JP6726116B2 - Motorized valve and refrigeration cycle system - Google Patents

Motorized valve and refrigeration cycle system Download PDF

Info

Publication number
JP6726116B2
JP6726116B2 JP2017016004A JP2017016004A JP6726116B2 JP 6726116 B2 JP6726116 B2 JP 6726116B2 JP 2017016004 A JP2017016004 A JP 2017016004A JP 2017016004 A JP2017016004 A JP 2017016004A JP 6726116 B2 JP6726116 B2 JP 6726116B2
Authority
JP
Japan
Prior art keywords
fixing member
rotor shaft
main body
valve
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017016004A
Other languages
Japanese (ja)
Other versions
JP2018123879A (en
Inventor
大樹 中川
大樹 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2017016004A priority Critical patent/JP6726116B2/en
Priority to CN201810019632.0A priority patent/CN108375250B/en
Priority to CN202011612736.6A priority patent/CN112781282A/en
Publication of JP2018123879A publication Critical patent/JP2018123879A/en
Application granted granted Critical
Publication of JP6726116B2 publication Critical patent/JP6726116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)
  • Lift Valve (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、冷凍サイクルシステムなどに使用する電動弁及び冷凍サイクルシステムに関する。 The present invention relates to an electric valve and a refrigeration cycle system used for a refrigeration cycle system and the like.

従来、この種の電動弁として、ステッピングモータのマグネットロータの回転によりねじ送り機構を介してロータ軸を直動させ、このロータ軸に連結された弁部材で弁ポートを開閉するものがある。このような電動弁は例えば特開2016−156447号公報(特許文献1)及び特開2015−90204号公報(特許文献2)に開示されている。 2. Description of the Related Art Conventionally, there is an electric valve of this type in which a rotor shaft is directly moved by a rotation of a magnet rotor of a stepping motor via a screw feed mechanism, and a valve member connected to the rotor shaft opens and closes a valve port. Such a motor-operated valve is disclosed in, for example, JP-A-2016-156447 (Patent Document 1) and JP-A-2015-90204 (Patent Document 2).

特許文献1の従来の電動弁は、マグネットロータと弁軸(ロータ軸)とを固定する構造として、マグネットロータの軸芯部分に設けた連結体(固定部材)に弁軸を挿通し、この連結体と弁軸とを溶接等で固定するようにしている。 The conventional motor-operated valve of Patent Document 1 has a structure in which a magnet rotor and a valve shaft (rotor shaft) are fixed, and the valve shaft is inserted into a connecting body (fixing member) provided in an axial core portion of the magnet rotor, and this connection is made. The body and the valve shaft are fixed by welding or the like.

特開2016−156447号公報JP, 2016-156447, A 特開2015−90204号公報JP, 2005-90204, A

上述したように、マグネットロータの軸芯部分に設けた連結体(固定部材)と弁軸(ロータ軸)とを溶接により固定する場合、連結体と弁軸とのそれぞれの熱容量を適切な関係とすることが要求される。例えば、連結体に比べて弁軸の熱容量が小さい場合、過大な溶接熱が弁軸に加わり、弁軸が変形してしまう虞がある。また、弁軸が先に溶融して連結体の溶融が足りずに十分な固定強度が得られず、連結体が弁軸から外れてしまう虞もある。 As described above, when the connecting body (fixing member) provided on the shaft core portion of the magnet rotor and the valve shaft (rotor shaft) are fixed by welding, the respective heat capacities of the connecting body and the valve shaft have an appropriate relationship. Required to do so. For example, when the heat capacity of the valve shaft is smaller than that of the connected body, excessive welding heat may be applied to the valve shaft and the valve shaft may be deformed. In addition, the valve shaft may be melted first and the connection body may not be sufficiently melted to obtain sufficient fixing strength, and the connection body may come off the valve shaft.

本発明は、モータ部がマグネットロータ及びロータ軸を回転させて、ロータ軸の回転に伴う弁部材の進退移動によって弁ポートを開閉させる電動弁において、マグネットロータの固定部材とロータ軸とを溶接固定し、ロータ軸の変形を防止できるとともに、固定強度を向上させた電動弁を提供することを課題とする。 According to the present invention, in a motor-operated valve in which a motor portion rotates a magnet rotor and a rotor shaft, and a valve port is opened/closed by forward/backward movement of a valve member accompanying rotation of the rotor shaft, a fixing member of the magnet rotor and a rotor shaft are fixed by welding. However, it is an object of the present invention to provide a motor-operated valve capable of preventing deformation of the rotor shaft and improving fixing strength.

請求項1の電動弁は、モータ部がマグネットロータ及び金属製のロータ軸を回転させるとともに、前記ロータ軸の回転に伴う弁部材の進退移動によって弁ポートを開閉させる電動弁において、前記マグネットロータは、磁性を有したマグネット本体と、前記マグネット本体の中央に該マグネット本体と一体成形された金属製の固定部材と、を有し、前記固定部材は、前記一体成形にて前記マグネット本体に結合された固定部材本体部と、前記固定部材本体部の外径より小径で、かつ、前記固定部材本体部の体積より体積の小さな円筒状の円筒部と、を有して形成されるとともに、前記固定部材本体部の体積は前記円筒部の体積の3倍以上であり、前記固定部材本体部と前記円筒部とを前記ロータ軸の軸線方向に貫通する挿通孔が設けられ、前記ロータ軸が前記挿通孔に挿通されるとともに、前記円筒部と前記ロータ軸とが、前記挿通孔の開口端部の周囲の一部にて溶接により固定されており、前記円筒部の前記開口端部の内径角部の形状が、C0.1以下の糸面取り形状であり、前記ロータ軸の軸線回りの回転対称な複数箇所において前記円筒部の前記挿通孔の前記開口端部と前記ロータ軸とが溶接されており、前記溶接による各溶融凝固部が、前記軸線回りの90°以下の角度範囲に亘って形成されていることを特徴とする。 The motor-operated valve according to claim 1, wherein the motor unit rotates the magnet rotor and the metal rotor shaft, and the valve port is opened and closed by the forward and backward movement of the valve member due to the rotation of the rotor shaft. A magnet main body having magnetism, and a metal fixing member integrally formed with the magnet main body at the center of the magnet main body, the fixing member being coupled to the magnet main body by the integral molding. And a fixed cylindrical member having a diameter smaller than the outer diameter of the fixed member main body and smaller in volume than the fixed member main body. The volume of the member main body is at least three times the volume of the cylindrical portion, and an insertion hole is provided to penetrate the fixed member main body portion and the cylindrical portion in the axial direction of the rotor shaft, and the rotor shaft is inserted through the insertion hole. While being inserted into the hole, the cylindrical portion and the rotor shaft are fixed by welding at a part of the periphery of the opening end portion of the insertion hole, and an inner diameter corner portion of the opening end portion of the cylindrical portion. Is a thread chamfered shape of C0.1 or less, and the opening end of the insertion hole of the cylindrical portion and the rotor shaft are welded at a plurality of rotationally symmetrical positions around the axis of the rotor shaft. The molten and solidified portions formed by the welding are formed over an angle range of 90° or less around the axis .

請求項の電動弁は、請求項1に記載の電動弁であって、前記ロータ軸の軸線回りの対向する2箇所において前記円筒部の前記挿通孔の前記開口端部と前記ロータ軸とが溶接されており、前記溶接による各溶融凝固部が、前記軸線回りの45°〜90°の範囲内に形成されていることを特徴とする。 The motor-operated valve according to claim 2 is the motor-operated valve according to claim 1, wherein the opening end portion of the insertion hole of the cylindrical portion and the rotor shaft are provided at two opposing positions around the axis of the rotor shaft. It is welded, and each molten and solidified portion formed by the welding is formed within a range of 45° to 90° around the axis.

請求項の電動弁は、請求項1又は2に記載の電動弁であって、前記円筒部の前記開口端部の内径角部の形状が、前記糸面取り形状に替えて、前記ロータ軸の外周に接するエッジ形状となっていることを特徴とする。 The motor-operated valve according to claim 3 is the motor-operated valve according to claim 1 or 2 , wherein the shape of the inner diameter corner portion of the opening end of the cylindrical portion is changed to the thread chamfered shape, It is characterized in that it has an edge shape in contact with the outer circumference.

請求項の電動弁は、請求項1乃至のいずれか一項に記載の電動弁であって、前記ロータ軸と前記固定部材とが同材質であることを特徴とする。 A motor-operated valve according to a fourth aspect is the motor-operated valve according to any one of the first to third aspects, wherein the rotor shaft and the fixing member are made of the same material.

請求項の電動弁は、請求項1乃至のいずれか一項に記載の電動弁であって、前記固定部材本体部が円柱形状であり、前記固定部材本体部の前記軸線方向の寸法が、前記円筒部の前記軸線方向の寸法より大であることを特徴とする。 The motor-operated valve according to claim 5 is the motor-operated valve according to any one of claims 1 to 4 , wherein the fixing member main body has a columnar shape, and a dimension of the fixing member main body in the axial direction is Is larger than the dimension of the cylindrical portion in the axial direction.

請求項の電動弁は、請求項1乃至のいずれか一項に記載の電動弁であって、前記ロータ軸の径をD、前記円筒部の径方向の肉厚をt、前記円筒部の前記軸線方向の寸法をH、としたとき、
t<D/2,H/t≧1
であることを特徴とする。
請求項の電動弁は、請求項1乃至のいずれか一項に記載の電動弁であって、前記ロータ軸が、前記弁部材とは反対側に位置する第1軸部と、当該第1軸部における前記弁部材側の端部に隣接して位置し、前記第1軸部の長さ以下の長さで前記第1軸部よりも径が大きい第2軸部とを有し、前記固定部材における前記弁部材側の面が前記第1軸部と前記第2軸部との境界部に位置するように、前記円筒部と前記ロータ軸とが固定されていることを特徴とする。
請求項の電動弁は、請求項1乃至のいずれか一項に記載の電動弁であって、前記マグネット本体は、円筒状のマグネット部と、当該マグネット部の内部の前記軸線方向の略中央部に延在し、前記弁部材側に突出したボス部が中央に設けられた円盤部と、を有し、前記固定部材本体部は、前記軸線方向について、前記円盤部における前記弁部材とは反対側の面から前記ボス部における前記弁部材側の端部に至るまで延在するように前記円盤部に結合されていることを特徴とする。
A motor-operated valve according to claim 6 is the motor-operated valve according to any one of claims 1 to 5 , wherein a diameter of the rotor shaft is D, a radial thickness of the cylindrical portion is t, and the cylindrical portion is When the dimension in the axial direction of is H,
t<D/2, H/t≧1
Is characterized in that
The motor-operated valve according to claim 7 is the motor-operated valve according to any one of claims 1 to 6 , wherein the rotor shaft is located on a side opposite to the valve member, and A second shaft portion that is located adjacent to an end portion of the one shaft portion on the valve member side and has a length that is equal to or less than the length of the first shaft portion and that is larger in diameter than the first shaft portion; The cylindrical portion and the rotor shaft are fixed such that a surface of the fixing member on the valve member side is located at a boundary portion between the first shaft portion and the second shaft portion. ..
The motor-operated valve according to claim 8 is the motor-operated valve according to any one of claims 1 to 7 , wherein the magnet main body includes a cylindrical magnet portion and a substantially axial portion inside the magnet portion in the axial direction. A disc portion that extends to the central portion and has a boss portion that protrudes toward the valve member side provided at the center, and the fixing member main body portion is the valve member in the disc portion in the axial direction. Is coupled to the disk portion so as to extend from the opposite surface to the end of the boss portion on the valve member side.

請求項の冷凍サイクルシステムは、圧縮機と、凝縮器と、膨張弁と、蒸発器と、を含む冷凍サイクルシステムであって、請求項1乃至のいずれか一項に記載の電動弁が、前記膨張弁として用いられていることを特徴とする。 A refrigeration cycle system according to claim 9 is a refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator, wherein the motor-operated valve according to any one of claims 1 to 8 is provided. It is used as the expansion valve.

請求項1乃至の電動弁によれば、固定部材本体部の外径より小径で体積が小さく熱容量の小さな円筒部において、全周溶接ではなく部分的に溶接されているので、溶接時に過大な溶接熱の発生を抑えるように溶接できて、溶接熱によるロータ軸の変形のない範囲で溶け込み量を増やせるため、部分的強度が全体の接合強度の向上として作用し、マグネットロータ(その一部の固定部材)がロータ軸から外れなくなる。また、マグネット本体に結合された固定部材本体部の方が、溶接で接合される円筒部よりも外径が大きいので、マグネットロータの回転時にマグネット本体のトルクを固定部材本体部に無理なく伝達することができ、マグネット本体から固定部材が外れなくなる。 According to the motor-operated valve of claims 1 to 8, the cylindrical portion having a smaller diameter, smaller volume, and smaller heat capacity than the outer diameter of the fixing member main body is not welded all around but is partially welded. Welding can be performed to suppress the generation of welding heat, and the amount of penetration can be increased within the range where there is no deformation of the rotor shaft due to welding heat, so the partial strength acts as an improvement in the overall joint strength, and the magnet rotor (part of it) The fixed member) does not come off the rotor shaft. Further, since the outer diameter of the fixed member main body coupled to the magnet main body is larger than that of the cylindrical portion joined by welding, the torque of the magnet main body is reasonably transmitted to the fixed member main body when the magnet rotor rotates. It is possible to prevent the fixing member from coming off from the magnet body.

また、請求項1又は請求項3の電動弁によれば、円筒部の上端の内径角部をエッジ形状、または、C0.1以下の糸面取り形状としたので、固定部材(円筒部)の端部において、ロータ軸との隙間が小さくなり、部品ばらつきや溶接ばらつきに対しても、溶接性が向上し、固定強度がさらに向上する。 Further , according to the motor-operated valve of claim 1 or 3 , since the inner diameter corner portion of the upper end of the cylindrical portion has an edge shape or a thread chamfered shape of C0.1 or less, the end of the fixing member (cylindrical portion). In the portion, the gap between the rotor shaft and the rotor shaft becomes small, the weldability is improved and the fixing strength is further improved even with respect to variations in parts and welding.

請求項の電動弁によれば、ロータ軸と固定部材とを同材質としたので、熱伝導率が同じであり、ロータ軸と固定部材とが均等に溶融し、さらに固定強度が向上する。例えば、ロータ軸が先に溶融してしまうこともない。 According to the motor-operated valve of the fourth aspect , since the rotor shaft and the fixing member are made of the same material, they have the same thermal conductivity, the rotor shaft and the fixing member are evenly melted, and the fixing strength is further improved. For example, the rotor shaft does not melt first.

請求項の電動弁によれば、固定部材本体部が円柱形状であり、固定部材本体部の軸線方向の寸法が、円筒部の軸線方向の寸法より大である。したがって、固定部材本体部の熱容量を十分に確保でき、マグネット本体に対する溶接熱の影響を抑制できる。 According to the motor-operated valve of the fifth aspect , the fixing member main body has a columnar shape, and the axial dimension of the fixing member main body is larger than the axial dimension of the cylindrical portion. Therefore, the heat capacity of the fixing member main body can be sufficiently secured, and the influence of welding heat on the magnet main body can be suppressed.

請求項の冷凍サイクルシステムによれば、請求項1乃至と同様な効果が得られる。 According to the refrigeration cycle system of claim 9, the same effects as those of claims 1 to 8 can be obtained.

本発明の実施形態の電動弁の縦断面図である。It is a longitudinal section of an electric valve of an embodiment of the present invention. 実施形態の電動弁におけるマグネットロータ及びロータ軸の要部拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a main part of a magnet rotor and a rotor shaft in the electric valve of the embodiment. 図2のA−A矢視図である。It is an AA arrow line view of FIG. 図2のB−B断面図及び一部拡大図である。FIG. 3 is a sectional view and a partially enlarged view taken along the line BB of FIG. 2. 実施形態の固定部材の変形例1を示す図である。It is a figure which shows the modification 1 of the fixing member of embodiment. 実施形態の固定部材の変形例2を示す図である。It is a figure which shows the modification 2 of the fixing member of embodiment. 実施形態の固定部材の変形例3を示す図である。It is a figure which shows the modification 3 of the fixing member of embodiment. 実施形態の冷凍サイクルシステムを示す図である。It is a figure showing the refrigerating cycle system of an embodiment.

次に、本発明の電動弁及び冷凍サイクルシステムの実施形態を図面を参照して説明する。図1は実施形態の電動弁の縦断面図、図2は実施形態の電動弁におけるマグネットロータ及びロータ軸の要部拡大断面図、図3は図2のA−A矢視図、図4は図2のB−B断面図及び一部拡大図である。なお、以下の説明における「上下」の概念は図1の図面における上下に対応する。 Next, embodiments of the motor-operated valve and the refrigeration cycle system of the present invention will be described with reference to the drawings. 1 is a vertical cross-sectional view of the electric valve of the embodiment, FIG. 2 is an enlarged cross-sectional view of a main part of a magnet rotor and a rotor shaft in the electric valve of the embodiment, FIG. 3 is an AA arrow view of FIG. 2, and FIG. FIG. 3 is a sectional view and a partially enlarged view taken along line BB of FIG. 2. The concept of “upper and lower” in the following description corresponds to the upper and lower parts in the drawing of FIG.

この電動弁100は、「モータ部」としてのステッピングモータ10と、弁ハウジング40と、弁機構部50と、非磁性体からなる密閉ケース60とを備えている。 The electric valve 100 includes a stepping motor 10 as a “motor unit”, a valve housing 40, a valve mechanism unit 50, and a sealed case 60 made of a non-magnetic material.

ステッピングモータ10は、ロータ軸1と、密閉ケース60の内部に回転可能に配設されたマグネットロータ2と、密閉ケース60の外周においてマグネットロータ2に対して対向配置されたステータユニット3とで構成されている。後述するように、ロータ軸1はマグネットロータ2の中心に取り付けられ、このロータ軸1は弁機構部50側に延設されている。ステータユニット3は、樹脂製のボビン31と、ボビン31に巻装された上下一対のテータコイル32と、磁性体からなる継鉄(ヨーク)33を備えている。そして、継鉄33の外周端部は円筒ガイカン34内に嵌合され、継鉄33と円筒ガイカン34は樹脂モールド35によって密閉されている。 The stepping motor 10 is composed of a rotor shaft 1, a magnet rotor 2 rotatably arranged inside a sealed case 60, and a stator unit 3 arranged on the outer periphery of the sealed case 60 so as to face the magnet rotor 2. Has been done. As will be described later, the rotor shaft 1 is attached to the center of the magnet rotor 2, and the rotor shaft 1 is extended to the valve mechanism section 50 side. The stator unit 3 includes a resin bobbin 31, a pair of upper and lower data coils 32 wound around the bobbin 31, and a yoke 33 made of a magnetic material. Then, the outer peripheral end of the yoke 33 is fitted into the cylindrical gaikan 34, and the yoke 33 and the cylindrical gaican 34 are sealed by a resin mold 35.

弁ハウジング40はステンレス等で略円筒形状に形成されており、その内側に弁室40Rを有している。弁ハウジング40の外周片側には弁室40Rに導通される第1継手管41が接続されるとともに、下端から下方に延びる筒状部に第2継手管42が接続されている。また、第2継手管42の弁室40R側には弁座リング43が嵌合されている。弁座リング43の上端内側は弁ポート43aとなっており、第2継手管42は弁ポート43aを介して弁室40Rに導通される。なお、第1継手管41、第2継手管42及び弁座リング43は、弁ハウジング40に対してろう付け等により固着されている。 The valve housing 40 is made of stainless steel or the like and has a substantially cylindrical shape, and has a valve chamber 40R inside thereof. A first joint pipe 41 connected to the valve chamber 40R is connected to one outer peripheral side of the valve housing 40, and a second joint pipe 42 is connected to a tubular portion extending downward from the lower end. A valve seat ring 43 is fitted on the valve chamber 40R side of the second joint pipe 42. Inside the upper end of the valve seat ring 43 is a valve port 43a, and the second joint pipe 42 is electrically connected to the valve chamber 40R via the valve port 43a. The first joint pipe 41, the second joint pipe 42, and the valve seat ring 43 are fixed to the valve housing 40 by brazing or the like.

弁機構部50は、支持部材51と、弁ホルダ52と、「弁部材」としてのニードル弁53とを有している。支持部材51は例えば合成樹脂製で略円柱形状に形成されており、その外周にはインサート成形により一体に設けられたステンレス製のフランジ部511を介して弁ハウジング40の上端部に溶接等により固定されている。支持部材51の中心には、ロータ軸1の軸線Lと同軸の雌ねじ部51aとそのねじ孔が形成されるとともに、雌ねじ部51aのねじ孔よりも径の大きな円筒状のガイド孔51bが形成されている。 The valve mechanism section 50 has a support member 51, a valve holder 52, and a needle valve 53 as a “valve member”. The support member 51 is made of, for example, a synthetic resin and is formed into a substantially columnar shape. The support member 51 is fixed to the upper end of the valve housing 40 by welding or the like via a flange portion 511 made of stainless that is integrally provided by insert molding on the outer periphery thereof. Has been done. At the center of the support member 51, a female screw portion 51a coaxial with the axis L of the rotor shaft 1 and its screw hole are formed, and a cylindrical guide hole 51b having a diameter larger than the screw hole of the female screw portion 51a is formed. ing.

弁ホルダ52は円筒状の部材であり、ガイド孔51b内に嵌合されて軸線L方向に摺動可能に配設されている。そして、弁ホルダ52の下端部にニードル弁53が固着されている。弁ホルダ52内には、バネ受け52aが軸線L方向に移動可能に設けられ、バネ受け52aとニードル弁53との間に圧縮コイルバネ52bが所定の荷重を与えられた状態で取り付けられている。 The valve holder 52 is a cylindrical member that is fitted in the guide hole 51b and is slidable in the direction of the axis L. The needle valve 53 is fixed to the lower end of the valve holder 52. A spring receiver 52a is provided in the valve holder 52 so as to be movable in the direction of the axis L, and a compression coil spring 52b is attached between the spring receiver 52a and the needle valve 53 in a state in which a predetermined load is applied.

ロータ軸1の支持部材51側の外周には雄ねじ部1aが形成されており、この雄ねじ部1aが支持部材51の雌ねじ部51aに螺合されている。そして、支持部材51のガイド孔51b内で、弁ホルダ52の上端部がロータ軸1の下端部に係合され、弁ホルダ52及びニードル弁53はロータ軸1によって回転可能に吊り下げた状態で支持されている。 A male screw portion 1a is formed on the outer periphery of the rotor shaft 1 on the support member 51 side, and the male screw portion 1a is screwed into the female screw portion 51a of the support member 51. In the guide hole 51b of the support member 51, the upper end of the valve holder 52 is engaged with the lower end of the rotor shaft 1, and the valve holder 52 and the needle valve 53 are rotatably suspended by the rotor shaft 1. It is supported.

密閉ケース60は、上端部が塞がれた略円筒形状に形成されており、弁ハウジング40の上端に溶接等によって気密に固定されている。また、密閉ケース60内の上部には、ガイド保持筒61が嵌合され、このガイド保持筒61の中央の円筒部61a内にガイド62が嵌め込まれている。ガイド62は中央にガイド孔62aを有しており、このガイド孔62a内にロータ軸1の上端部が回動自在に嵌め込まれている。円筒部61aの外周には、螺旋ガイド線体63が装着されるとともに螺旋ガイド線体63に螺合した可動ストッパ部材64が設けられている。 The closed case 60 is formed in a substantially cylindrical shape with its upper end closed, and is hermetically fixed to the upper end of the valve housing 40 by welding or the like. A guide holding cylinder 61 is fitted in the upper part of the closed case 60, and a guide 62 is fitted in a cylindrical portion 61 a at the center of the guide holding cylinder 61. The guide 62 has a guide hole 62a at the center, and the upper end of the rotor shaft 1 is rotatably fitted in the guide hole 62a. On the outer circumference of the cylindrical portion 61a, a spiral guide wire 63 is mounted and a movable stopper member 64 screwed into the spiral guide wire 63 is provided.

以上の構成により、ステッピングモータ10の駆動により、マグネットロータ2及びロータ軸1が回転し、ロータ軸1の雄ねじ部1aと支持部材51の雌ねじ部51aとのねじ送り機構により、ロータ軸1が軸線L方向に移動する。そして、ニードル弁53が軸線L方向に移動して弁座リング43に対して近接又は離間する。これにより、弁ポート43aが開閉され、第1継手管41から第2継手管42へ、あるいは第2継手管42から第1継手管41へ流れる冷媒の流量が制御される。 With the above configuration, the magnet rotor 2 and the rotor shaft 1 are rotated by the driving of the stepping motor 10, and the rotor shaft 1 is rotated by the screw feed mechanism between the male screw portion 1a of the rotor shaft 1 and the female screw portion 51a of the support member 51. Move in the L direction. Then, the needle valve 53 moves in the direction of the axis L and approaches or separates from the valve seat ring 43. As a result, the valve port 43a is opened and closed, and the flow rate of the refrigerant flowing from the first joint pipe 41 to the second joint pipe 42 or from the second joint pipe 42 to the first joint pipe 41 is controlled.

また、マグネットロータ2には突起部24が形成されており、マグネットロータ2の回転に伴って突起部24が可動ストッパ部材64を蹴り回すことにより、可動ストッパ部材64が螺旋ガイド線体63との螺合によって旋回しながら上下動する。そして、可動ストッパ部材64が、螺旋ガイド線体63の下端ストッパ63aに当接することによって、ロータ軸1の最下端位置での回転ストッパ作用が得られる。また、可動ストッパ部材64が、ガイド保持筒61の上端ストッパ61bに当接することによって、ロータ軸1の最上端位置での回転ストッパ作用が得られる。 Further, the magnet rotor 2 is formed with a protrusion 24, and the protrusion 24 kicks the movable stopper member 64 around as the magnet rotor 2 rotates, whereby the movable stopper member 64 and the spiral guide wire body 63 are formed. It moves up and down while turning by screwing. Then, the movable stopper member 64 comes into contact with the lower end stopper 63a of the spiral guide wire body 63, whereby the rotation stopper action at the lowermost end position of the rotor shaft 1 is obtained. Further, the movable stopper member 64 comes into contact with the upper end stopper 61b of the guide holding cylinder 61, whereby the rotation stopper action at the uppermost end position of the rotor shaft 1 is obtained.

このように電動弁100は、ステッピングモータ10(モータ部)がマグネットロータ2及び金属製のロータ軸1を回転させるとともに、ロータ軸1の回転に伴うニードル弁53の進退移動によって弁ポート43aを開閉させる電動弁である。 As described above, in the motor-operated valve 100, the stepping motor 10 (motor unit) rotates the magnet rotor 2 and the metal rotor shaft 1, and the needle valve 53 moves back and forth as the rotor shaft 1 rotates to open and close the valve port 43a. It is a motorized valve.

ロータ軸1はステンレス製のロッド部材を加工して形成されており、支持部材51よりも上方に位置する第1軸部11と、この第1軸部11よりも径が大きい第2軸部12とを有している。なお、第2軸部12の支持部材51に挿通される部分には前記雄ねじ部1aが形成されている。また、第1軸部11と第2軸部12との径の違いにより、第1軸部11と第2軸部12との境界部には、前記ロータ軸1の軸線L側から第2軸部12の外径方向に延びてロータ軸1の軸線Lに対して直角な面となる段差面部13を有している。 The rotor shaft 1 is formed by processing a rod member made of stainless steel, and includes a first shaft portion 11 located above the support member 51 and a second shaft portion 12 having a diameter larger than that of the first shaft portion 11. And have. The male screw portion 1a is formed in a portion of the second shaft portion 12 that is inserted into the support member 51. Further, due to the difference in diameter between the first shaft portion 11 and the second shaft portion 12, the boundary between the first shaft portion 11 and the second shaft portion 12 has a second shaft from the side of the axis L of the rotor shaft 1. It has a stepped surface portion 13 which extends in the outer diameter direction of the portion 12 and is a surface orthogonal to the axis L of the rotor shaft 1.

マグネットロータ2は、外周部を多極に着磁された円筒状のマグネット部21と、その内部の軸線L方向の略中央部に延在する円盤部22と、円盤部22の中央のボス部22a内に設けられたハブの機能を果たす固定部材23と、前記の突起部24とを有している。マグネット部21と円盤部22と突起部24とはPPS等からなる一体成形部材として「マグネット本体」を構成しており、そのマグネット部21はPPS等を母材として磁性粉を混入して成形されている。また、固定部材23はロータ軸1と同材質のステンレス製であり、この固定部材23はマグネット部21及び円盤部22(そのボス部22a)と共に、インサート成形により一体に成形されている。 The magnet rotor 2 has a cylindrical magnet portion 21 whose outer peripheral portion is magnetized to have multiple poles, a disk portion 22 which extends inside the magnet portion 21 at a substantially central portion in the direction of the axis L, and a boss portion at the center of the disk portion 22. It has a fixing member 23 that functions as a hub provided in 22a, and the above-mentioned protrusion 24. The magnet portion 21, the disk portion 22, and the protrusion 24 constitute a "magnet body" as an integrally formed member made of PPS or the like, and the magnet portion 21 is formed by mixing PPS or the like as a base material with magnetic powder. ing. The fixing member 23 is made of the same material as the rotor shaft 1 of stainless steel, and the fixing member 23 is integrally formed with the magnet portion 21 and the disk portion 22 (its boss portion 22a) by insert molding.

マグネットロータ2の一部である固定部材23は、円柱形状の固定部材本体部231と、固定部材本体部231より小径で円筒形状の円筒部232とを有して形成され、この固定部材本体部231と円筒部232とは軸線Lが中心軸となるように同軸になっている。また、固定部材23は、固定部材本体部231と円筒部232とを軸線L方向に貫通する円柱状の挿通孔23aを有している。さらに、固定部材23は、支持部材51側の面が、挿通孔23aの内周面よりも軸線Lから外方に延びる面となっており、この面は、ロータ軸1の段差面部13と当接可能な当接面部23bとなっている。 The fixing member 23 which is a part of the magnet rotor 2 is formed to have a cylindrical fixing member main body 231 and a cylindrical cylindrical portion 232 having a smaller diameter than the fixing member main body 231. 231 and the cylindrical portion 232 are coaxial with each other such that the axis L is the central axis. Further, the fixing member 23 has a cylindrical insertion hole 23a that penetrates the fixing member main body portion 231 and the cylindrical portion 232 in the axis L direction. Further, in the fixing member 23, the surface on the supporting member 51 side is a surface extending outward from the axis L with respect to the inner peripheral surface of the insertion hole 23a, and this surface contacts the step surface portion 13 of the rotor shaft 1. The contact surface portion 23b is capable of contacting.

マグネットロータ2は、固定部材23の挿通孔23a内にロータ軸1(第1軸部11)を挿通し、固定部材23の当接面部23bをロータ軸1の段差面部13に当接させた状態となっている。これにより、ロータ軸1に対するマグネットロータ2の軸線L方向の位置出しがなされている。そして、固定部材23における挿通孔23aの円筒部232側の開口端部の周囲A(図2の二点鎖線)において、その2箇所(一部)にてロータ軸1と円筒部232とが溶接により固定され、この溶接による2つの溶融凝固部4,4が形成されている。また、図3に示すように、この溶融凝固部4,4は、それぞれが軸線L回りの45°〜90°の範囲内に形成されている。上記の溶接方法は、例えばレーザ溶接によるもので、レーザのスポットを挿通孔23aの開口端部とロータ軸1との境界の部分に照射する。このとき、溶融凝固部4の深さが、ロータ軸1と固定部材23とを確実に固定できる深さとなるように、レーザの出力(強度)を調整する。 In the magnet rotor 2, the rotor shaft 1 (first shaft portion 11) is inserted into the insertion hole 23 a of the fixed member 23, and the contact surface portion 23 b of the fixed member 23 is brought into contact with the step surface portion 13 of the rotor shaft 1. Has become. As a result, the magnet rotor 2 is positioned relative to the rotor shaft 1 in the direction of the axis L. Then, the rotor shaft 1 and the cylindrical portion 232 are welded at two locations (a part) around the periphery A (two-dot chain line in FIG. 2) of the opening end of the insertion hole 23a of the fixing member 23 on the cylindrical portion 232 side. The two melted and solidified portions 4 and 4 are formed by this welding. Further, as shown in FIG. 3, the melting and solidifying portions 4 and 4 are formed within the range of 45° to 90° around the axis L, respectively. The above-described welding method is, for example, laser welding, in which a laser spot is applied to the boundary between the opening end of the insertion hole 23a and the rotor shaft 1. At this time, the output (strength) of the laser is adjusted so that the depth of the melted and solidified portion 4 is such that the rotor shaft 1 and the fixing member 23 can be reliably fixed.

このように、固定部材23は、インサート成形による一体成形にてマグネット部21及び円盤部22(マグネット本体)に結合された固定部材本体部231を有している。また。固定部材本体部231の外径より小径で、かつ、固定部材本体部231の体積より体積の小さな円筒状の円筒部232を有している。そして、ロータ軸1が挿通孔23aに挿通され、円筒部232とロータ軸1とが、挿通孔23aの開口端部の周囲Aの一部にて溶接により固定されている。すなわち、固定部材本体部231の外径より小径で体積が小さく熱容量の小さい円筒部232にて全周溶接ではなく部分的に溶接されている。したがって、溶接時に過大な溶接熱の発生を抑えるように溶接できる。これにより、溶接熱によるロータ軸1の変形のない範囲で溶け込み量を増やせる。したがって、溶融凝固部4,4による部分的強度が全体の接合強度の向上として作用し、マグネットロータ2(固定部材23)がロータ軸1から外れなくなる。なお、固定部材本体部231の方が、溶接で接合される円筒部232よりも外径が大きいので、マグネットロータ2の回転時にマグネット本体のトルクを固定部材本体部231に無理なく伝達することができ、マグネット本体から固定部材23が外れなくなる。 As described above, the fixing member 23 has the fixing member main body portion 231 which is joined to the magnet portion 21 and the disk portion 22 (magnet main body) by integral molding by insert molding. Also. It has a cylindrical portion 232 having a smaller diameter than the outer diameter of the fixing member main body 231 and a volume smaller than the volume of the fixing member main body 231. Then, the rotor shaft 1 is inserted into the insertion hole 23a, and the cylindrical portion 232 and the rotor shaft 1 are fixed by welding at a part of the periphery A around the opening end of the insertion hole 23a. That is, the cylindrical portion 232 having a smaller diameter, a smaller volume, and a smaller heat capacity than the outer diameter of the fixing member main body portion 231 is not entirely welded but partially welded. Therefore, welding can be performed so as to suppress the generation of excessive welding heat during welding. As a result, the amount of penetration can be increased within a range in which the rotor shaft 1 is not deformed by welding heat. Therefore, the partial strength of the melt-solidified portions 4 and 4 acts to improve the overall joint strength, and the magnet rotor 2 (fixing member 23) is prevented from coming off the rotor shaft 1. Since the fixed member main body 231 has an outer diameter larger than that of the cylindrical portion 232 joined by welding, the torque of the magnet main body can be transmitted to the fixed member main body 231 without difficulty when the magnet rotor 2 rotates. Therefore, the fixing member 23 does not come off from the magnet body.

また、ロータ軸1の軸線L回りの対向する2箇所において挿通孔23aの開口端部とロータ軸1とが溶接されており、溶接による各溶融凝固部4,4が、軸線L回りの45°〜90°の範囲内に形成されている。したがって、溶接時に過大な溶接熱の発生を抑えるように溶接できる。 Further, the opening end of the insertion hole 23a and the rotor shaft 1 are welded to each other at two opposing locations around the axis L of the rotor shaft 1, and the melted and solidified portions 4 and 4 by welding are 45° around the axis L. It is formed within a range of up to 90°. Therefore, welding can be performed so as to suppress the generation of excessive welding heat during welding.

また、図4の一点鎖線の円で示す一部拡大図に示すように、円筒部232の上端の挿通孔23aのロータ軸1側の内径角部がC0.1以下の糸面取り形状となっている。したがって、固定部材23の円筒部232の端部において、ロータ軸1との隙間が小さくなり、部品ばらつきや溶接ばらつきに対しても、固定部材23とロータ軸1との溶接性が向上し、固定強度がさらに向上する。なお、挿通孔23aのロータ軸1側の内径角部はエッジ形状でもよい。 Further, as shown in a partially enlarged view shown by a dashed-dotted circle in FIG. 4, an inner diameter corner portion of the insertion hole 23a at the upper end of the cylindrical portion 232 on the rotor shaft 1 side has a thread chamfered shape of C0.1 or less. There is. Therefore, in the end portion of the cylindrical portion 232 of the fixing member 23, the gap between the fixing member 23 and the rotor shaft 1 becomes small, and the welding property between the fixing member 23 and the rotor shaft 1 is improved even when the variation in parts and the variation in welding are caused. Strength is further improved. The inner diameter corner portion of the insertion hole 23a on the rotor shaft 1 side may have an edge shape.

また、ロータ軸1と固定部材23とがともにステンレス製で同材質となっているので、熱伝導率が同じであり、ロータ軸1と固定部材23とが均等に溶融し、さらに固定強度が向上する。 Further, since the rotor shaft 1 and the fixing member 23 are both made of stainless steel and made of the same material, the thermal conductivity is the same, the rotor shaft 1 and the fixing member 23 are evenly melted, and the fixing strength is further improved. To do.

また、固定部材本体部231が円柱形状であり、固定部材本体部231の軸線L方向の寸法が、円筒部232の軸線L方向の寸法より大である。したがって、固定部材本体部231の熱容量を十分に確保でき、マグネット部21と円盤部22とを一体にした「マグネット本体」に対する溶接熱の影響を抑制できる。 Further, the fixing member main body 231 has a cylindrical shape, and the dimension of the fixing member main body 231 in the axis L direction is larger than the dimension of the cylindrical portion 232 in the axis L direction. Therefore, the heat capacity of the fixing member main body 231 can be sufficiently secured, and the influence of welding heat on the “magnet main body” in which the magnet portion 21 and the disc portion 22 are integrated can be suppressed.

また、図2に示すように、ロータ軸1の第1軸部11の径をD、円筒部232の径方向の肉厚をt、円筒部232の軸線L方向の寸法(高さ)をH、としたとき、
t<D/2,H/t≧1
となっている。これにより、円筒部232の熱容量が、ロータ軸1の熱容量に対して溶接に適したものとなり、溶接性が向上し、固定強度が向上する。
In addition, as shown in FIG. 2, the diameter of the first shaft portion 11 of the rotor shaft 1 is D, the radial thickness of the cylindrical portion 232 is t, and the dimension (height) of the cylindrical portion 232 in the direction of the axis L is H. , And when
t<D/2, H/t≧1
Has become. As a result, the heat capacity of the cylindrical portion 232 becomes suitable for welding with respect to the heat capacity of the rotor shaft 1, the weldability is improved, and the fixing strength is improved.

図5は固定部材の変形例1を示す図である。なお、以下の変形例1乃至3に対応する図5乃至図7において、(A)図は固定部材の平面図、(B)図は固定部材の縦断面図、(C)図は固定部材の側面図である。また、マグネットロータ2は図示を省略して縦断面図にてボス部22aだけを一点鎖線で示してある。この変形例1の固定部材25は、ロータ軸1と同材質のステンレス製であり、前記マグネット部21及び円盤部22(そのボス部22a)と共に、インサート成形により一体に成形される。また、この変形例1の固定部材25は、円柱形状の固定部材本体部251と、固定部材本体部251より小径で円筒形状の円筒部252とを有して形成されるとともに、ロータ軸1を挿通する円柱状の挿通孔25aを有している。この変形例1の固定部材本体部251は前記固定部材本体部231と同形状であるが、円筒部252は、前記円筒部232より小径となっている。 FIG. 5: is a figure which shows the modification 1 of a fixing member. 5 to 7 corresponding to Modifications 1 to 3 below, (A) is a plan view of the fixing member, (B) is a vertical sectional view of the fixing member, and (C) is a fixing member. It is a side view. Further, the magnet rotor 2 is not shown, and only the boss portion 22a is shown by a one-dot chain line in a vertical sectional view. The fixing member 25 of this modification 1 is made of stainless steel of the same material as the rotor shaft 1, and is integrally formed by insert molding together with the magnet portion 21 and the disc portion 22 (its boss portion 22a). In addition, the fixing member 25 of Modification 1 is formed to have a cylindrical fixing member main body portion 251 and a cylindrical cylindrical portion 252 having a smaller diameter than the fixing member main body portion 251, and the rotor shaft 1 It has a cylindrical insertion hole 25a through which it is inserted. The fixing member main body 251 of the first modification has the same shape as the fixing member main body 231. However, the cylindrical portion 252 has a smaller diameter than the cylindrical portion 232.

図6は固定部材の変形例2を示す図である。この変形例2の固定部材26は、ロータ軸1と同材質のステンレス製であり、前記マグネット部21及び円盤部22(そのボス部22a)と共に、インサート成形により一体に成形される。また、この変形例2の固定部材26は、略円柱形状の固定部材本体部261と、固定部材本体部261より小径で円筒形状の円筒部262とを有して形成されるとともに、ロータ軸1を挿通する円柱状の挿通孔26aを有している。この変形例2の固定部材本体部261は前記固定部材本体部231と同径であるが、外周の4箇所に凹溝261aを有している。なお、円筒部262は変形例1の円筒部252と同形状である。凹溝261aの大きさ、形状は、図の大きさとは限らず、小も大も考えられ、凹溝箇所も4箇所ではなく、4箇所以上でも、4箇所以下でもよい。 FIG. 6 is a diagram showing a second modification of the fixing member. The fixing member 26 of Modification 2 is made of the same material as the rotor shaft 1 and is made of stainless steel, and is integrally formed by insert molding together with the magnet portion 21 and the disc portion 22 (its boss portion 22a). Further, the fixing member 26 of Modification 2 is formed to have a substantially cylindrical fixing member main body portion 261 and a cylindrical cylindrical portion 262 having a smaller diameter than the fixing member main body portion 261 and the rotor shaft 1 It has a cylindrical insertion hole 26a for inserting. The fixing member main body 261 of the second modification has the same diameter as the fixing member main body 231 but has concave grooves 261a at four locations on the outer circumference. The cylindrical portion 262 has the same shape as the cylindrical portion 252 of the first modification. The size and shape of the recessed groove 261a are not limited to the sizes shown in the drawing, and may be small or large, and the recessed groove locations may be four or more locations or four or less locations instead of four locations.

図7は固定部材の変形例3を示す図である。この変形例3の固定部材27は、ロータ軸1と同材質のステンレス製であり、前記マグネット部21及び円盤部22(そのボス部22a)と共に、インサート成形により一体に成形される。また、この変形例3の固定部材27は、四角柱形状の固定部材本体部271と、固定部材本体部271より小径で円筒形状の円筒部272とを有して形成されるとともに、ロータ軸1を挿通する円柱状の挿通孔27aを有している。この変形例3の固定部材本体部271の最大径部は前記固定部材本体部231と同径である。なお、円筒部272は変形例1の円筒部252と同形状である。 FIG. 7: is a figure which shows the modification 3 of a fixing member. The fixing member 27 of the third modification is made of stainless steel of the same material as the rotor shaft 1, and is integrally formed with the magnet portion 21 and the disc portion 22 (its boss portion 22a) by insert molding. The fixing member 27 of Modification 3 is formed to have a fixing member main body 271 in the shape of a quadrangular prism and a cylindrical portion 272 having a smaller diameter than the fixing member main body 271 and the rotor shaft 1 It has a cylindrical insertion hole 27a for inserting. The maximum diameter portion of the fixing member main body portion 271 of Modification 3 has the same diameter as the fixing member main body portion 231. The cylindrical portion 272 has the same shape as the cylindrical portion 252 of the first modification.

図5(B)、図6(B)、図7(B)に示すように、これらの変形例1乃至3においても、ロータ軸1の軸線L回りの対向する2箇所において溶接による各溶融凝固部4,4がそれぞれ形成されている。また、これらの変形例1乃至3において固定部材本体部251,261,271の断面形状は同じであり、その最大外径は同じである。しかし、固定部材本体部251,261,271の体積はそれぞれ異なっている。 As shown in FIG. 5(B), FIG. 6(B), and FIG. 7(B), in these modified examples 1 to 3 as well, each melt solidification by welding is performed at two opposing positions around the axis L of the rotor shaft 1. Portions 4 and 4 are formed respectively. In addition, in these modified examples 1 to 3, the fixing member body portions 251, 261, 271 have the same cross-sectional shape, and the maximum outer diameter thereof is the same. However, the volumes of the fixing member main bodies 251, 261, 271 are different from each other.

なお、以上の実施形態及び変形例1乃至3における固定部材本体部231,251,261,271の体積は、円筒部232,252,262,272の体積のそれぞれ3倍以上であるのが好適である。また、固定部材本体部の形状はその他の形状、例えば三角形や五角形、それ以外の角柱形状でもよい。 In addition, it is preferable that the volume of the fixing member main body portions 231, 251, 261, 271 in the above-described embodiment and the modified examples 1 to 3 is three times or more each of the volumes of the cylindrical portions 232, 252, 262, 272. is there. Further, the shape of the fixing member main body may be another shape, for example, a triangular shape, a pentagonal shape, or another prismatic shape.

また、実施形態及び各変形例では、ロータ軸1の軸線L回りの対向する2箇所に溶接を施した例について説明したが、溶接箇所は軸線L回りに1箇所であってもよい。この場合、軸線周りの150°〜270°の範囲に溶融凝固部が形成されていることが好ましい。また、軸線L周りの対向する2箇所、軸線L周りの1箇所に限らず、溶接箇所は軸線L回りの複数箇所(例:3箇所以上)であってもよい。この場合、溶接箇所は軸線L回りの回転対称な位置に施すのが好適であり、軸線周りの各溶融凝固部が形成されている角度は45°未満でもよい。 Further, in the embodiment and each of the modified examples, an example in which welding is performed at two opposing positions around the axis L of the rotor shaft 1 has been described, but the number of welding points may be one around the axis L. In this case, it is preferable that the melt-solidified portion is formed in the range of 150° to 270° around the axis. Further, the welding positions are not limited to two opposite positions around the axis L and one position around the axis L, and the welding points may be a plurality of points around the axis L (for example, three or more positions). In this case, it is preferable to perform the welding at a rotationally symmetric position around the axis L, and the angle at which each melt-solidified portion is formed around the axis may be less than 45°.

図8は実施形態の冷凍サイクルシステムを示す図である。図において、符号100は「膨張弁」を構成する本発明の実施形態の電動弁、200は室外ユニットに搭載された室外熱交換器、300は室内ユニットに搭載された室内熱交換器、400は四方弁を構成する流路切換弁、500は圧縮機である。電動弁100、室外熱交換器200、室内熱交換器300、流路切換弁400、及び圧縮機500は、それぞれ導管によって図示のように接続され、ヒートポンプ式の冷凍サイクルシステムを構成している。なお、アキュムレータ、圧力センサ、温度センサ等は図示を省略してある。 FIG. 8 is a diagram showing the refrigeration cycle system of the embodiment. In the figure, reference numeral 100 is an electrically operated valve of the embodiment of the present invention that constitutes an “expansion valve”, 200 is an outdoor heat exchanger mounted in an outdoor unit, 300 is an indoor heat exchanger mounted in an indoor unit, and 400 is A flow path switching valve that constitutes a four-way valve, and 500 is a compressor. The motor-operated valve 100, the outdoor heat exchanger 200, the indoor heat exchanger 300, the flow path switching valve 400, and the compressor 500 are connected by conduits as shown in the drawing, and constitute a heat pump type refrigeration cycle system. The accumulator, pressure sensor, temperature sensor, etc. are not shown.

冷凍サイクルの流路は、流路切換弁400により冷房運転時の流路と暖房運転時の流路の2通りに切換えられる。冷房運転時には、図に実線の矢印で示したように、圧縮機500で圧縮された冷媒は流路切換弁400から室外熱交換器200に流入され、この室外熱交換器200は凝縮器として機能し、室外熱交換器200から流出された液冷媒は電動弁100を介して室内熱交換器300に流入され、この室内熱交換器300は蒸発器として機能する。 The flow path of the refrigeration cycle is switched by the flow path switching valve 400 to two paths, that is, the flow path during the cooling operation and the flow path during the heating operation. During the cooling operation, as shown by the solid arrow in the figure, the refrigerant compressed by the compressor 500 flows into the outdoor heat exchanger 200 from the flow path switching valve 400, and the outdoor heat exchanger 200 functions as a condenser. Then, the liquid refrigerant flowing out of the outdoor heat exchanger 200 flows into the indoor heat exchanger 300 via the electric valve 100, and the indoor heat exchanger 300 functions as an evaporator.

一方、暖房運転時には、図に破線の矢印で示したように、圧縮機500で圧縮された冷媒は流路切換弁400から室内熱交換器300、電動弁100、室外熱交換器200、流路切換弁400、そして、圧縮機500の順に循環され、室内熱交換器300が凝縮器として機能し、室外熱交換器200が蒸発器として機能する。電動弁100は、冷房運転時に室外熱交換器200から流入する液冷媒、または暖房運転時に室内熱交換器300から流入する液冷媒を、それぞれ減圧膨張し、さらにその冷媒の流量を制御する。 On the other hand, during the heating operation, the refrigerant compressed by the compressor 500 flows from the flow passage switching valve 400 to the indoor heat exchanger 300, the motor-operated valve 100, the outdoor heat exchanger 200, and the flow passage as indicated by the broken line arrow in the figure. The switching valve 400 and the compressor 500 are circulated in this order, the indoor heat exchanger 300 functions as a condenser, and the outdoor heat exchanger 200 functions as an evaporator. The motor-operated valve 100 decompresses and expands the liquid refrigerant flowing from the outdoor heat exchanger 200 during the cooling operation or the liquid refrigerant flowing from the indoor heat exchanger 300 during the heating operation, and further controls the flow rate of the refrigerant.

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and changes in design within the scope not departing from the gist of the present invention. Even so, it is included in the present invention.

1 ロータ軸
1a 雄ねじ部
2 マグネットロータ
21 マグネット部(マグネット本体)
22 円盤部(マグネット本体)
22a ボス部
23 固定部材
23a 挿通孔
231 固定部材本体部
232 円筒部
25 固定部材
251 固定部材本体部
252 円筒部
25a 挿通孔
26 固定部材
261 固定部材本体部
262 円筒部
26a 挿通孔
27 固定部材
271 固定部材本体部
272 円筒部
27a 挿通孔
3 ステータユニット
4 溶融凝固部
10 ステッピングモータ(モータ部)
40 弁ハウジング
41 第1継手管
42 第2継手管
43 弁座リング
43a 弁ポート
50 弁機構部
51 支持部材
52 弁ホルダ
53 ニードル弁(弁部材)
51a 雌ねじ部
100 電動弁(膨張弁)
200 室外熱交換器
300 室内熱交換器
400 流路切換弁
500 圧縮機
L 軸線
1 Rotor Shaft 1a Male Thread Part 2 Magnet Rotor 21 Magnet Part (Magnet Body)
22 Disc part (magnet body)
22a boss 23 fixing member 23a insertion hole 231 fixing member main body 232 cylindrical portion 25 fixing member 251 fixing member main body 252 cylindrical portion 25a insertion hole 26 fixing member 261 fixing member main body 262 cylindrical portion 26a insertion hole 27 fixing member 271 fixing Member main body portion 272 Cylindrical portion 27a Insertion hole 3 Stator unit 4 Melt solidification portion 10 Stepping motor (motor portion)
40 valve housing 41 1st joint pipe 42 2nd joint pipe 43 valve seat ring 43a valve port 50 valve mechanism section 51 support member 52 valve holder 53 needle valve (valve member)
51a Female thread portion 100 Motorized valve (expansion valve)
200 outdoor heat exchanger 300 indoor heat exchanger 400 flow path switching valve 500 compressor L axis

Claims (9)

モータ部がマグネットロータ及び金属製のロータ軸を回転させるとともに、前記ロータ軸の回転に伴う弁部材の進退移動によって弁ポートを開閉させる電動弁において、
前記マグネットロータは、磁性を有したマグネット本体と、前記マグネット本体の中央に該マグネット本体と一体成形された金属製の固定部材と、を有し、
前記固定部材は、前記一体成形にて前記マグネット本体に結合された固定部材本体部と、前記固定部材本体部の外径より小径で、かつ、前記固定部材本体部の体積より体積の小さな円筒状の円筒部と、を有して形成されるとともに、前記固定部材本体部の体積は前記円筒部の体積の3倍以上であり、前記固定部材本体部と前記円筒部とを前記ロータ軸の軸線方向に貫通する挿通孔が設けられ、
前記ロータ軸が前記挿通孔に挿通されるとともに、前記円筒部と前記ロータ軸とが、前記挿通孔の開口端部の周囲の一部にて溶接により固定されており、
前記円筒部の前記開口端部の内径角部の形状が、C0.1以下の糸面取り形状であり、
前記ロータ軸の軸線回りの回転対称な複数箇所において前記円筒部の前記挿通孔の前記開口端部と前記ロータ軸とが溶接されており、前記溶接による各溶融凝固部が、前記軸線回りの90°以下の角度範囲に亘って形成されている
ことを特徴とする電動弁。
In a motor-operated valve in which a motor section rotates a magnet rotor and a metallic rotor shaft, and a valve port is opened/closed by forward/backward movement of a valve member due to rotation of the rotor shaft,
The magnet rotor includes a magnet main body having magnetism, and a metal fixing member integrally formed with the magnet main body at the center of the magnet main body,
The fixing member is a cylindrical member having a diameter smaller than an outer diameter of the fixing member main body and a fixing member main body joined to the magnet main body by the integral molding, and having a volume smaller than the volume of the fixing member main body. And a volume of the fixing member main body is 3 times or more the volume of the cylindrical portion, and the fixing member main body and the cylindrical portion are connected to each other by an axis line of the rotor shaft. An insertion hole that penetrates in the direction is provided,
While the rotor shaft is inserted into the insertion hole, the cylindrical portion and the rotor shaft are fixed by welding at a part of the periphery of the opening end of the insertion hole ,
The shape of the inner corner portion of the opening end of the cylindrical portion is a thread chamfered shape of C0.1 or less,
The opening end of the insertion hole of the cylindrical portion and the rotor shaft are welded at a plurality of rotationally symmetric locations around the axis of the rotor shaft, and each melt-solidified portion formed by the welding is 90° around the axis. A motor-operated valve characterized by being formed over an angle range of not more than ° .
前記ロータ軸の軸線回りの対向する2箇所において前記円筒部の前記挿通孔の前記開口端部と前記ロータ軸とが溶接されており、
前記溶接による各溶融凝固部が、前記軸線回りの45°〜90°の範囲内に形成されている
ことを特徴とする請求項1に記載の電動弁。
The opening end portion of the insertion hole of the cylindrical portion and the rotor shaft are welded at two opposing locations around the axis of the rotor shaft,
The motor-operated valve according to claim 1, wherein each of the melted and solidified portions formed by the welding is formed within a range of 45° to 90° around the axis.
前記円筒部の前記開口端部の内径角部の形状が、前記糸面取り形状に替えて、前記ロータ軸の外周に接するエッジ形状となっている
ことを特徴とする請求項1又は2に記載の電動弁。
The shape of the inner diameter corner of the open end of the cylindrical portion, in place of the yarn chamfered, claim 1 or, characterized in that <br/> which has an edge shape in contact with the outer periphery of the rotor shaft The motor operated valve described in 2 .
前記ロータ軸と前記固定部材とが同材質である
ことを特徴とする請求項1乃至のいずれか一項に記載の電動弁。
Electric valve according to any one of claims 1 to 3, characterized in that said fixing member and said rotor shaft is made of the same material.
前記固定部材本体部が円柱形状であり、前記固定部材本体部の前記軸線方向の寸法が、前記円筒部の前記軸線方向の寸法より大である
ことを特徴とする請求項1乃至のいずれか一項に記載の電動弁。
Wherein a fixing member main body portion is cylindrical, the dimensions of the axial direction of the fixing member main body portion, any one of claims 1 to 4, characterized in that it is larger than the dimension of the axial direction of the cylindrical portion The motor-operated valve according to claim 1.
前記ロータ軸の径をD、前記円筒部の径方向の肉厚をt、前記円筒部の前記軸線方向の寸法をH、としたとき、
t<D/2,H/t≧1
である
ことを特徴とする請求項1乃至のいずれか一項に記載の電動弁。
When the diameter of the rotor shaft is D, the radial thickness of the cylindrical portion is t, and the axial dimension of the cylindrical portion is H,
t<D/2, H/t≧1
The motor-operated valve according to any one of claims 1 to 5 , wherein:
前記ロータ軸が、前記弁部材とは反対側に位置する第1軸部と、当該第1軸部における前記弁部材側の端部に隣接して位置し、前記第1軸部の長さ以下の長さで前記第1軸部よりも径が大きい第2軸部とを有し、
前記固定部材における前記弁部材側の面が前記第1軸部と前記第2軸部との境界部に位置するように、前記円筒部と前記ロータ軸とが固定されている
ことを特徴とする請求項1乃至のいずれか一項に記載の電動弁。
The rotor shaft is located adjacent to a first shaft portion located on the side opposite to the valve member and an end portion of the first shaft portion on the valve member side, and is less than or equal to the length of the first shaft portion. And a second shaft portion having a length larger than that of the first shaft portion,
The cylindrical portion and the rotor shaft are fixed such that a surface of the fixing member on the valve member side is located at a boundary portion between the first shaft portion and the second shaft portion. The motor-operated valve according to any one of claims 1 to 6 .
前記マグネット本体は、円筒状のマグネット部と、当該マグネット部の内部の前記軸線方向の略中央部に延在し、前記弁部材側に突出したボス部が中央に設けられた円盤部と、を有し、
前記固定部材本体部は、前記軸線方向について、前記円盤部における前記弁部材とは反対側の面から前記ボス部における前記弁部材側の端部に至るまで延在するように前記円盤部に結合されている
ことを特徴とする請求項1乃至のいずれか一項に記載の電動弁。
The magnet body includes a cylindrical magnet portion, and a disk portion that extends to a substantially central portion in the axial direction inside the magnet portion and has a boss portion protruding toward the valve member side provided at the center. Have,
The fixing member main body portion is coupled to the disc portion so as to extend in the axial direction from a surface of the disc portion opposite to the valve member to an end portion of the boss portion on the valve member side. The motorized valve according to any one of claims 1 to 7 , wherein the motorized valve is provided.
圧縮機と、凝縮器と、膨張弁と、蒸発器と、を含む冷凍サイクルシステムであって、請求項1乃至のいずれか一項に記載の電動弁が、前記膨張弁として用いられている
ことを特徴とする冷凍サイクルシステム。
A refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator, wherein the electrically operated valve according to any one of claims 1 to 8 is used as the expansion valve. A refrigeration cycle system characterized in that
JP2017016004A 2017-01-31 2017-01-31 Motorized valve and refrigeration cycle system Active JP6726116B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017016004A JP6726116B2 (en) 2017-01-31 2017-01-31 Motorized valve and refrigeration cycle system
CN201810019632.0A CN108375250B (en) 2017-01-31 2018-01-09 Electric valve and refrigeration cycle system
CN202011612736.6A CN112781282A (en) 2017-01-31 2018-01-09 Electric valve and refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017016004A JP6726116B2 (en) 2017-01-31 2017-01-31 Motorized valve and refrigeration cycle system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020109630A Division JP7157105B2 (en) 2020-06-25 2020-06-25 Electric valve and refrigeration cycle system

Publications (2)

Publication Number Publication Date
JP2018123879A JP2018123879A (en) 2018-08-09
JP6726116B2 true JP6726116B2 (en) 2020-07-22

Family

ID=63016632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017016004A Active JP6726116B2 (en) 2017-01-31 2017-01-31 Motorized valve and refrigeration cycle system

Country Status (2)

Country Link
JP (1) JP6726116B2 (en)
CN (2) CN112781282A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020165539A (en) * 2020-06-25 2020-10-08 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220341638A1 (en) * 2019-09-27 2022-10-27 Zhejiang Dunan Artificial Environment Co., Ltd. Electronic Expansion Valve and Assembling Method of Electronic Expansion Valve

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232290A (en) * 2007-03-20 2008-10-02 Saginomiya Seisakusho Inc Needle valve, and refrigerating cycle device having the same
US8157184B2 (en) * 2008-05-29 2012-04-17 Kabushiki Kaisha Saginomiya Seisakusho Expansion valve, heat pump type refrigeration cycle apparatus, and air handling unit
US8157183B2 (en) * 2008-05-29 2012-04-17 Kabushiki Kaisha Saginomiya Seisakusho Expansion valve, heat pump type refrigeration cycle apparatus, and air handling unit
JP2010053906A (en) * 2008-08-26 2010-03-11 Panasonic Corp Fluid bearing device, spindle motor with the same, and information processor
JP5603117B2 (en) * 2010-03-25 2014-10-08 セイコーインスツル株式会社 Rolling bearing device and pivot device
CN103245138B (en) * 2012-02-10 2015-07-01 株式会社鹭宫制作所 Expansion valve
JP5627612B2 (en) * 2012-02-10 2014-11-19 株式会社鷺宮製作所 Expansion valve
JP5943427B2 (en) * 2013-03-15 2016-07-05 株式会社鷺宮製作所 Manufacturing method of valve device
JP5916142B2 (en) * 2013-11-07 2016-05-11 株式会社鷺宮製作所 Motorized valve
JP6563213B2 (en) * 2015-02-24 2019-08-21 株式会社不二工機 Motorized valve and its assembly method
CN205715985U (en) * 2016-05-06 2016-11-23 浙江盾安禾田金属有限公司 A kind of electric expansion valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020165539A (en) * 2020-06-25 2020-10-08 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system
JP7157105B2 (en) 2020-06-25 2022-10-19 株式会社鷺宮製作所 Electric valve and refrigeration cycle system

Also Published As

Publication number Publication date
CN108375250A (en) 2018-08-07
CN112781282A (en) 2021-05-11
JP2018123879A (en) 2018-08-09
CN108375250B (en) 2021-01-08

Similar Documents

Publication Publication Date Title
CN108571598B (en) Motor-driven valve and refrigerating circulation system
JP6726116B2 (en) Motorized valve and refrigeration cycle system
JP5684746B2 (en) Expansion valve
CN110107695A (en) Motor-driven valve and refrigerating circulation system
JP2017025974A (en) Motor valve and refrigeration cycle
KR102646329B1 (en) Electronic expansion valve
CN112984134B (en) Electric valve and refrigeration cycle system
JP6726124B2 (en) Motorized valve and refrigeration cycle system using the same
JP6753789B2 (en) Solenoid valve and refrigeration cycle system
JP7157105B2 (en) Electric valve and refrigeration cycle system
JP2023168434A (en) Motor-operated valve and refrigeration cycle system
JP7144994B2 (en) Electric valve and refrigeration cycle system
JP7422189B2 (en) electric valve
JP6968627B2 (en) Flow control valve
JP7161515B2 (en) Electric valve and refrigeration cycle system
JP4731294B2 (en) Brazing body and valve device using the same
JP6755835B2 (en) Solenoid valve and refrigeration cycle system
KR102668677B1 (en) Electronic expansion valve
JP2022021471A (en) Electrically-operated valve and refrigeration cycle system
JP7271486B2 (en) Electric valve and refrigeration cycle system
JP4633943B2 (en) Electric switching valve
JP2021101120A (en) Motor-operated valve and refrigeration cycle system
JP2021058037A (en) Stator unit and electric valve
JP2011250535A (en) Axial gap motor, fluid machine, and fluid machine assembly method
EP4035191A1 (en) Method and apparatus for solenoid tube

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180814

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200626

R150 Certificate of patent or registration of utility model

Ref document number: 6726116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150