aの傾斜角度θ1が、前記内周面2aの傾斜角度θ2よりも大きく設定されていることを特徴とする。
The invention according to claim 2 is the shaft spring according to claim 1.
The inclination angle θ1 of the outer peripheral surface 1a is set to be larger than the inclination angle θ2 of the inner peripheral surface 2a.

請求項3に係る発明は、請求項1又は2に記載の軸ばねにおいて、
前記外筒2は前記主軸1に対して、前記軸心Pの方向における前記外周面1aの先窄まり側に寄せて配置されていることを特徴とする。
The invention according to claim 3 is the shaft spring according to claim 1 or 2.
The outer cylinder 2 is characterized in that it is arranged closer to the tip constriction side of the outer peripheral surface 1a in the direction of the axis P with respect to the main shaft 1 .

請求項1の発明によれば、積層ゴム構造を採る弾性部において、主軸の外周面の傾斜角度と外筒の内周面の傾斜角度とを異ならせてあるので、弾性部における変位量と荷重との関係特性、即ちプログレッシブ特性を、主軸の外周面の傾斜角度と外筒の内周面の傾斜角度とが互いに等しい従来のものに比べて、緩くしたり急にしたり、或いは最大荷重を少なくしたり大きくしたりといった具合に変更設定することが可能になる。
その結果、大荷重時の踏ん張りと一層の乗り心地向上を図るとか、耐最大荷重を上げずに懸架ストローク前半部分のばね定数を高めたいなど、種々の懸架特性で、かつ、高レベルな要求特性に対応可能となる高次元な軸ばねを提供することができる。
According to the invention of claim 1, in the elastic portion adopting the laminated rubber structure, the inclination angle of the outer peripheral surface of the spindle and the inclination angle of the inner peripheral surface of the outer cylinder are different, so that the displacement amount and the load in the elastic portion are different. The characteristic of the relationship with, that is, the progressive characteristic, is made looser or steeper, or the maximum load is smaller than that of the conventional one in which the inclination angle of the outer peripheral surface of the spindle and the inclination angle of the inner peripheral surface of the outer cylinder are equal to each other. It is possible to change and set things such as making it larger or larger.
As a result, various suspension characteristics and high-level required characteristics are required, such as striking under heavy load and further improving riding comfort, and increasing the spring constant of the first half of the suspension stroke without increasing the maximum load capacity. It is possible to provide a high-dimensional shaft spring that can handle the above.

請求項1の発明のように、硬質材壁の軸心に対する傾斜角度を外筒の内周面の傾斜角度よりも小さく設定することにより、プログレッシブ特性の微減や微増など、よりきめ細かに軸ばねの設定変更が行える利点がある。As in the invention of claim 1, by setting the inclination angle of the hard material wall with respect to the axial center to be smaller than the inclination angle of the inner peripheral surface of the outer cylinder, the progressive characteristics of the shaft spring can be finely reduced or increased. There is an advantage that the setting can be changed.

請求項2の発明によれば、外周面の傾斜角度を内周面の傾斜角度よりも大きくして、弾性部としての体積を従来のものと変わらないようにしながら、プログレッシブ特性を強めることや最大荷重を増すことが可能となる軸ばねを提供することができる。 According to the invention of claim 2, the inclination angle of the outer peripheral surface is made larger than the inclination angle of the inner peripheral surface so that the volume as the elastic portion is the same as that of the conventional one, and the progressive characteristic is strengthened or maximized. It is possible to provide a shaft spring capable of increasing the load.

請求項4の発明のように、外筒が主軸に対して軸心方向で主軸外周面の先窄まり側に寄せられた軸ばねであれば、請求項1又は2の発明による何れかの作用効果をより一層明確に得ることができる。 If the outer cylinder is a shaft spring that is brought closer to the constricted side of the outer peripheral surface of the spindle in the axial direction with respect to the spindle as in the invention of claim 4, any action according to the invention of claim 1 or 2 The effect can be obtained more clearly.

実施形態1による軸ばねの平面図Top view of the shaft spring according to the first embodiment 図1の軸ばねを「前−軸心P−右」で切った断面図Cross-sectional view of the shaft spring of FIG. 1 cut by "front-axis center P-right" 荷重と変位量との関係グラフを示す図The figure which shows the relationship graph of a load and a displacement amount 実施形態2による軸ばねの図2に準じた縦断面図Vertical cross-sectional view of the shaft spring according to the second embodiment according to FIG. 実施形態3による軸ばねの図2に準じた縦断面図Vertical cross-sectional view of the shaft spring according to the third embodiment according to FIG. 実施形態4による軸ばねの図2に準じた縦断面図Vertical cross-sectional view of the shaft spring according to the fourth embodiment according to FIG.

以下に、本発明による軸ばねの実施の形態を、鉄道車両用軸ばねとして図面を参照しながら説明する。 Hereinafter, embodiments of the shaft spring according to the present invention will be described as a shaft spring for a railroad vehicle with reference to the drawings.

参考実施形態
鉄道車両用軸ばね(以下、軸ばねと略称する)Aは、図1及び図2に示されるように、主軸1と、主軸1と互いに同一(又はほぼ同一でも良い)の縦向きの軸心Pを有する外筒2と、主軸1と外筒2との間に介装されている弾性部3とを有して構成されている。弾性部3は、三層の弾性層4と二層の中間硬質筒5とを軸心Pに対して同心状態(又はほぼ同心状態でも良い)で径内外方向へ交互に積層する積層ゴム構造として、主軸1と外筒2との間に構成されている。
[ Reference Embodiment ]
As shown in FIGS. 1 and 2, the shaft spring for a railroad vehicle (hereinafter abbreviated as a shaft spring) A is a vertical axis that is the same as (or may be substantially the same as) the spindle 1 and the spindle 1. It is configured to have an outer cylinder 2 having P and an elastic portion 3 interposed between the main shaft 1 and the outer cylinder 2. The elastic portion 3 has a laminated rubber structure in which the three-layer elastic layer 4 and the two-layer intermediate hard cylinder 5 are alternately laminated in the inner and outer diameter directions in a concentric state (or may be substantially concentric state) with respect to the axis P. , It is configured between the spindle 1 and the outer cylinder 2.

ここで、図1においては、弾性層4に形成されている抜き孔6,7と軸心Pとを結ぶ線分の方向を左右、主軸1の下端部に形成されている一対のネジ孔1g,1gを結ぶ方向を前後と定義する。そして、図2(図4〜図6)においては、軸心Pを有する主軸1を基準として、主軸1の形状から先窄まり側を上、元拡がり側(反先窄まり側)を下と定義する。 Here, in FIG. 1, a pair of screw holes 1g formed at the lower end of the main shaft 1 are formed on the left and right in the direction of the line segment connecting the punch holes 6 and 7 formed in the elastic layer 4 and the axial center P. , The direction connecting 1g is defined as front and back. Then, in FIGS. 2 (4 to 6), with reference to the spindle 1 having the axial center P, the tip constricted side is upward and the original expansion side (anti-tip constriction side) is downward from the shape of the spindle 1. Define.

主軸1は、図1,2に示されるように、金属製のものであって、上窄まり状の円錐面でなる傾斜外周面1aを備える円錐上部1Aと、最大径の大外周面1bを有して円錐上部1Aの下側に続くフランジ部1Bと、径の細い小外周面1cを有してフランジ部1Bの下側に続く下部直胴部1Cとを備える筒状軸に形成されている。傾斜外周面1aは、軸心Pに対して第1角度θ1で傾斜されている。 As shown in FIGS. 1 and 2, the spindle 1 is made of metal and has a conical upper portion 1A having an inclined outer peripheral surface 1a formed of an upper constricted conical surface and a large outer peripheral surface 1b having a maximum diameter. It is formed on a tubular shaft having a flange portion 1B that continues to the lower side of the conical upper portion 1A and a lower straight body portion 1C that has a small outer peripheral surface 1c having a small diameter and continues to the lower side of the flange portion 1B. There is. The inclined outer peripheral surface 1a is inclined at a first angle θ1 with respect to the axial center P.

円錐上部1Aには、軸心Pを中心として上端開口している中空部1dが形成されており、この中空部1dは下部直胴部1Cの上下中間位置まで延設されている。下部直胴部1Cには、軸心Pを有して下端開口している細径縦孔1f、及び細径縦孔1fの両脇それぞれに配置される状態でネジ孔1g,1gが形成されている。これら細径縦孔1f及びネジ孔1g、1gは、中空部1dの漏斗状底面1eに開口されている。 A hollow portion 1d having an upper end opening around the axis P is formed in the upper portion 1A of the cone, and the hollow portion 1d extends to an upper and lower intermediate position of the lower straight body portion 1C. Screw holes 1g and 1g are formed in the lower straight body portion 1C in a state where the small diameter vertical hole 1f having the axial center P and opening at the lower end and the small diameter vertical hole 1f are arranged on both sides of the small diameter vertical hole 1f, respectively. ing. These small diameter vertical holes 1f and screw holes 1g and 1g are opened in the funnel-shaped bottom surface 1e of the hollow portion 1d.

外筒2は、図1,2に示されるように、金属製のものであって、下拡がり状の円錐面でなる傾斜内周面2a、傾斜内周面2aの上側に続く嵌合内周面2b、円環状の上端面2cを有し、縦断面形状がハ字状を呈する筒部材に形成されている。軸心Pを備える外筒2は、主軸1に対して上側(先窄まり側)に寄せて配置されている。即ち、主軸1の上端部の高さレベルと、外筒2の下端部の高さレベルがほぼ同じとなるように、外筒2が上側に寄せられている。 As shown in FIGS. 1 and 2, the outer cylinder 2 is made of metal and has an inclined inner peripheral surface 2a formed of a downwardly expanding conical surface and a fitting inner peripheral surface continuing to the upper side of the inclined inner peripheral surface 2a. It is formed into a tubular member having a surface 2b and an annular upper end surface 2c and having a V-shaped vertical cross section. The outer cylinder 2 provided with the axial center P is arranged closer to the upper side (the tip constricted side) with respect to the main shaft 1. That is, the outer cylinder 2 is moved upward so that the height level of the upper end portion of the spindle 1 and the height level of the lower end portion of the outer cylinder 2 are substantially the same.

傾斜内周面2aの軸心Pに対する傾斜角度である第2角度θ2は、主軸1の傾斜外周面1aの第1角度θ1より小さい角度に設定されている。つまり、第1角度θ1>第2角度θ2(θ1>θ2)である。例えば、第1角度θ1は12.5度(又は12.5度±5度)に設定され、第2角度θ2は10度(又は10度±5度)に設定されているが、それ以外の角度でも良い。
図2においては、第1角度θ1である傾斜外周面1aの補助線aと、第2角度θ2である傾斜内周面2aの補助線bとは、当然ながら互いに異なる角度である。
The second angle θ2, which is the inclination angle of the inclined inner peripheral surface 2a with respect to the axial center P, is set to be smaller than the first angle θ1 of the inclined outer peripheral surface 1a of the main shaft 1. That is, the first angle θ1> the second angle θ2 (θ1> θ2). For example, the first angle θ1 is set to 12.5 degrees (or 12.5 degrees ± 5 degrees), the second angle θ2 is set to 10 degrees (or 10 degrees ± 5 degrees), but other than that. It may be an angle.
In FIG. 2, the auxiliary line a of the inclined outer peripheral surface 1a having the first angle θ1 and the auxiliary line b of the inclined inner peripheral surface 2a having the second angle θ2 naturally have different angles.

弾性部3は、図1,2に示されるように、環状で三つのゴム層(弾性材層の一例)4a,4b,4cからなる弾性層4と、金属製又は板金製で二つの環状輪(硬質材壁の一例)5a,5bとかなる中間硬質筒5とを、軸心Pに対する径内外方向へ交互に積層させた状態で、主軸1と外筒2との間に介装することで構成されている。弾性層4は、径方向で内から内ゴム層4a、中ゴム層4b、外ゴム層4cを有している。内ゴム層4aは、主軸1の上面(符記省略)の径外側部分を覆う薄膜部4hを有している。中間硬質筒5は、径方向で内から内環状輪5a、外環状輪5bを有している。 As shown in FIGS. 1 and 2, the elastic portion 3 is an elastic layer 4 composed of three annular rubber layers (an example of an elastic material layer) 4a, 4b, 4c, and two annular rings made of metal or sheet metal. (Example of a hard material wall) By interposing intermediate hard cylinders 5 such as 5a and 5b between the main shaft 1 and the outer cylinder 2 in a state of being alternately laminated in the inner and outer diameter directions with respect to the axis P. It is configured. The elastic layer 4 has an inner rubber layer 4a, a middle rubber layer 4b, and an outer rubber layer 4c from the inside in the radial direction. The inner rubber layer 4a has a thin film portion 4h that covers the outer diameter portion of the upper surface (notation omitted) of the main shaft 1. The intermediate rigid cylinder 5 has an inner annular ring 5a and an outer annular ring 5b from the inside in the radial direction.

弾性層4及び中間硬質筒5は、軸心Pに対して主軸1の傾斜外周面1aや外筒2の傾斜内周面2aと同じ方向に傾けられている。そして、内及び外の各環状輪5a,5bの軸心Pに対して傾斜する第3角度θ3は、第2角度θ2と同じ角度に設定されている。
図2においては、傾斜内周面2aの補助線bと、内環状輪5aの補助線cと、外環状輪5bの補助線dとを、矢印マークを付して互いに平行であることを表している。
The elastic layer 4 and the intermediate hard cylinder 5 are inclined with respect to the axial center P in the same direction as the inclined outer peripheral surface 1a of the main shaft 1 and the inclined inner peripheral surface 2a of the outer cylinder 2. The third angle θ3 that is inclined with respect to the axial center P of each of the inner and outer annular rings 5a and 5b is set to the same angle as the second angle θ2.
In FIG. 2, the auxiliary line b of the inclined inner peripheral surface 2a, the auxiliary line c of the inner annular ring 5a, and the auxiliary line d of the outer annular ring 5b are marked with arrows to indicate that they are parallel to each other. ing.

内ゴム層4a、中ゴム層4b、及び外ゴム層4cは、それらのいずれも下端部の厚み(径方向の厚み)が互いに同じ(又はほぼ同じ)であるが、これには限られない。図2において、各ゴム層4a〜4cの下端面における最も上方に凹入した箇所を結んだ線分を補助線eとすると、各ゴム層4a〜4cの補助線e上での幅が同じ又はほぼ同じとなるように構成されている。
また、内環状輪5aは主軸1に対して上側(先窄まり側)に寄せられ、外環状輪5bは内環状輪5aに対して上側(先窄まり側)に寄せられ、外筒2は外環状輪5bに対して上側(先窄まり側)に寄せられている。
The inner rubber layer 4a, the middle rubber layer 4b, and the outer rubber layer 4c all have the same (or substantially the same) thickness at the lower end portion (diameter direction thickness), but are not limited thereto. In FIG. 2, assuming that the line segment connecting the uppermost recessed portions on the lower end surfaces of the rubber layers 4a to 4c is the auxiliary line e, the widths of the rubber layers 4a to 4c on the auxiliary line e are the same or It is configured to be almost the same.
Further, the inner ring 5a is moved to the upper side (the tip constricted side) with respect to the main shaft 1, the outer ring 5b is moved to the upper side (the tip narrowed side) with respect to the inner ring 5a, and the outer cylinder 2 It is moved to the upper side (narrowed side) with respect to the outer ring 5b.

図1、図2に示されるように、外ゴム層4cと中ゴム層4bとには、左右方向に配置された各一対の抜き孔6,7が上下に貫通状態で形成されている。図1に示されるように、外及び中の各抜き孔6,7の幅方向端(軸心Pに対する周方向端)を結んで軸心Pを通る補助線f、gを引くと、各抜き孔6,7の幅角度は互いに等しい第6角度θ6に揃えられている。一方の補助線gは、外筒2の一対の取付用ネジ部8,8の中心も通る状態になっている。第6角度θ6は、前後に等しい角度ずつ振り分けられている。各抜き孔6,7は、外筒2及び各中間硬質筒5,5の防錆のため、径方向にはゴム膜4gを残してほぼゴム層4c,4bの径方向幅に近い幅を有している。 As shown in FIGS. 1 and 2, a pair of punched holes 6 and 7 arranged in the left-right direction are formed in the outer rubber layer 4c and the inner rubber layer 4b in a vertically penetrating state. As shown in FIG. 1, when the width direction ends (circumferential ends with respect to the axis P) of the outer and inner punch holes 6 and 7 are connected and auxiliary lines f and g passing through the shaft center P are drawn, each punch is drawn. The width angles of the holes 6 and 7 are aligned with the sixth angle θ6, which is equal to each other. One auxiliary line g is in a state of passing through the center of the pair of mounting screw portions 8 and 8 of the outer cylinder 2. The sixth angle θ6 is distributed by equal angles in the front and back. Each of the holes 6 and 7 has a width close to the radial width of the rubber layers 4c and 4b, leaving a rubber film 4 g in the radial direction in order to prevent rust on the outer cylinder 2 and the intermediate hard cylinders 5 and 5. doing.

さて、外筒2に荷重が掛ると、外筒2が主軸1に対して下がる方向に弾性部3が弾性変形して懸架する。傾斜外周面1aと傾斜内周面2aとで挟まれている弾性部3には、せん断荷重に加えて圧縮荷重も掛る構造上、軸心P方向の変位量が増すに連れて弾性部3のばね定数が増す非線形特性、いわゆるプログレッシブ特性が得られる。 When a load is applied to the outer cylinder 2, the elastic portion 3 is elastically deformed and suspended in the direction in which the outer cylinder 2 is lowered with respect to the main shaft 1. Since the elastic portion 3 sandwiched between the inclined outer peripheral surface 1a and the inclined inner peripheral surface 2a is subjected to a compressive load in addition to a shear load, the elastic portion 3 is subjected to an increase in the amount of displacement in the axial center P direction. Non-linear characteristics in which the spring constant increases, so-called progressive characteristics, can be obtained.

傾斜外周面1aの第1角度θ1を傾斜内周面2aの第2角度θ2よりも大きくした(寝かせた)角度としてあるので、外筒2と主軸1とが軸心P方向で近付く方向の荷重が作用したとき、従来構造の弾性部(傾斜外周面1aの角度と傾斜内周面2aの角度とが共に第2角度θ2)に比べて、変位量の全体に亘ってばね定数が大きくなる特性が得られる。とりわけ、最大荷重時などの荷重が大きくなった場合のばね定数の増加が顕著である。 Since the first angle θ1 of the inclined outer peripheral surface 1a is set to be larger (laid down) than the second angle θ2 of the inclined inner peripheral surface 2a, the load in the direction in which the outer cylinder 2 and the main shaft 1 approach each other in the axial center P direction. When is applied, the spring constant is larger over the entire displacement amount than the elastic part of the conventional structure (the angle of the inclined outer peripheral surface 1a and the angle of the inclined inner peripheral surface 2a are both the second angle θ2). Is obtained. In particular, the increase in the spring constant is remarkable when the load becomes large, such as at the maximum load.

弾性層4は、軸心P方向の荷重に対して耐せん断力と耐圧縮力との双方により弾性変位し、第1角度θ1を第2角度θ2より大きくして(寝かせて)あるので、従来構造の弾性部に比べて耐圧縮力の割合が増し、変位量が増すに連れてばね定数が増加する程度、即ちプログレッシブ特性をきつく(激しく)することができる。実施形態1の軸ばねAでは、従来構造のものとは内ゴム層4cのみ異なるので、ばね定数の増加程度は、変位量(ストローク)の後半部や最大変位量近くでより顕著化されている。そして、弾性部3としての最大変位量における最大荷重を、従来構造のものより大きくすることができる。 The elastic layer 4 is elastically displaced by both a shearing force and a compressive force with respect to a load in the axial center P direction, and the first angle θ1 is made larger than the second angle θ2 (laid down). The ratio of the compressive force is increased as compared with the elastic part of the structure, and the spring constant is increased as the displacement amount is increased, that is, the progressive characteristic can be tightened (violently). In the shaft spring A of the first embodiment, only the inner rubber layer 4c is different from that of the conventional structure, so that the degree of increase in the spring constant is more remarkable in the latter half of the displacement amount (stroke) and near the maximum displacement amount. .. Then, the maximum load in the maximum displacement amount of the elastic portion 3 can be made larger than that of the conventional structure.

参考実施形態の軸ばねAの荷重と変位量との関係を表した荷重−変位量グラフの一例を図3に示す。ライン(a)は、傾斜外周面1aの第1角度θ1と傾斜内周面2aの第2角度θ2とが互いに等しい従来の軸ばねのものを示し、ライン(b)は実施形態1の軸ばねAのものを示す。図3のグラフから、従来の軸ばねと実施形態1の軸ばねとでは、前述した特性、即ち、ばね定数及び最大荷重のいずれも実施形態1の軸ばねAの方が大きく、かつ、ばね定数の増加度合いは変位量が大きくなるに連れて大きくなることが読み取れる。 FIG. 3 shows an example of a load-displacement amount graph showing the relationship between the load and the displacement amount of the shaft spring A of the reference embodiment . The line (a) shows that of a conventional shaft spring in which the first angle θ1 of the inclined outer peripheral surface 1a and the second angle θ2 of the inclined inner peripheral surface 2a are equal to each other, and the line (b) is the shaft spring of the first embodiment. The one of A is shown. From the graph of FIG. 3, the conventional shaft spring and the shaft spring of the first embodiment have the above-mentioned characteristics, that is, both the spring constant and the maximum load of the shaft spring A of the first embodiment are larger and the spring constant. It can be read that the degree of increase of is increased as the amount of displacement increases.

二つの環状輪5a,5bを傾斜外周面1a及び傾斜内周面2aより立たせた角度にしてあるので、外筒2と主軸1とが軸心P方向で近付く方向の荷重が作用したときに、従来構造の弾性部(二つの環状輪5a,5bと傾斜外周面1a及び傾斜内周面2aとが全て互いに同じ角度)に比べて、弾性部3としての最大荷重条件は変わらないようにしながら、弾性部3の全体としてのばね定数の増加具合を緩やかなものにすることができる。 Since the two annular rings 5a and 5b are angled so as to stand from the inclined outer peripheral surface 1a and the inclined inner peripheral surface 2a, when a load in the direction in which the outer cylinder 2 and the main shaft 1 approach each other in the axial center P direction acts. Compared to the elastic part of the conventional structure (the two annular rings 5a and 5b, the inclined outer peripheral surface 1a and the inclined inner peripheral surface 2a are all at the same angle), the maximum load condition as the elastic part 3 is kept unchanged. The degree of increase in the spring constant of the elastic portion 3 as a whole can be made gradual.

実施形態1
図4に示されるように、実施形態1の軸ばねAは、弾性部3が、詳しくは、内外の環状輪5a,5bの傾斜角度が異なる以外、図1,2で示される参考実施形態の軸ばねAと同じである。従って、対応する箇所には同じ符号を付し、説明は割愛する。
[ Embodiment 1 ]
As shown in FIG. 4, the shaft spring A of the first embodiment has the reference embodiment shown in FIGS. 1 and 2 except that the elastic portion 3 differs in the inclination angles of the inner and outer annular rings 5a and 5b. It is the same as the shaft spring A. Therefore, the same reference numerals are given to the corresponding parts, and the description is omitted.

弾性層4及び中間硬質筒5は、軸心Pに対して主軸1の傾斜外周面1aや外筒2の傾斜内周面2aと同じ方向に傾けられている。そして、内及び外の各環状輪5a,5bの軸心Pに対して傾斜する第3角度θ3は、第2角度θ2より小さい角度(立った角度)に設定されている。
第3角度θ3は、例えば第2角度θ2が10度のときに7.5度に設定されている。その他、(θ2−1.5度)≧θ3≧(θ2−7.5度)、好ましくは(θ2−2.5度)≧θ3≧(θ2−4.5度)、或いは、それら以外の角度(θ2>θ3)でも良い。
図4においては、内環状輪5aの補助線cと外環状輪5bの補助線dとを矢印マークで互いに平行であることを表している。
The elastic layer 4 and the intermediate hard cylinder 5 are inclined with respect to the axial center P in the same direction as the inclined outer peripheral surface 1a of the main shaft 1 and the inclined inner peripheral surface 2a of the outer cylinder 2. The third angle θ3 that is inclined with respect to the axial center P of each of the inner and outer annular rings 5a and 5b is set to an angle (standing angle) smaller than the second angle θ2.
The third angle θ3 is set to 7.5 degrees, for example, when the second angle θ2 is 10 degrees. In addition, (θ2-1.5 degrees) ≥ θ3 ≥ (θ2-7.5 degrees), preferably (θ2-2.5 degrees) ≥ θ3 ≥ (θ2-4.5 degrees), or other angles It may be (θ2> θ3).
In FIG. 4, the auxiliary line c of the inner annular ring 5a and the auxiliary line d of the outer annular ring 5b are indicated by arrow marks to be parallel to each other.

内ゴム層4a、中ゴム層4b、及び外ゴム層4cは、それらのいずれも下端部の厚み(径方向の厚み)が互いに同じ(又はほぼ同じ)である。図4において、各ゴム層4a〜4cの下端面における最も上方に凹入した箇所を結んだ線分を補助線eとすると、各ゴム層4a〜4cの補助線e上での幅が同じ又はほぼ同じとなるように構成されている。
二つの環状輪5a,5bが傾斜外周面1a及び傾斜内周面2aに対して立った角度に傾いていることにより、外ゴム層4c上端部の厚み<中ゴム層4b上端部の厚み<内ゴム層4a上端部の厚み、になっている。
The inner rubber layer 4a, the middle rubber layer 4b, and the outer rubber layer 4c all have the same (or substantially the same) thickness at the lower end portion (thickness in the radial direction). In FIG. 4, if the line segment connecting the uppermost recessed portions on the lower end surfaces of the rubber layers 4a to 4c is the auxiliary line e, the widths of the rubber layers 4a to 4c on the auxiliary line e are the same or It is configured to be almost the same.
Since the two annular rings 5a and 5b are tilted at a standing angle with respect to the inclined outer peripheral surface 1a and the inclined inner peripheral surface 2a, the thickness of the upper end portion of the outer rubber layer 4c <thickness of the upper end portion of the middle rubber layer 4b <inner The thickness of the upper end of the rubber layer 4a is increased.

二つの環状輪5a,5bを傾斜外周面1a及び傾斜内周面2aより立たせた角度にしてあるので、外筒2と主軸1とが軸心P方向で近付く方向の荷重が作用したときに、参考実施形態の軸ばねAに比べて、弾性部3としての最大荷重条件は変わらないようにしながら、弾性部3の全体としてのばね定数の増加具合を緩やかなものにすることができる。即ち、プログレッシブ特性は、最大変位量付近では参考実施形態のものより急になるが、それ以前の変位量領域においては緩やかになる〔図3のライン(c)を参照〕。 Since the two annular rings 5a and 5b are at an angle that stands up from the inclined outer peripheral surface 1a and the inclined inner peripheral surface 2a, when a load in the direction in which the outer cylinder 2 and the main shaft 1 approach each other in the axial center P direction acts. Compared with the shaft spring A of the reference embodiment, the increase in the spring constant of the elastic portion 3 as a whole can be made gradual while keeping the maximum load condition of the elastic portion 3 unchanged. That is, the progressive characteristic becomes steeper in the vicinity of the maximum displacement amount than that in the reference embodiment , but becomes gentler in the displacement amount region before that [see line (c) in FIG. 3].

実施形態2
図5に示されるように、実施形態2の軸ばねAは、傾斜外周面1aの第1角度θ1と傾斜内周面2aの第2角度θ2とが入れ替った以外は、図1,2で示される参考実施形態の軸ばねAと同じである。従って、対応する箇所には同じ符号を付し、説明は割愛する。実施形態2の軸ばねAにおいては、傾斜外周面1aの第1角度θ1と、各環状輪5a,5bの第3角度θ3とは互いに等しい(θ1=θ3)。
[ Embodiment 2 ]
As shown in FIG. 5, the shaft spring A of the second embodiment is shown in FIGS. 1 and 2 except that the first angle θ1 of the inclined outer peripheral surface 1a and the second angle θ2 of the inclined inner peripheral surface 2a are interchanged. It is the same as the shaft spring A of the reference embodiment shown. Therefore, the same reference numerals are given to the corresponding parts, and the description is omitted. In the shaft spring A of the second embodiment , the first angle θ1 of the inclined outer peripheral surface 1a and the third angle θ3 of the annular wheels 5a and 5b are equal to each other (θ1 = θ3).

実施形態2の軸ばねAでは、傾斜外周面1aの傾斜角度である第1角度θ1が、傾斜内周面2aの傾斜角度である第2角度θ2よりも小さく設定されている。つまり、第1角度θ1<第2角度θ2(θ1<θ2)である。例えば、第1角度θ1は10度(又は10度±5度)に設定され、第2角度θ2は12.5度(又は12.5度±5度)に設定されているが、それ以外の角度でも良い。
図5においては、第1角度θ1である傾斜外周面1aの補助線aと、第2角度θ2である傾斜内周面2aの補助線bとは、当然ながら互いに異なる角度である。
In the shaft spring A of the second embodiment , the first angle θ1 which is the inclination angle of the inclined outer peripheral surface 1a is set smaller than the second angle θ2 which is the inclination angle of the inclined inner peripheral surface 2a. That is, the first angle θ1 <the second angle θ2 (θ1 <θ2). For example, the first angle θ1 is set to 10 degrees (or 10 degrees ± 5 degrees), the second angle θ2 is set to 12.5 degrees (or 12.5 degrees ± 5 degrees), but other than that. It may be an angle.
In FIG. 5, the auxiliary line a of the inclined outer peripheral surface 1a having the first angle θ1 and the auxiliary line b of the inclined inner peripheral surface 2a having the second angle θ2 are naturally different angles from each other.

実施形態3
図6に示されるように、実施形態3の軸ばねAは、傾斜外周面1aの第1角度θ1と傾斜内周面2aの第2角度θ2とが入れ替った以外は、図4で示される実施形態1の軸ばねAと同じである。従って、対応する箇所には同じ符号を付し、説明は割愛する。実施形態3の軸ばねAにおいては、傾斜外周面1aの第1角度θ1は、各環状輪5a,5bの第3角度θ3よりも大きい(θ1>θ3)。
[ Embodiment 3 ]
As shown in FIG. 6, the shaft spring A of the third embodiment is shown in FIG. 4, except that the first angle θ1 of the inclined outer peripheral surface 1a and the second angle θ2 of the inclined inner peripheral surface 2a are interchanged. It is the same as the shaft spring A of the first embodiment . Therefore, the same reference numerals are given to the corresponding parts, and the description is omitted. In the shaft spring A of the third embodiment , the first angle θ1 of the inclined outer peripheral surface 1a is larger than the third angle θ3 of each of the annular rings 5a and 5b (θ1> θ3).

実施形態3の軸ばねAでは、傾斜外周面1aの傾斜角度である第1角度θ1が、傾斜内周面2aの傾斜角度である第2角度θ2よりも小さく設定されている。つまり、第1角度θ1<第2角度θ2(θ1<θ2)である。例えば、第1角度θ1は10度(又は10度±5度)に設定され、第2角度θ2は12.5度(又は12.5度±5度)に設定されているが、それ以外の角度でも良い。
図6においては、第1角度θ1である傾斜外周面1aの補助線aと、第2角度θ2である傾斜内周面2aの補助線bとは、当然ながら互いに異なる角度である。
In the shaft spring A of the third embodiment , the first angle θ1 which is the inclination angle of the inclined outer peripheral surface 1a is set smaller than the second angle θ2 which is the inclination angle of the inclined inner peripheral surface 2a. That is, the first angle θ1 <the second angle θ2 (θ1 <θ2). For example, the first angle θ1 is set to 10 degrees (or 10 degrees ± 5 degrees), the second angle θ2 is set to 12.5 degrees (or 12.5 degrees ± 5 degrees), but other than that. It may be an angle.
In FIG. 6, the auxiliary line a of the inclined outer peripheral surface 1a having the first angle θ1 and the auxiliary line b of the inclined inner peripheral surface 2a having the second angle θ2 are naturally different angles from each other.

1 主軸
1a 外周面
2 外筒
2a 内周面
3 弾性部
4a〜4c 弾性材層
5a,5b 硬質材壁
P 軸心
θ1 外周面の傾斜角度(第1角度)
θ2 内周面の傾斜角度(第2角度)
θ3 硬質材壁の傾斜角度(第3角度)
1 Main shaft 1a Outer surface 2 Outer cylinder 2a Inner peripheral surface 3 Elastic part 4a to 4c Elastic material layer 5a, 5b Hard material wall P Axis center θ1 Tilt angle of outer peripheral surface (first angle)
θ2 Inner peripheral surface inclination angle (second angle)
θ3 Tilt angle of hard material wall (third angle)

Claims (3)

主軸と、
前記主軸の軸心方向視で前記主軸を囲繞する状態で配備される外筒と、
複数の弾性材層と一又は複数の硬質材壁とを前記軸心に対する径内外方向へ交互に積層させた状態で、前記主軸と前記外筒との間に介装されている弾性部と、を有し、
前記主軸の外周面と前記外筒の内周面とが、前記軸心に対して互いに同じ方向に傾斜した円錐面に形成されるとともに、前記外周面の傾斜角度と前記内周面の傾斜角度とが互いに異なっており、
前記硬質材壁の前記軸心に対して傾斜する角度が、前記内周面の傾斜角度よりも小さい角度に設定されている軸ばね。
With the spindle
An outer cylinder that is deployed so as to surround the spindle in the axial direction of the spindle,
An elastic portion interposed between the main shaft and the outer cylinder in a state where a plurality of elastic material layers and one or a plurality of hard material walls are alternately laminated in the inner and outer diameter directions with respect to the axial center. Have,
The outer peripheral surface of the main shaft and the inner peripheral surface of the outer cylinder are formed as conical surfaces inclined in the same direction with respect to the axial center, and the inclination angle of the outer peripheral surface and the inclination angle of the inner peripheral surface are formed. bets are different from each other,
A shaft spring in which the angle of inclination of the hard material wall with respect to the axial center is set to be smaller than the inclination angle of the inner peripheral surface .
前記外周面の傾斜角度が、前記内周面の傾斜角度よりも大きく設定されている請求項1に記載の軸ばね。 The shaft spring according to claim 1, wherein the inclination angle of the outer peripheral surface is set to be larger than the inclination angle of the inner peripheral surface. 前記外筒は前記主軸に対して、前記軸心の方向における前記外周面の先窄まり側に寄せて配置されている請求項1又は2に記載の軸ばね。 The shaft spring according to claim 1 or 2, wherein the outer cylinder is arranged closer to the tip constricted side of the outer peripheral surface in the direction of the axial center with respect to the main shaft.
JP2016248404A 2016-12-21 2016-12-21 Shaft spring Expired - Fee Related JP6784590B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016248404A JP6784590B2 (en) 2016-12-21 2016-12-21 Shaft spring
CN201710913267.3A CN108216287B (en) 2016-12-21 2017-09-30 Shaft spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016248404A JP6784590B2 (en) 2016-12-21 2016-12-21 Shaft spring

Publications (2)

Publication Number Publication Date
JP2018100760A JP2018100760A (en) 2018-06-28
JP6784590B2 true JP6784590B2 (en) 2020-11-11

Family

ID=62655391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016248404A Expired - Fee Related JP6784590B2 (en) 2016-12-21 2016-12-21 Shaft spring

Country Status (2)

Country Link
JP (1) JP6784590B2 (en)
CN (1) CN108216287B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109532912B (en) * 2019-01-02 2020-11-27 中车株洲电力机车有限公司 Train linkage and suspension type monorail train

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259852A (en) * 1997-03-19 1998-09-29 Shimizu Corp Base isolation vibration control device
JP3501001B2 (en) * 1998-12-28 2004-02-23 東海ゴム工業株式会社 Vibration reduction device for building structure and tuning method thereof
DE10323528A1 (en) * 2002-06-12 2004-01-08 Phoenix Ag Elastomer spring for rail vehicles has a vertically multistage structure comprising at least two spring elements and a chamber between them
DE10301756B4 (en) * 2003-01-18 2005-02-24 Carl Freudenberg Kg layer spring
JP2005265061A (en) * 2004-03-18 2005-09-29 Tokai Rubber Ind Ltd Vibration-resistant bushing
CN101068704A (en) * 2004-10-25 2007-11-07 古米金属技术有限公司 Primary spring arrangement, in particular for wagon bogies of rail vehicles
JP4714505B2 (en) * 2005-05-25 2011-06-29 東洋ゴム工業株式会社 Air spring
JP6038578B2 (en) * 2012-10-03 2016-12-07 川崎重工業株式会社 Railcar bogie with a shaft spring
JP6308819B2 (en) * 2014-03-10 2018-04-11 東洋ゴム工業株式会社 Shaft spring
JP6478790B2 (en) * 2015-04-28 2019-03-06 Toyo Tire株式会社 Shaft spring
CN105443654A (en) * 2015-12-31 2016-03-30 株洲名扬橡塑有限公司 Conical rubber spring used for railway vehicle bogie

Also Published As

Publication number Publication date
JP2018100760A (en) 2018-06-28
CN108216287B (en) 2020-03-20
CN108216287A (en) 2018-06-29

Similar Documents

Publication Publication Date Title
US8894152B2 (en) Vehicle seat with fluid spring
KR20080019582A (en) Highly elastic leaf spring
JP6988676B2 (en) Cab mount
JP6784590B2 (en) Shaft spring
JP6789094B2 (en) Shaft spring
JP2016205588A (en) Axle spring
JP6731841B2 (en) Axial spring
JP2008275009A (en) Shaft spring device
JP5186138B2 (en) Anti-vibration rubber stopper for railway vehicles
JP2007326524A (en) Hauling device for railway vehicle and shock-absorbing rubber therefor
JP2008302845A (en) Suspension device for railway vehicle
CN102892598A (en) Suspension device
JP5393424B2 (en) Axle spring for rolling stock
JP4297803B2 (en) Air springs and carts for railway vehicles
JP6731840B2 (en) Axial spring
JPWO2015145699A1 (en) Torsion beam suspension
JP5033499B2 (en) Axle spring device
JP2009079622A (en) Axle spring for railroad vehicle
JP5097839B2 (en) Axle spring device
JP2009243576A (en) Elastic support
WO2021205678A1 (en) Laminated leaf spring clip and laminated leaf spring
JP7044099B2 (en) Suspension arm
JP6915576B2 (en) Vehicle rear structure
JP5373839B2 (en) Axle spring device
JP2006342940A (en) Air spring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201023

R150 Certificate of patent or registration of utility model

Ref document number: 6784590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees