JP6721121B2 - 制御カスタマイズシステム、制御カスタマイズ方法および制御カスタマイズプログラム - Google Patents
制御カスタマイズシステム、制御カスタマイズ方法および制御カスタマイズプログラム Download PDFInfo
- Publication number
- JP6721121B2 JP6721121B2 JP2019520468A JP2019520468A JP6721121B2 JP 6721121 B2 JP6721121 B2 JP 6721121B2 JP 2019520468 A JP2019520468 A JP 2019520468A JP 2019520468 A JP2019520468 A JP 2019520468A JP 6721121 B2 JP6721121 B2 JP 6721121B2
- Authority
- JP
- Japan
- Prior art keywords
- control
- user
- objective function
- term
- behavior
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 20
- 230000006870 function Effects 0.000 claims description 96
- 238000003066 decision tree Methods 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 3
- 230000006399 behavior Effects 0.000 description 23
- 238000010586 diagram Methods 0.000 description 9
- 230000009471 action Effects 0.000 description 7
- 238000011217 control strategy Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/048—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/182—Selecting between different operative modes, e.g. comfort and performance modes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/08—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
- B60W40/09—Driving style or behaviour
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/082—Selecting or switching between different modes of propelling
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/01—Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0019—Control system elements or transfer functions
- B60W2050/0028—Mathematical models, e.g. for simulation
- B60W2050/0029—Mathematical model of the driver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0062—Adapting control system settings
- B60W2050/0075—Automatic parameter input, automatic initialising or calibrating means
- B60W2050/0083—Setting, resetting, calibration
- B60W2050/0088—Adaptive recalibration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/215—Selection or confirmation of options
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/041—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a variable is automatically adjusted to optimise the performance
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Human Computer Interaction (AREA)
- Feedback Control In General (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Description
図1は、本発明による制御カスタマイズシステムの第一の実施形態の構成例を示すブロック図である。図2は、本発明による制御カスタマイズシステムの第一の実施形態の構成を示す説明図である。本実施形態の制御カスタマイズシステムは、装置の制御をカスタマイズする。
次に、本発明による制御カスタマイズシステムの第二の実施形態を説明する。図6は、本発明による制御カスタマイズシステムの第二の実施形態の構成例を示す説明図である。
101 制御部
102 装置
103 計画部
104 プロファイラ
105 状態観測部
106 状態予測部
107 出力
Claims (10)
- 装置の制御をカスタマイズする制御カスタマイズシステムであって、
装置またはユーザの状況に応じて、当該ユーザの行動を予測するプロファイラと、
前記ユーザが所望するタスクを表す適切な目的関数の集合と、当該目的関数を実行するように装置を制御するための要素を表す目的関数の項とを決定し、当該目的関数の項を前記プロファイラの予測に基づいて調整する計画部とを備え、
前記プロファイラは、決定木プロファイルまたは回帰木プロファイルを用いてユーザの行動を予測し、
前記計画部は、予測された前記行動に関係のない目的関数の項について正則化パラメータをゼロに設定することで当該目的関数の項を非活性化する
ことを特徴とする制御カスタマイズシステム。 - 調整された目的関数の項を最適化することによって装置を制御するコントローラを備えた
請求項1記載の制御カスタマイズシステム。 - プロファイラは、状況に応じてユーザの行動を特定する決定木または分類木で表されるプロファイルを用いて、ユーザの行動を予測する
請求項1または請求項2記載の制御カスタマイズシステム。 - プロファイラは、ユーザの操作により装置が収集したデータに基づいてプロファイルを更新する
請求項3記載の制御カスタマイズシステム。 - プロファイラは、装置の制御に関連する異なる数量の間の相対的な重要性を予測し、
計画部は、前記相対的な重要性に基づいて、適切な目的関数の集合および当該目的関数の項を決定する
請求項1から請求項4のうちのいずれか1項に記載の制御カスタマイズシステム。 - 計画部は、ユーザの行動に応じて目的関数の項の内容を決定するエキスパートシステムを用いて、装置の制御の最適化に用いる目的関数を決定する
請求項1から請求項5のうちのいずれか1項に記載の制御カスタマイズシステム。 - プロファイラは、現在および予測される装置の状況に応じ、学習されたプロファイル、または、ユーザもしくはオペレータの好みに基づいて、装置に対する多数の可能な目的関数の中から最も重要な行動を選択する
請求項1から請求項6のうちのいずれか1項に記載の制御カスタマイズシステム。 - 計画部は、学習された決定木または回帰木から予測または取得された線形の目的関数を使用してオンラインでコスト関数を更新する
請求項1から請求項7のうちのいずれか1項に記載の制御カスタマイズシステム。 - 装置の制御をカスタマイズする制御カスタマイズ方法であって、
装置またはユーザの状況に応じて、決定木プロファイルまたは回帰木プロファイルを用いて当該ユーザの行動を予測し、
前記ユーザが所望するタスクを表す適切な目的関数の集合と、当該目的関数を実行するように装置を制御するための要素を表す目的関数の項とを決定し、
予測された前記行動に関係のない目的関数の項について正則化パラメータをゼロに設定することで当該目的関数の項を非活性化するように調整する
ことを特徴とする制御カスタマイズ方法。 - 装置の制御をカスタマイズするコンピュータに適用される制御カスタマイズプログラムであって、
前記コンピュータに、
装置またはユーザの状況に応じて、当該ユーザの行動を予測するプロファイル処理、および、
前記ユーザが所望するタスクを表す適切な目的関数の集合と、当該目的関数を実行するように装置を制御するための要素を表す目的関数の項とを決定し、当該目的関数の項を前記予測に基づいて調整する計画処理を実現させ、
前記プロファイル処理で、決定木プロファイルまたは回帰木プロファイルを用いてユーザの行動を予測させ、
前記計画処理で、予測された前記行動に関係のない目的関数の項について正則化パラメータをゼロに設定することで当該目的関数の項を非活性化させる
ための制御カスタマイズプログラム。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/004996 WO2018146802A1 (en) | 2017-02-10 | 2017-02-10 | Control customization system, control customization method, and control customization program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019531971A JP2019531971A (ja) | 2019-11-07 |
JP6721121B2 true JP6721121B2 (ja) | 2020-07-08 |
Family
ID=63108085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019520468A Active JP6721121B2 (ja) | 2017-02-10 | 2017-02-10 | 制御カスタマイズシステム、制御カスタマイズ方法および制御カスタマイズプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US11579574B2 (ja) |
JP (1) | JP6721121B2 (ja) |
WO (1) | WO2018146802A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7213183B2 (ja) * | 2016-12-15 | 2023-01-26 | ボレアリス エージー | 高温溶液重合プロセスでポリエチレンコポリマーを製造する為の新規な触媒系 |
US11273836B2 (en) * | 2017-12-18 | 2022-03-15 | Plusai, Inc. | Method and system for human-like driving lane planning in autonomous driving vehicles |
CN109263648B (zh) * | 2018-11-16 | 2021-01-15 | 深圳市元征科技股份有限公司 | 一种驾驶行为的评价方法、装置及设备 |
US20210039664A1 (en) * | 2019-08-08 | 2021-02-11 | Toyota Jidosha Kabushiki Kaisha | Machine learning system for modifying adas behavior to provide optimum vehicle trajectory in a region |
CN113515698B (zh) * | 2021-06-11 | 2024-03-26 | 广汽本田汽车有限公司 | 网约车的个性化定制控制方法、系统、装置和存储介质 |
US20230155387A1 (en) * | 2021-11-17 | 2023-05-18 | BluWave Inc. | Systems and methods for dynamic tuning of controller in power grids |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2588546B2 (ja) | 1987-10-31 | 1997-03-05 | マツダ株式会社 | 車両の運動特性制御方法 |
US7797062B2 (en) * | 2001-08-10 | 2010-09-14 | Rockwell Automation Technologies, Inc. | System and method for dynamic multi-objective optimization of machine selection, integration and utilization |
US7292152B2 (en) * | 2003-06-12 | 2007-11-06 | Temic Automotive Of North America, Inc. | Method and apparatus for classifying vehicle operator activity state |
EP1754621B1 (en) * | 2005-08-18 | 2009-10-14 | Honda Research Institute Europe GmbH | Driver assistance system |
US20090216590A1 (en) * | 2007-12-12 | 2009-08-27 | Hintz Kenneth J | Inferring System Goal Values in An Inverse Goal Lattice |
US8725667B2 (en) * | 2008-03-08 | 2014-05-13 | Tokyo Electron Limited | Method and system for detection of tool performance degradation and mismatch |
JP5056707B2 (ja) | 2008-10-01 | 2012-10-24 | トヨタ自動車株式会社 | 車速制御装置 |
JP2010155528A (ja) | 2008-12-26 | 2010-07-15 | Toyota Motor Corp | 選択的非線形最適化演算による車輌運転制御方法 |
US8190330B2 (en) * | 2009-03-06 | 2012-05-29 | GM Global Technology Operations LLC | Model based predictive control for automated lane centering/changing control systems |
US8948954B1 (en) | 2012-03-15 | 2015-02-03 | Google Inc. | Modifying vehicle behavior based on confidence in lane estimation |
DE102013101639A1 (de) * | 2013-02-19 | 2014-09-04 | Continental Teves Ag & Co. Ohg | Verfahren und Vorrichtung zur Bestimmung eines Fahrbahnzustands |
JP6483667B2 (ja) * | 2013-05-30 | 2019-03-13 | プレジデント アンド フェローズ オブ ハーバード カレッジ | ベイズの最適化を実施するためのシステムおよび方法 |
US20170177739A1 (en) * | 2015-12-22 | 2017-06-22 | Intel Corporation | Prediction using a data structure |
-
2017
- 2017-02-10 US US16/349,315 patent/US11579574B2/en active Active
- 2017-02-10 WO PCT/JP2017/004996 patent/WO2018146802A1/en active Application Filing
- 2017-02-10 JP JP2019520468A patent/JP6721121B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
US20200192307A1 (en) | 2020-06-18 |
JP2019531971A (ja) | 2019-11-07 |
WO2018146802A1 (en) | 2018-08-16 |
US11579574B2 (en) | 2023-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6721121B2 (ja) | 制御カスタマイズシステム、制御カスタマイズ方法および制御カスタマイズプログラム | |
CN112805198B (zh) | 用于自主驾驶的个人驾驶风格学习 | |
JP7143250B2 (ja) | 自車両の将来挙動および関連する軌道を決定することにより、自車両の操作者が当該自車両を制御するのを支援する方法およびシステム | |
CN111098852B (zh) | 一种基于强化学习的泊车路径规划方法 | |
Ntousakis et al. | Optimal vehicle trajectory planning in the context of cooperative merging on highways | |
CN114326696B (zh) | 用于自动驾驶车辆中使用的控制器的自动参数调整框架 | |
JP2023504223A (ja) | 自動または半自動運転車両の適応制御 | |
US20180292830A1 (en) | Automatic Tuning of Autonomous Vehicle Cost Functions Based on Human Driving Data | |
KR20200095378A (ko) | 사람의 주행 데이터를 트레이닝 데이터로서 사용하여 강화 학습을 지원함으로써 맞춤형 경로 플래닝을 수행하는 학습 방법 및 학습 장치 | |
JP2019502582A5 (ja) | ||
CN110688920B (zh) | 一种无人驾驶控制方法、装置及服务器 | |
JP2023502797A (ja) | 自動運転車または半自動運転車のアダプティブコントロール | |
JP2019505889A (ja) | コスト関数設計システム、コスト関数設計方法、およびコスト関数設計プログラム | |
CN111930015A (zh) | 一种无人车控制方法及装置 | |
KR20220116319A (ko) | 지능형 차량 제어 방법, 장치 및 제어 시스템 | |
CN113791615A (zh) | 一种混合车辆队列分布式模型预测控制方法 | |
KR20210107517A (ko) | 차량 작동 역학을 해결하기 위한 모델 참조 적응형 제어 알고리즘 | |
CN113655794B (zh) | 基于鲁棒模型预测控制的多车协同控制方法 | |
WO2020098226A1 (en) | System and methods of efficient, continuous, and safe learning using first principles and constraints | |
WO2024039866A1 (en) | Real time trajectory planning system with dynamic modelling of component level system latency for self driving vehicles | |
KR102311704B1 (ko) | 운전자 감정에 따른 운전자와 차량간의 상호작용 제공 장치 및 그 방법 | |
US20240160548A1 (en) | Information processing system, information processing method, and program | |
JP6299289B2 (ja) | パラメータ学習装置、運転支援装置、及びプログラム | |
Zhao et al. | Inverse Reinforcement Learning and Gaussian Process Regression-based Real-Time Framework for Personalized Adaptive Cruise Control | |
KR20190103017A (ko) | 주행 로봇의 제어 방법 및 그 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190415 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200312 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200519 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200601 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6721121 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |