JP2008232290A - Needle valve, and refrigerating cycle device having the same - Google Patents

Needle valve, and refrigerating cycle device having the same Download PDF

Info

Publication number
JP2008232290A
JP2008232290A JP2007073408A JP2007073408A JP2008232290A JP 2008232290 A JP2008232290 A JP 2008232290A JP 2007073408 A JP2007073408 A JP 2007073408A JP 2007073408 A JP2007073408 A JP 2007073408A JP 2008232290 A JP2008232290 A JP 2008232290A
Authority
JP
Japan
Prior art keywords
valve
valve port
port
needle
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007073408A
Other languages
Japanese (ja)
Inventor
Soichiro Tomioka
総一郎 富岡
Takashi Hirakawa
尚 平川
Seiichi Nakano
誠一 中野
Daiki Nakagawa
大樹 中川
Yutaka Kaneko
裕 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2007073408A priority Critical patent/JP2008232290A/en
Priority to CNA200810080692XA priority patent/CN101270817A/en
Publication of JP2008232290A publication Critical patent/JP2008232290A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Lift Valve (AREA)
  • Details Of Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a needle valve capable of preventing generation of noise of high frequency of the audible wavelength band. <P>SOLUTION: The needle valve 1 comprises a valve casing 10 and a valve element 30. A valve port 24 having a valve port 12 is provided on the valve casing 10. The valve element 30 is attached/detached to/from the valve port 24 to change the opening. A flow rate adjusting part 33 of the valve element 30 is tapered. The ratio L1/D is 3.5-5.0, when the angle θ is over 0° and ≤45°, where θ denotes the angle formed by the flow rate adjusting part 33 at the section passing through the axis of the valve element 30, D denotes the inside diameter of the valve port 12, and L1 denotes the overall length of the valve port 12 in the axial direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷凍サイクル装置などに用いられて、内側に冷媒などの流体を通すニードル弁及びこのニードル弁を有する冷凍サイクル装置に関する。   The present invention relates to a needle valve that is used in a refrigeration cycle apparatus or the like and allows a fluid such as a refrigerant to pass inside, and a refrigeration cycle apparatus having the needle valve.

冷凍サイクル装置などの流体を循環させる各種の装置では、各種のニードル弁(例えば、特許文献1参照)が用いられている。特許文献1に示されたニードル弁は、内側に冷媒などの流体を通す流路が形成された弁箱と、弁箱の弁座に接離自在に設けられた針状の弁体と、前記弁体を前記弁座に接離させる駆動部とを備えている。   Various devices such as a refrigeration cycle device that circulate fluid use various needle valves (see, for example, Patent Document 1). The needle valve shown in Patent Document 1 includes a valve box in which a flow path for passing a fluid such as a refrigerant is formed inside, a needle-like valve body that is provided so as to be able to contact and separate from a valve seat of the valve box, And a drive unit for bringing the valve body into contact with and separating from the valve seat.

前述した特許文献1に示されたニードル弁は、駆動部のステータのコイルなどに電流が印加させることで、当該駆動部のロータを回転させることで、弁体を弁座に設けられた弁口に接離させて、開度を変更して、前述した流体の流量を適宜変更する。
特開2006−97947号公報
The above-described needle valve disclosed in Patent Document 1 has a valve port provided on a valve seat by rotating a rotor of the driving unit by applying a current to a coil of a stator of the driving unit. The flow rate of the fluid is changed as appropriate by changing the opening degree.
JP 2006-97947 A

前述した特許文献1に示されたニードル弁は、弁箱に形成された流路内を流れる流体の流れは、弁口の内縁ではがれて、弁口の内面からはがれたまま即ち所謂乱流のまま弁口内を通って、当該ニードル弁の下流に導かれる。このように、従来のニードル弁では、弁口口内を流体が所謂乱流のまま流れるので、特に、開度の少ない即ち弁口と弁体とが近接した状態で、弁箱内を流体が流れる際に、1kHzから20kHzの可聴波長帯域の高周波の音即ち高い音が生じてしまう。   In the needle valve shown in Patent Document 1 described above, the flow of the fluid flowing in the flow path formed in the valve box is peeled off at the inner edge of the valve port and is separated from the inner surface of the valve port, that is, so-called turbulent flow. It passes through the valve port and is guided downstream of the needle valve. As described above, in the conventional needle valve, the fluid flows in the so-called turbulent flow in the valve opening, so that the fluid flows in the valve box particularly when the opening is small, that is, the valve opening and the valve body are close to each other. In this case, a high-frequency sound in an audible wavelength band of 1 kHz to 20 kHz, that is, a high sound is generated.

したがって、本発明の目的は、特に、可聴波長帯域の高周波の騒音が生じることを防止できるニードル弁及びこのニードル弁を有する冷凍サイクル装置を提供することにある。   Accordingly, an object of the present invention is to provide a needle valve that can prevent generation of high frequency noise in an audible wavelength band, and a refrigeration cycle apparatus having the needle valve.

前記目的を達成するために、請求項1に記載の本発明のニードル弁は、内側に流体を通しかつ長手方向に内径が一定に形成された弁口が設けられた弁ポートと、前記弁ポートに接離自在に設けられかつ当該弁ポートに近づくのにしたがって先細となる針状に形成されているとともに、前記弁ポートに接離することで開度を変更する弁体と、を備えたニードル弁において、前記弁体の軸芯を通る断面において、当該弁体の先端部のなす角度をθとし、前記弁口の内径をDとし、前記弁口の軸芯方向の全長をL1とすると、前記角度θが0度を超えかつ45度以下である場合に、L1/Dが3.5以上でかつ5.0以下であるとともに、前記角度θが45度を越えて60度未満である場合に、L1/Dが2.0以上でかつ4.0以下であることを特徴としている。   In order to achieve the above object, the needle valve of the present invention according to claim 1 comprises a valve port provided with a valve port through which fluid is passed and a constant inner diameter is formed in the longitudinal direction, and the valve port. And a valve body that is formed in a needle shape that tapers toward and away from the valve port and changes its opening degree by contacting and separating from the valve port. In the valve, in a cross section passing through the axis of the valve body, when the angle formed by the tip of the valve body is θ, the inner diameter of the valve port is D, and the total length in the axial direction of the valve port is L1, When the angle θ is greater than 0 degree and not greater than 45 degrees, L1 / D is not less than 3.5 and not greater than 5.0, and the angle θ is greater than 45 degrees and less than 60 degrees In addition, L1 / D is 2.0 or more and 4.0 or less. It is set to.

請求項2に記載の本発明のニードル弁は、請求項1記載のニードル弁において、前記弁ポートの前記弁口が開口しかつ前記ニードル弁と相対する弁座には、当該弁座から凸でかつ前記弁口よりも内径が大きく形成されているとともに当該弁口と同軸状の円環状部が設けられていることを特徴としている。   The needle valve according to a second aspect of the present invention is the needle valve according to the first aspect, wherein the valve port of the valve port is open and the valve seat facing the needle valve is convex from the valve seat. In addition, the inner diameter is larger than that of the valve port, and an annular portion coaxial with the valve port is provided.

請求項3に記載の本発明の冷凍サイクル装置は、請求項1又は請求項2記載のニードル弁を冷媒回路中に有することを特徴としている。   A refrigeration cycle apparatus according to a third aspect of the present invention includes the needle valve according to the first or second aspect in a refrigerant circuit.

請求項1に記載された本発明のニードル弁は、弁口の内径Dと弁口の全長L1との関係が、弁体の先端部のなす角度θが0度を超えかつ45度以下である場合に、L1/Dが3.5以上でかつ5.0以下となる関係であり、かつ、角度θが45度を越えて60度未満である場合に、L1/Dが2.0以上でかつ4.0以下でなる関係である。即ち、弁口の内径Dに対して、弁口の全長L1を十分に長く形成して、弁口の内縁ではがれた流体の流れを再度、弁口の内面に付着させるようにしている。即ち、弁口内での流体の流れを層流に保っている。   In the needle valve according to the first aspect of the present invention, the relationship between the inner diameter D of the valve port and the total length L1 of the valve port is such that the angle θ formed by the tip of the valve body exceeds 0 degree and is 45 degrees or less. In this case, when L1 / D is 3.5 or more and 5.0 or less, and the angle θ is more than 45 degrees and less than 60 degrees, L1 / D is 2.0 or more. And a relationship of 4.0 or less. That is, the entire length L1 of the valve port is formed sufficiently long with respect to the inner diameter D of the valve port, and the flow of the fluid that has peeled off at the inner edge of the valve port is again attached to the inner surface of the valve port. That is, the fluid flow in the valve port is maintained in a laminar flow.

したがって、弁口内での流体の流れを層流に保つので、弁口内での流体の流れの乱れによる騒音が発生することを防止できるとともに、下流に乱流のまま流体を導くことを防止できる。よって、特に、開度の少ない即ち弁口と弁体とが近接した状態で、流体が流れる際に、1kHzから20kHzの可聴波長帯域の高周波の音が発生することを防止できる即ち高い音が生じることを防止できる。   Therefore, since the fluid flow in the valve port is maintained in a laminar flow, it is possible to prevent noise from being generated due to the turbulence of the fluid flow in the valve port and to prevent the fluid from being guided in the turbulent flow downstream. Therefore, particularly when the fluid flows in a state where the opening degree is small, that is, in the state where the valve opening and the valve body are close to each other, it is possible to prevent generation of high frequency sound in the audible wavelength band of 1 kHz to 20 kHz, that is, high sound is generated. Can be prevented.

請求項2に記載された本発明のニードル弁は、弁座に弁口と同軸でかつ弁口よりも内径の大きな円環状部が設けられているので、弁口内に導かれる流体が、円環状部内に導かれる際にその流量が一度制限される。このため、勿論、弁口内に導かれる流体の流量が制限される。   In the needle valve according to the second aspect of the present invention, the valve seat is provided with an annular portion that is coaxial with the valve port and has a larger inner diameter than the valve port. The flow rate is once limited when led into the section. For this reason, of course, the flow rate of the fluid guided into the valve port is limited.

さらに、弁口の内縁で流れがはがれる前に、流体が、円環状部の内縁でその流れがはがれる。このために、弁口の内縁ではがれる流体の流れの乱れが、直接弁口の内縁ではがれる場合よりも小さくなる。   Furthermore, before the flow is separated at the inner edge of the valve port, the fluid is separated at the inner edge of the annular portion. For this reason, the turbulence of the fluid flow that peels off at the inner edge of the valve port is smaller than when the fluid flow peels off directly at the inner edge of the valve port.

よって、弁口内に導かれる流体の流量が制限されるとともに、弁口の内縁で生じる流体の流れの乱れが小さくなるので、一旦乱流となった流体の流れを再度、弁口の内面に付着させることが確実にでき、弁口内での流体の流れを確実に層流に保つことができる。よって、特に、開度の少ない即ち弁口と弁体とが近接した状態で、流体が流れる際に、1kHzから20kHzの可聴波長帯域の高周波の音が発生することを防止できる即ち高い音が生じることを確実に防止できる。   Therefore, the flow rate of the fluid guided into the valve port is limited, and the disturbance of the fluid flow generated at the inner edge of the valve port is reduced, so that the turbulent fluid flow once again adheres to the inner surface of the valve port. The fluid flow in the valve port can be reliably maintained in a laminar flow. Therefore, particularly when the fluid flows in a state where the opening degree is small, that is, in the state where the valve opening and the valve body are close to each other, it is possible to prevent generation of high frequency sound in the audible wavelength band of 1 kHz to 20 kHz, that is, high sound is generated. Can be surely prevented.

請求項3に記載された本発明の冷凍サイクル装置は、前述したニードル弁を備えているので、特に、ニードル弁の開度の少ない即ち弁口と弁体とが近接した状態で、流体が流れる際に、1kHzから20kHzの可聴波長帯域の高周波の音が発生することを防止できる即ち高い音が生じることを防止できる。   Since the refrigeration cycle apparatus according to the third aspect of the present invention includes the needle valve described above, the fluid flows particularly when the opening of the needle valve is small, that is, when the valve port and the valve body are close to each other. At this time, it is possible to prevent the generation of high-frequency sound in the audible wavelength band of 1 kHz to 20 kHz, that is, it is possible to prevent the generation of high sound.

以下に、本発明の一実施形態にかかるニードル弁を、図1及び図2を参照して説明する。   Hereinafter, a needle valve according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

図1に示すニードル弁1は、例えば、冷凍サイクル装置に用いられ、流体としての冷媒の流量を変化させる所謂膨張弁として用いられる。   A needle valve 1 shown in FIG. 1 is used, for example, in a refrigeration cycle apparatus, and is used as a so-called expansion valve that changes the flow rate of a refrigerant as a fluid.

ニードル弁1は、図1に示すように、カップ状の金屑製あるいは合成樹脂製の弁箱10を有する。弁箱10は、弁室11と、弁室11の後述する弁体30と相対する弁座22に開口形成された丸穴形状の弁口12と、横継手13を接続され弁室11に直接連通する入ロポート14と、下継手15を接続され弁口12を経て弁室11に連通する出ロポート16とを有する。即ち、弁箱10は、その内側に入ロポート14と弁室11と弁口12と出ロポート16とに亘って、前述した冷媒を流す流路が形成されている。また、弁箱10の図1中の上端部内には、円筒状の弁ガイド部材34が取り付けられている。   As shown in FIG. 1, the needle valve 1 has a valve box 10 made of cup-shaped gold dust or synthetic resin. The valve box 10 is connected directly to the valve chamber 11 by connecting a valve chamber 11, a round hole-shaped valve opening 12 formed in a valve seat 22 facing the valve body 30 described later of the valve chamber 11, and a lateral joint 13. The inlet port 14 communicates, and the outlet port 16 is connected to the lower joint 15 and communicates with the valve chamber 11 via the valve port 12. That is, the valve box 10 is formed with a flow passage through which the above-described refrigerant flows over the inlet port 14, the valve chamber 11, the valve port 12, and the outlet port 16. A cylindrical valve guide member 34 is attached to the upper end of the valve box 10 in FIG.

弁口12は、断面丸形で直線状に延在した孔であるとともに、その内径Dがその長手方向の全長に亘って一定に形成されて、その内側に流体としての冷媒を流す。また、弁箱10の前記弁座22及び弁口12を含み、かつ弁体30と間隔をあけて相対する部分は、特許請求の範囲に記載された弁ポート24をなしている。即ち、ニードル弁1は、弁口12が形成された弁ポート24を備えている。   The valve port 12 is a hole having a round cross section and extending linearly, and an inner diameter D thereof is formed over the entire length in the longitudinal direction, and a refrigerant as a fluid flows inside the hole. Further, a portion of the valve box 10 including the valve seat 22 and the valve port 12 and facing the valve body 30 with a space therebetween forms a valve port 24 described in the claims. That is, the needle valve 1 includes a valve port 24 in which a valve port 12 is formed.

弁箱10の図1中の上部には、円筒状の蓋部材28が同軸的に取り付けられており、この蓋部材28の図1中の上部に取付板17によって固定支持部材(雌ねじ部材)18が固定されている。回定支持部材18にはガイド孔19が形成されている。ガイド孔19は弁口12と同心位置にあり、ガイド孔19には、円筒状の弁ホルダ20が軸芯方向(上下方向)、つまり弁開閉方向に摺動可能に嵌合している。これにより、弁ホルダ20は弁箱10内を軸芯方向に移動可能である。   A cylindrical lid member 28 is coaxially attached to the upper part of the valve box 10 in FIG. 1, and a fixing support member (female screw member) 18 is attached to the upper part of the lid member 28 in FIG. Is fixed. A guide hole 19 is formed in the rotation support member 18. The guide hole 19 is concentric with the valve port 12, and a cylindrical valve holder 20 is fitted in the guide hole 19 so as to be slidable in the axial direction (vertical direction), that is, in the valve opening / closing direction. Thereby, the valve holder 20 can move in the valve box 10 in the axial direction.

弁ホルダ20は、図1中の下端の内周に円環状の下側リップ部材21が取り付けられ、その図1中の上端の内周に円環状の上側リップ片23が一体に形成されている。下側リップ部材21の図1中の上面は、円環段差状に形成された上向きのストッパ面部25をなしている。なお、弁ホルダ20には、均圧孔105が形成されている。   In the valve holder 20, an annular lower lip member 21 is attached to the inner periphery of the lower end in FIG. 1, and an annular upper lip piece 23 is integrally formed on the inner periphery of the upper end in FIG. . The upper surface of the lower lip member 21 in FIG. 1 forms an upward stopper surface portion 25 formed in an annular step shape. A pressure equalizing hole 105 is formed in the valve holder 20.

弁ホルダ20に取り付けられた下側リップ部材21に、金属製あるいは合成樹脂製の弁体30が軸芯方向に変位可能に取り付けられている。弁体30は、円柱状の針状に形成され、下側リップ部材21の内側に形成された開口26に遊嵌合、つまり、弁ホルダ20に対して径方向に変位できるよう所定の径方向間隙を有する状態で通されて、そして、図1中の上端部から凸に設けられた環段差部(肩部)32の下底面が下側リップ部材21の上面に係合することにより、弁ホルダ20より回転可能に吊り下げ支持されている。   A metal or synthetic resin valve body 30 is attached to the lower lip member 21 attached to the valve holder 20 so as to be displaceable in the axial direction. The valve body 30 is formed in a cylindrical needle shape and loosely fits into an opening 26 formed inside the lower lip member 21, that is, in a predetermined radial direction so that it can be displaced in the radial direction with respect to the valve holder 20. The lower bottom surface of the annular stepped portion (shoulder portion) 32 that is passed through in a state having a gap and that protrudes from the upper end portion in FIG. 1 engages with the upper surface of the lower lip member 21. The holder 20 is supported so as to be rotatable from the holder 20.

さらに、弁体30は、弁ガイド部材34内に通されて、その軸芯に沿って移動自在に当該弁ガイド部材34に支持されている。弁体30は、図1中の下側に位置しかつ弁座22即ち弁ポート24と相対する先端部が円錐形をした流量調整部33をなしており、流量調整部33は。下側リップ部材21の内側の開口26より弁口12へ向けて突出している。このように、弁体30は、軸芯方向に移動自在とされることで、弁ポート24に接離自在に設けられ、その流量調整部33が弁ポート24に近づくのにしたがって先細となるように形成されている。   Further, the valve body 30 is passed through the valve guide member 34 and supported by the valve guide member 34 so as to be movable along the axial center thereof. The valve body 30 is positioned on the lower side in FIG. 1 and has a flow rate adjusting portion 33 having a conical tip at the front end facing the valve seat 22, that is, the valve port 24. It protrudes toward the valve port 12 from the opening 26 inside the lower lip member 21. As described above, the valve body 30 is movable in the axial direction so as to be able to contact and separate from the valve port 24 so that the flow rate adjustment portion 33 tapers as the valve port 24 approaches. Is formed.

弁体30は、流量調整部33の弁口12に対する進入度(軸芯方向位置)に応じて、冷媒の定量的な流量制御を行い、流量調整部33が弁口12の周りの弁座22に当接着座することにより、弁口12を閉じる(閉塞する)全閉状態になる。   The valve body 30 performs quantitative flow rate control of the refrigerant according to the degree of penetration (position in the axial direction) of the flow rate adjusting unit 33 with respect to the valve port 12, and the flow rate adjusting unit 33 controls the valve seat 22 around the valve port 12. The valve seat 12 is closed (closed) by closing the adhesive seat.

弁ホルダ20には、後述するステッピングモータ70のロータ軸をなす雄ねじ軸73の下端部74が、弁ホルダ20の上側リップ片23の内側の開口27を遊嵌合状態で貫通している。この遊嵌合状態とは、弁ホルダ20と雄ねじ軸73とが相対的に径方向に変位できることを云う。   A lower end portion 74 of a male screw shaft 73 that forms a rotor shaft of a stepping motor 70 described later passes through the valve holder 20 through the opening 27 inside the upper lip piece 23 of the valve holder 20 in a loosely fitted state. The loose fitting state means that the valve holder 20 and the male screw shaft 73 can be relatively displaced in the radial direction.

