JP6712797B2 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP6712797B2
JP6712797B2 JP2015254602A JP2015254602A JP6712797B2 JP 6712797 B2 JP6712797 B2 JP 6712797B2 JP 2015254602 A JP2015254602 A JP 2015254602A JP 2015254602 A JP2015254602 A JP 2015254602A JP 6712797 B2 JP6712797 B2 JP 6712797B2
Authority
JP
Japan
Prior art keywords
power
output
power factor
current
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015254602A
Other languages
English (en)
Other versions
JP2017118782A (ja
Inventor
藤井 裕之
裕之 藤井
後藤 周作
周作 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015254602A priority Critical patent/JP6712797B2/ja
Publication of JP2017118782A publication Critical patent/JP2017118782A/ja
Application granted granted Critical
Publication of JP6712797B2 publication Critical patent/JP6712797B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、力率制御を行う電力変換装置に関する。
力率制御には、電流の位相シフト量を調整して行う方式や、有効電力に重畳する無効電力量を調整して行う方式がある。後者の無効電力重畳型の力率制御は、構成がシンプルなこともあり、太陽電池のパワーコンディショナ等において広く使用されている(例えば、特許文献1参照)。一般的に、パワーコンディショナの最大定格出力は、定格有効電力で規定されており、パワーコンディショナは定格有効電力の範囲内で電力を出力する。
一般的な無効電力重畳型の力率制御では、パワーコンディショナ内のインバータを駆動制御する制御回路内において、有効電流指令値に重畳する無効電流指令値を調整することにより力率を制御する。またインバータから出力される電力を定格有効電力以下に抑えるため、インバータの出力電力が定格有効電力を超えると、インバータの前段に設けられたDC−DCコンバータを制御して、インバータに入力される電力を制限する。
特開2013−93982号公報
上記構成において力率が1未満の場合、力率が1の場合と比較して出力皮相電力が増加する。皮相電力の増加に伴いインバータに流れる電流も増加するため、インバータの構成部品に対するストレスが増加する。構成部品の寿命や機器信頼性を考慮すると理想的には、最低力率時の最大電流に耐えうる電流耐性設計がなされるべきであるが、当該耐性設計を採用するとコストが増大する。
本発明はこうした状況に鑑みなされたものであり、その目的は、コストを抑えつつ、信頼性が高い回路設計を実現できる電力変換装置を提供することにある。
上記課題を解決するために、本発明のある態様の電力変換装置は、直流電源から出力される直流電力を交流電力に変換し、当該交流電力を系統へ供給するインバータと、前記インバータから出力される有効電力、及び前記インバータから出力される無効電力を制御する制御回路と、を備える電力変換装置であって、前記制御回路は、前記有効電力が所定の有効電力制限値を超えたとき、及び前記皮相電力が所定の皮相電力制限値を超えたとき、の少なくとも一方を満たしたとき、前記インバータの出力電力を、前記有効電力制限値および前記皮相電力制限値以下に抑制するよう制御する。
なお、以上の構成要素の任意の組み合わせ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、コストを抑えつつ、信頼性が高い回路設計を実現できる。
本発明の実施の形態に係る電力変換装置の構成を説明するための図である。 電力変換装置の出力電力値と、有効電力制限値の関係を示す図である。 本発明の実施の形態1に係る出力測定部及び出力制限部の構成例を示す図である。 実施の形態1に係る出力制限部における超過判定処理の内容をまとめたテーブルを示す図である。 実施の形態1に係る、電力変換装置の出力電力値と、有効電力制限値、皮相電力制限値の関係を説明するための図である。 本発明の実施の形態2に係る出力測定部及び出力制限部の構成例を示す図である。 実施の形態2に係る、電力変換装置の出力電力値と、有効電力制限値、皮相電力制限値の関係を説明するための図である。 コンバータ駆動制御部による電流制御が、インバータ駆動制御部による電流制御より応答が遅い場合における、出力電力の制限処理を説明するための図である。 実施例1に係る電力変換装置の構成を説明するための図である。 図10(a)−(b)は、急変制限前の力率変化と、急変制限後の力率変化の一例を示す図である。 実施例1に係る力率変更処理の流れを示すフローチャートである。 実施例2に係る電力変換装置の構成を説明するための図である。 図13(a)−(c)は、急変制限前の無効電流指令値の変化と、急変制限後の無効電流指令値の変化の一例を示す図である。 実施例3に係る電力変換装置の無効電流指令部の構成を説明するための図である。 図15(a)−(b)は、急変制限前の無効電流比変化と、急変制限後の無効電流比変化の一例を示す図である。 実施例3に係る力率変更処理の流れを示すフローチャートである。 実施例1−3の個別の効果をまとめたテーブルを示す図である。 実施例1−3における力率変化時の力率の線形性を説明するための図である。
図1は、本発明の実施の形態に係る電力変換装置2の構成を説明するための図である。電力変換装置2は直流電源1から供給される直流電力を交流電力に変換して商用電力系統3(以下、単に系統3とする)に供給する。直流電源1は例えば太陽電池または燃料電池であり、その場合、電力変換装置2は太陽電池または燃料電池により発電された直流電力を交流電力に変換するパワーコンディショナとして機能する。また直流電源1は蓄電池であってもよい。その場合、電力変換装置2は双方向パワーコンディショナとして機能する。
DC−DCコンバータ21は、直流電源1から供給される直流電力をDC−DC変換する。直流電源1が太陽電池の場合、DC−DCコンバータ21は、MPPT(Maximum Power Point Tracking)制御を搭載した昇圧チョッパで構成することができる。当該昇圧チョッパは、太陽電池が最大電力点(最適動作点)で発電できるよう制御する。具体的には山登り法に従い電圧を所定のステップ幅で変化させて最大電力点を探索し、太陽電池の出力電力が最大電力点を維持するよう制御する。
インバータ22は、DC−DCコンバータ21から入力される直流電力を交流電力に変換して出力する。インバータ22は例えば、4つのスイッチング素子(例えば、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor))をブリッジ接続したブリッジ回路を含む。当該スイッチング素子のデューティ比を制御することにより、インバータ22の出力を調整することができる。インバータ22の後段にはフィルタ回路(不図示)が設けられ、当該フィルタ回路は、インバータ22から出力される交流電力の高周波成分を減衰させて、インバータ22の出力電圧および出力電流を正弦波に近づける。
電力変換装置2は、DC−DCコンバータ21及びインバータ22を駆動制御するため、コンバータ駆動制御部23、インバータ駆動制御部24、出力力率設定部25、出力電流検出部26、系統電圧検出部27、出力測定部28及び出力制限部29を含む。インバータ駆動制御部24は、電力平衡制御部241、有効瞬時電流指令部242、無効電流指令部243、無効瞬時電流指令部244、加算部245、減算部246及び駆動部247を含む。これらの構成は、ハードウェア資源とソフトウェア資源の協働、またはハードウェア資源のみにより実現できる。ハードウェア資源としてアナログ素子、マイクロコンピュータ、DSP、ROM、RAM、FPGA、その他のLSIを利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。
電力平衡制御部241は、DC−DCコンバータ21の出力電力とインバータ22の入力電力の電力平衡を保つよう、インバータ22から出力されるべき有効電流を規定する有効電流指令値Ipを生成する。この制御により、DC−DCコンバータ21からインバータ22へ入力されるエネルギーと、インバータ22から出力されるエネルギーのバランスを保つことができる。特に太陽電池のように自然環境により発電量が変動する直流電源1を使用している場合、DC−DCコンバータ21の出力電力が変動するため、当該出力電力の変動にインバータ22の入力電力を追従させる必要がある。
有効瞬時電流指令部242は、電力平衡制御部241から入力された有効電流指令値のピーク値Ipをもとに、有効電流指令値の瞬時値Ip・sinωtを算出する。有効瞬時電流指令部242は、算出した有効電流指令値の瞬時値Ip・sinωtを加算部245に出力する。
出力力率設定部25は、力率cosφを無効電流指令部243に設定する。力率cosφは、電力変換装置2の設置時に設計者により設定された固定値を継続して使用してもよいし、また操作部(不図示)から、電力会社などの電力供給者の指示による任意の値を設定可能な構成であってもよい。また電力変換装置2が出力抑制機能を備えている場合、電力変換装置2から系統3に供給される出力電力が設定値を超えると、力率cosφを低下させた進相制御が発動する。
また、外部の管理システムからネットワークを介して出力抑制指令を受信したとき、力率cosφを低下させてもよい。電力会社などの電力供給者は、電力を安定供給する必要があり、逆潮流電力分も含めた電力系統全体における周波数や電圧を一定範囲に保つ必要がある。系統3に再生可能エネルギーの発電設備が多く接続されている場合、気象条件により発電量が大きく変化する。再生可能エネルギーの発電設備から系統3に供給される電力量が多くなりすぎ、系統3の周波数や系統電圧が基準範囲の上限を超えた又は超えると予測される場合、系統管理システムは再生可能エネルギーの発電設備に出力抑制指令を送信する。当該出力抑制指令を受信した電力変換装置2は、電流指令値を直接制御して出力電力を抑制して系統周波数低下に貢献するとともに、力率cosφを進相制御して系統電圧低下に貢献する。同様に系統3の電圧が下限を下回った又は下回ると予測された場合に、指令に基づいて、力率cosφを遅相制御して系統電圧上昇に貢献してもよい。
無効電流指令部243は、出力力率設定部25から設定された力率cosφをもとに、有効電流に対する無効電流の比率である無効電流比tanφを生成する。無効電流指令部243は生成した無効電流比tanφと、電力平衡制御部241から入力された有効電流指令値のピーク値Ipをもとに無効電流指令値のピーク値Iqを生成する。無効瞬時電流指令部244は、無効電流指令部243から入力された無効電流指令値のピーク値Iqをもとに、無効電流指令値の瞬時値Iq・cosωtを算出する。無効瞬時電流指令部244は、算出した無効電流指令値の瞬時値Iq・cosωtを加算部245に出力する。
加算部245は、有効電流指令値の瞬時値Ip・sinωtと無効電流指令値の瞬時値Iq・cosωtを合算して最終的な電流指令値を生成し、減算部246に出力する。減算部246は当該電流指令値から、出力電流検出部26により検出された出力電流値を減算して、電流偏差を生成する。当該電流偏差に基づく指令値が駆動部247に出力される。駆動部247は当該指令値をもとにインバータ22を駆動する。
コンバータ駆動制御部23は、DC−DCコンバータ21を駆動制御する。具体的には指令値をもとにPWM信号を生成し、DC−DCコンバータ21に含まれるスイッチング素子の制御端子に供給する。例えば、MPPT制御機能を搭載している場合、MPPT制御により電圧指令値が決定され、当該電圧指令値に基づくPWM信号を生成する。
出力測定部28は、出力電流検出部26により検出された出力電流と、系統電圧検出部27により検出された系統電圧をもとに電力変換装置2の出力を測定する。以下、本実施の形態の処理を説明する前に、一般的な処理を説明する。
出力測定部28は、出力電流検出部26により検出された出力電流の瞬時値と、系統電圧検出部27により検出された系統電圧の瞬時値を掛けて瞬時有効電力値を算出する。出力測定部28は、瞬時有効電力値の単位周期当たりの平均値を算出する。この平均値が電力変換装置2の出力有効電力値P=1/T∫IVdtとなる。出力測定部28は算出した出力有効電力値Pを出力制限部29に出力する。
出力制限部29は、出力有効電力値Pが有効電力制限値Plimを超過しているか否か判定する。当該有効電力制限値Plimには、電力変換装置2の定格出力電力値が設定される。また出力抑制が発動する電力閾値が設定されてもよい。出力制限部29は、出力有効電力値Pが有効電力制限値Plimを超過している場合、抑制信号をコンバータ駆動制御部23に出力する。コンバータ駆動制御部23は当該抑制信号を受信すると、PWM信号のデューティ比を低下させて、DC−DCコンバータ21から出力される電力を低下させる。
図2は、電力変換装置2の出力電力値と、有効電力制限値の関係を示す図である。力率cosφが1.0以外の場合に有効電力制限値Plimの制限がかかる出力電力値(出力皮相電力値)の大きさは、力率cosφが1.0の場合(出力有効電力値=出力皮相電力値)に当該制限がかかる出力電力値(出力皮相電力値)の大きさと比較して、大きくなる。従って、有効電力制限値を基準にインバータ22内の回路素子の耐性が設計されている場合において、力率cosφが1.0以外に設定されると、当該回路素子に大きなストレスがかかる。
図3は、本発明の実施の形態1に係る出力測定部28及び出力制限部29の構成例を示す図である。出力測定部28は出力有効電力算出部281、出力皮相電力算出部282を含む。出力制限部29は有効電力超過判定部291、皮相電力超過判定部292及びOR回路293を含む。
出力有効電力算出部281は上述の一般的な出力測定部28の処理内容に対応する。すなわち、出力電流検出部26により検出された出力電流の瞬時値と、系統電圧検出部27により検出された系統電圧の瞬時値をもとに電力変換装置2の出力有効電力値P=1/T∫IVdtを算出する。出力有効電力算出部281は算出した出力有効電力値Pを有効電力超過判定部291に出力する。
出力皮相電力算出部282は、出力電流検出部26により検出された出力電流の瞬時値を二乗し、二乗した値の単位周期当たりの平均値を算出し、当該平均値の平方根を算出する。また出力皮相電力算出部282は、系統電圧検出部27により検出された系統電圧の瞬時値を二乗し、二乗した値の単位周期当たりの平均値を算出し、当該平均値の平方根を算出する。そして両者の値を掛けて、電力変換装置2の出力皮相電力値S=√1/T∫Vdt・√1/T∫Idtを算出する。出力皮相電力算出部282は、算出した出力皮相電力値Sを皮相電力超過判定部292に出力する。
有効電力超過判定部291は、出力有効電力算出部281から入力される出力有効電力値Pが有効電力制限値Plimを超過しているか否か判定する。超過している場合はハイレベル信号をOR回路293に出力し、超過していない場合はローレベル信号をOR回路293に出力する。皮相電力超過判定部292は、出力皮相電力算出部282から入力される出力皮相電力値Sが皮相電力制限値Slimを超過しているか否か判定する。超過している場合はハイレベル信号をOR回路293に出力し、超過していない場合はローレベル信号をOR回路293に出力する。
OR回路293は、有効電力超過判定部291から入力される信号と皮相電力超過判定部292から入力される信号の論理和を演算し、演算結果がハイレベルの場合、コンバータ駆動制御部23に抑制信号を発行する。演算結果がローレベルの場合は抑制信号を発行しない。
図4は、実施の形態1に係る出力制限部29における超過判定処理の内容をまとめたテーブルを示す図である。図4に示すように電力変換装置2の出力有効電力値P及び出力皮相電力値Sの少なくとも一方が制限値を超過したとき、抑制信号を発行する。
図5は、実施の形態1に係る、電力変換装置2の出力電力値と、有効電力制限値、皮相電力制限値の関係を説明するための図である。図5に示すように皮相電力制限値は同心円状に設定される。電力変換装置2の出力電力値が皮相電力制限値に到達した場合、力率=1の最大出力電力値で動作している場合と比較して、出力有効電力値が低下する。しかしながら、回路素子の電流耐性内での動作を補償することができる。
電力変換装置2の出力電力値が皮相電力制限値に到達していない場合、所望の出力有効電力に対して無効電力を重畳することになるため、有効電力は無駄なくそのまま出力できる。従って力率が低く設定された場合でも、有効電力を絞らずに売電や宅内消費に使用することができる。これに対して位相制御方式では、位相制御により力率=1での所望の出力有効電力の大きさが力率=1以外での皮相電力の大きさとして維持したまま回転されるため、その結果、有効電力が絞られてしまう。この場合、売電量が目減りしたり、宅内消費への給電が減り買電になるケースもある。
以上説明したように実施の形態1では、出力電力制限の超過判定に有効電力制限値だけでなく皮相電力制限値も使用し、各出力電力値において両者の小さい方の値を電力制限値として使用する。これにより、有効電力制限値に準拠した電流耐性設計の電力変換装置2において、過大な電流ストレスを与えずに無効電力重畳方式の力率制御を実現できる。有効電力制限値に準拠した電流耐性設計であるため、コストの増加を抑制することができる。このように実施の形態1によれば、コストを考慮して設計された最大許容電流内での力率制御を実現しつつ(皮相電力制限)、定格有効電力内での力率制御を実現することができる(有効電力制限)。
図6は、本発明の実施の形態2に係る出力測定部28及び出力制限部29の構成例を示す図である。出力測定部28は出力有効電力算出部281、出力皮相電力算出部282、出力有効電流算出部283、及び出力皮相電流算出部284を含む。出力制限部29は有効電力超過判定部291、皮相電力超過判定部292、OR回路293、有効電流超過判定部294及び皮相電流超過判定部295を含む。
出力有効電力算出部281及び出力皮相電力算出部282の処理内容は図3の説明と同様である。出力有効電流算出部283は、出力有効電力算出部281により算出された出力有効電力値Pを実効電圧値Vrmsで割って、出力有効電流値IP(実効値)を算出する。出力有効電流算出部283は算出した出力有効電流値IPを有効電流超過判定部294に出力する。出力皮相電流算出部284は、出力皮相電力算出部282により算出された出力皮相電力値Sを実効電圧値Vrmsで割って、出力皮相電流値IS(実効値)を算出する。出力皮相電流算出部284は算出した出力皮相電流値ISを皮相電流超過判定部295に出力する。
有効電力超過判定部291及び皮相電力超過判定部292の処理内容は図3の説明と同様である。有効電流超過判定部294は、出力有効電流算出部283から入力される出力有効電流値IPが有効電流制限値IPlimを超過しているか否か判定する。超過している場合はハイレベル信号をOR回路293に出力し、超過していない場合はローレベル信号をOR回路293に出力する。皮相電流超過判定部295は、出力皮相電流算出部284から入力される出力皮相電流値ISが皮相電流制限値ISlimを超過しているか否か判定する。超過している場合はハイレベル信号をOR回路293に出力し、超過していない場合はローレベル信号をOR回路293に出力する。
OR回路293は、有効電力超過判定部291から入力される信号、皮相電力超過判定部292から入力される信号、有効電流超過判定部294から入力される信号、及び皮相電流超過判定部295から入力される信号の論理和を演算し、演算結果がハイレベルの場合、コンバータ駆動制御部23に抑制信号を発行する。演算結果がローレベルの場合は抑制信号を発行しない。
図7は、実施の形態2に係る、電力変換装置2の出力電力値と、有効電力制限値、皮相電力制限値の関係を説明するための図である。系統電圧が公称電圧に対して不足した状態になると、電力変換装置2から系統3へ出力される有効電力を電圧不足前と同じ状態に維持しようとするために出力電流が増加する。これにより有効電力制限値および皮相電力制限値の範囲内で動作している場合でも、回路素子への電流ストレスが想定外に増加する可能性がある。
そこで実施の形態2では、実施の形態1に係る超過判定に、有効電流値制限値を使用した超過判定と皮相電流制限値を使用した超過判定を追加する。
以上説明したように実施の形態2では、有効電流制限値を使用した超過判定と皮相電流制限値を使用した超過判定を追加することにより、回路素子に許容範囲を超過した電流が流れることを、より確実に防止することができる。
なお上記実施の形態2では、有効電流値制限値を使用した超過判定と皮相電流制限値を使用した超過判定の2つを追加した構成を説明したが、有効電流制限値を使用した超過判定を省略し、皮相電流制限値を使用した超過判定のみを追加した構成を採用してもよい。皮相電流が回路素子に流れる実電流であるため、許容する皮相電流に準拠して電流耐性を設計し、皮相電流制限値を使用した超過判定を行えば、回路素子を電流から確実に保護することができる。
上述したインバータ駆動制御部24の電力平衡制御241の電力平衡応答時間は、システムのハンチング防止などのために前記制御部24によるインバータ22への電流制御242〜247の応答時間に比べて遅く設定されることがある。
図8は、コンバータ駆動制御部23による電力制御が、インバータ駆動制御部24による電流制御より応答が遅い場合における、出力電力の制限処理を説明するための図である。図8を参照して、設定力率が急変した場合を考える。図8に示す例では、時刻t0における設定力率(t0)がcosφt0=1.0で、時刻t1における設定力率(t1)がcosφt1=0.8であり、時刻t0から時刻t1に変化した瞬間に力率が急低下している。
力率の急変は、外部通信により力率を急変させる必要がある指令を受けた場合や、電力変換装置2の出力電力に応じて力率を変化させるプリセット特性などにより発生する。図8に示すように時刻t1において、力率変化に応じて無効電力成分が重畳され、出力電力(皮相電力)が皮相電力制限を一度、超過する。その後、出力制限部29及びコンバータ駆動制御部23による出力制限により、出力電力(皮相電力)は皮相電力制限の範囲内に収まる。
インバータ駆動制御部24の電力平衡制御241の応答時間が、インバータ22への電流制御242〜247における無効電流重畳の応答時間より遅いため、時刻t1−時刻t2の間、インバータ22内で過渡的に皮相電流制限値を超える電流が流れてしまう。以下、このような設定力率急変時における過渡的な制限超過電流を発生させないように、力率急変時の対策を導入する例を説明する。なお急激な力率変更(無効電力変化)を防止することは、系統3の不健全化を防止する効果もある。以下、力率急変を抑制する構成例として3つの実施例を説明する。
(実施例1)
図9は、実施例1に係る電力変換装置2の構成を説明するための図である。実施例1に係る電力変換装置2は、図1に示した電力変換装置2の構成に、力率変化制限部251が追加された構成である。力率変化制限部251は、出力力率設定部25と無効電流指令部243の間に設けられる。力率変化制限部251は、出力力率設定部25から設定された力率cosφの単位時間当たりの変化量Δcosφを、所定の力率変化量に収まるよう制御する。力率変化制限部251は、急変制限後の力率cosφ’を無効電流指令部243に設定する。
図10(a)−(b)は、急変制限前の力率変化と、急変制限後の力率変化の一例を示す図である。図10(a)は、力率変化制限部251がバッファを用いた移動平均処理、またはバッファを用いずにローパスフィルタを用いた平滑化処理により設定力率cosφの変化を、制限前と比較して緩やかにしている例を示している。図10(b)は、力率変化制限部251が、単位時間当たりの力率変化量Δcosφの制限値に対応するステップ幅で、設定力率cosφを変化させる例を示している。
図11は、実施例1に係る力率変更処理の流れを示すフローチャートである。図11では説明の簡便のため力率cosφにおける「遅れ」を正、「進み」を負として扱う。また制限値となる力率変化量Δcosφは正の絶対値として扱う。以下、現在の設定力率が−0.8(進み力率)、制限後設定力率(前回の設定力率)が0.8(遅れ力率)、力率変化量Δcosφが0.05の例を考える。
図11において力率変化制限部251は、現在の設定力率がゼロ以上であるか否か判定する(S10)。すなわち、現在の設定力率が遅れ力率であるか否か判定する。現在の設定力率がゼロ以上である場合(S10のY)、力率変化制限部251は、1から現在の設定力率を引いて現在の設定力率基準値偏差を算出する(S11)。現在の設定力率がゼロ未満である場合(S10のN)、力率変化制限部251は、−1から現在の設定力率を引いて現在の設定力率基準値偏差を算出する(S12)。本例では、現在の設定力率が−0.8であるため、現在の設定力率基準値偏差は、−1−(−0.8)=−0.2となる。
次に力率変化制限部251は、制限後設定力率がゼロ以上であるか否か判定する(S13)。すなわち、制限後設定力率が遅れ力率であるか否か判定する。制限後設定力率がゼロ以上である場合(S13のY)、力率変化制限部251は、1から制限後設定力率を引いて制限後設定力率基準値偏差を算出する(S14)。制限後設定力率がゼロ未満である場合(S13のN)、力率変化制限部251は、−1から制限後設定力率を引いて制限後設定力率基準値偏差を算出する(S15)。本例の最初の段階では、制限後設定力率が0.8であるため、制限後設定力率基準値偏差は、1−0.8=0.2となる。
次に力率変化制限部251は、現在の設定力率基準値偏差から制限後設定力率基準値偏差を引いて力率変動偏差を算出する(S16)。本例の最初の段階では、−0.2−0.2=−0.4となる。
次に力率変化制限部251は、力率変動偏差がΔcosφより大きいか否かを判定する(S17)。大きい場合(S17のY)、力率変化制限部251は、Δcosφを力率変動偏差制限値に設定する(S19)。大きくない場合(S17のN)、力率変化制限部251は、力率変動偏差が−Δcosφより小さいか否かを判定する(S18)。小さい場合(S18のY)、力率変化制限部251は、−Δcosφを力率変動偏差制限値に設定する(S20)。小さくない場合(S18のN)、力率変化制限部251は、力率変動偏差を力率変動偏差制限値に設定する(S21)。本例の最初の段階では、0.4<−0.05の関係になるため、力率変動偏差制限値に−0.05が設定される。
次に力率変化制限部251は、制限後設定力率基準値偏差に力率変動偏差制限値を加えた値がゼロ以上であるか否か判定する(S22)。ゼロ以上である場合(S22のY)、力率変化制限部251は、1から当該値を引いて新たな制限後設定力率を算出する(S23)。ゼロ未満である場合(S22のN)、力率変化制限部251は、−1から当該値を引いて新たな制限後設定力率を算出する(S24)。本例の最初の段階では、0.2+(−0.05)≧0の関係になるため、新たな制限後設定力率は、1−0.15=0.85となる。
力率変化制限部251は新たな制限後設定力率を無効電流指令部243に設定する(S25)。同時に力率変化制限部251は、新たな制限後設定力率が現在の設定力率に到達したか否か判定する(S26)。到達した場合(S26のY)、本力率変更処理を終了する。到達していない場合(S26のN)、ステップS10に遷移し、処理を継続する。
このように力率1を基準とした力率基準値偏差を用いることにより、力率値を、力率1を基準とした連続した線形関係で表すことができる。従って1を交差する力率変更も統一的に処理することができる。上述した移動平均やローパスフィルタを用いる場合も同様に、力率1を基準とした力率基準値偏差を用いることにより、力率値を、力率1を基準とした連続した線形関係で表すことができる。力率基準値偏差に対してフィルタ処理を実行し、フィルタ処理適用後の力率基準値偏差を力率値に変換すればよい。
(実施例2)
図12は、実施例2に係る電力変換装置2の構成を説明するための図である。実施例2に係る電力変換装置2は、図1に示した電力変換装置2の構成に、無効電流指令値変化制限部248が追加された構成である。無効電流指令値変化制限部248は、無効電流指令部243と無効瞬時電流指令部244の間に設けられる。無効電流指令値変化制限部248は、無効電流指令部243により生成された無効電流指令値のピーク値Ipの単位時間当たりの変化量ΔIpを、所定の無効電流指令値変化量に収まるよう制御する。無効電流指令値変化制限部248は、急変制限後の無効電流指令値のピーク値Ip’を無効瞬時電流指令部244に設定する。
図13(a)−(c)は、急変制限前の無効電流指令値の変化と、急変制限後の無効電流指令値の変化の一例を示す図である。図13(a)−(c)は皮相電流が10Aの状態で、力率cosφが1.0から0.8に変更される例を示している。
図13(a)は、無効電流指令値変化制限部248がバッファを用いた移動平均処理、またはバッファを用いずにローパスフィルタを用いた平滑化処理により無効電流指令値の変化を、制限前と比較して緩やかにしている例を示している。図13(b)は、無効電流指令値変化制限部248が、単位時間当たりの無効電流指令値変化量の制限値に対応するステップ幅で、無効電流指令値を変化させる例を示している。図13(c)は、図13(a)、(b)に示す無効電流指令値の変化時における有効電流指令値の変化を示している。
(実施例3)
図14は、実施例3に係る電力変換装置2の無効電流指令部243の構成を説明するための図である。実施例3に係る無効電流指令部243は、正接変換部243a、無効電流比変化制限部243b及び無効電流指令値生成部2243cを含む。正接変換部243aは、出力力率設定部25から設定された力率cosφを正接変換して、有効電流に対する無効電流の比率を示す無効電流比tanφを生成する。
無効電流比変化制限部243bは、生成された無効電流比tanφの単位時間当たりの変化量Δtanφを、所定の無効電流比変化量に収まるよう制御する。無効電流比変化制限部243bは、急変制限後の無効電流比tanφ’を無効電流指令値生成部243cに設定する。無効電流指令値生成部243cは、設定された無効電流比tanφ’と、電力平衡制御部241から入力された有効電流指令値のピーク値Ipをもとに無効電流指令値のピーク値Iq=Ip・tanφ’を生成する。生成せれた無効電流指令値のピーク値Iq=Ip・tanφ’は、無効瞬時電流指令部244に出力される。
図15(a)−(b)は、急変制限前の無効電流比変化と、急変制限後の無効電流比変化の一例を示す図である。図15(a)は、無効電流比変化制限部243bがバッファを用いた移動平均処理、またはバッファを用いずにローパスフィルタを用いた平滑化処理により無効電流比tanφの変化を、制限前と比較して緩やかにしている例を示している。図15(b)は、無効電流比変化制限部243bが、単位時間当たりの無効電流比変化量Δtanφの制限値に対応するステップ幅で、無効電流比tanφを変化させる例を示している。
図16は、実施例3に係る力率変更処理の流れを示すフローチャートである。図16では説明の簡便のため力率cosφおよび無効電流比tanφにおける「遅れ」を正、「進み」を負として扱う。また制限値となる無効電流比変化量Δtanφは正の絶対値として扱う。以下、現在の設定力率が−0.8(進み力率)、前回の設定力率が0.8(遅れ力率)、無効電流比変化量Δtanφが0.3の例を考える。
図16において正接変換部243aは、現在の設定力率cosφに対する現在の無効電流比tanφを算出する(S30)。本例では、現在の無効電流比tanφは−0.75である。
次に無効電流比変化制限部243bは、現在の無効電流比と制限後無効電流比(前回の無効電流比)との差の絶対値がΔtanφより大きいか否か判定する(S31)。大きくない場合(S31のN)、無効電流比変化制限部243bは、現在の無効電流比を制限後無効電流比に設定する(S32)。大きい場合(S31のY)、無効電流比変化制限部243bは、現在の無効電流比が制限後無効電流比より大きいか否か設定する(S33)。大きい場合(S33のY)、無効電流比変化制限部243bは、制限後無効電流比にΔtanφを足した値を、新たな制限後無効電流比に設定する(S34)。大きくない場合(S33のN)、無効電流比変化制限部243bは、制限後無効電流比からΔtanφを引いた値を、新たな制限後無効電流比に設定する(S35)。
本例の最初の段階では、ステップS31における現在の無効電流比−制限後無効電流比は−1.5、ステップS35における新たな制限後無効電流比は−4.5(力率は0.91)となる。
無効電流比変化制限部243bは、新たな制限後無効電流比を無効電流指令値生成部2243cに設定する(S36)。同時に無効電流比変化制限部243bは、新たな制限後無効電流比に対応する制限後設定力率を算出し(S37)、新たな制限後設定力率が現在の設定力率に到達したか否か判定する(S38)。到達した場合(S38のY)、本力率変更処理を終了する。到達していない場合(S38のN)、ステップ30に遷移し、処理を継続する。
以上説明した実施例1−3に係る力率変更処理によれば、設定力率急変時における過渡的な制限超過電流の発生を抑制することができる。これにより回路素子に過度な電流ストレが加わる事態を回避できる。さらに力率(無効電力)変化を緩やかにすることにより、系統3の不健全化を防止することができる。
図17は、実施例1−3の個別の効果をまとめたテーブルである。設計容易性は実施例2のフィルタ対象が無効電流指令値Iqであるため、実施例2が最も容易である。実施例1のフィルタ対象は力率cosφであり、実施例3のフィルタ対象は無効電流比tanφであり、両者を比較すると実施例3の方が設計が容易である。
図18は、実施例1−3における力率変化時の力率の線形性を説明するための図である。図18(a)が実施例1の力率変化例を示し、図18(b)が実施例2、3の力率変化例を示している。図18(a)に示すように実施例1では、力率変化に線形性(リニアリティ)がある。従って、所望の力率間の変化に対する応答時間が規格などで規定される場合、設計がしやすいメリットがある。例えば、力率が1.0→0.9に変化する場合も、力率が0.9→0.8に変化する場合も、力率偏差が同じであるため応答時間が同じになる。なお実施例1では、注入/引込み無効電力量の変化は非線形となる。
図18(b)に示すように実施例2、3では、力率変化が、cos(arctanX)=1/√(1+X)で表される曲線となる。実施例2、3では無効電流量の変化量(傾斜)に線形性がある。従って、単位時間当たりの無効電力変化量が系統3への影響などから規定される場合、設計がしやすいメリットがある。なお実施例2、3では、力率変化は非線形となる。
図17に戻る。有効電流指令値Ip変化時の力率追従性は、実施例1、3が実施例2より優っている。ここで、有効電力が80%定格で力率、無効電流指令値、無効電流比が制限され、制限後の瞬間的な力率が0.8で、次に有効電力が40%に急変する事例を考える。
実施例1、3では無効電流指令Iq=Ip・tanφ’であるため、無効電流指令値Iqは有効電力指令値Ipに応じて半減する。制限後の無効電流比tanφ’は、制限後の力率cosφ’=0.8相当のまま変化しないため、最終的な電流指令値Ip+Iqにおける設定力率は0.8のままである。つまり有効電力の変化に瞬時に追従して、設定力率を維持するように動作する。従って実施例1、3は、太陽電池などの自然エネルギ電源が独立して1つ存在する場合のパワーコンディショナに適している。このような自然エネルギ電源の場合、有効電力の変化が起こりやすいため、有効電力の変化に対して力率が維持されることが重要である。
実施例2では制限後の無効電流指令値Iq’=LPF(Ip・tanφ)であるため、瞬間的にはIp=40%定格、Iq’=60%定格 力率=0.55=Ip/√(Iq’+Ip)となってしまう。ただし、適切なフィルタ定数を選択すれば大きな外れは抑制できる。実施例2は設計が最も容易だが、有効電力の変化に対し定力率を維持する精度が相対的に低い。従って実施例2は、自然エネルギ電源の太陽電池と蓄電池等の蓄電池並列電源のパワーコンディショナに適している。蓄電池並列電源の場合、有効電力の変化が起こりにくいため、有効電力の変化に対して力率を維持する要請が低くなる。
以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
例えば上述の実施の形態では電力変換装置2がDC−DCコンバータ21を備えていたが、直流電源1に出力調整機能が備わっている場合、電力変換装置2のDC−DCコンバータ21を省略し、直流電源1に抑制指令を通知する構成でもよい。
なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
直流電源(1)から出力される直流電力を交流電力に変換し、当該交流電力を系統(3)へ供給するインバータ(23)と、
前記インバータ(23)から出力される有効電力、及び前記インバータ(23)から出力される無効電力を制御する制御回路(24)と、を備える電力変換装置(2)であって、
前記制御回路(24、29)は、前記有効電力が所定の有効電力制限値を超えたとき、及び皮相電力が所定の皮相電力制限値を超えたとき、の少なくとも一方を満たしたとき、前記インバータ(23)の出力電力を、前記有効電力制限値および前記皮相電力制限値以下に抑制よう制御する、
ことを特徴とする電力変換装置(2)。
これによれば、電流耐性に関するコストを抑えつつ、信頼性が高い回路設計を実現できる。
[項目2]
前記直流電源(1)と前記インバータ(22)の間に介在し前記直流電源(1)から出力される直流電力の電圧を調整して前記インバータ(22)へ供給するDC−DCコンバータ(21)と、を更に備え、
前記制御回路(23、24、29)は、前記DC−DCコンバータ(21)を制御可能に構成され、
前記制御回路(23、24、29)は、前記有効電力が前記所定の有効電力制限値を超えたとき、及び前記皮相電力が前記所定の皮相電力制限値を超えたとき、の少なくとも一方を満たしたとき、前記DC−DCコンバータ(21)から前記インバータ(22)に入力される電力を抑制するよう制御することを特徴とする項目1に記載の電力変換装置(2)。
これによれば、インバータ(22)の出力電力が所定の有効電力制限値または所定の皮相電力制限値の少なくとも一方を超えたとき、DC−DCコンバータ(21)によりインバータ(22)への入力電力を絞ることができる。
[項目3]
前記制御回路(23、24、29)は、前記有効電力が前記所定の有効電力制限値を超えたとき、前記皮相電力が前記所定の皮相電力制限値を超えたとき、及び前記インバータ(22)の出力する皮相電流が所定の皮相電流制限値を超えたとき、の少なくとも1つを満たしたとき、前記インバータ(22)の出力電力を前記有効電力制限値および前記皮相電力制限値以下に抑制し、かつ前記インバータ(22)の出力電流を前記皮相電力制限値以下に抑制するよう制御することを特徴とする項目1または2に記載の電力変換装置(2)。
これによれば、電流耐性に関するコストを抑えつつ、さらに信頼性が高い回路設計を実現できる。
[項目4]
前記制御回路(23、24、29)は、前記インバータ(22)の出力電力の力率を制御可能に構成され、
前記制御回路(23、24、29)は、前記インバータ(22)の出力電力の力率を変更する際に、変更前の力率に応じた無効電流から、変更後の力率に応じた無効電流まで緩やかに変化させることを特徴とする項目1から3のいずれかに記載の電力変換装置(2)。
これによれば、力率急変時に、電力変換装置(2)の出力電力が瞬間的に皮相電力制限値を超えてしまうことを抑制できる。
[項目5]
力率の単位時間当たりの変化量を、所定の力率変化量に制限する力率変化制限部(251)をさらに備えることを特徴とする項目1から4のいずれかに記載の電力変換装置(2)。
これによれば、力率変化時の力率の線形性、及び有効電力変化時の力率の追従性を確保しつつ、電流指令値の変化を緩やかにすることができる。
[項目6]
前記制御回路(23、24、29)は、無効電流の単位時間当たりの変化量を、所定の変化量に制限することを特徴とする項目1から4のいずれかに記載の電力変換装置(2)。
これによれば、比較的容易な設計で電流指令値の変化を緩やかにすることができる。
[項目7]
前記制御回路(23、24、29)は、有効電流に対する無効電流の比率の単位時間当たりの変化量を、所定の比率変化量に制限することを特徴とする項目1から4のいずれかに記載の電力変換装置(2)。
これによれば、有効電力変化時の力率の追従性を確保しつつ、電流指令値の変化を緩やかにすることができる。
1 直流電源、 2 電力変換装置、 3 系統、 21 DC−DCコンバータ、 22 インバータ、 23 コンバータ駆動制御部、 24 インバータ駆動制御部、 241 電力平衡制御部、 242 有効瞬時電流指令部、 243 無効電流指令部、 243a 正接変換部、 243b 無効電流比変化制限部、 243c 無効電流指令値生成部2、 244 無効瞬時電流指令部、 245 加算部、 246 減算部、 247 駆動部、 248 無効電流指令値変化制限部、 25 出力力率設定部、 26 出力電流検出部、 27 系統電圧検出部、 28 出力測定部、 281 出力有効電力算出部、 282 出力皮相電力算出部、 283 出力有効電流算出部、 284 出力皮相電流算出部、 29 出力制限部、 291 有効電力超過判定部、 292 皮相電力超過判定部、 293 OR回路、 294 有効電流超過判定部、 295 皮相電流超過判定部、 251 力率変化制限部。

Claims (5)

  1. 直流電源から出力される直流電力を交流電力に変換し、当該交流電力を系統へ供給するインバータと、
    前記直流電源と前記インバータの間に介在し前記直流電源から出力される直流電力の電圧を調整して前記インバータへ供給するDC−DCコンバータと、
    前記DC−DCコンバータと前記インバータを制御する制御回路と、を備え、
    前記制御回路は、前記インバータの入力電力の電力平衡を保つための有効電流指令値に、当該有効電流指令値と設定された力率に応じた無効電流指令値を加算して、前記インバータの出力電力の力率を制御可能であり、
    前記制御回路は、前記インバータの出力する有効電力が所定の有効電力制限値を超えたとき、前記インバータの出力する皮相電力が所定の皮相電力制限値を超えたとき、及び前記インバータの出力する皮相電流が所定の皮相電流制限値を超えたとき、の少なくとも1つを満たしたとき、前記インバータの出力電力を前記有効電力制限値および前記皮相電力制限値以下に抑制し、かつ前記インバータの出力電流を前記皮相電流制限値以下に抑制するよう、前記DC−DCコンバータから出力される電力を低下させて、前記DC−DCコンバータから前記インバータに入力される電力を抑制する
    ことを特徴とする電力変換装置。
  2. 記制御回路は、前記インバータの出力電力の力率を変更する際に、変更前の力率に応じた無効電流から、変更後の力率に応じた無効電流まで緩やかに変化させることを特徴とする請求項1に記載の電力変換装置。
  3. 力率の単位時間当たりの変化量を、所定の力率変化量に制限する力率変化制限部をさらに備えることを特徴とする請求項1または2に記載の電力変換装置。
  4. 前記制御回路は、無効電流の単位時間当たりの変化量を、所定の変化量に制限することを特徴とする請求項1または2に記載の電力変換装置。
  5. 前記制御回路は、有効電流に対する無効電流の比率の単位時間当たりの変化量を、所定の比率変化量に制限することを特徴とする請求項1または2に記載の電力変換装置。
JP2015254602A 2015-12-25 2015-12-25 電力変換装置 Active JP6712797B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015254602A JP6712797B2 (ja) 2015-12-25 2015-12-25 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015254602A JP6712797B2 (ja) 2015-12-25 2015-12-25 電力変換装置

Publications (2)

Publication Number Publication Date
JP2017118782A JP2017118782A (ja) 2017-06-29
JP6712797B2 true JP6712797B2 (ja) 2020-06-24

Family

ID=59230981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015254602A Active JP6712797B2 (ja) 2015-12-25 2015-12-25 電力変換装置

Country Status (1)

Country Link
JP (1) JP6712797B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019057996A (ja) * 2017-09-20 2019-04-11 パナソニックIpマネジメント株式会社 電力変換システム
JP6733799B1 (ja) * 2019-11-22 2020-08-05 富士電機株式会社 制御装置、対価算出装置、電力システム、およびプログラム
JP2021184675A (ja) * 2020-05-22 2021-12-02 東海旅客鉄道株式会社 電力変換制御装置
JP7265512B2 (ja) * 2020-09-08 2023-04-26 東芝三菱電機産業システム株式会社 無効電力補償装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355669A (ja) * 1991-05-30 1992-12-09 Fuji Electric Co Ltd インバータ制御回路
JP4109614B2 (ja) * 2003-11-25 2008-07-02 三菱電機株式会社 分散型電源用電圧制御装置
JP4568111B2 (ja) * 2004-12-28 2010-10-27 株式会社東芝 電力変換制御装置
JP2014166114A (ja) * 2013-02-27 2014-09-08 Noritz Corp 貯湯機能付き発電システム

Also Published As

Publication number Publication date
JP2017118782A (ja) 2017-06-29

Similar Documents

Publication Publication Date Title
Wu et al. DC-bus voltage control with a three-phase bidirectional inverter for DC distribution systems
JP6712797B2 (ja) 電力変換装置
US10063057B2 (en) Dynamic maximum efficiency tracker for PV micro-inverter
US8856557B2 (en) Digital power balancing controller
AU2012236587B2 (en) System and method for off-line UPS
US20130207622A1 (en) System and method for reactive power regulation
US9548690B2 (en) System and method for adjusting current regulator gains applied within a power generation system
CN103280808B (zh) 一种基于定时器的变环宽滞环电流控制方法
AU2010233034A1 (en) DC bus voltage control for two stage solar converter
US9270160B2 (en) Repetitive servomechanism controller for uninterruptible power supply system
JP2016025680A (ja) 不平衡補償装置
JP2011015493A (ja) 分散型電源装置
CN107425710B (zh) 基于负载电流前馈的pfc电路控制方法及装置
JP2012175753A (ja) 無効電力補償装置
Rajakumar et al. Enhancement of power quality using double‐band hysteresis controller for the grid integrated renewable energy system
JP6583922B2 (ja) 電力変換装置
JP6678343B2 (ja) 電力変換装置
Yada et al. Operation and control of single-phase UPQC based on SOGI-PLL
JP6849546B2 (ja) 系統連系用電力変換装置
Narayanan et al. SOGI-FLL-WDCRC Filter for Seamless Control of Microgrid for Optimal Coordination of Conventional and Renewable Energy Resources
Ryckaert et al. Damping potential of single-phase bidirectional rectifiers with resistive harmonic behaviour
CN107681687B (zh) 基于储能的分布式系统母线过电压抑制控制方法和系统
JP2013212021A (ja) 無効電力補償装置
JP2012231606A (ja) 系統連系電力変換装置
US20230208319A1 (en) Control device for power conversion device and power conversion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200519

R151 Written notification of patent or utility model registration

Ref document number: 6712797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151