JP6711881B2 - 周波数依存的減衰段をチューニングするための装置及び方法 - Google Patents

周波数依存的減衰段をチューニングするための装置及び方法 Download PDF

Info

Publication number
JP6711881B2
JP6711881B2 JP2018192701A JP2018192701A JP6711881B2 JP 6711881 B2 JP6711881 B2 JP 6711881B2 JP 2018192701 A JP2018192701 A JP 2018192701A JP 2018192701 A JP2018192701 A JP 2018192701A JP 6711881 B2 JP6711881 B2 JP 6711881B2
Authority
JP
Japan
Prior art keywords
frequency
drc
signal
reproduction system
audio reproduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018192701A
Other languages
English (en)
Other versions
JP2019033522A (ja
Inventor
タパニ パカリネン,ユリ
タパニ パカリネン,ユリ
スミザーズ,マイケル
フェリクス トーレス,フアン
フェリクス トーレス,フアン
パーンヘーゲン,ハイコ
Original Assignee
ドルビー・インターナショナル・アーベー
ドルビー ラボラトリーズ ライセンシング コーポレイション
ドルビー ラボラトリーズ ライセンシング コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ドルビー・インターナショナル・アーベー, ドルビー ラボラトリーズ ライセンシング コーポレイション, ドルビー ラボラトリーズ ライセンシング コーポレイション filed Critical ドルビー・インターナショナル・アーベー
Publication of JP2019033522A publication Critical patent/JP2019033522A/ja
Application granted granted Critical
Publication of JP6711881B2 publication Critical patent/JP6711881B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0232Processing in the frequency domain
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G5/00Tone control or bandwidth control in amplifiers
    • H03G5/16Automatic control
    • H03G5/165Equalizers; Volume or gain control in limited frequency bands
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G5/00Tone control or bandwidth control in amplifiers
    • H03G5/005Tone control or bandwidth control in amplifiers of digital signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/09Electronic reduction of distortion of stereophonic sound systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)

Description

関連出願への相互参照
本願は、2014年2月18日付け出願の米国特許仮出願第61/941,414号に基づき優先権を主張するものであり、この出願の開示内容の全てを本願に援用する。
技術分野
本開示の実施形態例は、広くオーディオ再生システムに関し、特にオーディオ再生システム中で発生する歪みの抑制に関する。
背景
消費者向けオーディオ再生システムの音質を向上する目的でデジタル信号処理を使用することは、オーディオ産業における現在のトレンドである。小型または低価格のオーディオ再生システムが持つ典型的な欠点には、例えば、平坦でない振幅応答、控えめな低周波放射能力、及びノイズが含まれる。そのようなシステムの多くが有するもうひとつの望ましくない特性は、音色や位相などの音の特徴を音の振幅の関数として変化させる原因となり得る、非線形歪みの発生である。非線形歪みはまた、ある特定の周波数における非線形な振幅応答(強度に関して)の原因となり得て、音声出力中に、例えば入力周波数成分の周波数の整数倍(倍音)における、新たな周波数成分を生み出し得る。結果として、2つの同一の音を、非線形歪みを生じるオーディオ再生システム上で異なる再生利得を用いて再生すれば、2つの非常に異なる出力音を得る結果になり得る。商業用音再生システムにおける非線形歪みの典型的な源は、トランスデューサについてのコストを増大させることなくさらに大きな音声出力を達成する目的で、スピーカユニットをその線形動作範囲外で無理やり動作させることである。
非線形歪みを抑制する1つの方法は、入力信号をスピーカへ与える前に減衰させることであるが、これはシステムの音が小さくなってしまうことであり、典型的には容認できない。システムのラウドネスをほんのわずかにしか犠牲にすることなく非線形歪みを抑制するための1つのアプローチは、入力信号を監視して音量の大きい部分にのみ減衰処理を適用するダイナミックレンジリミッタを用いることであり、その結果、スピーカに与えられる信号の振幅は所定の閾値を決して越えることはない。
非線形歪みは典型的には周波数に依存するため、リミッタ処理を異なる周波数帯に対して別々に適用するのが望ましく、その結果、問題となる周波数と信号強度との組合せのみが減衰されることとなる。このアプローチは、マルチバンドリミティング/コンプレッションと呼ばれ、これにより、例えば「ボリュームパンピング(volume pumping)」のような、ダイナミックレンジ圧縮に関わる副作用のうちのいくつかもまた緩和される。
しかし、マルチバンドリミッタ/コンプレッサは、入力信号に応じて異なる周波数帯を異なる減衰のさせ方をするため、このことが不快に感じられる音色の変化につながり得る。その全文を本願に援用する米国特許出願第2013/0013096 A1号の中で、音色維持マルチコンプレッサ(a multi‐band compressor with timbre preservation)が、そのような音色変化を低減すべく提案されている。
上記のように、オーディオ再生システムにおいて発生する非線形歪みを抑制するために、いくつかの方法がこれまでに提案されており、これによりオーディオ再生システムの音質を向上できる。しかし、非線形歪みの抑制に関連する上記の諸問題のうちの、少なくともいくつかを緩和する装置および/または方法を提供することが望ましいであろう。
図面の簡易説明
実施形態例が、これより添付図面を参照しながら述べられる。
図1はある実施形態例による装置を用いて周波数依存減衰処理段をチューニングするための構成例を示す、汎用ブロック図である。 図2はある実施形態例による周波数依存減衰処理段をチューニングするための装置を示す、汎用ブロック図である。 図3は、非線形歪みを生じるオーディオ再生システムが単一周波数オーディオ信号に相当する入力データ信号により励起される際に生じる出力音響信号の、スペクトル例を表す両対数グラフを模式的に示す。 図4は、ある実施形態例による、周波数依存の可聴閾値(実線)及びマスキング閾値(破線)をそれぞれ模式的に示し、チューニング装置において考慮され得る心理音響効果を示す。 図5は、ある実施形態例による、周波数依存の可聴閾値(実線)及びマスキング閾値(破線)をそれぞれ模式的に示し、チューニング装置において考慮され得る心理音響効果を示す。 図6は、ある実施形態例によるオーディオ再生システムに対する励起として用いられる入力信号例を模式的に示す。 図7aは、図6に示された入力信号例の振幅を模式的に示す。 図7bは、図6に示された入力信号例による励起に際してのオーディオ再生システムの出力信号例における、周波数成分の大きさを模式的に示す。ここで、当該周波数成分は入力信号例と同一周波数に局在しており、図中の飽和はオーディオ再生システム内にダイナミックレンジ制御が存在していることを表し得る。 図8はある実施形態例による装置を用いて周波数依存減衰処理段をチューニングするための代替構成例を示す、汎用ブロック図である。 図9はある実施形態例による、周波数依存減衰処理段をチューニングするための方法を示す、フローチャートである。 図10はある実施形態例による、オーディオ再生システム内にDRCが存在することを検知するための方法を示す、フローチャートである。
全ての図は模式的であり、概ねいずれも開示を明らかにする為に必要な部分のみを示している。その一方で、省略されるかあるいは単に示唆されるのみの部分もある。別途の示唆の無い限り、異なる図において類似の参照符号は類似の部分を指す。
実施形態例の説明
I.概要‐チューニング
本明細書中で用いるとき、「オーディオ信号」は、純粋なオーディオ信号、または視聴覚信号やマルチメディア信号のオーディオ部分、もしくはメタデータと組み合わされたこれらのいずれか、であり得る。
実施形態例において、周波数依存的減衰段を、周波数依存的減衰段に連関したオーディオ再生システム中で発生する非線形歪みを抑制するためにチューニングするための装置が
、提供される。装置によりチューニングされる周波数依存的減衰段に連関したオーディオ再生システムは、入力データ信号に応答して出力音響信号を供給するように構成される。装置は、既定入力データ信号によるオーディオ再生システムの励起に際して記録される出力音響信号を表現するデータを受信するように適応された受信部を備える。装置はまた、前記受信したデータに基づき非線形歪みの存在を検知し、かつ、前記検知された非線形歪みに対して心理音響補償を適用するように適応された第1の歪み検知部も含む。装置はさらに、前記心理音響補償を受けた非線形歪みに基づき周波数依存的減衰段の制御に適した制御情報を決定するように適応された制御部を含む。
周波数依存的減衰段とは、とりわけ、オーディオ信号あるいはマルチメディア信号のオーディオ部分に周波数依存の減衰処理を実施するように適応された処理段を意味し、例えば、マルチバンドリミッタのことである。周波数依存的減衰段は、オーディオ再生システムにより再生されるべき信号を、オーディオ再生システム中で生じる非線形歪み量を低減する目的で減衰処理するのであり、既存の非線形歪みを減衰処理するわけではない。
非線形歪みとは、オーディオ再生システムの非線形効果、例えば、音色および/または位相のような音の特徴の変化を音の振幅の関数として引き起こす効果、に起因する歪みを意味する。非線形歪みには、例えば、入力周波数の整数倍の周波数もしくはその付近に位置する倍音歪み成分が、含まれ得る。
周波数依存的減衰段のチューニングは、既定入力データ信号による特定オーディオ再生システムの励起に際して検知された非線形歪みに基づき、その特定オーディオ再生システムの歪み挙動を考慮に入れる。これにより、その特定オーディオ再生システム中で発生する非線形歪みを、さらに効率的に抑制することが可能となる。
心理音響効果が、オーディオ再生システム出力中の非線形歪みが聴取者にどのように感じられるかを左右する。検知された非線形歪みに対して心理音響補償を適用し、周波数依存的減衰段を制御するための制御情報を心理音響補償を受けた非線形歪みに基づき決定することにより、周波数依存的減衰段は、知覚可能/聴取可能な非線形歪みをより効率的に抑制したり、かつ/または主として不可聴であるかまたは特に気にならない非線形歪みの原因となっただけであろうオーディオコンテンツに対する不要な減衰処理を減じたりするように、チューニングされ得る。言い換えれば、周波数依存的減衰段のチューニング中に心理音響補償を適用すれば、オーディオ再生システムが生成する可聴な非線形歪みと、オーディオ再生システムが有する全体的なラウドネスとのバランスが改善され得る。
既定入力データ信号は、例えば装置にとって既知であり得て、例えば、周波数依存的減衰段のチューニングに関する既定の手続きの一部として、装置によりオーディオ再生システムへと提供され得る。あるいは、既定入力データ信号についての情報(information)は、例えば装置により受信データに基づき取得されるか、かつ/または装置により別途受信されてもよい。
ある実施形態例によれば、第1の歪み検知部は、少なくとも、検知された非線形歪みのスペクトル成分であって周波数依存の可聴性閾値を下回るものを無視することによって心理音響補償を適用するように適応され得る。
ある所定の周波数について、周波数依存の可聴性閾値は、例えば、その所定の周波数にあるオーディオコンテンツが平均的な人間の聴取者に聴取可能/知覚可能となるような振幅/パワー/エネルギーレベルとして設定され得る。あるいは、可聴性閾値は、可聴レベルよりも十分に低いオーディオコンテンツのみが無視されるよう、低めに設定されてもよい。あるいは、可聴性閾値は、平均的聴取者により十分に弱い/小さいと知覚されるオー
ディオコンテンツが無視されるよう、高めのレベルに設定されてもよい。
周波数依存の可聴性閾値を下回るスペクトル成分を無視することは、検知された非線形歪みの周波数成分であって周波数可聴性閾値を下回る振幅/パワー/エネルギーレベルを有するものを無視することを、含み得る。例えば、後続の工程手順において、その対応する周波数範囲内ではその歪みのスペクトルはゼロであるものと考えてもよい。
少なくともいくつかの実施形態例によれば、周波数依存の可聴性閾値を下回るスペクトル成分を無視することはまた、検知された非線形歪み成分の振幅/パワー/エネルギーレベルを、それぞれの非線形歪み成分に対応する周波数における周波数依存の可聴性閾値のレベル分だけ低減することも含み得る。すなわち、周波数依存の可聴性閾値に関するある種の正規化のが含まれ得る。後続の工程手順は例えば、検知された非線形歪み成分の、抑制/正規化された、振幅/パワー/エネルギーレベルに基づき得る。
ある実施形態例によれば、第1の歪み検知部は、周波数依存の可聴性閾値の較正を、受信データが表現する出力音響信号の記録に関連して推定される音圧レベルに基づいて行うように適応され得る。音圧レベルは、出力音響信号を表現する受信データと、出力音響信号が聴取者によってどのように感じられるかを推定することに関連する諸物理量とを結び付けるリンクの役割を担うことができ、周波数依存の可聴性閾値の適正な較正を容易にし得る。
ある実施形態例によれば、第1の歪み検知部は、心理音響補償の適用を、少なくとも以下により行うように、適応され得る。すなわち、既定入力データ信号の第1の周波数成分についての情報(knowledge)を取得すること、当該第1の周波数成分に基づき、当該第1の周波数成分の近傍についてマスキング閾値を推定すること、及び、検知された非線形歪みのスペクトル成分であって、このようにして推定されたマスキング閾値を下回るものを無視することである。
オーディオ再生システムが既定入力データ信号により励起される際、既定入力データ信号の第1の周波数成分により、第1の周波数成分と実質的に同一の周波数に局在する、受信データのスペクトル成分が生じる。そして、このスペクトル成分は、受信オーディオ信号が有する他のオーディオコンテンツに対するマスキング効果を有する。
マスキング閾値を下回るスペクトル成分を無視することは、検知された非線形歪みの周波数成分であって、その振幅/パワー/エネルギーレベルがマスキング閾値を下回るものを無視することを含み得る。
いくつかの実施形態例によれば、既定入力オーディオ信号及び第1の周波数成分は、装置および/または第1の歪み検知部にとって既知であってもよく、例えば、装置中に含まれるインターフェースによりオーディオ再生システムへと提供され得る。他のいくつかの実施形態例によれば、第1の周波数成分についての情報は、第1の歪み検知部が受信してもよいし、受信データに基づき取得されてもよい。
ある実施形態例によれば、第1の歪み検知部は、既定入力データ信号の第1の周波数成分についての情報を取得すること、及び、受信データに基づいて当該第1の周波数成分に対応する非線形歪み成分を検知すること、を行うように適応され得る。言い換えれば、本実施形態例によれば、第1の歪み検知部は、受信データに基づき、第1の周波数成分によるオーディオ再生システム励起の結果である非線形歪み成分を検知するように適応され得る。
オーディオ再生システムが既定入力データ信号により励起される際、既定入力データ信号の第1の周波数成分により、第1の周波数成分と実質的に同一の周波数に局在する受信データのスペクトル成分や、他の周波数に位置する非線形歪み成分、例えば第1の周波数成分の周波数の整数倍上またはその付近に位置する倍音成分が生じる。
ある実施形態例によれば、第1の歪み検知部は、第1の周波数成分と実質的に同一の周波数にあるような受信データのスペクトル成分のパワーと、非線形歪み成分のパワー総計との、パワー比を決定するように適応され得る。本実施形態例によれば、制御部は、制御情報の決定を当該パワー比にもまた基づいて行うように適応され得る。
ある実施形態例によれば、第1の歪み検知部は、少なくとも、パワー比生成に先立ち、第1の周波数成分と実質的に同一の周波数に局在する受信データのスペクトル成分のパワーを正規化すること、及び、さらに非線形歪み成分のパワーを正規化することによって、心理音響補償を適用するように適応され得る。正規化は周波数依存の可聴性閾値に関して行われる。言い換えれば、パワー比生成に先立ち、そのそれぞれのスペクトル成分またはコンポーネントを周波数依存の可聴性閾値に関して正規化することにより、分子分母の両方が小さくされる。パワー比生成に先立ち、それぞれのスペクトル成分またはコンポーネントを周波数依存の可聴性閾値に関して正規化することにより、取得されるパワー比の値は、求める音声出力と非線形歪みとの間の、聴取者によって感じられるパワー比(すなわち強度差)をより適正に示し得る。
いくつかの実施形態例によれば、第1の歪み検知部は、周波数依存の可聴性閾値の較正を、受信データが表現する出力音響信号の記録に関連して推定される音圧レベルに基づいて行うように適応され得る。
ある実施形態例によれば、第1の歪み検知部は、少なくとも、倍音インデックスを非線形歪み成分に割り当てること、及び、例えばパワー比生成に先立ち、当該倍音インデックスに基づいて非線形歪み成分に重み付けをすることによって、心理音響補償を適用するように適応され得る。
倍音インデックスは、非線形歪み成分(倍音歪み成分とも呼ぶ)が位置する周波数を、オーディオ再生システムへの入力励起信号中に存在する基本周波数に対して関係付ける。異なる倍音歪み成分は、典型的には、不快さが同じであるようには聴取者にとって感じられない。例えば、第2倍音成分は、より高位の倍音成分に比べればはるかに微妙な音響効果を有するものであると、しばしば報告されている。倍音インデックスに基づいて非線形歪み成分を重み付けすること、例えば、第2倍音成分に対し比較的軽めの重みを与えることにより、このことを考慮することができる。
いくつかの実施形態例によれば、非線形歪み成分のうち少なくとも1つは、その倍音インデックスに基づき無視されてもよい。
ある実施形態例によれば、第1の歪み検知部は、少なくとも、第1の周波数成分と実質的に同一の周波数に局在する受信データのスペクトル成分のラウドネスを推定すること、及び、非線形歪み成分群の結合的ラウドネスを推定することによって、心理音響補償を適用するように適応され得る。本実施形態例によれば、制御部は、制御情報の決定を、推定されたこれらラウドネス間の差異にもまた基づいて行うように、適応され得る。聴取者が感じるラウドネスは、典型的には周波数により異なり、例えば、当該非線形歪み成分を、それらが存在するそれぞれの周波数領域に基づきその大きさを変えたり重み付けしたりすることによって対処され得る。非線形歪み成分群の結合的ラウドネスは、例えば、ラウドネス総計法(summation scheme)を用いて推定され得る。ある実施形態
例によれば、装置は、既定入力データ信号のスペクトル成分の範囲にわたる周波数範囲についての情報を取得すること、及び、受信データのスペクトル成分であって当該周波数範囲を上回るものに基づき非線形歪みを検知すること、を行うように適応された第2の歪み検知部を備え得る。本実施形態例によれば、制御部は、制御情報の決定を、第2の歪み検知部が検知する非線形歪みにもまた基づいて行うように、適応され得る。
なお、いくつかの実施形態例によれば、既定入力データ信号は比較的弱いノイズ、例えば、既定入力データ信号の総エネルギーの多くとも5または10パーセントであるようなノイズを含み得ることに留意されたい。そのような状況下では、本明細書内及び特許請求の範囲において言及されている周波数範囲は、ノイズのみしか存在しない周波数を含んでいる必要はない。
既定入力データ信号のスペクトル成分の範囲にわたる周波数範囲を上回る周波数に対して、受信データのスペクトル成分が発生していることは、非線形歪みを示し得る。第2の歪み検知部による非線形歪みの検知は、第1の歪み検知部による非線形歪みの検知を補完する役割を果たし得る。これら2つの歪み検知部の両方による非線形歪みの検知結果に基づき制御情報を決定することにより、オーディオ再生システム中で発生する非線形歪みの抑制は、改善され得る。
ある実施形態例によれば、装置は、既定入力データ信号群のシーケンスによるオーディオ再生システムの励起に際して記録されるデータを受信するように適応され得る。当該シーケンス中で連続する既定入力データ信号群は、ある1つの既定波形を次第に増幅した波形群に相当する。本実施形態例によれば、装置は、オーディオ再生システムの出力オーディオ信号のスペクトル組成であって当該既定入力データ信号群のシーケンスによる励起の結果であるものを受信データに基づいて監視し、当該監視されるスペクトル組成における突然の変化を検知し、かつ、当該検知された突然の変化に対応する既定波形の増幅値を決定するように適応された、スペクトル組成解析部を備え得る。本実施形態例によれば、制御部は、制御情報の決定を、スペクトル組成解析部により決定される増幅値にもまた基づいて行うように、適応され得る。
例えば、スペクトル組成解析部により決定される増幅値は、最大のエネルギー/パワーレベル動作動作(ある特定の周波数帯のスペクトル成分が常にこれを下回るよう周波数依存的減衰段によって保たれることによって、スピーカがその線形動作区間外で動作するのを回避することを目的とする)を特定するために、制御部により使用され得る。第1の歪み検知部からの、心理音響補償を受けた非線形歪みに関する情報は、例えば、その特定の周波数帯内でのエネルギー/パワーレベルが前記最大のエネルギー/パワーレベルを既に下回るときの周波数依存的減衰段用の減衰レベルを決定するために、制御部により使用され得る。
既定波形は、例えば、単一の正弦信号であってもよいし、複数の周波数成分を含むより合成的なオーディオ信号であってもよい。既定波形は、例えば、狭帯域信号であることによりオーディオ再生システムの非線形歪み特性がある特定の周波数帯について解析されるようにしてもよい。
もし例えば、既定入力データ信号群のシーケンス中の個々の要素が無音を表すデータなどによって時間的に区切られているならば、スペクトル組成解析部は、オーディオ再生システムの出力音響信号が備えるスペクトル組成の決定を、既定入力データ信号群のシーケンス中の各要素に対応する離散的時点において行うように適応され得、また、各時点において決定されるスペクトル組成値間に起こる突然の変化を検知できるように適応され得る。なお、オーディオの連続する時間区分を結合して単一の連続的なオーディオシーケンス
にするためのいくつかの手法が当業者には既知であり、少なくともそのいくつかを、オーディオ区分を次々に追加することに起因する過渡現象および/またはその他のアーチファクトを減らす目的で採用し得ることに、留意されたい。そのような手法を採用することによって、例えば、既定入力データ信号群のシーケンス中の要素群を結合してオーディオ再生システムに対する励起として用いられる単一の入力データ信号にしておいてもよく、その結果、監視されるスペクトル成分のうちで、オーディオの時間区分を次々に追加することに起因する過渡現象/アーチファクトに由来する部分を減少することとなり得る。
もし例えば、既定波形が単一の正弦波であるならば、既定入力データ信号群のシーケンスは、例えば次第にあるいは連続的に増加する振幅を有する単一の正弦信号の形として、オーディオ再生システムにより受信され得る。またこのとき、オーディオ再生システムの出力音響信号のスペクトル組成は、例えば、スペクトル組成解析部により、既定入力データ信号群のシーケンス中の個々の要素に対応する離散時点上で監視/決定されるのではなく、むしろ連続的に監視され得る。本例示では、スペクトル組成分析部は、連続的に監視されるスペクトル組成における突然の変化を検知するように適応され得る。
スペクトル組成は、例えばスペクトル中心および/またはケプストラム極大を推定することにより、監視され得る。監視されるスペクトル組成における突然の変化は、オーディオ再生システムがその線形動作範囲の上端に達したことを示し、この範囲の外側で非線形歪み量は有意に増加し得る。検知された突然の変化に対応する既定波形の増幅値は、オーディオ再生システムが備える線形動作域の上端に関連するエネルギー/パワー/振幅レベルにも対応していてもよく、制御部は、制御情報の決定をこのエネルギー/パワー/振幅レベルにもまた基づいて行うように適応され得る。
ある実施形態例によれば、装置は、既定入力データ信号と受信データとの間の整合性(coherence)を決定することを行うように適応された相関性解析部を備え得る。この構成を用いれば、制御部は、制御情報の決定を、整合性解析部により決定される整合性値にもまた基づいて行うように適応され得る。例えば、既定入力データ信号と受信データとの間の低い整合性は、非線形歪みの存在を示し得る。特に、低ノイズ状況下ではそうである。
ある実施形態例によれば、相関性解析部は、既定入力データ信号と受信データとの間の相互相関性を決定すること、決定された相互相関性に基づき既定入力データ信号と受信データとの間のサンプルレート差を推定すること、及び受信データを再サンプリングしたものに基づき整合性を決定すること、を行うように適応され得る。受信データの再サンプリングは、既定入力データ信号と受信データとの間の同期性を向上する目的で使用され得るものであり、決定される整合性におけるノイズを低減し得る。
ある実施形態例によれば、装置は、既定入力データ信号群のシーケンスによるオーディオ再生システムの励起に際して記録されるデータを受信するように適応され得る。前記シーケンス中で連続する既定入力データ信号群は、ある1つの既定波形を次第に増幅した波形群に相当する。本実施形態例によれば、装置は、受信データに基づき、オーディオ再生システムからの出力音響信号の振幅であってシーケンスによるオーディオ再生システム励起の結果であるものを監視すること、及び、監視される振幅の飽和を検知してオーディオ再生システム内におけるDRCの存在を証明すること、を行うように適応されたダイナミックレンジ制御(DRC)検知部を含み得る。本実施形態例によれば、制御部は、制御情報の決定を、DRC検知部による検知結果にもまた基づいて行うように適応され得る。
所与のオーディオ再生システムについて、典型的には、音響出力において得ることが可能な振幅についての上限が存在し、それはDRCがなくとも、例えば、増幅段および/ま
たはスピーカにおける物理的制限の結果生じる。オーディオ再生システム内にDRCが存在することの証明となる検知された飽和とは、監視される振幅の飽和であって、そのような上限を下回るレベルで起きるものを意味する。
ある実施形態例によれば、既定入力データ信号群のシーケンスは、増加する振幅を伴う単一周波数のオーディオ信号に実質的に相当し得る。本実施形態例によれば、DRC検知部は、受信データに基づきオーディオ再生システムからの出力音響信号中の、ある周波数成分の振幅を監視すること(この監視される周波数成分は単一周波数のオーディオ信号と実質的に同一の周波数に局在する)、及び、監視される周波数成分の振幅につき飽和を検知してオーディオ再生システム内におけるDRCの存在を証明すること、を行うように適応され得る。
ある実施形態例によれば、制御部は、DRC検知部による検知に応答して、周波数依存的減衰段に減衰処理を中断させるための制御情報を決定するように適応され得る。オーディオ再生システム内にDRCが存在することは、可聴なアーチファクトが生じる原因となり得る。少なくともいくつかの実施形態例においては、それゆえ、周波数依存的減衰段が減衰処理を適用しないことが有益となり得る。
ある実施形態例によれば、装置は、一定の入力データ信号によるオーディオ再生システムの励起に際して記録されるデータを受信するように適応され得る。本実施形態例によれば、装置は、オーディオ再生システムに含まれかつ装置の制御部により決定される制御情報に基づいて入力データ信号を減衰処理するよう動作し得る周波数依存的減衰段、をチューニングするように適応され得る。本実施形態例によれば、装置は、周波数依存的減衰段のチューニングを、受信データに基づき反復的に制御情報を決定することによって行うように適応され得る。
ある実施形態例によれば、制御部は、制御情報の決定を、少なくとも、周波数依存的減衰段についての基準チューニングのセットに基づき機械学習を適用することによって行うように適応され得る。基準チューニングのセットは、例えば、それぞれの基準オーディオ再生システムの既定入力データ信号による励起に際して記録される出力音響信号を表現する基準データのセットと、それぞれの基準データに対応する基準制御信号であって、それぞれの基準オーディオ再生システム中で発生する非線形歪みの抑制を目的に周波数依存的減衰段を制御するための信号を含み得る。基準チューニングは、例えば、聴取検定中にチューニング担当者(human tuner)によって取得されたものであってもよい。制御部は、例えば、基準チューニングが格納されるメモリを含み得る。
ある実施形態例によれば、装置はさらに、既定入力データ信号をオーディオ再生システムへと提供するように適応されたインターフェースを含み得る。インターフェースは、例えば、有線でも無線でもよい。
ある実施形態例によれば、装置はさらに、オーディオ再生システムからの音響出力を記録すること、及びそのデータを受信部へと提供すること、を行うように適応された音響トランスデューサを含み得る。
実施形態例において、周波数依存的減衰段を、周波数依存的減衰段に連関するオーディオ再生システム中で起こる非線形歪みの抑制するためにチューニングするための方法が、提供される。提案される方法は、概ね、上記に提案された装置のものと同一または対応した、特徴と利点を有し得る。特に、いくつかの実施形態例によれば、当該方法は、既定入力データ信号によるオーディオ再生システムの励起に際して記録される出力音響信号を表現するデータを受信することを含み得る。当該方法は、受信データに基づき非線形歪みの
存在を検知することを含み得る。当該方法は、心理音響補償を検知された非線形歪みに対し適用すること、及び、心理音響補償を受けた非線形歪みに基づき周波数依存的減衰段の制御のために適切な制御情報を決定すること、を含み得る。
実施形態例において、コンピュータプログラム製品は、上記に提案された方法のうちいずれかをコンピュータに実行させるための指令を備えるコンピュータ可読媒体を含み得る。その提案されたコンピュータプログラム製品は、概ね、上記に提案された方法や装置のものと同一または対応した特徴と利点を有し得る。
更なる諸実施形態例が、従属する請求項において規定される。なお、諸実施形態例には、例え互いに異なる請求項中で規定されているとしても、特徴のあらゆる組合せが含まれることに留意されたい。
II.概要‐DRC検知
実施形態例において、オーディオ再生システム内にダイナミックレンジ制御すなわちDRCの存在を検知するための方法、装置、及びコンピュータプログラム製品が提案される。その提案される、オーディオ再生システム内におけるDRCの存在を検知するための方法、装置、及びコンピュータプログラム製品は、概ね、同一または対応した特徴や利点を共有し得る。なお、その提案される、オーディオ再生システム内におけるDRCの存在を検知するための方法、なお、装置、及びコンピュータプログラム製品は、前節に記載されたそれぞれの方法、装置、コンピュータプログラム製品とは独立、かつ組み合わせ可能であることに留意されたい。
実施形態例において、オーディオ再生システム内にダイナミックレンジ制御(DRC)の存在を検知するための方法が、提供される。オーディオ再生システムは、入力データ信号に応答して出力音響信号を供給するように構成される。当該方法は、以下を含む。すなわち、一既定入力データ信号群のシーケンスによるオーディオ再生システムの励起に際し記録される出力音響信号を表現するデータを受信すること、但し、シーケンス中で連続する既定入力データ信号群は、ある1つの既定波形を次第に増幅した波形群に相当する;受信データに基づき、シーケンスによるオーディオ再生システムの励起の結果である、オーディオ再生システムからの出力音響信号の振幅を監視すること;および、監視される振幅の飽和を検知し、オーディオ再生システム内におけるDRCの存在を証明することである。
所与のオーディオ再生システムにおいて、音響出力において得ることが可能な振幅について、DRCが存在せずとも、例えば、増幅段および/またはスピーカにおける物理的制限の結果生じるような上限が、典型的には存在する。オーディオ再生システム内にDRCが存在することの証明となる検知された飽和とは、監視される振幅の飽和であってそのような上限から区別される(例えば、下回る)レベルで起きるもの、を意味する。
オーディオ再生システムのスピーカには典型的には線形動作区間が存在し、それを上回ると、入力信号のエネルギー成分のうちの大部分が、出力信号中では入力信号よりも高い周波数に位置する周波数成分のエネルギーへと(すなわち倍音歪み成分の形の非線形歪みに)移動/シフトされることとなる。
少なくともいくつかの実施形態例によれば、オーディオ再生システム内にDRCが存在することの証明となる検知された飽和は、オーディオ再生システムが備える1つ以上のスピーカおよび/またはヘッドフォンが動作それぞれの線形動作区間で動作することに対応するレベルで起きる、監視される振幅の飽和であり得る。
線形動作区間の上端/上限は、例えば、前節「I.概要‐チューニング」中の実施形態例において記載したように、次第に増加する振幅/パワーを伴う信号によるオーディオ再生システムの励起に際しての、オーディオ再生システムの出力音響信号のスペクトル成分/組成における突然の変化を検知することにより、決定され得る。
ある実施形態例によれば、当該方法は以下を包含し得る。すなわち、増加する振幅を伴う単一周波数のオーディオ信号に実質的に相当する、既定入力データ信号群のシーケンスによりオーディオ再生システムが励起される際に記録される出力音響信号を表現するデータを受信すること;前記受信データに基づき、オーディオ再生システムからの出力音響信号中の、ある周波数成分の振幅を監視すること(この監視される周波数成分は、前記単一周波数のオーディオ信号と同一周波数に実質的に局在している);および、監視される振幅の飽和を検知して、オーディオ再生システム内におけるDRCの存在を証明することである。言い換えれば、当実施形態例では、既定波形は単一周波数のオーディオ信号である。その他の実施形態例であって、その中では、前記既定波形が例えば複数の周波数成分を含むより合成的な信号であるようなもの、もまた想定される。
実施形態例において、コンピュータプログラム製品は、上記に提案されたDRCの存在を検知するための方法のうちいずれかをコンピュータに実行させるための指令を備えるコンピュータ可読媒体を含み得る。
実施形態例において、オーディオ再生システム内におけるDRCの存在を検知するためのダイナミックレンジ制御、すなわちDRC検知装置が提供される。オーディオ再生システムは、入力データ信号に応答して出力音響信号を供給するように構成され、そしてDRC検知装置は、増加する振幅を伴う単一周波数のオーディオ信号に実質的に相当する、入力データ信号によりオーディオ再生システムが励起される際に記録される出力音響信号を表現するデータを受信し;受信データに基づき、オーディオ再生システムからの出力音響信号中のある周波数成分の振幅を監視し(この監視される周波数成分は前記単一周波数のオーディオ信号と実質的に同一の周波数に局在している);かつ、監視される振幅の飽和を検知してオーディオ再生システム内におけるDRCの存在を証明するように、適応され得る。
III.実施形態例
図1はある実施形態例による装置160を用いて周波数依存的減衰段122をチューニングするための構成例を示す、汎用ブロック図である。
当構成例において、オーディオ再生システム120は、オーディオ再生システム120により再生されるべきオーディオコンテンツを表現する入力データ信号110を受け取る。オーディオ再生システム120は、例えばモバイル装置中に含まれる消費者向けオーディオ再生システムであってもよいし、あるいは、例えばもっと大きな据付式オーディオ再生システムであってもよい。入力データ信号110は、例えばファイル記憶装置から、あるいは外部デジタル入力から再生され得る。もし、オーディオ再生システム120がモバイル装置中に含まれるならば、入力データ信号110は、例えば装置160からオーディオ再生システム120へと無線通信経由で送信され得る。
当構成例において、オーディオ再生システム120は、入力データ信号110に応答して出力音響信号140を供給する。音響トランスデューサ150は、例えば1つ以上のマイクであり、オーディオ再生システム120からの音響出力140を記録し、その記録された音響出力を表現するデータを当該装置160へと供給する。その受信データに基づき、装置160は、オーディオ再生システム120に連関する周波数依存的減衰段122を、オーディオ再生システム120中で発生する非線形歪みを抑制する目的でチューニング
する。
当構成例において、オーディオ再生システム120は、処理段121、周波数依存的減衰段122、デジタルからアナログへの変換段123、増幅段124、及び1つ以上のスピーカ125またはヘッドフォンを含む。処理段121は、入力データ信号110に対する1つ以上の信号処理タスク、例えば入力データ信号110により表現されるオーディオ信号/チャンネルのミキシング、および/またはオーディオ再生システムのスピーカ125による音量応答を修正/均衡化するための等化を実行し得る。処理済み入力データ信号は、その後、周波数依存的減衰段122へと供給される。周波数依存的減衰段122の目的は、オーディオ再生システム120の残りの段内、例えば、デジタルからアナログへの変換段123、増幅段124、及びスピーカ125またはヘッドフォン、において生み出される非線形歪みの量を制御することである。処理済み入力データ信号に対して適正な減衰処理を適用することにより、(例えば、非線形歪みに対し感受性の高い/影響を受けやすい周波数区間中での大きな振幅を避けることにより)オーディオ再生システム120中で発生する非線形歪みは抑制されて、可聴な非線形歪みとオーディオ再生システム120の全体的ラウドネスとの間のトレードオフが成立し得る。周波数依存的減衰段122は、例えば、異なる周波数帯が互いに独立に減衰処理されるマルチバンドリミッタとして、あるいは、その内容を全て本願に援用する米国特許出願第2013/0013096 A1号に記載のような、音色維持マルチバンドリミッタ(timbre−preserving multi−band limiter)として実装され得る。周波数依存的減衰段122によるデータ信号出力は、その後、デジタルからアナログへの変換段123によりアナログ形式へと変換されて、さらに増幅段124により増幅された後、スピーカ125またはヘッドフォンへと与えられて、出力音響信号140として出力されることになる。
ある特定の音声再生システム120中で生み出される非線形歪みを制御するために、周波数依存的減衰段122は、特定の音声再生システム120の歪み挙動についての情報に基づいてチューニングされ得る。そのような情報は、装置160の実施形態例によって取得され得るものであり、図2を参照しながら以下に説明する。
図1に示されるオーディオ再生システム120は、装置160によってチューニング可能な周波数依存的減衰段に連関するオーディオ再生システムの一例であることに留意されたい。特に、装置160によってチューニング可能な周波数依存的減衰段は、図1に示されるオーディオ再生システム120とは異なる組合せの、処理段、変換段、および/または増幅段を含むオーディオ再生システムに連関してもよい。例えば、装置160によってチューニング可能な周波数依存的減衰段は、デジタルからアナログへの変換段123を有さないオーディオ再生システムに連関していてもよい。この場合の理由は例えば、入力データ信号110はアナログ入力から再生される(そして減衰処理はアナログの周波数依存的減衰段122により遂行される)から、あるいはスピーカ125はマイクロ電気機械システム(MEMS)を使用するデジタルスピーカとして実装されるからである。ある別の例では、オーディオ再生システムは処理段121を含まなくてもよい。
図2は汎用ブロック図であって、実施形態例による、周波数依存的減衰段122に連関するオーディオ再生システム120中で発生する非線形歪みの抑制を目的として周波数依存的減衰段122をチューニングするための装置160を示す。装置160は、既定入力データ信号110によるオーディオ再生システム120の励起に際し記録される出力音響信号140を表現するデータ161を受信するように適応された、受信部162を含む。例えば、装置160は、例えば有線または無線通信経由で、既定入力オーディオ信号110をオーディオ再生システム120へと提供するように適応されたインターフェース(図2には不図示)を含み得る。あるいは、既定入力オーディオ信号110は、オーディオ再生システム120により、ファイル記憶装置から再生されてもよいし、その他の装置から
受信されてもよい。すると、装置160は既定入力オーディオ信号110についての情報を、例えば別個に受信される信号通信経由で、および/または受信データ161に基づいて取得し得る。出力音響信号140を表現するデータ161を記録する図1に示された音響トランスデューサ150は、例えば装置160中に含まれてもよいし、装置160とは別個に構成されてもよい。
第1の実施形態例によれば、装置160は、受信データ161に基づき非線形歪みの存在を検知すること、および、その検知された非線形歪みに対し心理音響補償を適応すること、を行うように適応された第1の歪み検知部163を含む。装置160はまた、その心理音響補償を受けた非線形歪みに基づいて周波数依存的減衰段122の制御のために適正な制御情報170を決定すること、を行うように適応された制御部164をも含む。もし例えば、周波数依存的減衰段122がマルチバンドリミッタであるならば、制御情報170は、そのマルチバンドリミッタによりそれぞれの周波数帯内で適用されるべき適正な閾値を示し得る。もし例えば、周波数依存的減衰段122が、その内容を全て本願に援用する米国特許出願第2013/0013096 A1号に記載のタイプの音色温存マルチバンドリミッタであって、固定閾値と経時的に変化する閾値との両方を適用するならば、制御情報170は、例えば固定閾値につき適正値を示し得る。
第1の歪み検知部163の動作例が、第1の実施形態例により、これより図3〜5を参照しながら述べられる。図2に示される装置160のその他の実施形態例が、さらにそれより以下に述べられる。
図3は、非線形歪みを生じるオーディオ再生システム120が単一周波数オーディオ信号に相当する入力データ信号110により励起される際に生じる出力音響信号140のスペクトル例の両対数グラフを、概略的に示す。スペクトルは、図3において、周波数に対し振幅をプロットすることにより示されている。出力音響信号140には、単一周波数のオーディオ信号と実質的に同一の周波数に局在する第1の周波数成分301(c1とも表
す)だけでなく、オーディオ再生システム120中の非線形歪みにより引き起こされて、単一周波数のオーディオ信号とは異なる他の周波数に位置する、いくつかの非線形歪み成分302〜310(ci(i≧2)とも表す)もまた含まれる。図3に示される非線形歪
み成分例302〜310は、単一周波数のオーディオ信号の周波数の整数倍上に位置する倍音歪み成分である。第1の歪み検知部163は、非線形歪み成分302〜310を、既定入力データ信号110により表現される単一周波数のオーディオ信号についての情報に基づいて検知し得る。そのように検知された非線形歪み成分302〜310の生成を抑制するために周波数依存的減衰段122をチューニングするのではなく、装置160は、むしろまず、非線形歪み成分302〜310が聴取者にどのように感じられるかを考慮する。特に、第1の周波数成分301のパワーと非線形歪み成分302〜310のパワー総計との間のパワー比
Figure 0006711881
に基づいて周波数依存的減衰段122をチューニングするのではなく、以下に図4及び図5を参照しながら述べられるように、むしろ心理音響補償を最初にまず異なる成分群に対して適用する。上記のパワー比において、RMS(c)は成分cの2乗平均平方根、すなわち
Figure 0006711881
を表し、これにより第1の周波数成分301のパワーはRMS(c12と表され得て、各非線形歪み成分のパワーはRMS(ci2と表され得る。
図4では、図3に示されるスペクトルを、異なる周波数成分が代表的な(もしくは平均的な)人間聴取者により可聴/知覚可能であるための閾振幅を示す周波数依存の可聴性閾値320と、比較している。第1の実施形態例によると、第1の歪み検知部163は、検知された非線形歪みのスペクトル成分であって周波数依存の可聴性閾値320を下回るものを無視することにより、心理音響補償を適用する。例えば、非線形歪み成分306〜310のうちいくつかは、可聴性閾値320より上には届かず、無視される。
オプションとして、第1の歪み検知部163は、第1の周波数成分301の一部であって可聴性閾値320を下回る部分301aを無視してもよいし、また、検知された非線形歪み成分302〜5の各一部であって可聴性閾値320を下回る部分302aを無視してもよいし、そして例えば、任意の残りの処理手順において、第1の周波数成分301の残部301bと検知された非線形歪み成分302〜305の各残部302bのみを考慮してもよい。
あるいは、第1の歪み検知部163により適用される心理音響補償は、第1の周波数成分301と非線形歪み成分302〜310のパワー総計との間のパワー比
Figure 0006711881
の生成に先立ち、第1の周波数成分301のパワーRMS(c12及び検知された非線形歪み成分302〜306のパワーRMS(ci2の、可聴性閾値320に関する正規化として表現されてもよい。上記のパワー比において、Th(f(c1))及びTh(f(ci))は、それぞれ第1の周波数成分301及び非線形歪み成分302〜310が有する周波数f(c1)及びf(ci)における可聴性閾値320の2乗平均平方根レベルを表す。なお、上記のパワー比における総計には、4つの非線形歪み成分302〜305のみが含まれることに留意されたい。その他の非線形歪み成分306〜310は可聴性閾値320より上には届かないからである。また、図3、図4、及び図5に示される非線形歪み成分302〜310は一例であり、任意の数の非線形歪み成分が音響出力信号140中に存在して上記のパワー比に含まれ得るような他のシナリオ例、が想定されることにさらに留意されたい。
第1の実施形態例により、制御部164は、制御パラメータ170の決定を、決定されたパワー比にもまた基づいて行うように適応される。例えば制御部164は、パワー比が許容レベルTを上回り、検知された歪みが許容できないことを示しているときを決定する目的で、ある基準
Figure 0006711881
を適用し得る。オーディオ再生システム120の音響出力140にそのような許容できな
い歪みが起きるのを避ける目的で、制御部164は例えば、周波数依存的減衰段122に、そのような許容レベルTを上回る歪みを引き起こすものと検知された周波数と振幅との組合せを減衰させるための制御情報170を決定し得る。
周波数依存の可聴性閾値320は、例えば、受信データ161により表現される出力音響信号140の記録に関連して推定される音圧レベル169に基づいて較正され得る。例えば、適正な可聴性閾値を、様々な音圧レベルに関連付けられた可聴性閾値を含むルックアップテーブルから選ぶことによって較正され得る。例えば、音圧レベル169は、専用の音圧レベルメータにより測定/推定され得て、第1の歪み検知部163により受信され得る。あるいは、音響トランスデューサ150は、出力音響信号140の記録に先行して予め較正済みであってもよく、すると第1の歪み検知部163は、周波数依存の可聴性閾値320の較正を、音圧レベル較正済み音響トランスデューサの既知の特性に基づいて行うように適応され得る。
図5では、マスキング閾値330が、図4に示されるスペクトル内に含められているが、これは平均的な人間の聴取者により知覚される周波数マスキングを示している。第1の周波数成分301は、そのスペクトル近傍にある非線形歪み(そしてその他音声についても)に対し、マスキング効果を有し得る。同様に、非線形歪み成分302〜310は、そのスペクトル近傍にある他の非線形歪み成分に対し、マスキング効果を有し得る。従って、検知された非線形歪みのスペクトル成分であってマスキング閾値330を下回るものは、聴取者にとって聴取/知覚不能で有り得、例えば、周波数依存的減衰段122のチューニング時に無視されてもよい。それゆえ、第2の実施形態例によれば、第1の歪み検知部163は、マスキング閾値330を第1の周波数成分301に基づき推定し、第1の非線形歪み成分302がマスキング閾値330を上回ることを察知する。すると、検知部は、第1の非線形歪み成分302に起因するマスキングもまた考慮に入れながらマスキング閾値330を更新し、さらに第2の非線形歪み成分303が更新されたマスキング閾値330を上回ることを察知する。すると検知部は、第2の非線形歪み成分303に起因するマスキングもまた考慮に入れながらマスキング閾値330を更新し、さらに第3の非線形歪み成分304が更新されたマスキング閾値330を下回ることを察知する。第2の実施形態例によれば、第1の歪み検知部163は、少なくとも、マスキング閾値330を下回っている第3の非線形歪み成分304を無視することにより心理音響補償を適用する。第2の実施形態例によれば、第1の歪み検知部163は、その後、図4を参照しながら述べられたパワー比と同様のパワー比を生成するが、そこでは少なくとも第3の非線形歪み成分304は無視されている。その後、制御部164は、制御パラメータ170の決定を、決定済みのパワー比にもまた基づいて行う。
それぞれ図4及び図5を参照しながら述べた周波数依存の可聴性閾値320及びマスキング閾値330は、代表的な人間聴取者が備える既知の特性に基づき較正または推定され得る。音の知覚は聴取者が異なれば様々であり得るため、周波数依存の可聴性閾値320及びマスキング閾値330は、例えば、可聴(例えば、非常に高感度の聴力を備える聴取者にとって)であり得る非線形歪みが決して無視されることのないよう、十分に低く設定され得る。あるいは、重み付けが、検知された非線形歪み成分302〜10に対し、パワー比生成に先行して適用されてもよい。重みは、各非線形歪み成分302〜10の振幅が、周波数依存の可聴性閾値320および/またはマスキング閾値330をどの程度下回ってあるいは上回って広がるかに基づく。
全ての非線形歪み成分が等しく不快であるとは聴取者に感じられことは、典型的にはない。例えば第2倍音成分(すなわち、図3における第1の非線形歪み成分302)は、より高位の倍音成分(例えば、図3における非線形歪み成分310)に比べて、はるかに微妙な音響効果を有するものであると、しばしば報告される。よって、第1の歪み検知部1
63は、例えば、検知された非線形歪み成分302〜10に対し倍音インデックスを割り当ててもよく、それから、第1の周波数成分301のパワーと非線形歪み成分302〜10のパワー総計との間のパワー比生成に先立ち、非線形歪み成分302〜10に対しそれぞれの倍音インデックスに基いて重みを適用し得る。
図4及び図5を参照しながら述べられた、周波数依存の可聴性閾値320および/またはマスキング閾値330を用いること、に代わる1つの方法は、聴取者に感じられる第1の周波数成分301と検知された非線形歪み成分302〜310との相対的ラウドネスを、評価することである。例えば、心理音響補償を適用することには、第1の周波数成分301のラウドネスと、検知された非線形歪み成分302〜310の結合的ラウドネスとを推定することが含まれ得る。制御部164は、例えば、制御情報170の決定を、推定されるラウドネス間の差異にもまた基づいて行うように適応され得る。ラウドネスを推定することには、例えば、A荷重、B荷重、またはC荷重というような重みフィルタを用いることが含まれ得る。非線形歪み成分群の結合的ラウドネスは、例えば、ラウドネス総計法を用いて推定され得る。図3〜5を参照しながら以上に述べられた非線形歪みの解析は、例えば、各周波数帯からの既定入力データ信号110を用いることにより、異なる周波数帯につき反復され得る。また、検知部164は、例えば、各周波数帯毎の歪み特性に関する情報に基づいて制御情報170を決定し得る。
いくつかの実施形態例によれば、図2に示される装置160は、図3〜5を参照しながら述べられた心理音響解析法に追加して、1つ以上の歪み解析法を採用し得る。
非線形歪みの総量を推定するための方法は、比較的低周波数にある比較的狭帯域な励起信号を既定入力データ信号110として用い、音響応答140中の高周波エネルギーを推定し、そしてこれを既定の閾値と比較することである。もし音響応答140中において励起周波数の帯域幅を上回って無視できない信号エネルギーがあるならば、これは主として非線形歪みに起因するものと考えてよい。よって、ある実施形態例によれば、装置160は、既定入力データ信号110のスペクトル成分の範囲にわたる周波数範囲についての情報を取得すること、及び受信データ161のスペクトル成分であって周波数範囲を上回るものに基づいて非線形歪みを検知すること、を行うように適応された第2の歪み検知部165を含み得る。全体的な非線形歪みについてのそのような推定を行う際、特定の周波数成分の位置を突き止めることは必ずしも必要ではなく、所与の周波数領域内のエネルギー成分が、推定を行うために十分な入力データとなり得る。
特にスピーカにおいてありふれた歪み現象の1つは、本明細書では「ハードな歪み(hard distortion)」と呼ぶが、励起信号の振幅がある限度値を超えるときに起きる歪み量の突然の増加である。歪み量は、典型的には、この限度を下回る励起信号については比較的低いが、それを上回る励起信号については耐えられないほど高くなる。これは、特別なタイプの非線形利得応答だと考えられる。次第に増加する振幅を伴うオーディオ信号を表現する入力データ信号110をオーディオ再生システム120のための励起として使用して、装置160は、そのような限度の存在を示す音響応答140における突然のスペクトル変化を探索し、その限度に対応する入力利得値を推定し得る。特に、増加する振幅を伴う狭帯域信号を励起として用いれば、オーディオ再生システム120中でのハードな歪みについての限度値を周波数の関数として解析することが可能になる。音響応答140における突然のスペクトル変化は、例えば、応答信号のスペクトル中心および/またはケプストラム極大(例えば、ケプストラム最大)を監視することにより、検知され得る。従って、ある実施形態例により、装置160は、既定入力データ信号群のシーケンス110によるオーディオ再生システム120の励起に際して記録されるデータ161を受信するように適応され得る。但し、シーケンス中で連続する既定入力データ信号群110は、ある1つの既定波形を次第に増幅した波形群に相当する。当実施形態例によれば
、装置160は、以下を行うように適応されたスペクトル組成解析部166を含み得る。すなわち、受信データ161に基づき、既定入力データ信号群のシーケンスによる励起の結果生じるオーディオ再生システム120の出力音響信号140のスペクトル組成を監視すること;監視されるスペクトル組成における突然の変化を検知すること;及び、検知された突然の変化に対応する既定波形の増幅値を決定することである。
もし例えば、既定入力データ信号群のシーケンス110の個々の要素が例えば無音を表すデータで時間的に区切られているならば、スペクトル組成解析部166は、オーディオ再生システム120の出力音響信号140のスペクトル組成の決定を、既定入力データ信号群のシーケンス110の各要素に対応する離散的時点において行うように適応され得るし、また、各時点において決定されるスペクトル組成値間に起こる突然の変化を検知するように適応され得る。
もし例えば、既定波形が単一の正弦波であるならば、既定入力データ信号群のシーケンス110は、例えば連続的に増加する振幅をもつ、単一の正弦信号の形でオーディオ再生システム120により受信され得る。またこのとき、オーディオ再生システム120の出力音響信号140のスペクトル組成は、例えば、スペクトル組成解析部166により既定入力データ信号群のシーケンス110の個々の要素に対応する離散時点上で監視/決定されるのではなく、むしろ連続的に監視され得る。
様々な周波数範囲を備える狭帯域信号群をオーディオ再生システム120のための励起として使用する代わりに、例えば音楽のような広帯域励起が使用されてもよく、するとこのとき、2チャンネル高速フーリエ変換に基づく解析法が、非線形歪み量を推定する目的で利用され得る。特に、オーディオ再生システム120の入出力信号間の整合性を測定することにより、入出力信号間の線形依存性の見積もりが得られる。応答中の非線形歪み生成物はノイズと同様に整合性値を低下させるが、その一方で、線形かつ経時不変なプロセスはそのような効果を有さない。故に、低ノイズ状況下では、整合性値の逆数が、広帯域励起信号の場合の非線形歪みの目安として使用され得る。従って、ある実施形態例によれば、装置160は、既定入力データ信号110と受信データ140との間の整合性を決定するように適応された相関性解析部167を含み得る。既定入力データ信号110と受信データ161との間の同期性を向上する目的で、相関性解析部167は、既定入力データ信号110と受信データ161との間の相互相関性を決定すること、決定された相互相関性に基づき既定入力データ信号110と受信データ161との間のサンプルレート差を推定すること、及び受信データ161を再サンプリングしたものに基づき整合性を決定すること、を行うように適応され得る。
いくつかの利用可能な音声再生システムは、図1に示されるオーディオ再生システム120の周波数依存的減衰段122に加えて、ダイナミックレンジ制御(DRC)段を有する。これらのDRC段の内いくつかは迂回したり動作無効化したりできず、装置160による解析に適した「本来の意味の」非線形歪みとは類似しない、不快で可聴なアーチファクトを生成し得る。よって、装置160がオーディオ再生システム120中にビルトインされた任意のDRCを検知可能で、かつそれに対し適切なやり方で対応可能であることは、有益となり得る。そのような対応とは、例えば、周波数依存的減衰段122に対し、リミッタ処理を一切適用しないように、すなわち、減衰処理を中断するように指令することにより行ってもよい。
従って、ある実施形態例によれば、装置160は、図6において増加する振幅を伴う正弦信号601〜604によって例示されるような、増加する振幅を伴う単一周波数オーディオ信号に実質的に相当する入力データ信号110により、オーディオ再生システム120が励起される際に記録されるデータ161を受信するように適応され得る。本実施形態
例によれば、装置160は、受信データ161に基づきオーディオ再生システム120からの出力音響信号140中の、ある周波数成分の振幅を監視すること(但し、監視される周波数は単一周波数オーディオ信号601〜604と実質的に同一の周波数に局在する)、及び、監視される振幅の飽和を検知してオーディオ再生システム120内におけるDRCの存在を証明すること、を行うように適応されたDRC検知部168を備え得る。単一周波数オーディオ信号601〜604の振幅は、図7aにおいて一連の振幅値701a〜704aとして示されている。監視される振幅、例えば、単一周波数オーディオ信号601〜604と実質的に同一の周波数に局在する、出力音響信号140中の周波数成分の振幅は、図7bにおいて、一連の振幅値701b〜704bによって例示される。図7a及び7bに示されるように、入力振幅701a〜704aは増加し、その一方で、監視される出力振幅701b〜704bはレベル710で飽和する。制御部164は、例えば、DRC検知部168による検知に応答し、周波数依存的減衰段122に減衰処理を中断させるための制御情報170を決定するように、適応され得る。
図6に示される正弦信号601〜604の他に、オーディオ再生システム120に対する励起として用いられる、増加する振幅を伴う単一周波数オーディオ信号に実質的に対応する入力データ信号110は、連続的に大きくなる正弦信号(時間的に分離された正弦信号601〜604ではなく)の形で提供されてもよい。そのような連続的に大きくなる正弦信号を励起とすれば、出力振幅は、DRC検知部168によって連続的に監視され得て、その結果、図7に示される離散的な振幅値701b〜704bではなくむしろ1つのカーブが得られる。
増加する振幅を伴う単一周波数オーディオ信号に実質的に相当する入力データ信号110により、オーディオ再生システム120が励起される際に記録されるデータ161を受信する代わりに、装置160は、ある既定入力データ信号群のシーケンスによるオーディオ再生システム120の励起に際して記録されるデータを受信するように、適応されてもよい。但し、シーケンス中で連続する既定入力データ信号群は、ある1つの既定波形を次第に増幅した波形群に相当する。既定波形は、例えば、図6に具体的に例示されるような単一の正弦信号であり得るが、より合成的な信号であってもよい。DRC検知部168は、シーケンスによるオーディオ再生システム120の励起の結果生じるオーディオ再生システム120からの出力音響信号140の振幅を監視すること、及び、監視される振幅の飽和を検知し、オーディオ再生システム120内におけるDRCの存在を証明すること、を受信データ161に基づいて行うように適応され得る。既定波形のスペクトル組成は、好ましくは装置160にとって既知で有ることにより、スピーカ125の線形動作範囲外での動作は出力音響信号140のスペクトル組成に基づき検知され得て、また、DRCの存在を証明する飽和は、スピーカの線形動作範囲外での動作に起因する飽和から区別され得ることとなる。
所与のオーディオ再生システム120について、典型的には、音響出力140において得ることが可能な振幅の上限が存在し、それはたとえDRCがなくとも、例えば、増幅段および/またはスピーカにおける物理的制限の結果生じる。オーディオ再生システム120内にDRCが存在することの証明となる検知された飽和とは、監視される振幅の飽和であって、そのような上限を下回るレベル710で起きるものを意味する。
いくつかの実施形態例によれば、DRC検知部168は、音響出力140における信号対ノイズ比(SNR)を推定するように適応され得る。例えば、単一周波数オーディオ信号と同一周波数のスペクトル成分を、非線形歪みのために存在し得る全ての倍音とともに取り除いた後に何が残るか、について考察することによってもよい。飽和の検知は、図7a及び7bを参照しながら述べられたように、高SNRの検知と組み合わせて、オーディオ再生システム120内におけるDRCの存在を示し得る。従って、いくつかの実施形態
例によれば、制御部164は、周波数依存的減衰段122に減衰処理を中断させるための制御情報170を、既定の閾値を上回り推定されるSNRとDRC検知部168による飽和の検知とに応答して決定するように適応され得る。
図10はある実施形態例による、オーディオ再生システム120内にDRCが存在することを検知するための方法を示す、フローチャートである。この方法は、例えば、図1及び図2を参照しながら述べられたチューニング装置160のDRC検知部168において、あるいは、図1の構成によるチューニング装置160と全く同様に構成された別のDRC検知装置(但しDRC検知装置が制御情報170を減衰段122に提供するように構成されなくともよい)において、用いられ得る。本実施形態例によれば、当該方法は、既定入力データ信号群のシーケンスによるオーディオ再生システム120の励起に際して記録されるデータを受信する工程1010(シーケンス中で連続する既定入力データ信号群は、ある1つの規定波形を次第に増幅した波形群に相当する)と、受信データに基づき、シーケンスによるオーディオ再生システム120の励起の結果であるオーディオ再生システム120からの出力音響信号140の振幅を監視する工程1020と、を含む。本実施形態例によれば、当該方法は、監視される振幅の飽和を検知する工程1030と、飽和が検知された場合に(図10においてYで示される)検知された飽和がDRCの存在を示唆/証明するかどうかを決定する工程1040と、を含む。検知された飽和がDRCの存在を示す/証明するかどうかを決定する工程1040は、例えば、飽和が検知された振幅/エネルギー/パワーレベルを、オーディオ再生システム120の増幅段および/またはスピーカにおける物理的制限と対照して比較すること(上述)、および/または推定SNRが十分に高いかどうかについて考察すること(上述)を含み得る。もし、ある振幅/エネルギー/パワーレベルまでのオーディオ再生システム120の励起に対応する既受信データに基づいては如何なる飽和も検知されないならば、前記方法は、より高い振幅/エネルギー/パワーレベルによるオーディオ再生システム120の励起に対応するさらなるデータを受信する工程1010と、より高い振幅/エネルギー/パワーレベル上での飽和を検知する工程1030のための受信データを監視する工程1020と、に戻る(図10ではNで示される)。もし、検知された飽和がDRCの存在を示す/証明する(図10ではYで示される)と工程1040で決定されれば、さらなる手順がこの決定に基づき得る。例えば、図2を参照しながら以上に述べたような、DRCの検知を例えば制御部164へと制御情報170の決定のために出力/発信する工程1050等である。オプションとして、もし検知された飽和がDRCの存在を示す/証明すると工程1040で決定されれば、当該方法は、以前に励起として用いられたのとは異なる周波数の入力データ信号110によるオーディオ再生システム120の励起に際して記録される出力音響信号140を表現するデータを受信する工程1010へと戻ってもよい。異なる複数の励起周波数につき飽和が検知されれば、そのことは、オーディオ再生システム120内におけるDRCの存在をいっそう強く示し得る。もし、検知された飽和はDRCの存在を示さない/証明しない(図10ではNで示される)と工程1040で決定されれば、さらなる手順がこの決定に基づき得る。例えば、DRCの存在は(まだ)検知されていないことを出力/発信する工程1060等である。DRCを備えるいくつかのオーディオ再生システム120では、DRCの存在は、ある特定の周波数帯において、より容易に検知され得る。よって、もし検知された飽和はDRCの存在を示し/証明しないと工程1040で決定されれば、前記方法は、例えば、以前に励起として用いられたのとは異なる周波数の入力データ信号110によるオーディオ再生システム120の励起に際して記録される出力音響信号140を表現するデータを受信する工程1010へと、戻り得る。
以上に、装置160が、第1の歪み検知部163に加えて、第2の歪み検知部165、スペクトル組成解析部166、相関性解析部167、および/またはDRC検知部168を含むようないくつかの実施形態例を、図2を参照しながら述べた。装置160がこれらの部の任意の組合せを含み、かつ、制御部164がそれら各部により決定される情報の任
意の組合せに基づいて制御情報170を決定するような実施形態が、想定される。オーディオ再生システム120中で発生する非線形歪みに対する様々なタイプの解析に基づいて制御情報170を決定することにより、周波数依存的減衰段122のチューニングが改善され得るか、かつ/または、可聴な非線形歪みとオーディオ再生システム120の全体的ラウドネスとの間でより知覚的に魅力的なバランスが達成され得る。例えば、制御情報170は、各部163、165、166、167、168において取得される解析結果に重みを付けて組合せたものに基づき得る。
なお、第1の歪み検知部163、第2の歪み検知部165、スペクトル組成解析部166、相関性解析部167、及びDRC検知部168のうち少なくともいくつかは、異なるタイプの既定入力データ信号110をオーディオ再生システム120に対する励起として用い得ることに、留意されたい。従って、少なくともいくつかの実施形態例によれば、異なるタイプの既定入力データ信号群のシーケンス110がオーディオ再生システム120に提供されて、かつ、異なる部が各自の分析をお互いの後に、例えば異なる時点で、実行するように適応され得る。図2に図示される様々な部は、例えば、単一プロセッサの複数の機能として実装されてもよいし、また例えば、2つ以上の別々の物理単位/コンポーネント中に実装されてもよい。
もし、装置160が、例えば訓練を受けたチューニング担当者により取得された、装置応答例140及び対応する周波数依存的減衰段122の基準チューニングについての大きなデータベースを利用できるならば、例えばニューラルネットワークに基づく機械学習アプローチを用いて、周波数依存的減衰段122のチューニングのために適正な制御情報を見出だしてもよい。従って、ある実施形態例によれば、制御部は、制御情報の決定を、少なくとも、周波数依存的減衰段122に関する基準チューニングのセットに基づき機械学習を適用することによって行うように、適応され得る。例えば、装置160は、基準チューニングを格納する記憶部(図2には不図示)を含み得る。
少なくとも上記のいくつかの実施形態例中で述べられたように、図1に示す構成を用いた周波数依存的減衰段122のチューニングは、励起信号110の振幅を変化させること、及び、音響応答140を解析すること、を含み得る。図8は、周波数依存的減衰段122をチューニングするための代替構成例を示す汎用ブロック図である。ここで、チューニング中において、オーディオ再生システム120中で生み出される非線形歪みが周波数依存的減衰段122による影響を受けずに解析されるよう、周波数依存的減衰段122は迂回801され、すなわち、その減衰処理が中断され得る。
しかし、もしも周波数依存的減衰段122が単純なマルチバンドリミッタではなくて、米国特許出願第2013/0013096 A1号(その内容を全て本願に援用する)に記載の音色維持マルチバンドリミッタのように、適用される減衰処理を例えば周波数域/帯同士間の相互作用に基づき変化させるための何らかの機能を有しているならば、図1に例示されるように、測定工程に周波数依存的減衰段122を含めて、そのパラメータを音響出力140を測定中に調整することが有益であり得る。この場合、励起信号110は、例えば定常信号であってもよい。なぜならば、周波数依存的減衰段122により提供される減衰処理を制御情報170を経由して調整することにより、生成される非線形歪みの量を様々に変化させ得るからである。従って、ある実施形態例によれば、装置160は、定常入力データ信号110によるオーディオ再生システム120の励起に際して記録されるデータ161を受信するように、適応され得る。また、周波数依存的減衰段122は、装置の制御部により決定される制御情報170に基づいて入力データ信号110を減衰処理すべく動作し得る。本実施形態例によれば、装置160は、周波数依存的減衰段122のチューニングを、受信データ161に基づき反復的に制御情報170を決定することによって行うように適応され得る。
オーディオ再生システム120中で発生する非線形歪みを解析する事に加えて、さらに、全ての周波数域がオーディオ再生システム120により音響出力信号140として発せられることが可能かどうかを推定することが、有益であり得る。例えば、オーディオ再生システム120の音響出力140中において可聴音声が得られない周波数域を、完全に減衰処理するように周波数依存的減衰段122をチューニングすることが、有益であり得る。なぜならば、そうすることにより、トランスデューサでの不必要なパワーロスを防ぎ得るし、しかも、追加的な歪み抑制へとつながり得るからである。ある周波数がオーディオ再生システム120により発せられ得るかどうかを推定するための1つのアプローチは、固定周波数正弦信号を励起110として使用し、励起110と音響応答140との間に生じる様々な遅延について励起110と音響応答140との間の相互相関関係を推定し、相互相関最大値が所定の閾値を超過するかどうかを確かめることである。
図9は、ある実施形態例による、周波数依存的減衰段122に連関したオーディオ再生システム120中で発生する非線形歪みの抑制を目的として周波数依存的減衰段122をチューニングするための方法、を示すフローチャートである。この方法は、既定入力データ信号110によるオーディオ再生システム120の励起に際して記録される出力音響信号140を表現するデータ161を受信する工程901と、受信データ161に基づき非線形歪みの存在を検知する工程902と、検知された非線形歪みに対し心理音響補償を適用する工程903と、心理音響補償を受けた非線形歪みに基づき周波数依存的減衰段122制御用に適正な制御情報170を決定する工程904と、を含む。
IV.均等物、拡張物、代替物、その他
本開示の更なる実施形態が、当該分野の当業者にとり、以上の明細書を熟読した後に明らかとなるであろう。当明細書及び図面は実施形態及び例を開示するが、本開示はこれら特定の例に限定されるわけではない。多数の修正や変更が、本開示の範囲から離れることなく為され得るのであって、その開示の範囲は、付属の請求項により定義される。それら請求項に現れるいかなる参照符号も、それら請求項の範囲を限定するものと考えられるべきではない。
さらに、開示された実施形態に対する変更は、図面、開示、及び末尾に添付の請求項を熟読することにより、本開示を実践しようとする当業者が理解して遂行し得る。請求項において、「含む(comprising)」という言葉は、その他の要素や手順を排除しない。また、不定冠詞「ある/1つの(a)」や「ある/1つの(an)」は、複数を排除しない。あるいくつかの手段が互いに相異なる従属の請求項で規定されているという単なる事実が、これらの方法の組合せて有利に用い得ないことを示唆することはない。
以上の本明細書中に開示された装置及び方法は、ソフトウェア、ファームウェア、ハードウェア、またはそれらの組合せとして実装され得る。ハードウェアによる実装において、以上の明細書中で言及された機能的ユニット間でのタスク分割は、必ずしも物理的単位への分割に相当しない。逆に、1つの物理的部品は複数の機能性を有することがあり、また1つのタスクは互いに協力し合う数個の物理的部品により実行されることがある。特定のいくつかの部品あるいは全ての部品は、デジタル信号プロセッサまたはマイクロプロセッサにより実行されるソフトウェアとして実装されるか、もしくは、ハードウェアとしてまたは特定用途向けICとして実装され得る。そのようなソフトウェアは、コンピュータ可読媒体に乗せて配信され得て、それら媒体は、コンピュータ記憶媒体(すなわち非一時的媒体)及び通信媒体(すなわち一時的媒体)を含み得る。当該分野の当業者には周知のとおり、コンピュータ記憶媒体という用語には、情報の格納のための任意の方法や技術を用いて実装される揮発性/不揮発性、リムーバブル/非リムーバブルの両方の媒体が含まれ、例えば、コンピュータ可読指令、データ構造、プログラムモジュール、またはその他
のデータのようなものが挙げられる。コンピュータ記憶媒体には、RAM、ROM、EEPROM、フラッシュメモリまたはその他のメモリ技術、CD‐ROM、デジタル多用途ディスク(DVD)またはその他の光学ディスク記憶、磁気カセット、磁気テープ、磁気ディスク記憶またはその他の磁気記憶装置、もしくは、望まれる情報を格納するために使用可能かつコンピュータによりアクセス可能であるその他の任意媒体が含まれるが、それらに限定されない。さらに、当業者には周知のことであるが、通信媒体とは、典型的にはコンピュータ可読指令、データ構造、プログラムモジュール、もしくは、例えば搬送波またはその他の運搬機構のような変調データ信号内にあるその他のデータ、を体現するものであり、そこには任意の情報配送媒体が含まれる。

Claims (8)

  1. ビットストリームにおいて受信したデータに基づき、増加する振幅を伴う単一周波数の入力データ信号によるオーディオ再生システムの励起の結果である、前記オーディオ再生システムから外部に出力される出力音響信号の振幅を監視することと、
    監視される振幅の飽和を検知して前記オーディオ再生システム内におけるDRCの存在を証明することと、
    DRCの検知結果に基づいて、前記オーディオ再生システムに連関した周波数依存的減衰段を制御するための制御情報の決定を行うことと、を包含する、ダイナミックレンジ制御(DRC)検知方法。
  2. 前記入力データ信号は連続的に大きくなる正弦信号である、請求項1に記載のダイナミックレンジ制御(DRC)検知方法。
  3. 前記入力データ信号は時間的に分離された正弦信号である、請求項1に記載のダイナミックレンジ制御(DRC)検知方法。
  4. 前記DRCの検知結果に基づいて前記制御情報の決定を行うことは、前記周波数依存的減衰段に減衰処理を中断させるための制御情報を、前記DRCの検知結果に応答して決定することを含む、請求項1に記載のダイナミックレンジ制御(DRC)検知方法。
  5. 前記DRCの検知結果に基づいて前記制御情報の決定を行うことは、前記周波数依存的減衰段に減衰処理を中断させるための制御情報を、既定の閾値を上回り推定されるSNRと前記監視される振幅の飽和の検知とに応答して決定することを含む、請求項1に記載のダイナミックレンジ制御(DRC)検知方法。
  6. 前記DRCの検知結果に基づいて前記制御情報の決定を行うことは、少なくとも、前記周波数依存的減衰段に関する基準チューニングのセットに基づき機械学習を適用することによって、前記制御情報の決定を行うことを含む、請求項1に記載のダイナミックレンジ制御(DRC)検知方法。
  7. 前記入力データ信号を前記オーディオ再生システムに提供するように適応されたインターフェースをさらに備える、請求項1に記載のダイナミックレンジ制御(DRC)検知方法。
  8. コンピュータに請求項1から7のいずれかの方法を実行させるための指令を含む、コンピュータプログラム。
JP2018192701A 2014-02-18 2018-10-11 周波数依存的減衰段をチューニングするための装置及び方法 Active JP6711881B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461941414P 2014-02-18 2014-02-18
US61/941,414 2014-02-18

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016552893A Division JP6420353B2 (ja) 2014-02-18 2015-02-18 周波数依存的減衰段をチューニングするための装置及び方法

Publications (2)

Publication Number Publication Date
JP2019033522A JP2019033522A (ja) 2019-02-28
JP6711881B2 true JP6711881B2 (ja) 2020-06-17

Family

ID=52627173

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016552893A Active JP6420353B2 (ja) 2014-02-18 2015-02-18 周波数依存的減衰段をチューニングするための装置及び方法
JP2018192701A Active JP6711881B2 (ja) 2014-02-18 2018-10-11 周波数依存的減衰段をチューニングするための装置及び方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016552893A Active JP6420353B2 (ja) 2014-02-18 2015-02-18 周波数依存的減衰段をチューニングするための装置及び方法

Country Status (6)

Country Link
US (1) US10283137B2 (ja)
EP (1) EP3108669B1 (ja)
JP (2) JP6420353B2 (ja)
CN (2) CN110381421B (ja)
HK (1) HK1231660A1 (ja)
WO (1) WO2015124598A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10936277B2 (en) 2015-06-29 2021-03-02 Audeara Pty Ltd. Calibration method for customizable personal sound delivery system
US10142731B2 (en) 2016-03-30 2018-11-27 Dolby Laboratories Licensing Corporation Dynamic suppression of non-linear distortion
CN117544884A (zh) * 2017-10-04 2024-02-09 谷歌有限责任公司 基于房间特性自动均衡音频输出的方法和系统
US10333482B1 (en) * 2018-02-04 2019-06-25 Omnivision Technologies, Inc. Dynamic output level correction by monitoring speaker distortion to minimize distortion
EP3579583B1 (en) 2018-06-06 2023-03-29 Dolby Laboratories Licensing Corporation Manual characterization of perceived transducer distortion
CN110753295B (zh) * 2018-07-23 2023-04-18 奥德拉私人有限公司 可定制个人声音传送系统的校准方法
CN112640301B (zh) 2018-09-28 2022-03-29 杜比实验室特许公司 动态地调整压缩器的阈值的方法和设备
US11856385B2 (en) * 2019-02-13 2023-12-26 MOZZAIK IO d.o.o. Audio signal processing method and device
US10904663B2 (en) 2019-04-25 2021-01-26 Samsung Electronics Co., Ltd. Reluctance force compensation for loudspeaker control
US11812239B2 (en) * 2019-04-30 2023-11-07 Waves Audio Ltd. Dynamic reduction of loudspeaker distortion based on psychoacoustic masking
CN110809214B (zh) * 2019-11-21 2021-01-08 Oppo广东移动通信有限公司 音频播放方法、音频播放装置及终端设备
US11817114B2 (en) * 2019-12-09 2023-11-14 Dolby Laboratories Licensing Corporation Content and environmentally aware environmental noise compensation
EP4158910B1 (en) * 2020-05-27 2024-07-24 Dolby Laboratories Licensing Corporation Transient multi-tone test signal and method for audio speakers

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3940715A (en) 1974-09-25 1976-02-24 Sound Technology, Inc. Distortion measurement system
FR2301133A1 (fr) 1975-02-14 1976-09-10 Thomson Csf Dispo
JP2567099B2 (ja) 1989-06-16 1996-12-25 パイオニア株式会社 音響伝達特性制御装置
JPH07122953A (ja) 1993-10-22 1995-05-12 Matsushita Electric Ind Co Ltd 信号レベル圧縮装置
DE4336608C2 (de) * 1993-10-27 1997-02-06 Klippel Wolfgang Schaltungsanordnung zum Schutz elektrodynamischer Lautsprecher gegen mechanische Überlastung durch hohe Schwingspulenauslenkung
US5794188A (en) 1993-11-25 1998-08-11 British Telecommunications Public Limited Company Speech signal distortion measurement which varies as a function of the distribution of measured distortion over time and frequency
US5850453A (en) 1995-07-28 1998-12-15 Srs Labs, Inc. Acoustic correction apparatus
US6108431A (en) 1996-05-01 2000-08-22 Phonak Ag Loudness limiter
DE19640132B4 (de) 1996-09-28 2015-06-03 Volkswagen Ag Verfahren zur automatischen Begrenzung von Verzerrungen an Audio-Geräten und Schaltungsanordnung zur Durchführung des Verfahrens
US6185300B1 (en) 1996-12-31 2001-02-06 Ericsson Inc. Echo canceler for use in communications system
US6570985B1 (en) 1998-01-09 2003-05-27 Ericsson Inc. Echo canceler adaptive filter optimization
EP1145430B1 (en) 1998-11-12 2004-09-15 Broadcom Corporation Integrated tuner architecture
JP4824169B2 (ja) 1999-03-30 2011-11-30 クゥアルコム・インコーポレイテッド 移動電話内のスピーカ利得およびマイクロフォン利得を自動的に調整するための方法および装置
CN1516493A (zh) 2003-01-10 2004-07-28 深圳市中兴通讯股份有限公司上海第二 一种功率放大器线性化方法和线性功率放大器装置
CA2581810C (en) 2004-10-26 2013-12-17 Dolby Laboratories Licensing Corporation Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal
US8199933B2 (en) 2004-10-26 2012-06-12 Dolby Laboratories Licensing Corporation Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal
US7564979B2 (en) 2005-01-08 2009-07-21 Robert Swartz Listener specific audio reproduction system
CA2568916C (en) 2005-07-29 2010-02-09 Harman International Industries, Incorporated Audio tuning system
FR2890280A1 (fr) 2005-08-26 2007-03-02 Elsi Ingenierie Sarl Procede de filtrage numerique et de compensation pour lineariser la courbe de reponse d'une enceinte acoustique et moyens mis en oeuvre
JP2007081815A (ja) * 2005-09-14 2007-03-29 Matsushita Electric Ind Co Ltd スピーカ装置
FI122089B (fi) * 2006-03-28 2011-08-15 Genelec Oy Kalibrointimenetelmä ja -laitteisto äänentoistojärjestelmässä
CN101421781A (zh) 2006-04-04 2009-04-29 杜比实验室特许公司 音频信号的感知响度和/或感知频谱平衡的计算和调整
US7593535B2 (en) * 2006-08-01 2009-09-22 Dts, Inc. Neural network filtering techniques for compensating linear and non-linear distortion of an audio transducer
US8311590B2 (en) * 2006-12-05 2012-11-13 Hewlett-Packard Development Company, L.P. System and method for improved loudspeaker functionality
EP1986466B1 (en) 2007-04-25 2018-08-08 Harman Becker Automotive Systems GmbH Sound tuning method and apparatus
US7742746B2 (en) 2007-04-30 2010-06-22 Qualcomm Incorporated Automatic volume and dynamic range adjustment for mobile audio devices
JP2010122617A (ja) * 2008-11-21 2010-06-03 Yamaha Corp ノイズゲート、及び収音装置
JP5136378B2 (ja) * 2008-12-09 2013-02-06 富士通株式会社 音響処理方法
EP2401872A4 (en) 2009-02-25 2012-05-23 Conexant Systems Inc SYSTEM AND METHOD FOR REDUCING SPEAKER DISTORTION
US8532310B2 (en) * 2010-03-30 2013-09-10 Bose Corporation Frequency-dependent ANR reference sound compression
EP2642481B1 (en) 2009-04-28 2014-07-16 Bose Corporation Circuit and method for active noise reduction
US9101299B2 (en) 2009-07-23 2015-08-11 Dean Robert Gary Anderson As Trustee Of The D/L Anderson Family Trust Hearing aids configured for directional acoustic fitting
US8879745B2 (en) 2009-07-23 2014-11-04 Dean Robert Gary Anderson As Trustee Of The D/L Anderson Family Trust Method of deriving individualized gain compensation curves for hearing aid fitting
US8538042B2 (en) 2009-08-11 2013-09-17 Dts Llc System for increasing perceived loudness of speakers
JP5694324B2 (ja) * 2009-08-11 2015-04-01 ディーティーエス・エルエルシーDts Llc スピーカーの知覚されるラウドネスを増加させるためのシステム
US9083298B2 (en) 2010-03-18 2015-07-14 Dolby Laboratories Licensing Corporation Techniques for distortion reducing multi-band compressor with timbre preservation
WO2012024144A1 (en) * 2010-08-18 2012-02-23 Dolby Laboratories Licensing Corporation Method and system for controlling distortion in a critical frequency band of an audio signal
US8509450B2 (en) 2010-08-23 2013-08-13 Cambridge Silicon Radio Limited Dynamic audibility enhancement
JP4892095B1 (ja) 2010-11-26 2012-03-07 株式会社東芝 音響補正装置、及び音響補正方法
US8873763B2 (en) 2011-06-29 2014-10-28 Wing Hon Tsang Perception enhancement for low-frequency sound components
US8965774B2 (en) * 2011-08-23 2015-02-24 Apple Inc. Automatic detection of audio compression parameters
EP2761745A1 (en) 2011-09-26 2014-08-06 Actiwave AB Audio processing and enhancement system
EP2575375B1 (en) * 2011-09-28 2015-03-18 Nxp B.V. Control of a loudspeaker output
WO2013075848A1 (en) * 2011-11-21 2013-05-30 Jacoti Bvba System and method for signal level detection
US9654866B2 (en) * 2012-01-27 2017-05-16 Conexant Systems, Inc. System and method for dynamic range compensation of distortion
EP2632173B1 (en) * 2012-02-22 2015-06-03 Harman Becker Automotive Systems GmbH Loudspeaker overload protection
CN103325380B (zh) * 2012-03-23 2017-09-12 杜比实验室特许公司 用于信号增强的增益后处理
US9173020B2 (en) * 2012-03-27 2015-10-27 Htc Corporation Control method of sound producing, sound producing apparatus, and portable apparatus
JP6304643B2 (ja) 2013-05-02 2018-04-04 学校法人 工学院大学 スピーカーの非線形歪低減装置、方法、及びプログラム

Also Published As

Publication number Publication date
HK1231660A1 (zh) 2017-12-22
US20170061982A1 (en) 2017-03-02
WO2015124598A1 (en) 2015-08-27
JP2017506464A (ja) 2017-03-02
CN106105262B (zh) 2019-08-16
CN110381421B (zh) 2021-05-25
JP6420353B2 (ja) 2018-11-07
EP3108669A1 (en) 2016-12-28
US10283137B2 (en) 2019-05-07
CN106105262A (zh) 2016-11-09
EP3108669B1 (en) 2020-04-08
JP2019033522A (ja) 2019-02-28
CN110381421A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
JP6711881B2 (ja) 周波数依存的減衰段をチューニングするための装置及び方法
KR102473598B1 (ko) 왜곡 감지, 방지, 및 왜곡-인지 베이스 강화
JP5602309B2 (ja) オーディオ信号の臨界周波数帯域における歪みを制御する方法とシステム
JP5695677B2 (ja) 単一再生モードにおいてラウドネス測定値を合成するシステム
JP5898534B2 (ja) 音響信号処理装置および音響信号処理方法
US8638954B2 (en) Audio signal processing apparatus and speaker apparatus
CN111052601B (zh) 用于减小扬声器中的音频失真的方法和装置
JP2009296298A (ja) 音声信号処理装置および方法
US10805723B2 (en) Automatic characterization of perceived transducer distortion
US11950064B2 (en) Method for audio rendering by an apparatus
US20190074805A1 (en) Transient Detection for Speaker Distortion Reduction
JP5841405B2 (ja) ダイナミックレンジ拡張装置
WO2024218848A1 (ja) 共鳴周波数特定方法、プログラム、及び共鳴周波数特定システム
US9497540B2 (en) System and method for reducing rub and buzz distortion
Gunnarsson Assessment of nonlinearities in loudspeakers
JP2006093767A (ja) 増幅装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200528

R150 Certificate of patent or registration of utility model

Ref document number: 6711881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250