JP6724399B2 - 電気光学装置および電子機器 - Google Patents

電気光学装置および電子機器 Download PDF

Info

Publication number
JP6724399B2
JP6724399B2 JP2016023314A JP2016023314A JP6724399B2 JP 6724399 B2 JP6724399 B2 JP 6724399B2 JP 2016023314 A JP2016023314 A JP 2016023314A JP 2016023314 A JP2016023314 A JP 2016023314A JP 6724399 B2 JP6724399 B2 JP 6724399B2
Authority
JP
Japan
Prior art keywords
substrate
organic
electro
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016023314A
Other languages
English (en)
Other versions
JP2017143172A (ja
Inventor
人嗣 太田
人嗣 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2016023314A priority Critical patent/JP6724399B2/ja
Publication of JP2017143172A publication Critical patent/JP2017143172A/ja
Application granted granted Critical
Publication of JP6724399B2 publication Critical patent/JP6724399B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、電気光学装置および電子機器に関する。
複数のエレクトロルミネッセンス(Electroluminescence, 以下、ELと略記する)素子を備え、EL素子からの発光を利用して表示を行う表示装置が、従来から知られている。例えば下記の特許文献1には、プラスチック基板の一面に複数のEL素子が設けられ、固定基板が複数のEL素子を覆うように接着層を介して貼り合わされたアクティブマトリクス型の表示装置が開示されている。この表示装置は、プラスチック基板上に形成されたゲート側駆動回路とソース側駆動回路とを備えている。
特開2014−170753号公報
EL素子を備えた表示装置においては、画素領域の温度が変化することによってEL素子の特性、もしくは電流制御用の駆動トランジスターの特性が変化し、輝度が変化する、という問題がある。また、画素領域の温度が上昇した場合、EL素子に流れる電流が大きくなる傾向があり、EL素子の劣化が進行する、という問題がある。
特に駆動回路を内蔵した表示装置では、駆動回路の動作によって発熱が生じることが多い。その点、特許文献1に記載された表示装置は、発熱源であるゲート側駆動回路およびソース側駆動回路が熱伝導率の低いガラス等からなる対向基板で覆われているため、画素領域の温度が上昇しやすい、という問題がある。
本発明の一つの態様は、上記の課題を解決するためになされたものであり、画素領域の温度上昇を抑制し、安定した表示特性を発揮できる電気光学装置を提供することを目的の一つとする。また、本発明の他の一つの態様は、上記の電気光学装置を備え、表示品質に優れた表示部を備えた電子機器を提供することを目的の一つとする。
上記の目的を達成するために、本発明の一つの態様の電気光学装置は、第1の基板と、前記第1の基板の第1の面に設けられた複数の走査線と、前記第1の面に前記複数の走査線と交差して設けられた複数のデータ線と、前記複数の走査線と前記複数のデータ線とにより区画された複数の画素に対応して設けられた複数の電気光学素子と、前記第1の面に設けられ、前記複数の電気光学素子を駆動する走査線駆動回路およびデータ線駆動回路と、前記第1の面に設けられた共通電極と、前記第1の面と対向して設けられた第2の基板と、を備える。前記第2の基板は、前記第1の面の法線方向から見て、前記データ線駆動回路の一部と重なる位置に設けられ、前記共通電極は、前記第1の面の法線方向から見て、前記データ線駆動回路の一部と重なる位置に設けられている。
本発明の一つの態様の電気光学装置において、第2の基板は、第1の面の法線方向から見て、データ線駆動回路の一部と重なる位置に設けられている。すなわち、データ線駆動回路の他の一部は、第2の基板と重ならない位置に設けられている。そのため、駆動回路の中でも特に発熱量が多いデータ線駆動回路から生じた熱は、第1の基板と第2の基板とに挟まれた空間にこもりにくい。さらに、共通電極は、一般的に熱伝導率の高い金属等で形成されることが多く、第1の面の法線方向から見て、データ線駆動回路の一部と重なる位置にある。そのため、データ線駆動回路から生じた熱は、共通電極に伝達された後、共通電極の面内で拡散され、外部空間に逃げやすい。これにより、画素領域の温度上昇を抑制し、安定した表示特性を発揮できる電気光学装置が得られる。
本発明の一つの態様の電気光学装置において、前記共通電極は、前記第1の面の法線方向から見て、前記第2の基板の外側に延びる延出部を有し、前記延出部は、前記第1の面の法線方向から見て、前記データ線駆動回路の少なくとも一部と重なる位置に設けられていてもよい。
この構成によれば、共通電極が第2の基板の外側に延びる延出部を有し、延出部がデータ線駆動回路の少なくとも一部と重なる位置にあるため、共通電極の延出部を介してデータ線駆動回路から生じた熱を充分に拡散させることができる。また、延出部は第2の基板の外側に位置しているため、熱が外部空間に逃げやすくなる。
本発明の一つの態様の電気光学装置において、前記電気光学素子は、有機EL素子であってもよい。
有機EL素子の特性は温度環境によって変動しやすいため、上記構成によれば、電気光学素子として有機EL素子を用いた場合であっても、安定した特性を発揮しやすい電気光学装置を実現することができる。
本発明の一つの態様の電気光学装置は、前記第1の面に設けられた温度検出素子と、前記温度検出素子の検出結果に基づいて前記有機EL素子に供給する電流を調整する制御部と、をさらに備えていてもよい。
この構成によれば、温度検出素子が画素の温度を検出し、その検出結果に基づいて、制御部は、有機EL素子に供給する電流を調整することができる。
本発明の一つの態様の電気光学装置において、前記温度検出素子は、前記第1の面の法線方向から見て、前記第2の基板および前記共通電極と重なる位置に設けられていてもよい。
この構成によれば、温度検出素子の積層構造を画素領域の積層構造と同じにすることができ、画素領域の温度検出精度を高めることができる。
本発明の一つの態様の電子機器は、上記の本発明の一つの態様の電気光学装置を備える。
この構成によれば、上記の電気光学装置を備えたことにより、表示品質に優れた表示部を備えた電子機器を提供することができる。
第1実施形態の有機EL装置の平面図である。 有機EL装置の回路構成を示すブロック図である。 データ線駆動回路の構成を示すブロック図である。 画素回路の構成を示す回路図である。 有機EL装置の断面図である。 第2実施形態の有機EL装置の平面図である。 電子機器の一例を示す概略構成図である。
[第1実施形態]
以下、本発明の第1実施形態について、図1〜図5を用いて説明する。
第1実施形態では、電気光学装置として有機EL装置の例を示す。
図1は、第1実施形態の電気光学装置の平面図である。
なお、以下の各図面においては各構成要素を見やすくするため、構成要素により寸法の縮尺を異ならせて示すことがある。
第1実施形態の有機EL装置100は、有機EL材料を利用した発光素子を基板上に形成した有機EL装置である。
図1に示すように、有機EL装置100は、第1の基板10と、複数の走査線22と、複数の制御線24と、複数のデータ線26と、複数の有機EL素子45と、走査線駆動回路32およびデータ線駆動回路34を含む駆動回路30と、温度センサー17と、共通電極Ecと、第2の基板20と、を備える。
本実施形態の有機EL素子45は、特許請求の範囲の電気光学素子に対応する。
[基本構成]
第1の基板10は、第1の基板10の第1の面10Dの法線方向から見て、矩形状の板材で構成されている。第1の基板10は、表示領域12と、周辺回路領域14と、実装領域16と、を有する。表示領域12は、複数の画素Pが配列され、実質的に表示に寄与する矩形状の領域である。第1の基板は、複数の走査線22と、複数の制御線24と、複数のデータ線26と、を備える。複数の走査線22、複数の制御線24、および複数のデータ線26は、第1の基板10の第1の面10Dに設けられている。
表示領域12は、複数の画素Pがマトリクス状に配列された領域である。複数の走査線22は、一方向(図1のX方向)に延在し、互いに平行に間隔をおいて設けられている。複数の走査線22が延在する方向を画面の水平方向とする。複数の制御線24は、複数の走査線22と平行な方向に延在し、互いに平行に間隔をおいて設けられている。複数のデータ線26は、走査線22と直交する方向(図1のY方向)に延在し、互いに平行に間隔をおいて設けられている。複数のデータ線26が延在する方向を画面の垂直方向とする。
画素Pは、隣り合う走査線22と隣り合うデータ線26との交差に対応した領域である。複数の画素Pは、画面の水平方向および垂直方向にマトリクス状に配列される。例えば走査線22の本数をm本(m:自然数)、データ線26の本数を3n本(n:自然数)としたとき、複数の画素Pは、m行×3n列に配列されている。複数の画素Pの各々には、後述する画素回路が設けられている。
周辺回路領域14は、表示領域12を囲む枠状の領域である。駆動回路30は、周辺回路領域14内に設けられている。駆動回路30は、表示領域12内の各画素Pを駆動する回路であり、走査線駆動回路32、データ線駆動回路34、電源回路36および制御回路37を含む。走査線駆動回路32は、走査線22の延在方向における一端側と他端側に分けて設けられている。例えば一方の走査線駆動回路32は奇数番目の走査線に対応し、一方の走査線駆動回路32は偶数番目の走査線に対応する。本実施形態の有機EL装置100においては、第1の基板10の第1の面10Dに直接形成されたトランジスター等の能動素子によって駆動回路30が構成される。
実装領域16は、第1の基板10の表示領域12とは反対側の一辺に沿う領域である。実装領域16には、一辺に沿って複数の実装端子38が設けられている。複数の実装端子38には、例えばフレキシブル配線基板(図示略)が接続される。
図2は、有機EL装置100の回路構成を示すブロック図である。
図2に示すように、走査線駆動回路32は、m本の走査線22を介して表示領域12内のm行の画素回路に対して走査信号を供給する。データ線駆動回路34は、3n本のデータ線26を介して表示領域12内の3n列の画素回路に対してデータ信号を供給する。電源回路36は、複数の画素回路、走査線駆動回路32、データ線駆動回路34、および制御回路37に対して各種電位を供給する。制御回路37は、走査線駆動回路32に対して制御信号Ctr1を供給し、データ線駆動回路34に対して制御信号Ctr2および画像データを供給する。制御信号Ctr2には、後述する取込開始クロックDCLK、ラッチ信号LP、および選択信号SELが含まれる。
温度センサー17は、表示領域12の近傍に設けられ、表示領域12の温度を検出し、検出結果を制御回路37に送信する。制御回路37は、電源回路36および温度センサー17に対して制御信号をそれぞれ送信するとともに、温度センサー17の検出結果に基づいて有機EL素子45に供給する電流を調整する。
本実施形態の温度センサー17は、特許請求の範囲の温度検出素子に対応する。本実施形態の制御回路37は、特許請求の範囲の制御部に対応する。
図3は、データ線駆動回路34の構成を示すブロック図である。
図3に示すように、データ線駆動回路34は、階調電圧生成回路341、シフトレジスタ342、データラッチ343、ラインラッチ344、D/A変換回路345、デマルチプレクサ346、およびレベルシフタ347を備える。
階調電圧生成回路341は、電源回路36から供給された電位V,Vに基づいて複数の階調電圧を生成する。階調電圧生成回路341によって生成された複数の階調電圧の各々は、D/A変換回路345に供給される。
シフトレジスタ342は、所定の取込開始クロックDCLKを動作クロックに同期してシフトすることにより、データラッチ343に対して取込クロックを順次出力する。
データラッチ343は、画像データが供給される複数のデータ線26の各々に接続される。データラッチ343は、複数のフリップフロップを備え、各フリップフロップにシフトレジスタ342から取込クロックが入力される。データラッチ343は、シフトレジスタ342からの取込クロックにより所定の取り込みビット数単位で画像データを取り込む。
ラインラッチ344は、データラッチ343に対応して設けられる。ラインラッチ344には、ラッチ信号LPが入力され、ラッチ信号LPに同期して、対応するデータラッチ343に取り込まれた画像データを一斉に取り込むことにより、1水平走査分の画像データをラッチする。
D/A変換回路345は、ラインラッチ344からの画像データに基づいて、階調電圧生成回路341によって生成された複数の階調電圧のうちのいずれかを選択する。D/A変換回路345によって選択された階調電圧は、デマルチプレクサ346に出力される。
デマルチプレクサ346には、例えば1水平走査期間を分割した各期間においてアクティブとなる選択信号SELが入力される。デマルチプレクサ346は、図示しない出力アンプの出力である駆動信号を、選択信号SELにより選択された出力端子に対して分配する。
レベルシフタ347は、図示しない画素データ補正回路によって生成された補正画素データの振幅レベルを変換する。