雄ねじ軸73の下端部74、つまり、雄ねじ軸73と、弁体30との間には、リテーナ部材35が配置されている。リテーナ部材35は、円柱状に形成され、勿論、弁ホルダ20内に収容されており、その図1中の上端には、ばねリテーナを兼ねたフランジ状の吊下係合部75がその全周に亘って凸に一体形成されている。吊下係合部75は、図1中の上面側にて、フッ素樹脂等の高滑性プラスチックをコーテイングしたもの、あるいは高滑性プラスチックからなるワッシヤ29,31を挟んで弁ホルダ20の上側リップ片23に回転可能に係合している。この係合により、弁ホルダ20が雄ねじ軸73より回転可能に吊り下げ支持される。   The retainer member 35 is disposed between the lower end portion 74 of the male screw shaft 73, that is, between the male screw shaft 73 and the valve body 30. The retainer member 35 is formed in a columnar shape and, of course, is accommodated in the valve holder 20. A flange-like suspension engaging portion 75 that also serves as a spring retainer is disposed at the upper end in FIG. It is integrally formed to be convex over the entire area. The suspension engaging portion 75 is formed by coating the upper lip of the valve holder 20 on the upper surface side in FIG. The piece 23 is rotatably engaged. By this engagement, the valve holder 20 is suspended and supported so as to be rotatable from the male screw shaft 73.

リテーナ部材35に設けられた吊下係合部75と、弁体30の環段差部(肩部)32との間には、内側にリテーナ部材35を通した圧縮コイルばね36が所定の予荷重を与えられた状態で取り付けられている。   A compression coil spring 36 through which the retainer member 35 is passed inside has a predetermined preload between the hanging engagement portion 75 provided on the retainer member 35 and the annular step portion (shoulder portion) 32 of the valve body 30. It is attached in the given state.

雄ねじ軸73の外周面には、雄ねじ部37が形成されている。雄ねじ部37は固定支持部材18に形成された雌ねじ部(雌ねじ孔)38にねじ係合している。このねじ係合により、雄ねじ軸73は、回転に伴って軸芯方向、つまり、弁開閉方向に移動する。この雄ねじ部37と雌ねじ部38とのねじ係合によって送りねじ機構が構成され、送りねじ機構は、雄ねじ軸73の回転運動を弁開閉方向の直線運動に変換する。   A male screw portion 37 is formed on the outer peripheral surface of the male screw shaft 73. The male screw portion 37 is screw-engaged with a female screw portion (female screw hole) 38 formed in the fixed support member 18. By this screw engagement, the male screw shaft 73 moves in the axial direction, that is, in the valve opening / closing direction with rotation. The feed screw mechanism is constituted by the screw engagement between the male screw portion 37 and the female screw portion 38, and the feed screw mechanism converts the rotational motion of the male screw shaft 73 into a linear motion in the valve opening / closing direction.

蓋部材28の図1中の上部には、ステッビングモータ70のキャン状のロータケース71が溶接等によって気密に固定されている。ロータケース71内には、外周面部72Aを多板前磁されたヨーク72が回転可能に設けられている。ヨーク72にはヨーク軸を兼ねている雄ねじ軸73の図1中の中央部が固定連結されている。   A can-shaped rotor case 71 of a stepping motor 70 is airtightly fixed to the upper portion of the lid member 28 in FIG. 1 by welding or the like. In the rotor case 71, a yoke 72 whose outer peripheral surface portion 72A is pre-magnetized in multiple plates is rotatably provided. A central portion in FIG. 1 of a male screw shaft 73 also serving as a yoke shaft is fixedly connected to the yoke 72.

ロータケース71の外側には、ステータコイルユニット77が差し込み装着されている。ステータコイルユニット77は、詳細を図示されていないが、ステッピングモータ用のものとして、内部に、磁極歯、巻線部、電気配線部を有する周知の気密モールド構造のものである。   A stator coil unit 77 is inserted and attached to the outside of the rotor case 71. Although not shown in detail, the stator coil unit 77 has a well-known airtight mold structure having a magnetic pole tooth, a winding part, and an electric wiring part therein for a stepping motor.

ロータケース71内には、ロータケース71の天井部より垂下固定されたガイド支持筒78と、ガイド支持筒78の外周部に装着された螺旋ガイド線体79と、ガイド支持筒78の上端部に形成された固定ストッパ部80と、螺旋ガイド線体79に螺合した可動ストッパ部材81と、可動ストッパ部材81と係合してこれを蹴り回すヨーク72の突起部82とがあり、これらによって、弁開あるいは弁閉のストッパが構成されている。また、ガイド支持筒78は、雄ねじ軸73の図1中の上端部76を内側に通して、当該雄ねじ軸73を回転自在に支持している。   In the rotor case 71, a guide support tube 78 suspended from the ceiling of the rotor case 71, a spiral guide wire 79 mounted on the outer periphery of the guide support tube 78, and an upper end portion of the guide support tube 78 There are a fixed stopper portion 80 formed, a movable stopper member 81 screwed into the spiral guide wire body 79, and a protrusion 82 of the yoke 72 that engages and kicks the movable stopper member 81, thereby A valve opening or valve closing stopper is configured. Further, the guide support cylinder 78 passes the upper end 76 in FIG. 1 of the male screw shaft 73 inward, and rotatably supports the male screw shaft 73.

ステッピングモータ70は、ロータ72によって雄ねじ軸73を回転駆動し、回転に伴う雄ねじ軸73の軸芯方向移動によって弁ホルダ20と共に弁体30を弁開閉方向に直線移動させる。これにより、弁体30の流量調整部33の弁口12に対する軸芯方向位置(弁開閉方向の直線移動位置)が変わり、その軸芯方向位置に応じて弁口12の実効開口面積が増減し、冷媒の定量的な流量制御が行われる。このように、弁体30は、弁口12が設けられた弁ポート24に接離することで、冷媒の流量を変更即ちニードル弁1の開度を変更する。   The stepping motor 70 rotationally drives the male screw shaft 73 by the rotor 72, and linearly moves the valve body 30 in the valve opening / closing direction together with the valve holder 20 by the axial movement of the male screw shaft 73 accompanying the rotation. Thereby, the axial direction position (linear movement position in the valve opening / closing direction) of the valve body 30 with respect to the valve port 12 of the flow rate adjusting unit 33 changes, and the effective opening area of the valve port 12 increases or decreases according to the axial direction position. Quantitative flow rate control of the refrigerant is performed. Thus, the valve body 30 changes the flow rate of the refrigerant, that is, changes the opening degree of the needle valve 1 by making contact with and separating from the valve port 24 in which the valve port 12 is provided.

弁体30の弁開閉方向の図1中の下方に向かう降下移動により、弁口12の実効開口面積が徐々に低減し、これに応じて弁口12を流れる流体の流量が徐々に低減する。弁体30が弁開閉方向に所定量降下移動すると、弁体30の流量調整部33が弁座22に当接着座することにより、弁口12が閉塞される全開状態になる。   Due to the downward movement of the valve body 30 in the valve opening / closing direction in FIG. 1, the effective opening area of the valve port 12 is gradually reduced, and the flow rate of the fluid flowing through the valve port 12 is gradually reduced accordingly. When the valve body 30 is moved downward by a predetermined amount in the valve opening / closing direction, the flow rate adjusting portion 33 of the valve body 30 comes into contact with the valve seat 22 so that the valve port 12 is closed.

また、本実施形態のニードル弁1では、図2に示すように、弁体30の軸芯を通る断面において当該弁体30の流量調整部33即ち先端部の外周面同士のなす角度をθとし、弁口12の内径をDとし、弁口12の軸芯方向の全長をL1とすると、角度が0度を超えかつ45度以下の場合に、L1/Dが3.5以上でかつ5.0以下となっている。図示例では、角度θが、約35度でL1/Dが3.5となっている。   Further, in the needle valve 1 of the present embodiment, as shown in FIG. 2, an angle formed by the flow rate adjusting portion 33 of the valve body 30, that is, the outer peripheral surface of the tip portion, is θ in a cross section passing through the axial center of the valve body 30. When the inner diameter of the valve port 12 is D and the total length in the axial direction of the valve port 12 is L1, when the angle exceeds 0 degree and is 45 degrees or less, L1 / D is 3.5 or more and 5. 0 or less. In the illustrated example, the angle θ is about 35 degrees and L1 / D is 3.5.

前述した構成のニードル弁1は、図6に示された冷凍サイクル装置の冷媒回路中に設けられて、当該冷凍サイクル装置の膨張弁として機能する。   The needle valve 1 configured as described above is provided in the refrigerant circuit of the refrigeration cycle apparatus shown in FIG. 6 and functions as an expansion valve of the refrigeration cycle apparatus.

この冷凍サイクル装置は、図6に示すように、圧縮機101と、凝縮器(室外熱交換器)102と、膨張弁として用いられる前述したニードル弁1と、蒸発器(室内熱交換器)104と、これらをループ接続する冷媒通路105〜108とを有する。   As shown in FIG. 6, this refrigeration cycle apparatus includes a compressor 101, a condenser (outdoor heat exchanger) 102, the needle valve 1 used as an expansion valve, and an evaporator (indoor heat exchanger) 104. And refrigerant passages 105 to 108 that connect them in a loop.

この冷凍サイクル装置は、空気調和装置(冷房)や冷凍・冷蔵庫等で使用される。なお、上述したこのニードル弁1が適用される冷凍サイクル装置は、図6に示されているような基本的な冷凍サイクル装置に限られることはなく、四方弁の組み込みにより、冷媒回路における冷媒流れ方向を逆転できる冷房・暖房用の空気調和装置や、室内機に二つの熱交換器が直列接続され、その二つの熱交換器間に追加の膨張弁を有する冷暖房・除湿可能な空気調和装置等、あらゆる冷凍サイクル装置にも適用可能である。   This refrigeration cycle apparatus is used in air conditioners (cooling), refrigeration / refrigerators, and the like. The above-described refrigeration cycle apparatus to which the needle valve 1 is applied is not limited to the basic refrigeration cycle apparatus as shown in FIG. 6, and the refrigerant flow in the refrigerant circuit can be achieved by incorporating a four-way valve. Air conditioning equipment for cooling and heating that can reverse the direction, air conditioning equipment that can be used for air conditioning and dehumidification with two heat exchangers connected in series to the indoor unit and an additional expansion valve between the two heat exchangers It can be applied to any refrigeration cycle apparatus.

本実施形態によれば、弁口12の内径Dと弁口12の全長L1との関係が、弁体30の先端のなす角度θが0度を超えかつ45度以下である場合に、L1/Dが3.5以上でかつ5.0以下となる関係である。即ち、弁口12の内径Dに対して、弁口12の全長L1を十分に長く形成して、弁口12の内縁ではがれた流体としての冷媒の流れを再度、弁口12の内面に付着させるようにしている。即ち、弁口12内での流体の流れを層流に保っている。   According to this embodiment, when the relationship between the inner diameter D of the valve port 12 and the total length L1 of the valve port 12 is such that the angle θ formed by the tip of the valve body 30 exceeds 0 degree and is 45 degrees or less, L1 / In this relationship, D is 3.5 or more and 5.0 or less. That is, the entire length L1 of the valve port 12 is formed sufficiently long with respect to the inner diameter D of the valve port 12, and the flow of the refrigerant as the fluid peeled off at the inner edge of the valve port 12 is again attached to the inner surface of the valve port 12. I try to let them. That is, the fluid flow in the valve port 12 is maintained in a laminar flow.

したがって、弁口12内での流体としての冷媒の流れを層流に保つので、弁口12内での流体としての冷媒の流れの乱れによる騒音が発生することを防止できるとともに、下流に乱流のまま流体としての冷媒を導くことを防止できる。よって、特に、開度の少ない即ち弁口12と弁体30とが近接した状態で、流体としての冷媒が流れる際に、1kHzから20kHzの可聴波長帯域の高周波の音が発生することを防止できる即ち高い音が生じることを防止できる。   Therefore, the flow of the refrigerant as the fluid in the valve port 12 is maintained in a laminar flow, so that it is possible to prevent noise due to the turbulence of the flow of the refrigerant as the fluid in the valve port 12 and to turbulent downstream It is possible to prevent the refrigerant as a fluid from being led. Therefore, it is possible to prevent the generation of high-frequency sound in the audible wavelength band from 1 kHz to 20 kHz, particularly when the refrigerant as a fluid flows in a state where the opening degree is small, that is, the valve port 12 and the valve body 30 are close to each other. That is, it is possible to prevent a high sound from being generated.

前述した実施形態では、角度θが0度を超えかつ45度以下である場合に、L1/Dが3.5以上でかつ5.0以下となっている。しかしながら、本発明では、図5に示すように、前記角度θが45度を越えて60度未満である場合に、L1/Dが2.0以上でかつ4.0以下でなっていても良い。なお、図5に示された例では、角度θが、約45度でL1/Dが2.5となっている。この場合も、前述した実施形態と同様に、弁口12の内径Dに対して、弁口12の全長L1を十分に長く形成して、弁口12の内縁ではがれた流体としての冷媒の流れを再度、弁口12の内面に付着させるようにして、特に、高い騒音の発生を防止できる。   In the above-described embodiment, when the angle θ exceeds 0 degree and is 45 degrees or less, L1 / D is 3.5 or more and 5.0 or less. However, in the present invention, as shown in FIG. 5, when the angle θ is more than 45 degrees and less than 60 degrees, L1 / D may be 2.0 or more and 4.0 or less. . In the example shown in FIG. 5, the angle θ is about 45 degrees and L1 / D is 2.5. Also in this case, similarly to the above-described embodiment, the entire length L1 of the valve port 12 is formed sufficiently long with respect to the inner diameter D of the valve port 12, and the refrigerant flows as a fluid separated at the inner edge of the valve port 12. Is attached to the inner surface of the valve port 12 in particular, so that particularly high noise can be prevented.

また、本発明では、図3及び図4に示すように、弁箱10の弁ポート24に円環状部39を一体に設けても良い。なお、図3及び図4において、前述した実施形態と同一部分には、同一符号を付して説明を省略する。円環状部39は、その内径が弁口12の内径Dよりも大きい円環状に形成され、かつ弁座22から弁体30に向かって凸に形成されているとともに、弁口12と同軸に配置されている。なお、図3では、弁体30の外径が円環状部39の内径よりも大きな場合を示し、図4は、弁体30の外径が円環状部39の内径よりも小さな場合を示している。   Moreover, in this invention, as shown in FIG.3 and FIG.4, you may provide the annular part 39 in the valve port 24 of the valve box 10 integrally. 3 and 4, the same parts as those of the above-described embodiment are denoted by the same reference numerals and description thereof is omitted. The annular portion 39 is formed in an annular shape whose inner diameter is larger than the inner diameter D of the valve port 12, is formed to protrude from the valve seat 22 toward the valve body 30, and is arranged coaxially with the valve port 12. Has been. 3 shows a case where the outer diameter of the valve body 30 is larger than the inner diameter of the annular portion 39, and FIG. 4 shows a case where the outer diameter of the valve body 30 is smaller than the inner diameter of the annular portion 39. Yes.

これらの場合には、弁座22に弁口12と同軸でかつ弁口12よりも内径の大きな円環状部39が設けられているので、弁口12内に導かれる流体としての冷媒が、円環状部39内に導かれる際にその流量が一度制限される。このため、勿論、弁口12内に導かれる流体としての冷媒の流量が制限される。   In these cases, the valve seat 22 is provided with the annular portion 39 that is coaxial with the valve port 12 and has a larger inner diameter than the valve port 12, so that the refrigerant as the fluid guided into the valve port 12 is circular. When guided into the annular portion 39, the flow rate is once limited. For this reason, of course, the flow rate of the refrigerant as the fluid guided into the valve port 12 is limited.

さらに、弁口12の内縁で流れがはがれる前に、流体としての冷媒が、円環状部39の内縁でその流れがはがれる。このために、弁口12の内縁ではがれる流体としての冷媒の流れの乱れが、直接弁口12の内縁ではがれる場合よりも小さくなる。   Further, before the flow is separated at the inner edge of the valve port 12, the refrigerant as the fluid is separated at the inner edge of the annular portion 39. For this reason, the disturbance of the flow of the refrigerant as the fluid that is peeled off at the inner edge of the valve port 12 is smaller than that in the case of being peeled off at the inner edge of the valve port 12 directly.

よって、弁口12内に導かれる流体としての冷媒の流量が制限されるとともに、弁口12の内縁で生じる流体としての冷媒の流れの乱れを小さくなるので、一旦乱流となった流体としての冷媒の流れを再度、弁口12の内面に付着させることが確実にでき、弁口12内での流体としての冷媒の流れを確実に層流に保つことができる。よって、特に、開度の少ない即ち弁口12と弁体30とが近接した状態で、流体としての冷媒が流れる際に、1kHzから20kHzの可聴波長帯域の高周波の音が発生することを防止できる即ち高い音が生じることを確実に防止できる。   Therefore, the flow rate of the refrigerant as the fluid guided into the valve port 12 is limited, and the disturbance of the refrigerant flow as the fluid generated at the inner edge of the valve port 12 is reduced. The refrigerant flow can be reliably attached to the inner surface of the valve port 12 again, and the refrigerant flow as the fluid in the valve port 12 can be reliably maintained in a laminar flow. Therefore, it is possible to prevent the generation of high-frequency sound in the audible wavelength band from 1 kHz to 20 kHz, particularly when the refrigerant as a fluid flows in a state where the opening degree is small, that is, in a state where the valve port 12 and the valve body 30 are close to each other. That is, it is possible to surely prevent a high sound from being generated.

なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。例えば、前述した実施形態では、冷凍サイクル装置を構成する膨張弁をなすニードル弁1を示している。   In addition, embodiment mentioned above only showed the typical form of this invention, and this invention is not limited to embodiment. That is, various modifications can be made without departing from the scope of the present invention. For example, in the above-described embodiment, the needle valve 1 constituting the expansion valve constituting the refrigeration cycle apparatus is shown.

しかしながら、本発明のニードル弁1は、冷凍サイクル装置以外の装置を構成する各種の用途に用いられても良い。要するに、本発明のニードル弁1は、各種の流体の流量を制御しても良い。また、本発明のニードル弁1は、角度θと内径Dと全長L1とが前述した関係を満たしていれば、各部の寸法を適宜変更しても良いことは勿論である。   However, the needle valve 1 of the present invention may be used for various applications constituting devices other than the refrigeration cycle device. In short, the needle valve 1 of the present invention may control the flow rates of various fluids. Further, in the needle valve 1 of the present invention, as long as the angle θ, the inner diameter D, and the total length L1 satisfy the above-described relationship, it is needless to say that the dimensions of each part may be changed as appropriate.

本発明の一実施形態のニードル弁の断面図である。It is sectional drawing of the needle valve of one Embodiment of this invention. 図1に示されたニードル弁の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the needle valve shown by FIG. 図2に示されたニードル弁の変形例の要部の断面図である。It is sectional drawing of the principal part of the modification of the needle valve shown by FIG. 図2に示されたニードル弁の他の変形例の要部の断面図である。It is sectional drawing of the principal part of the other modification of the needle valve shown by FIG. 図2に示されたニードル弁の更に他の変形例の要部の断面図である。It is sectional drawing of the principal part of the further another modification of the needle valve shown by FIG. 図1に示されたニードル弁を備えた冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device provided with the needle valve shown by FIG.

符号の説明Explanation of symbols

1 ニードル弁
12 弁口
22 弁座
24 弁ポート
30 弁体
33 流量調整部(先端部)
39 円環状部
θ 角度
L1 全長
D 内径
DESCRIPTION OF SYMBOLS 1 Needle valve 12 Valve port 22 Valve seat 24 Valve port 30 Valve body 33 Flow volume adjustment part (tip part)
39 Toroidal part θ Angle L1 Total length D Inner diameter

Claims (3)

内側に流体を通しかつ長手方向に内径が一定に形成された弁口が設けられた弁ポートと、
前記弁ポートに接離自在に設けられかつ当該弁ポートに近づくのにしたがって先細となる針状に形成されているとともに、前記弁ポートに接離することで開度を変更する弁体と、を備えたニードル弁において、
前記弁体の軸芯を通る断面において、当該弁体の先端部のなす角度をθとし、前記弁口の内径をDとし、前記弁口の軸芯方向の全長をL1とすると、
前記角度θが0度を超えかつ45度以下である場合に、L1/Dが3.5以上でかつ5.0以下であるとともに、
前記角度θが45度を越えて60度未満である場合に、L1/Dが2.0以上でかつ4.0以下であることを特徴とするニードル弁。
A valve port provided with a valve port that allows fluid to pass inside and has a constant inner diameter in the longitudinal direction;
A valve body that is provided so as to be able to contact with and separate from the valve port and is tapered as it approaches the valve port, and a valve body whose opening degree is changed by contacting and separating from the valve port. In the provided needle valve,
In a cross section passing through the axis of the valve body, when the angle formed by the tip of the valve body is θ, the inner diameter of the valve port is D, and the total length in the axial direction of the valve port is L1,
When the angle θ exceeds 0 degree and is 45 degrees or less, L1 / D is 3.5 or more and 5.0 or less,
When the angle θ is greater than 45 degrees and less than 60 degrees, L1 / D is 2.0 or more and 4.0 or less.
前記弁ポートの前記弁口が開口しかつ前記ニードル弁と相対する弁座には、当該弁座から凸でかつ前記弁口よりも内径が大きく形成されているとともに当該弁口と同軸状の円環状部が設けられていることを特徴とする請求項1記載のニードル弁。   The valve seat of the valve port that is open and opposed to the needle valve has a circular shape that is convex from the valve seat and has an inner diameter larger than that of the valve port and is coaxial with the valve port. The needle valve according to claim 1, wherein an annular portion is provided. 請求項1又は請求項2記載のニードル弁を冷媒回路中に有することを特徴とする冷凍サイクル装置。   A refrigeration cycle apparatus comprising the needle valve according to claim 1 or 2 in a refrigerant circuit.
JP2007073408A 2007-03-20 2007-03-20 Needle valve, and refrigerating cycle device having the same Pending JP2008232290A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007073408A JP2008232290A (en) 2007-03-20 2007-03-20 Needle valve, and refrigerating cycle device having the same
CNA200810080692XA CN101270817A (en) 2007-03-20 2008-03-03 Pin valve and refrigeration cycle device using the pin valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007073408A JP2008232290A (en) 2007-03-20 2007-03-20 Needle valve, and refrigerating cycle device having the same

Publications (1)

Publication Number Publication Date
JP2008232290A true JP2008232290A (en) 2008-10-02

Family

ID=39905343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007073408A Pending JP2008232290A (en) 2007-03-20 2007-03-20 Needle valve, and refrigerating cycle device having the same

Country Status (2)

Country Link
JP (1) JP2008232290A (en)
CN (1) CN101270817A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291928A (en) * 2007-05-25 2008-12-04 Saginomiya Seisakusho Inc Needle valve, and refrigerating cycle device having the needle valve
JP2011027148A (en) * 2009-07-23 2011-02-10 Fuji Koki Corp Electric valve
CN102444739A (en) * 2010-10-12 2012-05-09 株式会社鹭宫制作所 Electric valve
WO2012066718A1 (en) * 2010-11-18 2012-05-24 株式会社テージーケー Stepping motor-driven control valve
WO2012120845A1 (en) * 2011-03-08 2012-09-13 株式会社テージーケー Control valve
CN104197042A (en) * 2014-08-29 2014-12-10 超达阀门集团股份有限公司 Black water angle valve
JP2015086996A (en) * 2013-11-01 2015-05-07 株式会社不二工機 Electric drive valve
JP2016057013A (en) * 2014-09-10 2016-04-21 住友重機械工業株式会社 Pulse tube refrigerating machine
JP2016153673A (en) * 2015-02-20 2016-08-25 株式会社不二工機 Motor-operated valve
CN107489776A (en) * 2016-06-13 2017-12-19 株式会社不二工机 Motor-driven valve
CN107631524A (en) * 2016-07-18 2018-01-26 浙江盾安禾田金属有限公司 Electric expansion valve
JP2018115743A (en) * 2017-01-20 2018-07-26 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system
JP2018119595A (en) * 2017-01-25 2018-08-02 株式会社鷺宮製作所 Motor valve and refrigeration cycle system
JP2018138822A (en) * 2018-04-12 2018-09-06 三菱電機株式会社 Expansion valve and refrigeration cycle device using expansion valve
CN109520184A (en) * 2017-09-18 2019-03-26 浙江三花智能控制股份有限公司 Electric expansion valve
JP2019132347A (en) * 2018-01-31 2019-08-08 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system
US10401065B2 (en) 2014-10-08 2019-09-03 Mitsubishi Electric Corporation Expansion valve, and refrigeration cycle system using expansion valve
JP2020008087A (en) * 2018-07-06 2020-01-16 株式会社鷺宮製作所 Motor valve and refrigeration cycle system
CN110836271A (en) * 2018-08-17 2020-02-25 浙江盾安禾田金属有限公司 Electronic expansion valve and air conditioning system using same
KR20200057149A (en) * 2018-11-15 2020-05-26 우리산업 주식회사 Electronic expansion valve
KR20200059371A (en) * 2018-11-20 2020-05-29 우리산업 주식회사 Electronic expansion valve
CN111473119A (en) * 2020-05-12 2020-07-31 桂林市啄木鸟医疗器械有限公司 Pressure regulating valve and pressure regulating system
CN112781282A (en) * 2017-01-31 2021-05-11 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
CN113324054A (en) * 2016-09-30 2021-08-31 株式会社鹭宫制作所 Electric valve
JP2022069562A (en) * 2018-08-17 2022-05-11 浙江盾安人工環境股▲ふん▼有限公司 Electronic expansion valve
CN114576886A (en) * 2017-06-15 2022-06-03 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
JP2022187265A (en) * 2021-06-07 2022-12-19 株式会社不二工機 electric valve
JP2022188975A (en) * 2021-06-10 2022-12-22 株式会社不二工機 electric valve
JP7511250B2 (en) 2021-06-07 2024-07-05 株式会社不二工機 Motor-operated valve

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5658654B2 (en) * 2011-12-27 2015-01-28 株式会社鷺宮製作所 Control valve
CN103968620B (en) * 2013-01-28 2016-03-23 珠海格力电器股份有限公司 Electric expansion valve and there is its refrigerating plant
CN106322861B (en) * 2015-06-29 2021-09-28 浙江盾安禾田金属有限公司 Electronic expansion valve
CN108779869B (en) * 2016-03-29 2020-01-24 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
JP6552457B2 (en) * 2016-06-22 2019-07-31 株式会社鷺宮製作所 Motorized valve
CN106247061A (en) * 2016-08-31 2016-12-21 新昌县开铭制冷配件有限公司 A kind of adapter assembly for air conditioner refrigeration
CN107917276B (en) * 2016-10-10 2022-03-08 盾安环境技术有限公司 Electronic expansion valve
JP6927903B2 (en) * 2018-02-13 2021-09-01 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
CN110836562A (en) * 2018-08-17 2020-02-25 浙江盾安禾田金属有限公司 Electronic expansion valve and air conditioning system using same
CN110307678A (en) * 2019-05-15 2019-10-08 中国电子科技集团公司第十一研究所 The processing method and refrigerator of the needle-valve of refrigerator, the needle-valve of refrigerator
JP7365300B2 (en) * 2020-07-22 2023-10-19 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
CN112923070A (en) * 2021-01-22 2021-06-08 浙江恒森实业集团有限公司 Electronic expansion valve assembly with good noise reduction stability

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291928A (en) * 2007-05-25 2008-12-04 Saginomiya Seisakusho Inc Needle valve, and refrigerating cycle device having the needle valve
JP2011027148A (en) * 2009-07-23 2011-02-10 Fuji Koki Corp Electric valve
CN102444739A (en) * 2010-10-12 2012-05-09 株式会社鹭宫制作所 Electric valve
US9285051B2 (en) 2010-11-18 2016-03-15 Tgk Co., Ltd. Control valve driven by stepping motor
WO2012066718A1 (en) * 2010-11-18 2012-05-24 株式会社テージーケー Stepping motor-driven control valve
EP2642169B1 (en) * 2010-11-18 2020-08-26 TGK CO., Ltd. Stepping motor-driven control valve
WO2012120845A1 (en) * 2011-03-08 2012-09-13 株式会社テージーケー Control valve
JP2015086996A (en) * 2013-11-01 2015-05-07 株式会社不二工機 Electric drive valve
CN104197042A (en) * 2014-08-29 2014-12-10 超达阀门集团股份有限公司 Black water angle valve
US10060656B2 (en) 2014-09-10 2018-08-28 Sumitomo Heavy Industries, Ltd. Pulse tube refrigerator
JP2016057013A (en) * 2014-09-10 2016-04-21 住友重機械工業株式会社 Pulse tube refrigerating machine
US10401065B2 (en) 2014-10-08 2019-09-03 Mitsubishi Electric Corporation Expansion valve, and refrigeration cycle system using expansion valve
JP2016153673A (en) * 2015-02-20 2016-08-25 株式会社不二工機 Motor-operated valve
CN107489776A (en) * 2016-06-13 2017-12-19 株式会社不二工机 Motor-driven valve
CN107631524A (en) * 2016-07-18 2018-01-26 浙江盾安禾田金属有限公司 Electric expansion valve
CN113324054A (en) * 2016-09-30 2021-08-31 株式会社鹭宫制作所 Electric valve
CN113324054B (en) * 2016-09-30 2024-02-13 株式会社鹭宫制作所 Electric valve
CN112984134B (en) * 2017-01-20 2022-12-20 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
CN108331923A (en) * 2017-01-20 2018-07-27 株式会社鹭宫制作所 Motor-driven valve and refrigerating circulation system
JP2018115743A (en) * 2017-01-20 2018-07-26 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system
CN113124180A (en) * 2017-01-20 2021-07-16 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
CN112984134A (en) * 2017-01-20 2021-06-18 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
JP2018119595A (en) * 2017-01-25 2018-08-02 株式会社鷺宮製作所 Motor valve and refrigeration cycle system
CN112781282A (en) * 2017-01-31 2021-05-11 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
CN114576886A (en) * 2017-06-15 2022-06-03 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
CN114576886B (en) * 2017-06-15 2024-02-09 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
CN109520184A (en) * 2017-09-18 2019-03-26 浙江三花智能控制股份有限公司 Electric expansion valve
CN114458781A (en) * 2018-01-31 2022-05-10 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
CN114458781B (en) * 2018-01-31 2024-05-24 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
JP2019132347A (en) * 2018-01-31 2019-08-08 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system
JP2018138822A (en) * 2018-04-12 2018-09-06 三菱電機株式会社 Expansion valve and refrigeration cycle device using expansion valve
JP2020008087A (en) * 2018-07-06 2020-01-16 株式会社鷺宮製作所 Motor valve and refrigeration cycle system
JP7011547B2 (en) 2018-07-06 2022-01-26 株式会社鷺宮製作所 Solenoid valve and refrigeration cycle system
JP2022069562A (en) * 2018-08-17 2022-05-11 浙江盾安人工環境股▲ふん▼有限公司 Electronic expansion valve
JP2022079627A (en) * 2018-08-17 2022-05-26 浙江盾安人工環境股▲ふん▼有限公司 Electronic expansion valve
CN110836271A (en) * 2018-08-17 2020-02-25 浙江盾安禾田金属有限公司 Electronic expansion valve and air conditioning system using same
JP2022087189A (en) * 2018-08-17 2022-06-09 浙江盾安人工環境股▲ふん▼有限公司 Electronic expansion valve
JP7448580B2 (en) 2018-08-17 2024-03-12 浙江盾安人工環境股▲ふん▼有限公司 electronic expansion valve
JP7439161B2 (en) 2018-08-17 2024-02-27 浙江盾安人工環境股▲ふん▼有限公司 electronic expansion valve
JP7369225B2 (en) 2018-08-17 2023-10-25 浙江盾安人工環境股▲ふん▼有限公司 electronic expansion valve
KR102170493B1 (en) * 2018-11-15 2020-10-29 우리산업 주식회사 Electronic expansion valve
KR20200057149A (en) * 2018-11-15 2020-05-26 우리산업 주식회사 Electronic expansion valve
KR102170491B1 (en) * 2018-11-20 2020-10-29 우리산업 주식회사 Electronic expansion valve
KR20200059371A (en) * 2018-11-20 2020-05-29 우리산업 주식회사 Electronic expansion valve
CN111473119A (en) * 2020-05-12 2020-07-31 桂林市啄木鸟医疗器械有限公司 Pressure regulating valve and pressure regulating system
JP2022187265A (en) * 2021-06-07 2022-12-19 株式会社不二工機 electric valve
JP7511250B2 (en) 2021-06-07 2024-07-05 株式会社不二工機 Motor-operated valve
JP7422409B2 (en) 2021-06-10 2024-01-26 株式会社不二工機 electric valve
JP2022188975A (en) * 2021-06-10 2022-12-22 株式会社不二工機 electric valve

Also Published As

Publication number Publication date
CN101270817A (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP2008232290A (en) Needle valve, and refrigerating cycle device having the same
JP2009052742A (en) Needle valve and refrigerating cycle device having the needle valve
JP2008291928A (en) Needle valve, and refrigerating cycle device having the needle valve
JP4570473B2 (en) Valve device and refrigeration cycle device
JP5696093B2 (en) Motorized valve
JP5395775B2 (en) Motorized valve
JP6370269B2 (en) Motorized valve and refrigeration cycle
JP4336279B2 (en) Valve device and refrigeration cycle device
CN109114237A (en) Motor-driven valve and refrigerating circulation system
JP2009014056A (en) Motor-operated valve and air conditioning system
JP2012047213A (en) Motor-operated valve
WO2020025048A1 (en) Air conditioning system and electronic expansion valve thereof
JP2020034141A (en) Motor-operated valve and refrigeration cycle system
JP2017115989A (en) Electric operated valve
JP5627612B2 (en) Expansion valve
JP7111864B2 (en) Electric valve and refrigeration cycle system
CN109114284A (en) Motor-driven valve and refrigerating circulation system
JP2017145923A (en) Motor operated valve
CN110836270B (en) Electronic expansion valve
JP4476757B2 (en) Valve device and refrigeration cycle device
JP2020106086A (en) Valve device and refrigeration cycle system
JP2023168434A (en) Motor-operated valve and refrigeration cycle system
JP2021028505A (en) Electric valve and refrigeration cycle system
JP2004108764A (en) Electric expansion valve and freezer
JP2021124153A (en) Motor-operated valve and refrigeration cycle system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303