JP6722932B1 - 測定装置 - Google Patents

測定装置 Download PDF

Info

Publication number
JP6722932B1
JP6722932B1 JP2020046165A JP2020046165A JP6722932B1 JP 6722932 B1 JP6722932 B1 JP 6722932B1 JP 2020046165 A JP2020046165 A JP 2020046165A JP 2020046165 A JP2020046165 A JP 2020046165A JP 6722932 B1 JP6722932 B1 JP 6722932B1
Authority
JP
Japan
Prior art keywords
pulse wave
blood pressure
volume pulse
pressure
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020046165A
Other languages
English (en)
Other versions
JP2021145765A (ja
Inventor
針次 近藤
針次 近藤
Original Assignee
株式会社ケーアンドエス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケーアンドエス filed Critical 株式会社ケーアンドエス
Priority to JP2020046165A priority Critical patent/JP6722932B1/ja
Application granted granted Critical
Publication of JP6722932B1 publication Critical patent/JP6722932B1/ja
Priority to CN202110021541.2A priority patent/CN112826478B/zh
Publication of JP2021145765A publication Critical patent/JP2021145765A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02233Occluders specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dentistry (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

【課題】測定される容積脈波について、血流量が一時的に変化した期間の波形誤差を補正する。【解決手段】測定装置は、静脈の容積変化に応じた第1容積脈波を測定する第1光電センサ30と、被験者の動脈の容積変化に応じた第2容積脈波を測定する第2光電センサ35と、これらセンサに対してACカップリングされた演算処理部41とを備える。前記演算処理部は、前記2つの容積脈波について、各心拍の最高点の増減の傾向が逆になった場合、前記第1容積脈波の各心拍の最高点が低下し、前記第2容積脈波の各心拍の最高点が上昇する第1期間は、各心拍の最低点が時間に対して低下するように、前記第1容積脈波の波形を補正する第1補正処理を実行し、前記第1容積脈波の各心拍の最高点が上昇し、前記第2容積脈波の各心拍の最高点が低下する第2期間は、各心拍の最低点が時間に対して上昇するように、前記第1容積脈波の波形を補正する第2補正処理を実行する。【選択図】図5

Description

本明細書によって開示される技術は、測定装置に関する。
閉塞型血圧測定法として、図20に示すように、カフ(腕帯)100によって動脈を圧迫し、徐々に減圧をする過程で血圧を検出するオシロメトリック法が知られている。また、開放型血圧測定方法として、図21に示すように、光電センサ110を用いて血管容積変化を赤外光の吸収減衰で検出する光電容積脈波法などがある。光電容積脈波法では、投光器から光を照射し血管を閉塞せずに血管に流れる血流変化を受光器センサにて捉える。そして、捉えた血流変化に基づいて血圧変化を推測する。オシロメトリック法と光電容積脈波法との比に基づいて血圧測定を行う血圧測定装置として、特開2011−234876号公報(下記特許文献1)に記載のものが知られている。
特開2011−234876号公報
図22は、容積脈波を測定する測定装置のブロック図である。測定装置は、センサ210と、AC結合器220と、演算処理部230とから構成されており、センサ210の測定信号(容積脈波)は、AC結合器220にて直流分がカットされ、交流成分が演算処理部230に対して入力される。AC結合器220を用いる理由は、直流分をカットすることで、演算処理部230の入力電圧(最大値)を抑えることが出来るからである。
AC結合器を用いる場合、直流に近い成分(周波数の低い信号成分)は失われてしまうため、被験者の血流量が一時的に変化した時に、波形誤差が生じる可能性があった。
本発明は、上記のような事情に基づいて完成されたものであって、演算処理部をセンサに対してACカップリングした測定装置により、測定される容積脈波について、血流量が一時的に変化した期間の波形誤差を補正することを課題とする。
測定装置であって、被験者の静脈の容積変化に応じた第1容積脈波を測定する第1センサと、被験者の動脈の容積変化に応じた第2容積脈波を測定する第2センサと、前記第1センサと前記第2センサに対してACカップリングされた演算処理部と、を備え、前記演算処理部は、前記第1容積脈波と前記第2容積脈波の2つの容積脈波について、各心拍の最高点の増減が逆になった場合、前記第1容積脈波の各心拍の最高点が低下し、前記第2容積脈波の各心拍の最高点が上昇する第1期間は、各心拍の最低点が、時間に対して低下するように、前記第1容積脈波の波形を補正する第1補正処理を実行し、前記第1容積脈波の各心拍の最高点が上昇し、前記第2容積脈波の各心拍の最高点が低下する第2期間は、各心拍の最低点が、時間に対して上昇するように、前記第1容積脈波の波形を補正する第2補正処理を実行する。
この構成では、演算処理部をセンサに対してACカップリングした測定装置により、測定される容積脈波について、血流量が一時的に変化した期間の波形誤差を補正することを課題とする。
この発明の実施態様として以下の構成でもよい。
前記第1センサは、第1波長の光電センサ、前記第2センサは、第1波長よりも波長の長い第2波長の光電センサでもよい。第2波長を第1波長より長くすることで、光が被験者の深部まで到達することから、深部に位置する動脈から容積脈波を検出することが出来る。
この発明の実施態様として以下の構成でもよい。
前記第1センサは、被験者の耳タブ又は指に取り付けられ、前記第2センサは、被験者の胸部に取り付けられてもよい。
この発明の実施態様として以下の構成でもよい。
前記第1補正処理では、時間に対して低下する第1補正線に対して、各心拍の最低点が一致するように、前記第1容積脈波の波形を補正し、前記第2補正処理では、時間に対して上昇する第2補正線に対して、各心拍の最低点が一致するように、前記第1容積脈波の波形を補正してもよい。この構成では、第1容積脈波の各心拍の最低点を補正線に一致させることで、第1容積脈波の波形を補正することが出来る。
この発明の実施態様として以下の構成でもよい。
変換容積脈波は、被験者の動脈をカフで圧迫した状態から減圧する過程で圧脈波が最大となる平均血圧時から前記圧脈波が消滅する最低血圧時までの期間について、前記圧脈波の面積変化に従って、前記第1容積脈波の各心拍の脈波面積を変化させた波であり、前記第1補正線の傾きは、前記変換容積脈波の平均血圧時の最高点と最低血圧時の最高点を結んだ直線の傾きに等しくてもよい。変換容積脈波の平均血圧時の最高点と最低血圧時の最高点を結んだ直線は、被験者が平均血圧から最低血圧に向かうときの容積脈波の変化であることから、静脈の血流量が減少する第1期間において、第1容積脈波を精度よく補正することが出来る。
この発明の実施態様として以下の構成でもよい。
被験者の血管を圧迫するカフと、前記カフによって圧迫された部分から圧脈波を測定するカフ圧センサを備え、前記演算処理部は、カフ圧の変化に伴う前記圧脈波と前記第1容積脈波を同時に測定する予備測定において、複数拍の前記圧脈波からなる基準圧脈波を測定すると共に、前記基準圧脈波を測定する基準時に、各圧脈波に対応する複数の第1容積脈波を測定し、前記基準圧脈波における一拍毎の各圧脈波面積と前記基準圧脈波が最大振幅となったときの圧脈波面積との比率を、対応する前記第1容積脈波の面積に乗ずることで平均血圧値から最低血圧値までの変換血圧データを決定し、かつ、平均血圧値の測定時におけるカフ圧と、複数の前記第1容積脈波に対応する各カフ圧との比率を、平均血圧値の測定時における前記基準圧脈波の圧脈波面積に乗ずることで最高血圧値から平均血圧値までの変換血圧データを決定し、前記変換血圧データと、前記予備測定後に行われる本測定において得られた前記第1容積脈波と、に基づいて被験者の心拍毎の血圧値を算出してもよい。この構成では、被験者の圧脈波が直線的に変化せずに二次曲線的に変化する場合、被験者の心拍毎の血圧値を精度よく算出することが出来る。
本発明によれば、演算処理部をセンサに対してACカップリングした測定装置により、測定される容積脈波について、血流量が一時的に変化した期間の波形誤差を補正することが出来る。
カフによる血圧測定を示す図 第1光電センサによる血圧測定を示す図 第2光電センサによる血圧測定を示す図 第2光電センサの構成を示す図 血圧測定装置のブロック図 カフ圧に対応する圧脈波と容積脈波とを示した図 血圧値算出処理のフローチャート図 第1容積脈波の波形 第1容積脈波と第2容積脈波の波形を比較した図 波形修正処理のフローチャート図 補正前の第1容積脈波の波形 補正後の第1容積脈波の波形 血圧波形 血圧値算出処理のフローチャート図 容積脈波に対応する変換圧を示した図 脈圧が最高状態における変換血圧波形を示した図 脈圧が最高から最低状態まで変化する過程であって、基準圧脈波が最大振幅となったとき変換血圧波形を示した図 脈圧が最低状態における変換血圧波形を示した図 容積脈波の一心拍を示した図 従来の血圧測定方法を示す図 従来の血圧測定方法を示す図 容積脈波を測定する測定装置のブロック図
<実施形態1>
実施形態1を、図1〜図13を参照して説明する。
測定装置10は、血圧測定用であり、図1から図3に示すように、被験者Wの上腕W1に装着されるカフ20と、カフ圧センサ21と、第1光電センサ30と、第2光電センサ35と、データ処理装置40とを備えて構成されている。
カフ20は、図1に示すように、被験者Wの上腕W1に装着可能とされており、内部にゴム袋が内蔵されている。ゴム袋はエアー供給用のポンプ22と接続されており、ゴム袋に対するエアーの供給と排気により、上腕W1における血管を圧迫する。
カフ圧センサ21は、カフ20内の空気の振動を、例えばゴムホースなどを経由して検知することで、カフ20によって圧迫された上腕W1から血管の圧力変動である圧脈波を測定する。
カフ圧センサ21は、増幅器25およびAC結合器26を介して、データ処理装置40の演算処理部41に接続されている。AC結合器26は、コンデンサでもよい。ハイパスフィルタでもよい。
第1光電センサ30は、被験者Wの手指W2など抹消部に取り付けられる。第1光電センサ30は、第1波長の光を用いて、被験者の静脈W3の容積変化に応じた第1容積脈波を測定する。第1波長は、可視光でもよい。可視光の波長は、約400nm〜約780nmである。
第1光電センサ30は、投光器30Aと受光器30Bを備えた、透過型のセンサでもよい。例えば、図2に示すように、投光器30Aと受光器30Bを、被験者Wの指W2を両側から挟み込むように取り付ける。投光器30Aから第1波長の光を出射し、静脈W3を透過した光を、受光器30Bによって受光することで、静脈W3の拍動変動に伴う吸光度の変化を血流量の相対変化である容積脈波として測定することが出来る。第1光電センサ30は、第1センサの一例である。
第1光電センサ30は、増幅器31およびAC結合器32を介して、データ処理装置40の演算処理部41に接続されている。第1光電センサ30の測定信号は、AC結合器32を介して直流成分がカットされ、交流成分が演算処理部41に入力される。AC結合器32はコンデンサでもよい。ハイパスフィルタでもよい。
第2光電センサ35は、被験者の胸部W4など心臓に近い位置に取り付けられる。第2光電センサ35は、第2波長の光を用いて、被験者の動脈W5の容積変化に応じた第2容積脈波を測定する。第2波長は、第1波長よりも波長が長い。第2波長は、赤外光でもよい。赤外光の波長は、例えば、約780nm〜1mmである。第2波長を第1波長よりも長くすることで、光が被験者Wの深部まで到達することから、深部に位置する動脈W5から容積脈波を検出することが出来る。
第2光電センサ35は、投光器35Aと受光器35Bを備えた、反射型のセンサでもよい。例えば、図4に示すように、投光器30Aと受光器30Bを、被験者Wの胸部W4に取り付ける。投光器35Aから第2波長の光を出射し、動脈W5で反射した光を、受光器35Bによって受光することで、動脈W5の拍動変動に伴う吸光度の変化を血流量の相対変化である容積脈波として測定することが出来る。第2光電センサ35は、第2センサの一例である。
第2光電センサ35は、増幅器36およびAC結合器37を介して、演算処理部41に接続されている。第2光電センサ35の測定信号は、AC結合器37を介して直流成分がカットされ、交流成分が演算処理部41に入力される。AC結合器37はコンデンサでもよい。ハイパスフィルタでもよい。
データ処理装置40は、増幅器25、31、36、AC結合器26、32、37、演算処理部41及び記憶部42を備えている。記憶部42には、例えば、圧脈波とカフ圧から公知のオシロメトリックス法にしたがって基準となる血圧値を算出するための基準血圧算出プログラムや、カフ圧と圧脈波および容積脈波との関係から血圧値を算出するため血圧値算出プログラム、後述する波形修正処理を実行するためのプログラムなど、各種プログラムが記憶されている。
演算処理部41は、図2および図3に示すように、タッチパネルなどの操作部14および液晶ディスプレイなどの表示部15と接続されており、操作部14を通じて演算処理部41への情報の入力や操作が行われ、表示部15を通じて演算処理結果が表示される。
演算処理部41は、記憶部42に記憶された血圧値算出プログラムに基づいて血圧値算出処理を実行し、血圧値を算出する。
以下に、図7に示すフローチャートを参照して、血圧算出処理を説明する。血圧値算出処理は、予備測定と本測定の2つの工程がある。
予備測定では、まず、カフ20を被験者Wの上腕W1に装着し、カフ圧センサ21において圧脈波が検出されなくなるまでカフ20のゴム袋へエアーを供給する。そして、図6の上段に示すように、圧脈波が出現しなくなる時点(カフ圧Pが最も高くなった状態)から再び圧脈波が出現しなくなる時点(カフ圧Pが最も低くなった状態)までカフ20を減圧し、図6の中段に示すように、カフ圧センサ21によって測定された圧脈波を基準圧脈波Pwとして演算処理部41に入力する(S11)。なお、図6における上段のグラフは、カフ圧の時間推移を示すものであって、縦軸が圧力[mmHg]、横軸が時間を示しており、中段のグラフは、カフ圧に対応する圧脈波の時間的推移を示すものであって、縦軸が圧脈波の強度、横軸が時間を示している。
そして、演算処理部41は、基準圧脈波Pwをもとに血圧算出プログラムに従って、最高血圧値Psおよび最低血圧値Pdを算出する。また、演算処理部41は、基準圧脈波Pwが最大振幅となったときのカフ圧Pを平均血圧値Pmとして決定する(S12)。
一方、被験者Wの指W2において、基準圧脈波Pwの測定時期と同時期、すなわち、基準時において、図6の下段に示すように、第1光電センサ30によって測定された第1容積脈波Vwが測定され、そのデータが演算処理部41に入力される(S13)。なお、下段のグラフは、カフ圧に対応する基準容積脈波の時間的推移を示すものであって、縦軸が容積脈波の強度、横軸が時間を示している。
そして、基準圧脈波Pwと第1容積脈波Vwとが入力された演算処理部41は、平均血圧値Pmと最低血圧値Pdとの間における各圧脈波面積(Pw5からPw9の一拍毎の面積)と、基準圧脈波Pwが最大振幅となったとき(平均血圧値Pmが測定された時)の圧脈波面積(Pw4における面積)との比率(Pw5/Pw4,Pw6/Pw4,・・・,Pw9/Pw4)を算出する。そして、各比率(Pw5/Pw4,Pw6/Pw4,・・・,Pw9/Pw4)を、対応する容積脈波Vwの面積に乗ずることで、図6の下段のグラフの一点鎖線で示すように、平均血圧から最低血圧まで(M4からM9)の変換容積脈波Mwを算出する(S14)。
また、最高血圧値Psから平均血圧値Pmまで(M1からM3)の変換容積脈波Mwは、平均血圧値Pmが測定された時のカフ圧P4と、第1容積脈波Vwに対応する各カフ圧Pnとの比率(P1/P4,P2/P4,P3/P4)を算出し、平均血圧値Pmにおける圧脈波面積Pw4に各カフ圧Pnの比率(P1/P4,P2/P4,P3/P4)を乗ずることで算出する(S15)。
変換容積脈波M4〜M9は、被験者の動脈をカフで圧迫した状態から減圧する過程で圧脈波が最大となる平均血圧時から前記圧脈波が消滅する最低血圧時までの期間について、圧脈波Pw4〜Pw9の面積変化に従って、第1容積脈波Vwの各心拍の脈波面積Stを変化させた波である。脈波面積Stは、図19に示すように、上部脈波面積S1と下部脈波面積S2の和(総脈波面積)である。
本測定では、被験者Wに第1光電センサ30と第2光電センサ35のみを取り付け、第1光電センサ30の測定信号である第1容積脈波Vwと第2光電センサ35の測定信号である第2容積脈波Vnを演算処理部41に入力する(S16)。
次に、演算処理部41は、第1光電センサ30の第1容積脈波Vwをデータ処理して、各拍について、第1容積脈波Vwの最高レベルV1、最低レベルV2を、それぞれ算出する(S17)。最高レベルV1は、ベースレベルVbを基準とした、各拍の最高点X1の脈波レベルであり、最低レベルV2は、ベースレベルVbを基準とした、各拍の最低点X2の脈波レベルである。レベルは、信号(容積脈波)の強度である。
演算処理部41は、S17で算出した第1容積脈波Vwの最高レベルV1、最低レベルV2に基づいて、心拍毎の血圧値を算出する(S18)。
具体的には、各拍の最高血圧Pmaxは、各心拍の最高レベルV1に基づいて、(1)式より、求めることが出来る。
また、各拍の最低血圧Pminは、各心拍の最低レベルV2の比率に基づいて、(2)式より、求めることが出来る。
Pmax=(V1/V1o)×Ps・・・(1式)
Pmin=(V2/V2o)×Pd・・・(2式)
V1oは、予備測定にて算出した変換容積脈波M4の最高レベル(最高点X1のレベル)である。V2oは、変換容積脈波M4の最低レベル(最低点X2のレベル)である。
演算処理部41は、上記演算を心拍毎に行うことにより、被験者の血圧値(最高血圧値Pmax、最低血圧値Pmin)を、心拍毎に算出し、その結果を、表示部15に表示する(S19)。
2.第1容積脈波Vwの補正処理
図9は、横軸を時間軸とした、血圧波形である。具体的には、被験者Wの状態が、副交感神経が支配的な状態(リラックスしている状態)から交換神経が支配的な状態(交換神経活動が活発な状態)に一時的に遷移した時の第1光電センサ30の第1容積脈波Vwと第2光電センサ35の第2容積脈波Vnの波形である。
TAは副交感神経が支配的な期間(リラックスしている状態)、TBは交換神経が支配的な期間(交換神経活動が活発な状態)、TCは副交感神経が支配的な期間(リラックスしている状態)である。こうした状態遷移は、例えば、安静状態の被験者が、強い刺激を受けた場合に起きることがある。
図9に示すように、交感神経が支配的な期間TBは、第1光電センサ30の第1容積脈波Vwと第2光電センサ35の第2容積脈波Vnの変化の仕方が逆になっている。具体的には、第1期間T1において、第1光電センサ30の第1容積脈波Vwは、各拍の最高点X1を結ぶ変化直線A1wの傾きが負(時間軸に対して低下)であるに対して、第2光電センサ35の第2容積脈波Vnは、各拍の最高点X1を結ぶ変化直線A1nの傾きが正(時間軸に対して上昇)である。
また、第2期間T2において、第1光電センサ30の第1容積脈波Vwは、各拍の最高点X1を結ぶ変化直線A2wの傾きが正(時間軸に対して上昇)であるに対して、第2光電センサ35の第2容積脈波Vnは、各拍の最高点X1を結ぶ変化直線A2nの傾きが負(時間軸に対して低下)である。
上記現象(2つの容積脈波の増減が逆になる現象)が起きる理由の一つとして、以下がある。強いストレス等により、交感神経活動が活発になったときに、全身抹消静脈血管が一時的に締まって、静脈W3の血流量が低下する。その一方、静脈血管が締まることにより、動脈W5の血流量が増加することが考えられる。
本測定中、演算処理部41は、第1光電センサ30の第1容積脈波Vwをデータ処理して血圧値を算出するが、上記のように、交感神経活動が活発になって、静脈W3の血流量が一時的に低下した場合、最低血圧値Pminを正確に計測できない懸念がある。
つまり、第1光電センサ30は、AC結合器32を介して、演算処理部41に接続されていることから、測定信号(第1容積脈波Vw)のうち、交流成分だけが、演算処理部41に入力される。
静脈W3の血流量が一時的に減少する第1期間T1において、本来的には、第1容積脈波Vwの各拍の最低レベルV2は減少し、最低血圧値Pminは低下する筈である。しかし、図9に示すように、各心拍の最低点X2を結ぶ直線B1wは傾きが正である。そのため、第1容積脈波Vwから求めると、最低血圧値Pminは上昇し、増減が逆になる。
また、一時的に減少した静脈W3の血流量が元の状態まで増加する第2期間T2において、本来的には、第1容積脈波Vwの各拍の最低レベルV2は増加し、最低血圧値Pminは増加する筈である。しかし、図9に示すように、各心拍の最低点X2を結ぶ直線B2wは傾きが負である。そのため、第1容積脈波Vwから求めると、最低血圧値Pminは低下し、増減が逆になる。
演算処理部41は、第1容積脈波Vwの各拍の最低レベルV2の誤差を抑えるため、本測定中に、以下の波形修正処理を行う。図10は、波形修正処理のフローチャートである。波形修正処理は、S100〜S160の7つのステップから構成されている。
演算処理部41は、S100にて、第1光電センサ30から第1容積脈波Vwを取得し、第2光電センサ35から第2容積脈波Vnを取得する。
演算処理部41は、S110にて、第1光電センサ30の第1容積脈波Vwと、第2光電センサ35の第2容積脈波Vnを比較する。
演算処理部41は、S120にて、2つの容積脈波Vw、Vnの変化が逆であるか、否かを判定する。具体的には、第1容積脈波Vwの各心拍の最高点X1の増減と、第2容積脈波Vnの各心拍の最高点X2の増減を比較して、2つの容積脈波Vw、Vnの増減が逆になっている場合、変化は逆と判断する。
演算処理部41は、S130にて、2つの容積脈波Vw、Vnの変化パターンを判断する。具体的には、第1容積脈波Vwの各拍の最高点X1が一時的に低下した後、増加して元の状態に復帰する一方、第2容積脈波Vnの各拍の最高点X1が一時的に上昇した後、低下して元の状態に復帰するパターンに該当するか判断する。
第1容積脈波Vwと第2容積脈波Vnが上記の変化パターンに該当している場合、演算処理部41は、補正処理の対象であると判断する。
演算処理部41は、補正処理の対象であると判断した場合、S140にて、第1期間T1を対象として、第1補正処理を実行する。
第1補正処理は、図12に示すように、各心拍の最低点X2が、時間軸に対して低下するように、第1容積脈波Vwの波形を補正する処理である。
この実施形態では、各心拍の上部脈波面積S1は変更せず、各心拍の最低点X2を、時間軸に対して傾きが負(マイナス)の第1補正線C1w上に移動させることにより、第1容積脈波Vwの波形を補正する。
例えば、第1期間T1の2拍目の場合、脈波面積S1は変更せず、最低点X2を図11の変化直線B1w上の点から、第1補正線C1w上の点に移動することで、波形を補正する。
第1補正線C1wは、第1期間T1がスタートする直前の最低点X2sを始点とし、時間軸(図12の横軸)に対して負の傾きを持った直線である。第1補正線C1wの傾きθは、予備測定で算出した変換容積脈波M4〜M9から求めたものでもよい。具体的には、平均血圧時の変換容積脈波M4の最高点X1と最低血圧時の変換容積脈派M9の最高点X1を結ぶ直線Dwの傾きθでもよい(図6参照)。直線Dwは、被験者の血圧が平均血圧から最低血圧に向かう時の容積脈波Vwの変化であることから、静脈W3の血流量が減少する第1期間T1において、第1容積脈波Vwを精度よく補正することが出来る。
演算処理部41は、その後、S150にて、第2期間T2を対象として、第2補正処理を実行する。
第2補正処理は、図12に示すように、各心拍の最低点X2が、時間軸に対して上昇するように、第1容積脈波Vwの波形を補正する処理である。
この実施形態では、各心拍の上部脈波面積S1は変更せず、各心拍の最低点X2を、時間軸に対して傾きが正(プラス)の第2補正線C2w上に移動させることにより、第1容積脈波Vwの波形を補正する。
例えば、第2期間T2の2拍目の場合、脈波面積S1は変更せず、最低点X2を図11の変化直線B2w上の点から、第2補正線C2w上の点に移動することで、波形を補正する。
第2補正線C2wは、第1容積脈波Vwの最高点X1の増減が反転する反転軸Cを中心として、第1補正線C1wと線対称な直線でもよい。
第1補正処理と第2補正処理の実行により、第1容積脈波Vwは、図11の波形から図12の波形に補正される。
演算処理部41は、その後、S160にて、第1期間T1と第2期間T2を対象として、補正後の第1容積脈波Vwに基づいて、心拍毎に血圧値を算出する。
具体的には、各心拍について、補正後の第1容積脈波Vwの最高レベルV1に基づいて、(1)式より、最高血圧値Pmaxを算出する。また、補正後の第1容積脈波Vwの最低レベルV2に基づいて、(2)式より、最低血圧値Pminを算出する。
尚、S120でYES判定された後、S130でNO判定された場合、測定系に何等かの異常があると考えられるので、S170にて、エラー処理を行う。
図13は、被験者の神経活動が遷移した時(TA⇒TB⇒TC)の血圧波形を示している。PC1は動脈部の血圧測定値(閉塞型血圧測定法)、PC2は抹消静脈部の血圧測定(開放型血圧測定法)である。CC1は動脈部の最高血圧の変化直線、CC2は抹消静脈部の最低血圧の変化直線であり、補正後の第1容積脈波Vwに基づいて算出した結果である。
抹消静脈部の最低血圧の変化直線CC2は、血流量が一時的に減少する第1期間T1は低下し、一時的に減少した血流量が元の状態まで増加する第2期間T2は上昇しており、最低血圧の現実の挙動(変化)とほぼ一致する。
3.効果説明
第1光電センサ30と演算処理部41を、AC結合器32を用いて接続する場合、第1光電センサ30の測定信号のうち、直流に近い成分(周波数の低い成分)は失われてしまう。そのため、被験者Wの血流量が一時的に変化した時に、第1光電センサ30の測定する第1容積脈波Vwの波形誤差が生じる可能性があった。つまり、血流量が一時的に変化した場合、容積脈波Vwの中央値の変動成分(図12の直線LC1、LC2)が失われ、第1容積脈波Vwの波形誤差が生じる可能性があった。
本発明では、被験者Wの血流量が一時的に変化した場合、第1補正処理と第2補正処理を実行して、第1容積脈波Vwの波形を補正する。補正処理の実行により、被験者Wの実際の血流量の変化に対する第1容積脈波Vwの波形の乖離を抑えることが出来る。よって、被験者の血流量が一時的に変化する期間について、被験者Wの血圧値(最高血圧、最低血圧)を精度よく計測することが出来る。
<実施形態2>
図14は、血圧算出処理のフローチャート図である。実施形態2は、実施形態1に対して血圧算出処理が相違している。
血圧算出処理は、S11〜S26から構成されている。S11〜S15までの処理は、実施形態1と共通しているため、S21〜S26までの処理を主に説明する。
演算処理部41は、予備測定においてS11〜S15の処理を行い、S14にて基準平均血圧から最低血圧までの変換容積脈波M4〜M9を算出し、S15にて、最高血圧から基準平均血圧までの変換容積脈波M1〜M3をそれぞれ算出する。
その後、演算処理部41は、図6に示す最高血圧値Psから最低血圧値Pdまでの変換容積脈波Mw(M1からM9)について、図15に示すように、対応する脈圧(PP1からPP9)を変換圧PPとして算出する(S21)。ここで、図15は、例えば、循環器系に障害などにより、被験者Wの圧脈波が直線的に変化せず凹状となるように二次曲線的に変化している。
そして、この各脈圧PP(PP1からPP9)および図6の各カフ圧(P1からP9)を元に各変換容積脈波Mw(M1からM9)における血圧値(最高血圧値、最低血圧値、平均血圧値)を算出する。そして、これらを変換血圧波形、変換血圧テーブルもしくは変換血圧方程式から算出した変換血圧算出値として記憶部42に記憶する(S22)。なお、変換血圧波形、変換血圧テーブルおよび変換血圧算出値が変換血圧データに相当する。
具体的には、血圧値の算出は、まず、各変換容積脈波(M1からM9)を求め、基準圧脈波Pwによる脈圧(Ps−Pd)を変換容積脈波M1の脈圧(PP1)として基準比率を算出する。そして、基準比率を各変換容積脈波(M2〜M9)に乗ずることで、対応する脈圧(PP1からPP9)を算出する。
そして、基準圧脈波Pwの測定時における各カフ圧Pnを、図15に示すPs1からPs9とし、以下の式(1)および(2)より、変換容積脈波Mw(M1からM9)に対応する最高血圧値(Ps1からPs9)から最低血圧値(Pd1からPd9)を算出する。ここで、Pmnは毎拍の変換容積脈波Mwのn番目における平均血圧値、Psnは毎拍の変換容積脈波Mwのn番目における最高血圧値、Pdnは毎拍の変換容積脈波Mwのn番目における最低血圧値、PPnは毎拍の変換容積脈波Mwのn番目における脈圧とする。
Pmn=Psn−((PPn/3)×2)・・・・(3)
Pdn=Pmn−(PPn/3)・・・・・・・(4)
そして、例えば、図15から図18に示すように、脈圧が最高状態(H1)における変換血圧波形(図16参照)、脈圧が最低状態(H9)における変換血圧波形(図18参照)、脈圧が最高から最低状態まで変化する過程において基準圧脈波Pwが最大振幅となったとき(H4)の変換血圧波形(図17参照)など、各脈圧の変換血圧波形を記憶部42に記憶する。以上のように予備測定による毎拍の変換容積脈波Mwに対応する血圧値が決定される。
本測定では、被験者Wに光電センサ30のみを取り付け、光電センサ30によって測定された第1容積脈波Vwを演算処理部41に入力する(S23)。演算処理部41は、図19に示すように、入力された第1容積脈波Vwから1心拍毎の脈波面積Stを、容積脈波の積分値より算出する(S24)。脈波面積Stは上部脈波面積S1と下部脈波面積S2の和(総脈波面積)である。下部脈波面積は、第1容積脈波Vwの総脈波面積のうち、2つの最低点X2を結ぶ直線C1wの下側の面積、上部脈波は上側の面積である。
そして、脈波面積Stに対応する血圧値(最高血圧値、最低血圧値、平均血圧値)を予備測定によって求めた変換血圧波形もしくは変換血圧テーブルから決定し(S25)、連続した血圧値の推移を表示部15に表示する(S26)。
また、演算処理部41は、本測定中、図10に示す波形修正処理を実行する。そして、S120、S130でYES判定された場合には、第1補正処理と第2補正処理を実行して、補正後の第1容積脈波Vwの脈波面積Stに基づいて、血圧値を決定する。
このようにすることで、血流量が一時的に変化している期間(図9の期間TB)、被験者の血圧値を精度よく計測することが出来る。
本実施形態2によると、予備測定において得られた基準圧脈波Pwと、基準圧脈波Pwの測定期間における複数拍の第1容積脈波Vwに基づいて、各カフ圧Pnの変化に対応する脈圧PPnを算出する。そして、これらの脈圧PPnを元に変換血圧波形もしくは変換血圧テーブルを決定し、この変換血圧テーブルを参照することで、容積脈波の心拍毎の血圧値(最高血圧値、最低血圧値、平均血圧値)を決定することができる。
例えば、被験者Wに循環器系に障害などがあることで、被験者Wの圧脈波が直線的に変化せず二次曲線的に変化する場合であっても、平均血圧における圧脈波と平均血圧における容積脈波との比率(図15の一点鎖線α)などに基づいて被験者の心拍毎の血圧値を算出するものに比べて、血圧値の算出精度を高めることができる。
また、本実施形態によると、予備測定において、圧脈波が出現しなくなるまでカフ圧Pが高められた状態から減圧してカフ圧Pが最も低くなった状態までの期間において基準圧脈波Pwと第1容積脈波Vwを測定し、変換血圧テーブルを算出しているから、本測定において被験者Wの第1容積脈波Vwの変化に併せて血圧値を高精度に求めることができる。
<他の実施形態>
本明細書で開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような種々の態様も含まれる。
(1)上記実施形態では、第1光電センサ30によって被験者の静脈から第1容積脈波を測定し、第2光電センサ35によって被験者の動脈から第2容積脈波を測定する構成にした。被験者の静脈W3と動脈W5からそれぞれ容積脈波Vw、Vnを検出することが出来れば、センサの種類は光電式に限定されない。例えば、被験者の静脈W3や動脈W5の近傍に圧力センサを取り付けて容積脈波を検出してもよく、また、超音波センサによる超音波の受信により容積脈波を検出してもよい。さらには、圧電シート、静電シートまたは赤外線カメラ等を用いて容積脈波を検出してもよい。
(2)上記実施形態では、第1光電センサ30を被験者の手指に取り付けた例を示した。第1光電センサ30の取り付け場所は、静脈W3に近い場所であれば、他の部位でもよい。例えば、耳タブに取り付けてもよい。
(3)上記実施形態では、第2光電センサ35を被験者の胸部に取り付けた例を示した。第2光電センサ35の取り付け場所は、動脈W5に近い場所であれば、他の部位でもよい。例えば、上腕などでもよい。
(4)上記実施形態では、第1光電センサ30は、第1容積脈波Vwの検出光として可視光を用い、第2光電センサ35は、第2容積脈波Vnの容積脈波の検出光として赤外光を用いた。2つの検出光は、必ずしも異なる波長である必要はなく、同一波長でもよい。
(5)上記実施形態では、第1補正処理にて、各心拍の上部脈波面積S1は変更せず、各心拍の最低点X2を、時間軸に対して傾きが負(マイナス)の第1補正線C1w上に移動させることにより、第1容積脈波Vwの波形を補正した。第1補正処理は、各心拍の最低点X2が、時間軸に対して低下するように、第1容積脈波の波形を補正するものであれば、別の方法で、補正してもよい。例えば、第1補正線C1wのデータを参照テーブルとして用意しておき、参照テーブルを用いて、各心拍の最低点X2を、時間軸に対して低下するように、変化させてもよい。第2補正処理についても、同様である。
(6)上記実施形態1では、被験者の各拍の血圧値Pの算出方法として、第1容積脈波Vwのレベルを用いた算出方法を説明した。実施形態2では、第1容積脈波Vwの脈波面積Sを用いた算出方法を説明した。血圧値Pの算出方法は、第1容積脈波Vwに基づいて算出するものであれば、如何様でもよい。
(7)上記実施形態1、2では、第1容積脈波Vwから被験者の各拍の血圧値Pを算出して表示した。血圧値Pは必ずしも算出する必要はなく、第1容積脈波Vwの推移を表示するようにしてもよい。
10 測定装置
20 カフ
21 カフ圧センサ
30 第1光電センサ(本発明の「第1センサ」の一例)
35 第2光電センサ(本発明の「第2センサ」の一例)
26、32、37 AC結合器
40 データ処理装置
41 演算処理部

Claims (7)

  1. 測定装置であって、
    被験者の静脈の容積変化に応じた第1容積脈波を測定する第1センサと、
    被験者の動脈の容積変化に応じた第2容積脈波を測定する第2センサと、
    前記第1センサと前記第2センサに対してACカップリングされた演算処理部と、を備え、
    前記演算処理部は、前記第1容積脈波と前記第2容積脈波の2つの容積脈波について、各心拍の最高点の増減が逆になった場合、
    前記第1容積脈波の各心拍の最高点が低下し、前記第2容積脈波の各心拍の最高点が上昇する第1期間は、各心拍の最低点が、時間に対して低下するように、前記第1容積脈波の波形を補正する第1補正処理を実行し、
    前記第1容積脈波の各心拍の最高点が上昇し、前記第2容積脈波の各心拍の最高点が低下する第2期間は、各心拍の最低点が、時間に対して上昇するように、前記第1容積脈波の波形を補正する第2補正処理を実行する、測定装置。
  2. 請求項1に記載の測定装置であって、
    前記第1センサは、第1波長の光電センサ、
    前記第2センサは、第1波長よりも波長の長い第2波長の光電センサである、測定装置。
  3. 請求項1又は請求項2に記載の測定装置であって、
    前記第1センサは、被験者の耳タブ又は指に取り付けられ、
    前記第2センサは、被験者の胸部に取り付けられる、測定装置。
  4. 請求項1〜請求項3のいずれか一項に記載の測定装置であって、
    前記第1補正処理では、時間に対して低下する第1補正線に対して、各心拍の最低点が一致するように、前記第1容積脈波の波形を補正し、
    前記第2補正処理では、時間に対して上昇する第2補正線に対して、各心拍の最低点が一致するように、前記第1容積脈波の波形を補正する、測定装置。
  5. 請求項4に記載の測定装置であって、
    変換容積脈波は、被験者の動脈をカフで圧迫した状態から減圧する過程で圧脈波が最大となる平均血圧時から前記圧脈波が消滅する最低血圧時までの期間について、前記圧脈波の面積変化に従って、前記第1容積脈波の各心拍の脈波面積を変化させた波であり、
    前記第1補正線の傾きは、前記変換容積脈波の平均血圧時の最高点と最低血圧時の最高点を結んだ直線の傾きに等しい、測定装置。
  6. 請求項1〜請求項5のいずれか一項に記載の測定装置であって、
    被験者の血管を圧迫するカフと、
    前記カフによって圧迫された部分から圧脈波を測定するカフ圧センサを備え、
    前記演算処理部は、
    カフ圧の変化に伴う前記圧脈波と前記第1容積脈波を同時に測定する予備測定において、複数拍の前記圧脈波からなる基準圧脈波を測定すると共に、前記基準圧脈波を測定する基準時に、各圧脈波に対応する複数の第1容積脈波を測定し、前記基準圧脈波における一拍毎の各圧脈波面積と前記基準圧脈波が最大振幅となったときの圧脈波面積との比率を、対応する前記第1容積脈波の面積に乗ずることで平均血圧値から最低血圧値までの変換血圧データを決定し、かつ、平均血圧値の測定時におけるカフ圧と、複数の前記第1容積脈波に対応する各カフ圧との比率を、平均血圧値の測定時における前記基準圧脈波の圧脈波面積に乗ずることで最高血圧値から平均血圧値までの変換血圧データを決定し、
    前記変換血圧データと、前記予備測定後に行われる本測定において得られた前記第1容積脈波と、に基づいて被験者の心拍毎の血圧値を算出する測定装置。
  7. 請求項6に記載の測定装置であって、
    前記予備測定は、前記圧脈波が出現しないカフ圧にまで高めてから減圧させた期間における前記圧脈波および前記第1容積脈波を測定する、測定装置。
JP2020046165A 2020-03-17 2020-03-17 測定装置 Active JP6722932B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020046165A JP6722932B1 (ja) 2020-03-17 2020-03-17 測定装置
CN202110021541.2A CN112826478B (zh) 2020-03-17 2021-01-08 测定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020046165A JP6722932B1 (ja) 2020-03-17 2020-03-17 測定装置

Publications (2)

Publication Number Publication Date
JP6722932B1 true JP6722932B1 (ja) 2020-07-15
JP2021145765A JP2021145765A (ja) 2021-09-27

Family

ID=71523806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020046165A Active JP6722932B1 (ja) 2020-03-17 2020-03-17 測定装置

Country Status (2)

Country Link
JP (1) JP6722932B1 (ja)
CN (1) CN112826478B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6941720B1 (ja) * 2020-12-17 2021-09-29 針次 近藤 生体情報測定装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3725256B2 (ja) * 1996-08-23 2005-12-07 修 栃久保 血圧計
WO2003071938A1 (en) * 2002-02-22 2003-09-04 Datex-Ohmeda, Inc. Monitoring physiological parameters based on variations in a photoplethysmographic signal
DE10302997A1 (de) * 2003-01-27 2004-08-05 Bbs Motorsport & Engineering Gmbh Leichtmetallrad mit verbessertem Reifensitz
JP5296312B2 (ja) * 2003-03-12 2013-09-25 イエール ユニバーシティ 光電容積脈波法を使用した血液量評価方法
JP4117211B2 (ja) * 2003-04-18 2008-07-16 株式会社エー・アンド・デイ 血管弾性測定装置
JP2006102264A (ja) * 2004-10-06 2006-04-20 Terumo Corp 血圧監視装置および血圧監視方法
WO2009125811A1 (ja) * 2008-04-09 2009-10-15 旭化成株式会社 血圧推定装置及び血圧推定方法
JP2011234876A (ja) * 2010-05-10 2011-11-24 K & S:Kk 血圧計測装置
US8761853B2 (en) * 2011-01-20 2014-06-24 Nitto Denko Corporation Devices and methods for non-invasive optical physiological measurements
JP6306463B2 (ja) * 2014-07-30 2018-04-04 日本光電工業株式会社 生体情報測定装置、生体情報測定方法、及びプログラム
CN107072560B (zh) * 2014-10-20 2021-02-26 浜松光子学株式会社 血压测定装置和存储血压测定程序的计算机可读取的存储介质
JP6176693B1 (ja) * 2016-11-07 2017-08-09 株式会社ケーアンドエス 血圧測定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6941720B1 (ja) * 2020-12-17 2021-09-29 針次 近藤 生体情報測定装置
JP2022096139A (ja) * 2020-12-17 2022-06-29 針次 近藤 生体情報測定装置

Also Published As

Publication number Publication date
CN112826478A (zh) 2021-05-25
JP2021145765A (ja) 2021-09-27
CN112826478B (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
JP5364038B2 (ja) 血圧測定装置および血圧測定方法
JP3774396B2 (ja) オシロメトリック式自動血圧測定装置
US20020095092A1 (en) Pulse wave measuring apparatus and pulse wave measuring method
US8348851B2 (en) Blood pressure measurement device and control method of the same
US20110152650A1 (en) Adaptive pump control during non-invasive blood pressure measurement
US8517951B2 (en) Blood pressure information measurement device and method of calculating arterial stiffness index with the device
JP3590613B2 (ja) 振幅増加指数算出装置および動脈硬化検査装置
US9149194B2 (en) Electronic sphygmomanometer
JP2003175007A (ja) 動脈硬化診断装置
US6582374B2 (en) Automatic blood-pressure measuring apparatus
US8747326B2 (en) Electronic sphygmomanometer
JP2007125247A (ja) 血圧測定用カフ、血圧測定装置及び血圧測定方法
JP2013150692A (ja) 測定装置および測定方法
JP6722932B1 (ja) 測定装置
JP6176693B1 (ja) 血圧測定装置
JP3790212B2 (ja) 血圧測定装置
US20200397318A1 (en) Pulse transit time measuring apparatus and blood pressure measuring apparatus
JP2011234876A (ja) 血圧計測装置
US20200000343A1 (en) Blood Pressure Monitor, Assessment System, and Method of Controlling Blood Pressure Monitor for Assessing Autonomic Nerve Function of a Subject
JPH04259448A (ja) 電子血圧計
JP5107535B2 (ja) 血圧測定装置
JPH03123535A (ja) 電子血圧計
JPH08107887A (ja) 血圧監視装置
JP3506268B2 (ja) 電子血圧計
JP4327524B2 (ja) 負荷変化時血圧異常検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200326

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200326

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200616

R150 Certificate of patent or registration of utility model

Ref document number: 6722932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250