図4は、表示領域12内の1つの画素(画素回路)Pの回路図である。
図4に示すように、画素Pは、有機EL素子45、駆動トランジスターTDR、発光制御トランジスターTEL、選択トランジスターTSL、および容量素子Cを備える。第1実施形態では、画素Pのトランジスター(TDR,TEL,TSL)をPチャネル型のトランジスターで構成するが、Nチャネル型のトランジスターで構成することもできる。
有機EL素子45は、画素電極(陽極)E1と共通電極(陰極)Ecとの間に有機EL材料の発光層を含む有機層46を介在させた電気光学素子である。画素電極E1は画素P毎に個別に形成され、共通電極Ecは複数の画素Pにわたって連続して形成されている。有機EL素子45は、第1電源導電体41と第2電源導電体42とを結ぶ電流経路上に配置される。第1電源導電体41は、高電位側の電源電位VELが供給される電源配線である。第2電源導電体42は、低電位側の電源電位VCTが供給される電源配線である。
駆動トランジスターTDRと発光制御トランジスターTELとは、第1電源導電体41と第2電源導電体42とを結ぶ電流経路上において有機EL素子45に対して直列に接続されている。具体的には、駆動トランジスターTDRの一対の電流端のうちの一方(ソース)は第1電源導電体41に接続されている。発光制御トランジスターTELは、駆動トランジスターTDRの一対の電流端のうちの他方(ドレイン)と有機EL素子45の画素電極E1との導通状態(導通/非導通)を制御するスイッチとして機能する。駆動トランジスターTDRは、自身のゲート−ソース間の電圧に応じた電流量に相当する駆動電流を生成する。
発光制御トランジスターTELがオン状態に制御された状態では、駆動電流が駆動トランジスターTDRから発光制御トランジスターTELを経由して有機EL素子45に供給される。このとき、有機EL素子45は、駆動電流の電流量に応じた輝度で発光する。一方、発光制御トランジスターTELがオフ状態に制御された状態では、有機EL素子45に対する駆動電流の供給が遮断される。このとき、有機EL素子45は消灯する。発光制御トランジスターTELのゲートは、制御線24に接続されている。
選択トランジスターTSLは、データ線26と駆動トランジスターTDRのゲートとの導通状態(導通/非導通)を制御するスイッチとして機能する。選択トランジスターTSLのゲートは走査線22に接続されている。容量素子Cは、第1容量電極C1と第2容量電極C2との間に誘電体を介在させた静電容量である。第1容量電極C1は、駆動トランジスターTDRのゲートに接続されている。第2容量電極C2は、第1電源導電体41(駆動トランジスターTDRのソース)に接続されている。したがって、容量素子Cは、駆動トランジスターTDRのゲート−ソース間の電圧を保持する。
図1に示すデータ線駆動回路34は、外部回路から供給される画像信号を、画素P毎に指定する階調に応じた階調電位(データ信号)として、書込期間(水平走査期間)毎に複数のデータ線26に対して並列に供給する。他方、走査線駆動回路32は、複数の走査線22の各々に走査信号を供給することにより、複数の走査線22の各々を書込期間毎に順次選択する。走査線駆動回路32が選択した走査線22に対応する画素Pの選択トランジスターTSLは、オン状態に遷移する。このとき、各画素Pの駆動トランジスターTDRのゲートに、データ線26と選択トランジスターTSLとを経由して階調電位が供給され、階調電位に応じた電圧が容量素子Cに保持される。
他方、書込期間での走査線22の選択が終了すると、走査線駆動回路32は、各制御線24に制御信号を供給することにより、当該制御線24に対応する画素Pの発光制御トランジスターTELをオン状態に制御する。したがって、直前の書込期間で容量素子Cに保持された電圧に応じた駆動電流は、駆動トランジスターTDRから発光制御トランジスターTELを経由して有機EL素子45に供給される。以上のように、有機EL素子45が階調電位に応じた輝度で発光することにより、画像信号が指定する任意の画像が表示領域12に表示される。
[各構成要素の位置関係]
図1に示すように、第2の基板20は、第1の基板10の第1の面10Dの法線方向から見て、第1の基板10よりも小さい矩形状の基材で構成されている。第2の基板20は、データ線駆動回路34の一部と重なる位置に設けられている。言い換えると、データ線駆動回路34の他の一部は、第2の基板20と重ならない位置に設けられている。データ線駆動回路34の他の一部は、第2の基板20の外側にはみ出している。さらに、第2の基板20は、第1の基板10の第1の面10Dの法線方向から見て、第1の基板10上の表示領域12および走査線駆動回路32の全てと重なる位置に設けられている。
共通電極Ecは、第1の基板10の第1の面10Dの法線方向から見て、第2の基板20の外形よりも小さい矩形状の領域に設けられている。共通電極Ecは、表示領域12の全体と重なるとともに、データ線駆動回路34の一部と重なる位置に設けられている。さらに、共通電極Ecは、走査線駆動回路32の一部と重なる位置に設けられている。なお、共通電極Ecは、走査線駆動回路32の全体と重なる位置に設けられていてもよい。
温度センサー17は、第1の基板10の第1の面10Dの法線方向から見て、第2の基板20と重なり、かつ、共通電極Ecと重なる位置に設けられている。したがって、第1の基板10の第1の面10Dの法線方向から見て、第2の基板20および共通電極Ecと重なる点については、温度センサー17は表示領域12と同じである。
図5は、有機EL装置100の断面図である。
図5に示すように、シリコン等の半導体材料で形成された第1の基板10の第1の面10Dのうち、表示領域12内には画素PのトランジスターT(TDR,TEL,TSL)が形成され、周辺回路領域14内に駆動回路30を構成するトランジスターTが形成される。図5では、特にデータ線駆動回路34を構成するトランジスターTを図示する。
トランジスターTは、第1の基板10の第1の面10Dに形成された能動領域10A(ソース/ドレイン領域)と、第1の面10Dを被覆する絶縁膜L0(ゲート絶縁膜)と、絶縁膜L0上に形成されたゲート電極Gと、を備える。能動領域10Aは、第1の基板10内に不純物イオンが注入されたイオン注入領域で構成されている。画素PのトランジスターT(TDR,TEL,TSL)のチャネル領域はソース領域とドレイン領域との間に存在する。チャネル領域には、能動領域10Aとは別種類のイオンが注入されるが、図示は省略する。トランジスターTのゲート電極Gは、絶縁膜L0を挟んでチャネル領域に対向する位置に設けられている。
トランジスターTのゲート電極Gが形成された絶縁膜L0上には、複数の絶縁層(LA〜LF)と複数の配線層(WA〜WF)とを交互に積層した多層配線層が形成されている。各絶縁層は、例えばシリコン化合物(典型的には窒化シリコンもしくは酸化シリコン)等の絶縁性の無機材料で形成されている。各配線層Wは、アルミニウムもしくは銀等を含有する低抵抗の導電材料で形成されている。
以下の説明では、導電層(単層または複数層)を選択的に除去することにより複数の要素が同一工程で一括的に形成されている関係を「同層から形成されている」と表記する。
絶縁層LAは、各トランジスターTのゲート電極Gが形成された絶縁膜L0の面上に形成されている。絶縁層LAの面上には、複数の中継電極QA(QA1〜QA4)を含む導体パターンが同層(配線層WA)から形成されている。中継電極QA1は、絶縁層LAと絶縁膜L0とを貫通する導通孔(コンタクトホール)を介して発光制御トランジスターTELの能動領域10A(ドレイン)に導通する。中継電極QA2は、絶縁層LAを貫通する導通孔を介して駆動トランジスターTDRのゲート電極Gに導通する。中継電極QA3は、絶縁層LAおよび絶縁膜L0を貫通する導通孔を介して駆動トランジスターTDRの能動領域10A(ソース)に導通する。中継電極QA4は、絶縁層LAおよび絶縁膜L0を貫通する各導通孔を介して発光制御トランジスターTELの能動領域10A(ソース)と、駆動トランジスターTDRの能動領域10A(ドレイン)と、に導通する。すなわち、図4に示すように、駆動トランジスターTDRと発光制御トランジスターTELとが直列に接続されている。なお、選択トランジスターTSLの図示、駆動回路30内の各トランジスターTに関連する具体的な配線の図示等は、便宜的に省略する。
絶縁層LBは、配線層WAが形成された絶縁層LAの面上に形成されている。絶縁層LBの面上には、接続用導電体52と複数の中継電極QB(QB1,QB2)とを含む導体パターンが同層(配線層WB)から形成されている。接続用導電体52は、絶縁層LBを貫通する導通孔を介して配線層WAの中継電極QA3に導通する。すなわち、接続用導電体52は、駆動トランジスターTDRの能動領域10A(ソース)に導通する。
中継電極QB1は、絶縁層LBを貫通する導通孔を介して配線層WAの中継電極QA1に導通する。中継電極QB2は、絶縁層LBを貫通する導通孔H12を介して配線層WAの中継電極QA2に導通する。
絶縁層LCは、配線層WBが形成された絶縁層LBの面上に形成されている。絶縁層LCの面上には、容量素子Cの第1容量電極C1と複数の中継電極QC(QC1,QC4)とを含む導体パターンが同層(配線層WC)から形成されている。第1容量電極C1は、絶縁層LCを貫通する導通孔を介して配線層WBの中継電極QB2に導通する。すなわち、図4に示すように、容量素子Cの第1容量電極C1は、中継電極QB2と中継電極QA2とを介して駆動トランジスターTDRのゲート電極Gに導通する。中継電極QC1は、絶縁層LCを貫通する導通孔を介して中継電極QB1に導通する。中継電極QC4は、実装領域16に形成され、絶縁層LCを貫通する導通孔を介して接続用導電体52(導電部522)に導通する。
絶縁層LDは、配線層WCが形成された絶縁層LCの面上に形成されている。絶縁層LDの面上には、容量素子Cの第2容量電極C2と複数の中継電極QD(QD1,QD4)と導電部56とを含む導体パターンが同層(配線層WD)から形成されている。第2容量電極C2は、平面視で第1容量電極C1に重なる形状および位置に形成されている。これにより、第1容量電極C1と第2容量電極C2とで絶縁層LDを挟んだ構造の容量素子Cが画素P毎に形成されている。
中継電極QD1は、絶縁層LDを貫通する導通孔を介して配線層WCの中継電極QC1に導通する。中継電極QD4は、実装領域16に形成され、絶縁層LDを貫通する導通孔を介して配線層WCの中継電極QC4に導通する。導電部56は、低電位側の電源電位VCTが供給される実装端子381に電気的に接続されている。
絶縁層LEは、配線層WDが形成された絶縁層LDの面上に形成されている。絶縁層LEの面上には、第1電源導電体41と第2電源導電体42と複数の中継電極QE(QE1,QE4)とを含む導体パターンが、同層(配線層WE)から形成されている。配線層WEは、アルミニウム、銀等を含有する光反射性の導電材料で形成されている。
中継電極QE1は、絶縁層LEを貫通する導通孔を介して配線層WDの中継電極QD1に導通する。中継電極QE4は、実装領域16に形成され、絶縁層LEを貫通する導通孔を介して配線層WDの中継電極QD4に導通する。中継電極QE4は、後述の中継電極QF4を介して電源電位VELの供給用の実装端子381に電気的に接続されている。すなわち、電源電位VELの実装端子381は、中継電極QF4と中継電極QE4と中継電極QD4と中継電極QC4とを介して接続用導電体52(導電部522)に導通する。
第1電源導電体41は、絶縁層LEを貫通する複数の導通孔H22を介して配線層WDの第2容量電極C2に導通する。また、第1電源導電体41は、導通孔を介して接続用導電体52に導通する。すなわち、第1電源導電体41は、接続用導電体52の導電部521と中継電極QA3とを介して駆動トランジスターTDRの能動領域10A(ソース)に導通するとともに、接続用導電体52の導電部521および導電部522と中継電極QC4から中継電極QF4とを介して電源電位VELの供給用の実装端子381に導通する。
接続用導電体52の導電部522は、第2電源導電体42とは別層から形成され、表示領域12内の導電部521から周辺回路領域14内で第2電源導電体42の下層を通過(すなわち、第2電源導電体42と立体的に交差)して実装領域16まで延在する。すなわち、接続用導電体52の導電部522は、第2電源導電体42と重なる位置に設けられている。
第1光学調整層LFは、配線層WEが形成された絶縁層LEの面上に形成されている。第1光学調整層LFの面上には、複数の中継電極QF(QF1,QF4)と保護導電層58とを含む導体パターンが同層(配線層WF)から形成されている。配線層WFは、例えば遮光性の導電材料(例えば窒化チタン)で形成されている。
中継電極QF1は、第1光学調整層LFを貫通する導通孔を介して中継電極QE1に導通する。中継電極QF1は、第1電源導電体41の開口部41Aに重なるように形成されている。すなわち、中継電極QF1の外周縁は、平面視で開口部41Aの内周縁の外側に位置する。中継電極QF1は遮光性の導電材料で形成されるため、多層配線層に対する開口部41Aからの外光の侵入が中継電極QF1により阻止される。したがって、光照射に起因した各トランジスターTの電流リークを防止できるという利点がある。他方、実装領域16内の中継電極QF4は、第1光学調整層LFを貫通する導通孔を介して配線層WEの中継電極QE4に導通する。
保護導電層58は、第1光学調整層LFを貫通する導通孔を介して第2電源導電体42に導通する。
配線層WFが形成された第1光学調整層LFの面上に第2光学調整層60が形成されている。第1光学調整層LFおよび第2光学調整層60は、各画素Pの共振構造(詳細は後述する)の共振波長を規定する光透過性の膜である。具体的には、第1光学調整層LFおよび第2光学調整層60は、シリコン化合物(典型的には窒化シリコンもしくは酸化シリコン)等の光透過性の絶縁材料で形成されている。
第2光学調整層60の面上には、表示領域12内の画素P毎の第1画素電極E1と、周辺回路領域14内の導通用電極63と、実装領域16内の複数の実装端子38と、が同層から形成されている。第1画素電極E1と導通用電極63と実装端子38とは、例えばITO(Indium Tin Oxide)等の光透過性の導電材料で形成されている。第1画素電極E1は、有機EL素子45の陽極として機能する。第2光学調整層60を貫通する導通孔を介して中継電極QF1に導通する。すなわち、第1画素電極E1は、多層配線層の各中継電極(QF1,QE1,QD1,QC1,QB1,QA1)を介して発光制御トランジスターTELの能動領域10A(ドレイン)に導通する。以上説明したように、多層配線層の各中継電極(QF1,QE1,QD1,QC1,QB1,QA1)は、第1画素電極E1とトランジスター(第1実施形態の例示では発光制御トランジスターTEL)とを電気的に接続する。他方、周辺回路領域14内の導通用電極63は、第2光学調整層60を貫通する導通孔を介して保護導電層58に導通する。
実装領域16内の各実装端子38は、多層配線層内の配線に導通する。例えば高電位側の電源電位VELが供給される実装端子381は、多層配線層の各中継電極(QF4,QE4,QD4,QC4)を介して接続用導電体52(導電部522)に導通する。したがって、実装端子381に供給される高電位の電源電位VELは、各中継電極(QF4,QE4,QD4,QC4)と接続用導電体52とを経由して第1電源導電体41に供給される。低電位側の電源電位VCTが供給される実装端子382は、多層配線層の導電部56を介して第2電源導電体42に導通する。したがって、低電位の電源電位VCTは、多層配線層の導電部56を介して第2電源導電体42に供給される。
第1画素電極E1と導通用電極63と実装端子38とが形成された第2光学調整層60の面上には、第1の基板10の全域にわたって画素分離層65が形成されている。画素分離層65は、例えばシリコン化合物(典型的には窒化シリコンもしくは酸化シリコン)等の絶縁性の無機材料で形成されている。画素分離層65には、表示領域12内の第1画素電極E1に対応する開口部65Aと、周辺回路領域14内の導通用電極63に対応する開口部65Bと、実装領域16内の各実装端子38に対応する開口部65Cと、が形成されている。実装端子38は、開口部65Cを介して外部回路に電気的に接続される。
画素分離層65が形成された第2光学調整層60の面上に、有機層46が形成されている。有機層46は、表示領域12内に形成されて複数の画素Pにわたって連続して設けられている。有機層46は、周辺回路領域14や実装領域16には形成されていない。例えば、周辺回路領域14のうち表示領域12側の領域に有機層46を形成することもできる。有機層46は、有機EL材料で形成された発光層を含んで構成されている。
図5では図示を省略したが、有機層46は、正孔注入層、発光層、電子注入層を含む。有機層46は、電流が供給されることにより白色光を放射する。白色光は、青色の波長域と緑色の波長域と赤色の波長域とにわたるスペクトルを有する光である。
有機層46が形成された第2光学調整層60の面上に、表示領域12の全体にわたって共通電極Ecが形成されている。上述したように、共通電極Ecは、さらにデータ線駆動回路34の一部にわたって形成されている。図4に示すように、共通電極Ecは、有機EL素子45の陰極として機能する。図5に示すように、有機層46のうち、画素分離層65の開口部65Aの内側にて第1画素電極E1と共通電極Ecとに挟まれた領域が発光領域として発光する。すなわち、開口部65Aの内側において第1画素電極E1と有機層46と共通電極Ecとが積層された部分が有機EL素子45として機能する。以上説明したように、画素分離層65は、各画素Pにおける有機EL素子45の平面形状や寸法を規定する。
第1実施形態の有機EL装置100は、有機EL素子45が高密度に配置された表示装置、いわゆるマイクロディスプレイを構成する。1個の有機EL素子45の面積(1個の開口部65Aの面積)は、例えば40μm2以下に設定されている。X方向に相互に隣り合う各有機EL素子45のピッチは、5μm以下に設定されている。有機EL素子45間の間隔は、1〜2μmの範囲に設定されている。後述するように、有機EL素子を構成する有機層の膜厚は100〜130nm程度である。したがって、有機EL素子45間の間隔、すなわち、隣り合う画素領域間の間隔は、有機層の膜厚の20倍以下程度である。
共通電極Ecのうち、周辺回路領域14内に位置する部分は、画素分離層65の開口部65Bを介して導通用電極63に導通する。周辺回路領域14のうち、導通用電極63と共通電極Ecとが導通する領域やその外側の領域には有機層46は形成されない。すなわち、表示領域12および周辺回路領域14の双方にわたる共通電極Ecは、周辺回路領域14内の導通用電極63と保護導電層58とを介して第2電源導電体42に導通する。したがって、実装端子に供給される低電位側の電源電位VCTは、導電部56、第2電源導電体42、保護導電層58、および導通用電極63を介して共通電極Ecに供給される。
共通電極Ecは、表面に到達した光の一部を透過し、残りを反射する性質(半透過反射性)を有する。半透過反射性の共通電極Ecは、例えば銀、マグネシウム等を含有する合金等の光反射性の導電材料を充分に薄い膜厚に形成することにより実現できる。有機層46からの放射光は、第1電源導電体41と共通電極Ecとの間で往復し、特定の共振波長の成分が選択的に増幅され、共通電極Ecを透過して観察側(第1の基板10とは反対側)に射出される。
すなわち、反射層として機能する第1電源導電体41と半透過反射層として機能する共通電極Ecとの間で、有機層46からの射出光を共振させる共振器構造が形成される。第1光学調整層LFおよび第2光学調整層60は、共振器構造の共振波長(表示色)を画素Pの表示色毎に個別に設定するための要素である。具体的には、共振構造を構成する第1電源導電体41と共通電極Ecとの間の光路長(光学的距離)を第1光学調整層LFおよび第2光学調整層60の膜厚に応じて調整することにより、各画素Pの射出光の共振波長が表示色毎に設定される。
共通電極Ecの面上には、表示領域12および周辺回路領域14にわたる封止層75が形成される。封止層75は、第1の基板10上に形成された各構成要素を封止することにより、外気や水分の侵入を防止する光透過性を有する膜である。本実施形態の封止層75は、第1無機封止層71、有機封止層70、第2無機封止層72の3層で構成されている。封止層75は、実装領域16には形成されておらず、実装領域16においては各実装端子38が露出する。
封止層75の上には、隣り合う画素間を区画する隔壁80が設けられている。隔壁80の間にはカラーフィルター82が設けられている。カラーフィルター82には、各画素の表示色に応じた色の色材層が用いられる。
第2の基板20は、カラーフィルター82および隔壁80の上方に第1の基板10と対向するように設けられている。第2の基板20は、第1の基板10から間隔をおいて配置されており、第1の基板10と第2の基板20との間には充填層85が設けられている。充填層85は、例えば樹脂材料により構成されている。上述したように、第2の基板20は、データ線駆動回路34の一部と重なる位置に設けられている。第2の基板20は、光透過性を有するガラス基板等の基材で構成されている。
第1実施形態の有機EL装置100において、第1の基板10の第1の面10Dの法線方向から見て、データ線駆動回路34の一部は、第2の基板20と重ならない位置に設けられている。そのため、駆動回路30の中でも特に発熱量が多いデータ線駆動回路34から生じた熱は、第1の基板10と第2の基板20とに挟まれた空間にこもりにくい。さらに、共通電極Ecがデータ線駆動回路34の一部と重なる位置にあるため、データ線駆動回路34から生じた熱は、共通電極Ecに伝達された後、熱伝導率の高い共通電極Ecの面内に拡散されるため、外部空間に逃げやすい。これにより、表示領域12の温度上昇が抑制され、安定した表示特性を発揮できる有機EL装置100が得られる。特に有機EL素子45の特性は温度環境によって変動しやすいが、上記の構成によれば、安定した表示特性を発揮しやすい有機EL装置100を実現することができる。
データ線駆動回路34からの熱を第1の基板10と第2の基板20との間にこもりにくくするためには、例えばデータ線駆動回路34の全てを第2の基板と重ならないように配置する構成も考えられる。しかしながら、この構成を採用する場合、有機EL装置の組立誤差等を考慮すると、表示領域12とデータ線駆動回路34との間のスペースを大きく確保する必要があり、表示に寄与しない周辺領域、いわゆる額縁領域が広くなるおそれがある。これに対し、第1実施形態の有機EL装置100では、データ線駆動回路34の一部を第2の基板20と重ならないように配置しているため、表示領域12とデータ線駆動回路34との間隔(額縁領域)を狭くすることができ、有機EL装置100の小型化を図ることができる。
また、第1実施形態の有機EL装置100は、第1の基板10上に形成された温度センサー17と、温度センサー17の検出結果に基づいて有機EL素子45に供給する電流を調整する制御回路37と、をさらに備えている。この構成によれば、温度センサー17が表示領域12の温度を検出し、その検出結果に基づいて、制御回路37は有機EL素子45に供給する電流を調整する。このとき、温度センサー17が、第2の基板20および共通電極Ecと重なる位置に設けられているため、表示領域12の温度検出の精度を高めることができる。
[第2実施形態]
以下、本発明の第2実施形態について、図6を用いて説明する。
第2実施形態の有機EL装置の基本構成は第1実施形態と同様であり、共通電極の構成が第1実施形態と異なる。
図6は、第2実施形態の有機EL装置の平面図である。
図6において、第1実施形態で用いた図1と共通の構成要素には同一の符号を付し、説明を省略する。
第1実施形態の場合、共通電極Ecは、第2の基板20と重なる位置に設けられていた。これに対して、図6に示すように、第2実施形態の有機EL装置200において、共通電極Ec2は、第1の基板10の第1の面10Dの法線方向から見て、第2の基板20と重なるとともに、一部が第2の基板20の外側にはみ出すように設けられている。すなわち、共通電極Ec2は、第2の基板20と重なる部分の他に、第2の基板20の外側に延びる延出部Ec21を有する。共通電極Ec2の延出部Ec21は、データ線駆動回路34および制御回路37の全てと重なる位置に設けられている。なお、共通電極Ec2の延出部Ec21は、少なくともデータ線駆動回路34の一部と重なっていればよい。その他の構成は、第1実施形態と同様である。
第2実施形態においても、表示領域12の温度上昇が抑制され、安定した表示特性を発揮できる有機EL装置200を実現できる、といった第1実施形態と同様の効果が得られる。特に第2実施形態の場合、共通電極Ec2の延出部Ec21がデータ線駆動回路34と重なる位置にあるため、延出部Ec21を介してデータ線駆動回路34から生じた熱を充分に拡散させることができる。これにより、熱がさらに外部空間に逃げやすくなり、安定した表示特性を発揮できる有機EL装置200が得られる。
[電子機器]
上述の各実施形態に例示した有機EL装置100,200は、各種の電子機器の表示装置として好適に利用される。
図7には、各実施形態に例示した有機EL装置100を利用した頭部装着型の表示装置90(HMD:Head Mounted Display)が電子機器として例示されている。
表示装置90は、人間の頭部に装着可能な電子機器である。表示装置90は、使用者の左眼に重なる透過部(レンズ)92Lと、使用者の右眼に重なる透過部92Rと、左眼用の有機EL装置100Lおよびハーフミラー94Lと、右眼用の有機EL装置100Rおよびハーフミラー94Rと、を備える。有機EL装置100Lと有機EL装置100Rとは、射出光が相互に反対の方向に進行するように配置されている。左眼用のハーフミラー94Lは、透過部92Lの透過光を使用者の左眼側に透過させるとともに、有機EL装置100Lからの射出光を使用者の左眼側に反射させる。同様に、右眼用のハーフミラー94Rは、透過部92Rの透過光を使用者の右眼側に透過させるとともに、有機EL装置100Rからの射出光を使用者の右眼側に反射させる。
したがって、使用者は、透過部92Lおよび透過部92Rを介して観察される像と、各有機EL装置100による表示画像と、が重畳された画像を知覚する。また、相互に視差が付与された立体視画像(左眼用画像および右眼用画像)を有機EL装置100Lと有機EL装置100Rとに表示させることにより、使用者に表示画像の立体感を知覚させることができる。
なお、各実施形態の有機EL装置100が適用される電子機器は、図7の表示装置90に限定されない。例えば、ビデオカメラやスチルカメラ等の撮像装置に利用される電子式ビューファインダー(EVF:Electronic View Finder)にも本発明の有機EL装置が好適に利用される。また、携帯電話機、携帯情報端末(スマートフォン)、テレビやパーソナルコンピューター等のモニター、カーナビゲーション装置等の各種の電子機器に本発明の有機EL装置を採用することができる。
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。上記実施形態の有機EL装置における各種電極、配線、トランジスター、容量素子、絶縁膜等の構成材料、形状、配置、寸法や膜厚等の具体的な記載は一例に過ぎず、適宜変更が可能である。
また、上記実施形態では、本発明の電気光学装置として有機EL装置の例を挙げたが、本発明は有機EL装置に限るものではなく、例えば無機EL装置、液晶装置等の電気光学装置に適用することも可能である。
10…第1の基板、10D…第1の面、17…温度センサー(温度検出素子)、20…第2の基板、22…走査線、26…データ線、32…走査線駆動回路、34…データ線駆動回路、37…制御回路(制御部)、45…有機EL素子(電気光学素子)、90…表示装置(電子機器)、100,100L,100R,200…有機EL装置(電気光学装置)、Ec,Ec2…共通電極、Ec21…延出部、P…画素。

Claims (5)

  1. 第1の基板と、
    前記第1の基板の第1の面に設けられた複数の走査線と、
    前記第1の面に前記複数の走査線と交差して設けられた複数のデータ線と、
    前記複数の走査線と前記複数のデータ線とにより区画された複数の画素に対応して設けられた複数の電気光学素子と、
    前記第1の面に設けられ、前記複数の電気光学素子を駆動する走査線駆動回路およびデータ線駆動回路と、
    前記第1の面に設けられた共通電極と、
    前記第1の面と対向して設けられた第2の基板と、を備え、
    前記第2の基板は、前記第1の面の法線方向から見て、前記データ線駆動回路の一部と重なる位置に設けられ、
    前記データ線駆動回路の他の一部は、前記第1の面の法線方向から見て、前記第2の基板と重ならない位置に設けられ、
    前記共通電極は、前記第1の面の法線方向から見て、前記データ線駆動回路の一部と重なる位置に設けられ
    前記共通電極は、前記第1の面の法線方向から見て、前記第2の基板と重なるとともに、一部が前記第2の基板の外側にはみ出すように設けられた延出部を有し、
    前記延出部は、前記第1の面の法線方向から見て、前記データ線駆動回路の前記他の一部と重なる位置に設けられた、電気光学装置。
  2. 前記電気光学素子は、有機エレクトロルミネッセンス素子である、請求項に記載の電気光学装置。
  3. 前記第1の面に設けられた温度検出素子と、
    前記温度検出素子の検出結果に基づいて前記有機エレクトロルミネッセンス素子に供給する電流を調整する制御部と、を備えた、請求項に記載の電気光学装置。
  4. 前記温度検出素子および前記複数の画素は、前記第1の面の法線方向から見て、前記第2の基板および前記共通電極と重なる位置に設けられた、請求項に記載の電気光学装置。
  5. 請求項1ないし請求項のいずれか一項に記載の電気光学装置を備えた、電子機器。
JP2016023314A 2016-02-10 2016-02-10 電気光学装置および電子機器 Active JP6724399B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016023314A JP6724399B2 (ja) 2016-02-10 2016-02-10 電気光学装置および電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016023314A JP6724399B2 (ja) 2016-02-10 2016-02-10 電気光学装置および電子機器

Publications (2)

Publication Number Publication Date
JP2017143172A JP2017143172A (ja) 2017-08-17
JP6724399B2 true JP6724399B2 (ja) 2020-07-15

Family

ID=59627477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016023314A Active JP6724399B2 (ja) 2016-02-10 2016-02-10 電気光学装置および電子機器

Country Status (1)

Country Link
JP (1) JP6724399B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102516699B1 (ko) * 2017-11-29 2023-03-30 엘지디스플레이 주식회사 조명 장치용 oled 패널 및 그 제조 방법
CN117293142A (zh) * 2022-06-14 2023-12-26 京东方科技集团股份有限公司 显示基板及显示装置

Also Published As

Publication number Publication date
JP2017143172A (ja) 2017-08-17

Similar Documents

Publication Publication Date Title
US11882724B2 (en) Light-emitting device and electronic apparatus
US9236425B2 (en) Light emitting apparatus and electronic device with compact overlapping connection region
KR102051357B1 (ko) 전기 광학 장치 및 전자 기기
JP6015095B2 (ja) 電気光学装置および電子機器
JP5998626B2 (ja) 電気光学装置および電子機器
KR101615470B1 (ko) El 표시 장치
JP2017026973A (ja) 表示パネル、表示装置、及び、電子機器
CN110783373A (zh) 显示装置
JP5929121B2 (ja) 電気光学装置および電子機器
US9461268B2 (en) Light-emitting device having a light emitting element with a dimension smaller than a sealing layer thickness
JP6724399B2 (ja) 電気光学装置および電子機器
JP6179310B2 (ja) 発光装置および電子機器
US10861915B2 (en) Light-emitting device and electronic apparatus
JP2015163941A (ja) 電気光学装置、電子機器
JP7050772B2 (ja) 表示装置及び電子機器
JP2015056375A (ja) 発光装置および電子機器
CN111954900B (zh) 显示装置和电子装置
JP6930571B2 (ja) 表示装置および電子機器
US20210193053A1 (en) Display device and electronic apparatus
US20230309349A1 (en) Electro-optical device and electronic apparatus
JP6673406B2 (ja) 電気光学装置および電子機器
CN115241246A (zh) 显示装置及电子设备
KR20210137011A (ko) 표시 장치 및 전자 기기

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200608

R150 Certificate of patent or registration of utility model

Ref document number: 6724399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150